WO2013099856A1 - 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法 - Google Patents

2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法 Download PDF

Info

Publication number
WO2013099856A1
WO2013099856A1 PCT/JP2012/083449 JP2012083449W WO2013099856A1 WO 2013099856 A1 WO2013099856 A1 WO 2013099856A1 JP 2012083449 W JP2012083449 W JP 2012083449W WO 2013099856 A1 WO2013099856 A1 WO 2013099856A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrafluoropropene
hfo
stage
distillation column
distillate
Prior art date
Application number
PCT/JP2012/083449
Other languages
English (en)
French (fr)
Inventor
聡史 河口
高木 洋一
津崎 真彰
正人 福島
岡本 秀一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48697341&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013099856(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP12861259.5A priority Critical patent/EP2799415B2/en
Priority to CN201280065099.2A priority patent/CN104024189B/zh
Priority to JP2013551699A priority patent/JP6056771B2/ja
Publication of WO2013099856A1 publication Critical patent/WO2013099856A1/ja
Priority to US14/305,476 priority patent/US9193649B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation

Definitions

  • the present invention relates to a purification method and a purification apparatus for 2,3,3,3-tetrafluoropropene and a method for producing 2,3,3,3-tetrafluoropropene having the purification method.
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • GWP global warming potential
  • the regulation of refrigerants with a high GWP in recent years, such as the EU with a new model car since 2011 with a GWP of 150 or more has been restricted due to the prohibition of use of other refrigerants.
  • the abbreviation of the compound is described in parentheses after the compound name, but in this specification, the abbreviation may be used instead of the compound name as necessary.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene having an extremely low GWP of 4 as an alternative refrigerant for HFC-134a is spreading.
  • alkali washing or water washing is performed to remove acids such as hydrofluoric acid and hydrochloric acid that are used or generated, the crude liquid contains fluorine-based intermediates, by-products, unreacted raw materials, etc.
  • water is often contained.
  • Patent Document 1 describes a method for producing HFO-1234yf in which the bottoms obtained from the bottom of the distillation column are HFO-1234yf products with low moisture.
  • the present invention has been made from the above viewpoint, and a purification method, a purification apparatus, and a production method for efficiently obtaining high-purity 2,3,3,3-tetrafluoropropene having a low content of both organic impurities and moisture It aims to provide a method.
  • the present invention is a method for continuously purifying crude 2,3,3,3-tetrafluoropropene containing water and organic impurities, wherein X stage (where X is an integer of 3 or more.
  • the first stage is the first stage.
  • the crude 2,3,3,3-tetrafluoropropene is supplied to the cooling and condensing means.
  • At least a part of the distillate thus obtained is refluxed to the h-th stage of the distillation column (where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1) and the liquid phase part of the n-th stage of the distillation column.
  • the present invention continuously purifies crude 2,3,3,3-tetrafluoropropene containing water and organic impurities.
  • X stage (where X is an integer of 3 or more. The stage closest to the top of the column is 1). And a means for cooling and condensing the distillate from the top of the distillation column, wherein the cooling and condensing means is at least one of the cooled and condensed distillate.
  • the distillation column has an m-th stage (where m is an integer satisfying n + 1 ⁇ m ⁇ X. N satisfies 2 ⁇ n ⁇ X ⁇ 1).
  • the present invention provides a method for producing 2,3,3,3-tetrafluoropropene comprising the method for purifying 2,3,3,3-tetrafluoropropene of the present invention.
  • FIG. 6 is a schematic view showing a modification of the embodiment of the purification apparatus for HFO-1234yf of the present invention.
  • FIG. 6 is a schematic view showing another modification of the embodiment of the purification apparatus for HFO-1234yf of the present invention.
  • FIG. 10 is a schematic view showing still another modification of the embodiment of the purification apparatus for HFO-1234yf of the present invention.
  • FIG. 4 is a view showing a purification apparatus for HFO-1234yf used in Example 3.
  • FIG. 3 is a view showing a purification apparatus for HFO-1234yf used in Comparative Example 1.
  • FIG. 3 is a view showing a purification apparatus for HFO-1234yf used in Comparative Example 2.
  • the present invention is a method for continuously purifying crude 2,3,3,3-tetrafluoropropene containing water and organic impurities, wherein X stage (where X is an integer of 3 or more.
  • the first stage is the first stage.
  • the crude 2,3,3,3-tetrafluoropropene is supplied to the cooling and condensing means. At least a part of the distillate thus obtained is refluxed to the h-th stage of the distillation column (where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1) and the liquid phase part of the n-th stage of the distillation column.
  • h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1
  • h-th stage of the distillation column where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1
  • Crude HFO-1234yf targeted by the purification method of the present invention contains water and organic impurities.
  • organic impurities contained in the crude HFO-1234yf include unreacted raw materials used when the HFO-1234yf is produced by a conventionally known production method, intermediates produced by the production process, and by-products. .
  • HFO-1234yf is produced using an isomer mixture of dichloropentafluoropropane (C 3 HCl 2 F 5 (HCFC-225)), the crude HFO-1234yf contains the following organic impurities.
  • examples of the organic impurities include the following compounds.
  • HCFC-225ca (boiling point: 51 ° C.) and its isomer, 1,3-dichloro-1,2,2,3,3-pentafluoropropane (CHClFCF 2 CClF 2 , HCFC-225cb) , Boiling point: 56.1 ° C.), 2,2-dichloro-1,1,3,3,3-pentafluoropropane (CHF 2 CCl 2 CF 3 , HCFC-225aa, boiling point: 52 ° C.), and the like.
  • CFO-1214ya (boiling point: 46.4 ° C.) and intermediate product 1-chloro-2,3,3,3-tetra in a reaction system for producing HFO-1234yf from CFO-1214ya are used.
  • fluoropropene (CF 3 CF ⁇ CHCl, HCFO-1224yd, boiling point: 15 ° C.).
  • 1,1,1,2-hexafluoropropane (CF 3 CHFCH 3 , HFC-254eb, boiling point: ⁇ 6 ° C.), which is a reduced form of HCFC-225ca, is a dehydrochlorination reaction as a by-product.
  • 1,1,3,3,3-pentafluoropropene (CF 3 CH ⁇ CF 2 , HFO-1225zc, boiling point: ⁇ 20.7 ° C.) obtained by reduction, HFO-1234yf is a perreduced product.
  • HFO-1234yf has a boiling point of -29 ° C. According to the purification method of the present invention, even when the organic impurity has a boiling point close to that of HFO-1234yf, specifically, even when the organic impurity contains an organic compound having a boiling point of ⁇ 40 ° C. to ⁇ 10 ° C. These can be separated effectively.
  • organic compounds having a boiling point of ⁇ 40 ° C. to ⁇ 10 ° C. are used as HFO-1225zc, HFO-1243zf, HFO -1252zf and the like.
  • the boiling point is ⁇ 40 ° C. to ⁇ 10 ° C.
  • 1,2,3,3,3-pentafluoropropene CF 3 CF ⁇ CHF, HFO-1225ye, boiling point: ⁇ 18 ° C.
  • CF 3 CH CHF, HFO -1234ze, boiling point
  • PFO-1216yc, HFO-1225ye, HFO-1234ze, and the like can become organic impurities when producing HFO-1234yf by the following reaction route (2) using PFO-1216yc as a raw material compound, for example.
  • HFC-245cb has a boiling point of ⁇ 40 ° C. or more which can be an organic impurity when HFO-1234yf is produced by the following reaction route (3) using, for example, 1,2,3-trichloropropane as a raw material compound. It is an organic compound at ⁇ 10 ° C.
  • the crude HFO-1234yf to be obtained includes unreacted raw materials other than the organic compound having the boiling point of ⁇ 40 ° C. to ⁇ 10 ° C.
  • Organic compounds with boiling points outside the range of ⁇ 40 ° C. to ⁇ 10 ° C. among the products, intermediates and by-products generated in the production process are usually contained in the same manner as described in the above reaction route (1). It is.
  • HFC-245cb is a raw material for producing HFO-1234yf together with 1,1,1,2,3-pentafluoropropane (CF 3 CHFCH 2 F, HFC-245eb, boiling point-1 ° C.). It is an organic compound used as a compound.
  • HFC-1245yf is produced by dehydrofluorinating HFC-245cb and HFC-245eb, and removal of organic impurities such as unreacted raw materials is performed by a distillation column different from a distillation column for removing moisture. The method to use is taken.
  • the organic compound contained in the crude HFO-1234yf as an impurity is as described above.
  • the water contained in the crude HFO-1234yf as an impurity uses or generates an acid such as hydrogen fluoride or hydrogen chloride in any of the production methods exemplified above. It is water brought in by alkaline washing and water washing.
  • the content of organic impurities and water in the crude HFO-1234yf containing water and organic impurities as described above can be efficiently reduced in one distillation column by the above-described configuration.
  • the content of HFO-1234yf with respect to the total amount of organic substances in the crude HFO-1234yf is 5% by mass or more and less than 99.5% by mass.
  • 1234yf can be a purified HFO-1234yf product having a content of HFO-1234yf of 99.5% by mass or more, more preferably 99.8% by mass or more, based on the total amount of organic substances in the purified product.
  • the organic impurities having a boiling point close to that of HFO-1234yf is 10% by mass or more based on the amount of HFO-1234yf in the crude HFO-1234yf.
  • a boiling point in the range of ⁇ 40 ° C. to ⁇ 10 ° C. is 10% by mass or more based on the amount of HFO-1234yf in the crude HFO-1234yf.
  • the content ratio of the obtained crude HFO-1234yf to the amount of HFO-1234yf in the various reaction stages shown above does not exceed 10 mass%.
  • the content ratio of water to HFO-1234yf is 100 ppm or less, preferably 50 ppm or less, and the content ratio of water to HFO-1234yf is A purified HFO-1234yf product having a concentration of 20 ppm or less can be obtained.
  • crude HFO-1234yf having a water content ratio of more than 20 ppm with respect to HFO-1234yf is preferably 20 ppm or less, preferably with respect to HFO-1234yf.
  • a purified HFO-1234yf product having a concentration of 10 ppm or less can be obtained.
  • the crude HFO-1234yf as described above is divided into an X-stage distillation column (where X is an integer of 3 or more, and the stage closest to the top of the tower is the first stage) and the distillation column. It refine
  • the crude HFO-1234yf is supplied to the m-th stage of the distillation column (where m is an integer satisfying n + 1 ⁇ m ⁇ X, and n is an integer satisfying 2 ⁇ n ⁇ X ⁇ 1), followed by cooling and condensation.
  • At least a part of the distillate cooled and condensed in the means is refluxed to the h-th stage of the distillation column (where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1) and the n-th stage liquid of the distillation column
  • h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1
  • n-th stage liquid of the distillation column The phase part is extracted and obtained as a purified product of HFO-1234yf.
  • the distillate cooled and condensed in the cooling and condensing means is refluxed as the reflux liquid in the h stage of the distillation column.
  • the distillate refluxed to the distillation column as a reflux liquid may be a part or all of the distillate taken from the top of the column.
  • the distillate refluxed to the distillation column as a reflux liquid is a part of the distillate taken out from the top of the column, a part of the distillate is extracted in the cooling condensation means, and the remainder is used as the reflux liquid. Also good.
  • the distillation column Since the distillate taken out from the top of the column has a high water content due to the azeotropic property of HFO-1234yf and water, if all of this is refluxed to the distillation column as a reflux liquid, the distillation column is operated for a long time. The water content tends to increase as a whole. Therefore, by extracting a part of the distillate, the water content in the distillation column can be suppressed to a certain amount or less, which is preferable.
  • a part of the distillate extracted in the cooling and condensing means is further dehydrated, and the resulting first processed product is added to the k-th stage ( However, it is preferable to add an operation to supply k to an integer satisfying n + 1 ⁇ k ⁇ m.
  • n 1 ⁇ k ⁇ m.
  • a method for discharging water that tends to be highly concentrated in the distillation column to the outside of the distillation column a method may be used in which the reflux solution is dehydrated and returned to the distillation column before returning to the distillation column.
  • the purification method of the present invention can be carried out, for example, using the HFO-1234yf purification apparatus of the present invention, specifically, an example of the embodiment of the purification apparatus of the present invention schematically shown in FIG.
  • the purification apparatus 10A of the present embodiment shown in FIG. 1 includes an X-stage distillation column 1 (where X is an integer of 3 or more, and the stage closest to the top of the column is the first stage), and the column of the distillation tower 1 It is an apparatus provided with means 2 for taking out the distillate S10 from the top 3 and cooling and condensing it.
  • Distillation column 1 supplies crude HFO-1234yf (F11) to the m-th stage (where m is an integer satisfying n + 1 ⁇ m ⁇ X. N is an integer satisfying 2 ⁇ n ⁇ X ⁇ 1).
  • a supply port 12 for refluxing the reflux liquid sent from the cooling condensing means 2 (hereinafter referred to as “reflux liquid supply port 12”) is provided in the port 11 and the h-th stage (where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1).
  • a discharge port 13 hereinafter also referred to as “purified product discharge port 13”) for extracting the n-th liquid phase portion as the purified product S12 of HFO-1234yf.
  • the cooling condensing means 2 is freely openable and closable so that a distillate supply port 23 that receives supply of the distillate S10 taken from the top 3 of the distillation column 1 and a part S13 of the distillate S10 can be extracted.
  • a discharge port 21 (hereinafter, also referred to as a “distillate discharge port 21”) provided in the bottom and a reflux solution discharge port 22 for extracting the remaining portion S11 as a reflux solution.
  • the distillate discharge port 21 has a mechanism capable of adjusting the amount of extraction of a part S13 of the distillate S10.
  • the distillate discharge port 21 if the distillate discharge port 21 is closed, all of the distillate S10 can be taken out as reflux liquid S11 from the reflux liquid discharge port 22 and refluxed to the distillation column 1. In a state where the distillate discharge port 21 is opened, a part S13 of the distillate S10 is extracted, and the remaining portion is taken out from the reflux discharge port 22 as S11 (reflux).
  • the number of stages X in the distillation column 1 may be 3 or more.
  • X is preferably 10 or more, particularly preferably 20 or more, in order to increase the purity of the purified product.
  • there is no particular upper limit for X considering the operability, laying properties, etc., about 50 is preferable as the upper limit, and about 40 is more preferable.
  • the stage closest to the tower top 3 is the first stage
  • the stage closest to the tower bottom 4 is the X stage.
  • the stage on the tower top 3 side of a certain stage is called the upper stage
  • the stage on the tower bottom 4 side is called the lower stage.
  • the size of the distillation column 1 depends on the purity and throughput of the crude HFO-1234yf, but the inner diameter can be about 100 to 2000 mm.
  • the height depends on the inner diameter and the number of stages X of the distillation column 1. For example, when the inner diameter is 300 to 1000 mm, the height per stage can be designed to be 0.5 to 1.0 mm.
  • the material of the distillation column 1 is not particularly limited as long as it does not react with various components contained in the crude HFO-1234yf.
  • the temperature of the distillation column 1 is preferably set such that the temperature Tt near the top 3 is 10 to 50 ° C. and the temperature Tb near the bottom 4 is 50 to 150 ° C. Tt is more preferably 20 to 40 ° C., and Tb is more preferably 80 to 120 ° C.
  • the temperature Tb near the tower bottom 4 can be adjusted by heating the tower bottom with steam or the like. Further, the temperature Tt near the tower top 3 can be adjusted by the temperature and supply amount of the remainder S11 of the distillate S10 returned from the cooling condensing means 2 to the h-th stage of the distillation tower 1 as the reflux liquid.
  • the pressure in the distillation column 1 is preferably adjusted to 0.3 to 1.0 MPa, and more preferably 0.5 to 0.8 MPa, for example, by a pressure adjusting valve or the like. By setting the pressure in the distillation column 1 within the above range, HFO-1234yf can be purified efficiently.
  • the crude HFO-1234yf (F11) is disposed in the m-th stage of the distillation column 1 (where m is an integer satisfying n + 1 ⁇ m ⁇ X, and n is an integer satisfying 2 ⁇ n ⁇ X ⁇ 1). Is supplied from the supplied supply port 11.
  • the temperature of the supplied crude HFO-1234yf (F11) is preferably adjusted to 20 to 80 ° C., more preferably 40 to 60 ° C. from the viewpoint of disturbing the vapor-liquid equilibrium and preventing the number of stages from decreasing.
  • the position of the supply port 11 is appropriately selected from any of the (n + 1) th to Xth stages of the distillation column 1.
  • the supply port 11 is provided in a lower stage than the purified product discharge port 13 for extracting the purified product S12 of HFO-1234yf arranged in the nth stage.
  • the supply port 11 is preferably provided in a stage below the (n + 2) th stage.
  • the supply port 11 is a stage below the n + 2 stage, and above the stage of the larger number of n + 20 and X ⁇ 10. It is preferable to be provided in the stage.
  • the purified product of HFO-1234yf is supplied to the nth stage (where n is 2 ⁇ n ⁇ X) from the purified product outlet 13 of the HFO-1234yf purified product S12 disposed in the nth stage of the distillation column 1. Integers satisfying ⁇ 1)).
  • the purified product outlet 13 may be provided at any stage from the second stage to the X-1 stage of the distillation column 1.
  • the distillation column 1 In the distillation column 1, the closer to the bottom 4, the higher the concentration of organic impurities having a higher boiling point than HFO-1234yf in the crude HFO-1234yf. Since HFO-1234yf and water azeotrope, the closer to the top 3 of the distillation column 1, the higher the concentration of water and HFO-1234yf, the higher the liquid phase part is obtained, but the closer to the top 3 the HFO-1234yf The water content tends to be high.
  • the distillate obtained from the top of the column was cooled and condensed to obtain a HFO-1234yf purified product, so that the purified product obtained here had a high water content, and further removed water in a separate step. Was needed.
  • the reflux liquid S11 obtained by cooling and condensing at least a part of the distillate S10 in the cooling condensing means 2 is refluxed to the distillation tower, and the second and subsequent stages of the distillation tower 1 are used.
  • Water content in HFO-1234yf is obtained by taking the liquid phase part obtained from any of the stages selected from one or more stages above and below the lowest stage (stage X) to obtain HFO-1234yf purified product S12 It became possible to obtain a HFO-1234yf purified product having a low ratio.
  • the n-th stage in which the purified product discharge port 13 is disposed depends on the number of stages X of the distillation column 1, but for example, when X is 20 to 40, the second stage or a stage lower than the second stage. , 20 and X-10 are preferably higher than the lower numbered stage from the viewpoint of obtaining a product with high purity and low water content. From the same viewpoint, the second stage to the tenth stage Is more preferable.
  • the distillate S10 discharged from the outlet 14 near the top 3 of the distillation column 1 (hereinafter also referred to as “top outlet 14”) is supplied to the cooling condensing means 2. Is done.
  • the distillate S10 is cooled and condensed by, for example, a method of cooling the distillate S10 with a refrigerant of 30 ° C. or lower to form a liquid phase.
  • the cooling condensing means 2 when a part S13 of the distillate S10 is withdrawn from the distillate outlet 21, the distillate S10 is cooled or condensed before, ie, as a gas phase or as a liquid phase.
  • Part S13 is extracted from the distillate outlet 21.
  • a part of S13 is extracted from the distillate S10, it is the remainder, and when it is not extracted, the entire S11 is taken out from the reflux outlet 22 as a liquid phase and used as a reflux liquid.
  • the distillation column 1 is refluxed to the h-th stage (where h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1, and n is an integer satisfying 2 ⁇ n ⁇ X ⁇ 1).
  • h is an integer satisfying 1 ⁇ h ⁇ n ⁇ 1
  • n is an integer satisfying 2 ⁇ n ⁇ X ⁇ 1
  • a part S13 of the distillate S10 extracted from the distillate discharge port 21 is referred to as “extracted distillate” S13
  • the remainder S11 of the distillate S10 is referred to as “reflux distillate”.
  • the cooling condensing means 2 is supplied to the distillation tower from the reaction system accompanying the crude HFO-1234yf during cooling condensation, and is finally brought into the cooling condensing means. It may have a mechanism for removing organic impurities having a boiling point lower than that of HFO-1234yf in a gas phase state.
  • the h-th stage where the reflux distillate S11 is refluxed to the distillation column 1 as a reflux liquid is not particularly limited as long as it is the first to n-1 stages. That is, there is no particular limitation as long as the HFO-1234yf purified product is removed from the distillation column 1 as long as it is disposed in any of the stages closer to the top 3 than the purified product outlet 13 provided in the nth stage.
  • the first stage or the second stage is preferable from the viewpoint of increasing the temperature.
  • a part of the distillate S10 taken from the top of the column is extracted as a distillate S13, whereby the water content in the distillation column can be suppressed to a certain amount or less.
  • the water content relative to HFO-1234yf in the purified product S12 of HFO-1234yf obtained by removing the liquid phase part of the n-th stage of the distillation column 1 can be stably kept sufficiently low. That is, in the method of the present invention, a part of the distillate S10 taken out from the top of the column is extracted as a distillate S13, and the remainder is distilled as a reflux distillate S11 while refluxing to the distillation column. Is preferred.
  • the ratio of the discharge amount of the extracted distillate S13 and the supply amount of the crude HFO-1234yf (F11) supplied to the distillation column 1 is preferably adjusted as follows.
  • the discharge amount (mass / H) of the extract distillate S13 is set to Sw13, and crude HFO-1234yf (
  • the supply amount (mass / H) of F11) is Fw11
  • Sw13: Fw11 is preferably in the range of 0.01: 1 to 1: 1, and Sw13: Fw11 is 0.03: 1 to 0.1: 1 is more preferable.
  • Sw13: Sw11 is preferably in the range of 0.01: 1 to 1: 1, more preferably 0.03: 1 to 0.1: 1.
  • Sw12: Fw11 is preferably in the range of 0.005: 1 to 0.2: 1, more preferably 0.01: 1 to 0.1: 1.
  • the materials of the supply and discharge in the distillation column 1 and the cooling condensation means 2 from the start of the operation of the purification apparatus 10A It usually takes several hours for the balance and composition to reach equilibrium.
  • the purity of HFO-1234yf in the total organic matter in the purified product S12 of HFO-1234yf obtained above and the content ratio of water to HFO-1234yf are those when this equilibrium state is reached.
  • the embodiment of the purification method of the present invention to which such an operation is added can be carried out, for example, using a modification of the embodiment of the purification apparatus of HFO-1234yf of the present invention schematically shown in FIG.
  • the refining apparatus 10A is further provided with a first dehydrating means 5 for dehydrating the extracted distillate S13, and the first distillation column 1 is dehydrated thereby.
  • the purification apparatus 10A except that the first processed product supply port 15 for supplying the processed product S14 to the distillation column 1 is provided at the k-th stage (where k is an integer satisfying n + 1 ⁇ k ⁇ m). It is the same.
  • the first dehydrating means 5 for dehydrating the extracted distillate S13 include the following methods (a) to (d).
  • C) The dehydration tower is brought into contact with concentrated sulfuric acid in the gas phase to absorb water.
  • a dehydrating agent such as magnesium sulfate is suspended in a liquid phase state, and the dehydrating agent absorbs water, and then the dehydrating agent is removed by filtration or the like.
  • the dehydration tower (a) as the first dehydration treatment means 5 from the viewpoint of ease of operation and maintenance.
  • the dehydration tower (a) As the first dehydration treatment means 5 from the viewpoint of ease of operation and maintenance.
  • the dehydrating agent that has adsorbed moisture to the limit is replaced with a dehydrating agent capable of adsorbing moisture.
  • the moisture content of the first treated product at the dehydration tower outlet is monitored so that the dehydrating agent can be replaced when the moisture content of the first treated product at the outlet of the dehydration tower starts to increase. It is preferable to have a mechanism.
  • the dewatering capacity is appropriately set.
  • the type and capacity of the dehydrating agent are appropriately selected in consideration of the frequency of replacement of the dehydrating agent.
  • the water content in the first processed product S14 after the dehydration treatment is 100 ppm or less as the mass ratio of water with respect to HFO-1234yf in the first processed product S14 from the viewpoint of facilitating water reduction in the product. Is preferable, and 50 ppm or less is more preferable.
  • the position at which the first processed product supply port 15 for supplying the first processed product S14 to the distillation column 1 is provided, that is, the k-th stage where the first processed product S14 is supplied to the distillation column 1 is n + 1.
  • the stage is appropriately selected from any one of the m-th stages. That is, the first processed product supply port 15 is a stage below the purified product discharge port 13 for extracting the purified product S12 of HFO-1234yf arranged in the nth stage, and is the crude HFO-1234yf (F11). It is provided at the same level as the supply port 11 (m-th level) or above it.
  • the first processed product supply port 15 is preferably provided at the m-th stage, and the supply port 11 for supplying the crude HFO-1234yf as the first processed product supply port 15 as described below. More preferably, it is used.
  • the supply amount (mass / H) of the first processed product S14 to the distillation column 1 is preferably 0.03 to 0.1 times the supply amount (mass / H) of F11.
  • the temperature of the first processed product S14 supplied to the distillation column 1 is preferably 20 to 80 ° C.
  • a part of the distillate extracted in the cooling and condensing means is dehydrated, and the resulting first processed product is mixed with the crude HFO-1234yf in a distillation column.
  • the m-th stage may be supplied to the distillation column.
  • the purification apparatus 10C of this embodiment shown in FIG. 3 uses a supply path for the crude HFO-1234yf instead of the mechanism in which the first processed product S14 is supplied to the k-th stage of the distillation column 1 in the purification apparatus 10B.
  • the bottom of the distillation column 1 is taken out and a part S15 is extracted from the bottom, and means 6 for heating the remainder and the heated residue as the bottom 4 of the distillation column 1 It is the same as that of the refiner
  • the distillation column 1 is configured not to have the first processed product supply port 15 at the k-th stage.
  • the bottoms 4 of the distillation column 1 are taken out, a part S15 thereof is extracted, the means 6 for heating the remaining part, and the mechanism for returning the heated remaining part to the vicinity of the bottom 4 of the distillation column 1 is provided by the present invention.
  • This is a mechanism that may optionally be included in the purification apparatus.
  • the bottoms contain organic impurities having a higher boiling point than HFO-1234yf contained in the crude HFO-1234yf in a higher concentration than the crude HFO-1234yf.
  • a part S15 taken out from the bottoms is used as a raw material for producing the above HFO-1234yf through another separation step if necessary.
  • the feed F12 supplied from the m-th stage of the distillation tower 1 to the distillation tower 1 is the crude HFO-1234yf (F11) supplied from outside the purification apparatus 10C and the inside of the purification apparatus 10C. It becomes a mixture with the first processed material S14 generated in step S14.
  • the temperature and supply amount of the feed F12 can be the same as those when the crude HFO-1234yf (F11) is supplied to the distillation column 1 from the m-th stage in the purification apparatus 10A.
  • Sw13: Fw12 is set in the same manner as the value of Sw13: Fw11 when the supply amount (mass / H) of the feed F12 is Fw12.
  • a feed F12 having a water content of 100 ppm or less, preferably 50 ppm or less with respect to HFO-1234yf, or a feed F12 having a water content of HFO-1234yf of more than 20 ppm is converted to HFO-1234yf.
  • the HFO-1234yf purified product S12 can have a water content of 20 ppm or less.
  • the method for purifying HFO-1234yf of the present invention when there is a step of dehydrating the obtained distillate and supplying it to the distillation column, this step is partly extracted by the cooling condensation means.
  • the product may be dehydrated together with the crude HFO-1234yf, and the resulting second treated product may be supplied to the m-th stage of the distillation column.
  • Such an embodiment of the purification method of the present invention can be carried out, for example, using still another modification of the embodiment of the purification apparatus for HFO-1234yf of the present invention, which is schematically shown in FIG.
  • the refining apparatus 10D of this embodiment shown in FIG. 4 does not include the first dehydration processing means 5 for dehydrating the extracted distillate S13 in the refining apparatus 10C, and the crude HFO-1234yf as the extracted distillate S13. And a second dewatering treatment means 7 for simultaneously dehydrating the distillate distillate S13 and the crude HFO-1234yf (F11) after merging.
  • F13 is the same as the purification apparatus 10C except that F13 is supplied to the distillation column 1 from the supply port 11 provided at the m-th stage of the distillation column 1.
  • the second dehydrating means 7 in the purifying apparatus 10D can be the same as the first dehydrating means 5 and the method in the purifying apparatuses 10B and 10C, including a preferred embodiment.
  • the processing capacity it is preferable that the total amount of the distillate distillate S13 and the crude HFO-1234yf (F11) is a processing capacity commensurate with the dehydration process.
  • the first dehydration processing unit 5 similar to the first dehydration processing unit 5 included in the purification device 10C shown in FIG. 3 may be provided in the purification device 10D as necessary.
  • the temperature and the supply amount of the feed F13 supplied from the m-th stage of the distillation column 1 to the distillation column 1 are the same as the crude HFO-1234yf (F11) in the m-th stage in the purification apparatus 10A.
  • Sw13: Fw13 is set similarly to the value of Sw13: Fw11 when the supply amount (mass / H) of the feed F13 is Fw13.
  • a feed F13 having a water content of 100 ppm or less, preferably 50 ppm or less relative to HFO-1234yf, or a feed F13 having a water content of more than 20 ppm relative to HFO-1234yf is converted to HFO-1234yf.
  • the HFO-1234yf purified product S12 can have a water content of 20 ppm or less.
  • the purification method of the present invention includes a dehydration treatment of the crude HFO-1234yf (F11) to be treated, such as by using the purification apparatus 10D.
  • the content ratio of water to HFO-1234yf in the crude HFO-1234yf (F11) may be, for example, about 0.1 to 0.3% by mass.
  • the purification method of the present invention does not include the dehydration treatment of crude HFO-1234yf (F11), in order to obtain a HFO-1234yf purified product having a water content of 20 ppm or less with respect to HFO-1234yf,
  • HFO-1234yf (F11) the crude HFO-1234yf obtained from the reaction system is dehydrated in advance in the same manner as the above dehydration process so that the content ratio of water to HFO-1234yf is 100 ppm or less. It is preferable.
  • the method for producing HFO-1234yf of the present invention is a method comprising the purification method described above.
  • the method for producing HFO-1234yf of the present invention is specifically a production method having the following steps (A) and (B).
  • B Purification for purifying crude HFO-1234yf obtained in step (A) by the purification method of the present invention Process
  • the method for obtaining the crude HFO-1234yf is not particularly limited.
  • 1) a method for obtaining the crude HFO-1234yf via the above reaction route (1) using the isomer mixture of HCFC-225 as a raw material 2) A method obtained via the above reaction route (2) using PFO-1216yc as a raw material compound, 3) A method obtained via the above reaction route (3) using 1,2,3-trichloropropane as a raw material compound, 4) 1 , 1,2,3-tetrachloropropene, and the like.
  • the resulting crude HFO-1234yf contains water used in the reaction process together with unreacted raw material compounds and organic impurities such as intermediates and by-products.
  • the crude HFO-1234yf containing water and organic impurities obtained in the reaction step (A) is purified by the purification method of the present invention, so that the contents of organic impurities and moisture are contained.
  • High-purity HFO-1234yf can be obtained with a small amount of both.
  • the boiling point is particularly close to that of HFO-1234yf, specifically, the boiling point is in the range of ⁇ 40 ° C. to ⁇ 10 ° C. It is preferable to control the reaction conditions by a conventionally known method so that the content ratio of organic impurities to the amount of HFO-1234yf in the obtained crude HFO-1234yf does not become 10 mass% or more.
  • the HFO-1234yf desired in the purified HFO-1234yf obtained in the purification step (B) since it may be difficult to adjust the water content to 20 ppm or less, it is preferable to further provide a dehydration step before the purification step (B).
  • the content ratio of HFO-1234yf is 99.5% by mass or more, more preferably 99.8% by mass or more, based on the total amount of organic substances in the purified product thus obtained.
  • a purified HFO-1234yf product having a very low moisture content, preferably having a moisture content of 20 ppm or less relative to HFO-1234yf can be produced.
  • Example 1 The crude HFO-1234yf obtained by the method of the above reaction route (1) was purified using the following purification apparatus.
  • Purification equipment A purification apparatus provided with the same distillation column 1, cooling condensation means 2, second dehydration means 7 and heating means 6 as the purification apparatus 10D shown in FIG. 4 was used.
  • As the distillation column 1 a distillation column 1 having an inner diameter of 550 mm, made of SUS316L, and having a total number of stages X of 25 was used.
  • the distillation column 1 includes the second dehydrating means 7 in the 21st stage (corresponding to the “m-th stage”) together with the crude HFO-1234yf (F11) and the extracted distillate S13 obtained by the cooling condensation means 2.
  • the cooling condensing means 2 gas-phases or cools the distillate supply port 23 that receives the supply of the distillate S10 taken from the top 3 of the distillation column 1 and a part of the distillate (extracted distillate) S13. It has a distillate outlet 21 to be extracted as a condensed liquid phase and a reflux outlet 22 to be taken out as a reflux liquid refluxed to the distillation column 1 after cooling and condensing the remainder (reflux distillate) S11.
  • the second dehydrating means 7 a dehydrating tower having a volume of 6 m 3 filled with molecular sieve as a dehydrating agent was used. Further, the bottom was taken out from the bottom 4 of the distillation column 1 and a part thereof S15 was extracted. The remainder was heated by the heating means 6 and then returned to the vicinity of the bottom 4 of the distillation column 1.
  • the feed feed S13, reflux liquid (refluxed distillate) S11
  • the dehydration tower 7 and the heating means 6, from the heating means to the bottom of the tower
  • the initial operation was performed for 1 to 24 hours until the material balance and composition of the supplied liquid phase, etc.) and the effluent (HFO-1234yf purified product S12, bottoms, etc.) were in an equilibrium state.
  • the crude HFO-1234yf was purified by continuous operation in an equilibrium state.
  • the supply amount, discharge amount and composition of the substance in the purification apparatus in this equilibrium state were as follows.
  • the distillate S10 taken out from the top 3 of the distillation column 1 at 300 kg / H is supplied to the cooling condensing means 2 and a part thereof is withdrawn in the gas phase or liquid phase as a distillate S13 in an amount of 32 kg / H. After the extraction, the entire amount is joined to the supply path of the crude HFO-1234yf (F11), and the processed product obtained by passing through the dehydration tower 7 is fed as feed F13 at a feed rate of 605 kg / H. It was continuously fed to the 21st stage.
  • the remainder (refluxed distillate) S11 obtained by removing the distillate S13 from the distillate S10 supplied from the top 3 of the distillation column 1 to the cooling condensing means 2 was converted into a liquid phase by cooling condensation. Thereafter, the mixture was refluxed to the first stage of the distillation column 1 at a supply amount of 268 kg / H as a reflux liquid having a liquid temperature of about 30 ° C. On the other hand, the liquid phase part was taken out from the second stage of the distillation column 1 as HFO-1234yf purified product S12 at a discharge amount of 50 kg / H.
  • the bottoms were taken out from the bottom 4 of the distillation column 1 at a discharge rate of 723 kg / H, and a part thereof was heated to about 100 ° C. by the heating means 6 and returned to the vicinity of the bottom 4 at a rate of 200 kg / H.
  • the amount of the remainder S15 of the bottoms was 523 kg / H.
  • the extracted distillate S13 is joined to the supply path of the crude HFO-1234yf (F11) and passed through the dehydrating tower 7, and the feed F13, which is the processed product, is left (reflux).
  • Table 1 shows the composition of the distillate S11, the HFO-1234yf purified product S12, and the remainder S15 of the bottoms.
  • the composition of crude HFO-1234yf (F11) can be calculated from the flow rates of F13 and S13 (605 kg / H and 32 kg / H), the compositions of F13 and S13 shown in Table 1 below, and the dewatering capacity of the dewatering tower 7. .
  • the content of HFO-1234yf with respect to the total amount of organic substances is 99.95% by mass, and the content ratio of water with respect to HFO-1234yf is 9.0 ppm. there were.
  • Example 2 Distillation was performed in the same manner as in Example 1 except that the amount of water contained in the crude HFO-1234yf (F11) was higher than that in Example 1. Specifically, the distillation in the same manner as in Example 1 except that the water contained in the feed F13 in the purification apparatus in the equilibrium state was 13 ppm with respect to the total organic matter, and the water content relative to HFO-1234yf was 112 ppm. Went. As a result, the HFO-1234yf purified product S12-1 obtained from the purified product outlet 13 of the distillation column 1 has a content of HFO-1234yf of 99.9% by mass or more based on the total amount of organic matter. The water content was 40 ppm, and the water content relative to HFO-1234yf was 40 ppm.
  • Example 3 The crude HFO-1234yf (F11) used in Example 1 was purified using the purification apparatus 10E shown in FIG.
  • the refiner 10E is the same refiner as used in Example 1, except that the cooling condensing means 2 does not have a distillate outlet 21 for extracting a part of the distillate (extracted distillate) S13. It is a device.
  • the crude HFO-1234yf (F11) supplied to the distillation column 1 through the dehydration tower 7 the content of HFO-1234yf with respect to the total organic matter amount is 13.0% by mass, and the water content with respect to the total organic matter amount is 6%.
  • the water content relative to HFO-1234yf was 50.0 ppm.
  • the HFO-1234yf purified product S12 obtained from the purified product outlet 13 of the distillation column 1 has a content of HFO-1234yf of 99.9% by mass or more with respect to the total organic matter amount, and the water content with respect to the total organic matter amount is The content of water was 46 ppm with respect to HFO-1234yf. Although the water content of the purified HFO-1234yf S12 was higher than that in Example 1, it was lower than the water content relative to HFO-1234yf in the reflux liquid (reflux distillate) S11.
  • Example 1 The crude HFO-1234yf (F11) used in Example 1 was purified using the purification apparatus 20 shown in FIG.
  • the purification apparatus 20 is the same as the purification apparatus used in Example 1, but the distillation column 1 does not have the purified product outlet 13 for taking out the HFO-1234yf purified product S12 in the second stage, and the cooling condensing means 2 is a distillate. Instead of having a distillate outlet 21 for extracting a part (extracted distillate) S13, a part of the reflux liquid S11 obtained from the distillate S10 is refluxed to the distillation column 1 by the cooling condensing means 2 instead.
  • the same purification apparatus as in Example 1 except that the remainder was extracted as HFO-1234yf purified product S16.
  • the content of HFO-1234yf with respect to the total organic matter amount is 99.9% by mass or more
  • the water content with respect to the total organic matter amount is 220 ppm
  • the water content with respect to HFO-1234yf The content ratio of was 220 ppm.
  • Example 2 The crude HFO-1234yf (F11) used in Example 1 was purified using the purification apparatus 30 shown in FIG.
  • the purification apparatus 30 is the same as the purification apparatus used in Example 1, but the distillation column 1 does not have the purified product discharge port 13 for taking out the HFO-1234yf purified product S12 in the second stage.
  • the apparatus is the same as that of Example 1 except that a part of the reflux liquid S11 obtained from the remainder of the product S10 is refluxed to the distillation column 1 and the remainder is extracted as the HFO-1234yf purified product S16-1.
  • the content of HFO-1234yf with respect to the total organic matter amount is 99.9% by mass or more
  • the water content with respect to the total organic matter amount is 233 ppm
  • HFO-1234yf The content ratio of water to 233 ppm was 233 ppm.
  • the amount of water contained in the purified HFO-1234yf product S16-1 was comparable to that of the purified HFO-1234yf product S16 of Comparative Example 1, and the amount of water was still higher than that of Example 1.
  • 2,3,3,3-tetrafluoropropene having an extremely low GWP of 4 which is useful as an alternative refrigerant for HFC-134a, is used as a high-purity purified product having a low content of both organic impurities and moisture. Can be purified efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 有機物不純物および水分の含有量がともに少ない2,3,3,3-テトラフルオロプロペンを効率よく得る方法および装置を提供する。水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する方法であって、X段(3≦X。塔頂に最も近い段を1段目とする。)の蒸留塔と蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置を用い、蒸留塔のm段目(mは、n+1≦m≦X。nは、2≦n≦X-1。)に粗2,3,3,3-テトラフルオロプロペンを供給し、冷却凝縮手段において冷却凝縮された留出物の少なくとも一部を蒸留塔のh段目(hは、1≦h≦n-1。)に還流するとともに、蒸留塔のn段目の液相部を抜き出して2,3,3,3-テトラフルオロプロペンの精製物を得る2,3,3,3-テトラフルオロプロペンの精製方法。

Description

2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法
 本発明は、2,3,3,3-テトラフルオロプロペンの精製方法および精製装置ならびに該精製方法を有する2,3,3,3-テトラフルオロプロペンの製造方法に関する。
 従来、カーエアコン等の冷媒には1,1,1,2-テトラフルオロエタン(HFC-134a)が広く使用されていた。しかしながら、HFC-134aは地球温暖化係数(GWP:Global Warming Potential)が1430と高いことから、近年のGWPが高い冷媒に対する規制の動き、例えば、EUでは2011年から新型モデル車でGWPが150以上の冷媒が使用禁止となる等、により使用が制限されるようになった。ここで、本明細書においてハロゲン化炭化水素については化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に替えてその略称を用いることもある。
 そこで、HFC-134aの代替冷媒として、GWPが4と極めて低い2,3,3,3-テトラフルオロプロペン(HFO-1234yf)の使用が広がりつつある。HFO-1234yfの製造においては、使用または発生するフッ酸、塩酸等の酸を除去するためにアルカリ洗浄や水洗が行われるため、粗液には中間体、副生物、未反応原料等のフッ素系の低分子有機物不純物の他に水分が含まれることが多い。
 このようなHFO-1234yfの粗液を蒸留精製する場合、HFO-1234yfと水は共沸混合物を形成するため、粗液に含まれる水分が塔頂還流ラインに濃縮し、得られる製品中の水分が高くなってしまう。そこで、特許文献1においては、蒸留塔の底部から得られる缶出液を水分の少ないHFO-1234yf製品とするHFO-1234yfの製造方法が記載されている。
 しかしながら、HFO-1234yf粗液中に含まれるフッ素系の低分子有機物不純物には、HFO-1234yfより沸点が高いものが多く、蒸留塔の底部から得られる缶出液には、このような有機物不純物が多く混入してしまうことから、さらに別の工程で有機物不純物を除去する必要があった。
国際公開第2010/024366号
 本発明は、上記観点からなされたものであり、有機物不純物および水分の含有量がともに少ない高純度の2,3,3,3-テトラフルオロプロペンを効率よく得る、精製方法および精製装置、ならびに製造方法を提供することを目的とする。
 本発明は、水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する方法であって、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置を用い、前記蒸留塔のm段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に前記粗2,3,3,3-テトラフルオロプロペンを供給し、前記冷却凝縮する手段において冷却凝縮された留出物の少なくとも一部を前記蒸留塔のh段目(ただし、hは1≦h≦n-1を満たす整数。)に還流するとともに、前記蒸留塔のn段目の液相部を抜き出して2,3,3,3-テトラフルオロプロペンの精製物を得る2,3,3,3-テトラフルオロプロペンの精製方法を提供する。
 本発明は、水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置であって、前記冷却凝縮手段は、冷却凝縮された留出物の少なくとも一部を還流液として排出する還流液排出口を有し、前記蒸留塔は、m段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に前記粗2,3,3,3-テトラフルオロプロペンを供給する供給口と、h段目(ただし、hは1≦h≦n-1を満たす整数。)に前記還流液を還流する供給口と、n段目の液相部を2,3,3,3-テトラフルオロプロペンの精製物として抜き出す排出口を有する、2,3,3,3-テトラフルオロプロペンの精製装置を提供する。
 本発明は、上記本発明の2,3,3,3-テトラフルオロプロペンの精製方法を備える、2,3,3,3-テトラフルオロプロペンの製造方法を提供する。
 本発明によれば、有機物不純物および水分の含有量がともに少ない高純度の2,3,3,3-テトラフルオロプロペンが効率よく得られる。
本発明のHFO-1234yfの精製装置の実施形態の一例を示す概略図である。 本発明のHFO-1234yfの精製装置の実施形態の変形例を示す概略図である。 本発明のHFO-1234yfの精製装置の実施形態の別の変形例を示す概略図である。 本発明のHFO-1234yfの精製装置の実施形態のさらに別の変形例を示す概略図である。 実施例3に用いたHFO-1234yfの精製装置を示す図である。 比較例1に用いたHFO-1234yfの精製装置を示す図である。 比較例2に用いたHFO-1234yfの精製装置を示す図である。
 以下に、本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
 本発明は、水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する方法であって、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置を用い、前記蒸留塔のm段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に前記粗2,3,3,3-テトラフルオロプロペンを供給し、前記冷却凝縮する手段において冷却凝縮された留出物の少なくとも一部を前記蒸留塔のh段目(ただし、hは1≦h≦n-1を満たす整数。)に還流するとともに、前記蒸留塔のn段目の液相部を抜き出して2,3,3,3-テトラフルオロプロペンの精製物を得る2,3,3,3-テトラフルオロプロペンの精製方法を提供する。
<粗HFO-1234yf>
 本発明の精製方法が対象とする粗HFO-1234yfは、水および有機物不純物を含有する。粗HFO-1234yfが含有する有機物不純物としては、HFO-1234yfを従来公知の製造方法で製造する際に使用する原料の未反応物や、製造過程で生成される中間体、副生物等が挙げられる。
 例えば、ジクロロペンタフルオロプロパン(CHCl(HCFC-225)の異性体混合物を用いてHFO-1234yfを製造する場合には、粗HFO-1234yfは以下のような有機物不純物を含有する。
 HCFC-225の異性体混合物を原料として用いてHFO-1234yfを製造する方法では、以下の反応経路(1)に示す通り、原料中の1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン(CHClCFCF、HCFC-225ca)を選択的に脱フッ化水素させて1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl、CFO-1214ya)を製造し、得られるCFO-1214yaを還元してHFO-1234yfを製造する。
Figure JPOXMLDOC01-appb-C000001
 上記HCFC-225異性体混合物を原料とする製造方法においては、有機物不純物として、以下の化合物が挙げられる。
 原料に含まれる化合物として、HCFC-225ca(沸点:51℃)および、その異性体、1,3-ジクロロ-1,2,2,3,3-ペンタフルオロプロパン(CHClFCFCClF、HCFC-225cb、沸点:56.1℃)、2,2-ジクロロ-1,1,3,3,3-ペンタフルオロプロパン(CHFCClCF、HCFC-225aa、沸点:52℃)等が挙げられる。
 また、中間生成物として、CFO-1214ya(沸点:46.4℃)や、CFO-1214yaからHFO-1234yfを生成する反応系における中間生成物の1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl、HCFO-1224yd、沸点:15℃)等が挙げられる。
 さらに、副生物として、HCFC-225caの還元体である1,1,1,2-ヘキサフルオロプロパン(CFCHFCH、HFC-254eb、沸点:-6℃)、HCFC-225aaが脱塩化水素反応した後、還元して得られる1,1,3,3,3-ペンタフルオロプロペン(CFCH=CF、HFO-1225zc、沸点:-20.7℃)、HFO-1234yfの過還元体である3,3,3-トリフルオロプロペン(CFCH=CH、HFO-1243zf、沸点:-22℃)、3,3-ジフルオロプロペン(CHFCH=CH、HFO-1252zf、沸点:-26.5℃)等が挙げられる。
 HFO-1234yfは、沸点が-29℃である。本発明の精製方法によれば、HFO-1234yfに沸点の近い有機物不純物であっても、具体的には、有機物不純物が、沸点が-40℃~-10℃の有機化合物を含有する場合においても、これらを有効に分離することが可能である。HCFC-225の異性体混合物を原料として用いて上記反応経路を経てHFO-1234yfを製造する場合には、沸点が-40℃~-10℃の有機化合物として、HFO-1225zc、HFO-1243zf、HFO-1252zf等が挙げられる。
 また、上記HCFC-225の異性体混合物を原料として用いてHFO-1234yfを製造する以外の反応経路を経て得られる粗HFO-1234yfが含有する有機物不純物のうち沸点が-40℃~-10℃の有機化合物として、HFO-1225zc、HFO-1243zf、HFO-1252zf以外に、例えば、1,2,3,3,3-ペンタフルオロプロペン(CFCF=CHF、HFO-1225ye、沸点:-18℃)、1,3,3,3-テトラフルオロプロペン(CFCH=CHF、HFO-1234ze、沸点:-16℃)、1,1,2,3,3,3-ヘキサフルオロプロペン(CFCF=CF、PFO-1216yc、沸点:-29℃)、1,1,1,2,2-ペンタフルオロプロパン(CFCFCH、HFC-245cb、沸点:-18.3℃)等が挙げられる。
 これらのうち、PFO-1216yc、HFO-1225ye、HFO-1234ze等は、例えば、PFO-1216ycを原料化合物として用いた以下の反応経路(2)によりHFO-1234yfを製造する際に、有機物不純物となりうる沸点が-40℃~-10℃の有機化合物である。
Figure JPOXMLDOC01-appb-C000002
 また、HFC-245cbは、例えば、1,2,3-トリクロロプロパンを原料化合物として用いた以下の反応経路(3)によりHFO-1234yfを製造する際に、有機物不純物となりうる沸点が-40℃~-10℃の有機化合物である。
Figure JPOXMLDOC01-appb-C000003
 ここで、反応経路(2)または反応経路(3)によるHFO-1234yfの製造において、得られる粗HFO-1234yfには上記沸点が-40℃~-10℃の有機化合物以外に、原料の未反応物や、製造過程で生成される中間体、副生物等のうち沸点が-40℃~-10℃の範囲外の有機化合物が、上記反応経路(1)において説明したのと同様に、通常含まれる。
 なお、特許文献1において、HFC-245cbは、1,1,1,2,3-ペンタフルオロプロパン(CFCHFCHF、HFC-245eb、沸点-1℃)とともに、HFO-1234yfを製造する原料化合物として用いられている有機化合物である。特許文献1では、HFC-245cb、HFC-245ebを脱フッ化水素してHFO-1234yfを製造し、未反応原料等の有機物不純物の除去は、水分除去のための蒸留塔とは別の蒸留塔を用いて行う方法を取っている。
 粗HFO-1234yfが不純物として含有する有機化合物については上記の通りである。また、粗HFO-1234yfが不純物として含有する水は、上記例示したいずれの製造方法においても、フッ化水素、塩化水素等の酸が使用される、または発生することから、これを除去するために行われるアルカリ洗浄や水洗で持ち込まれる水である。
 本発明のHFO-1234yfの精製方法においては、このように水および有機物不純物を含有する粗HFO-1234yfの、有機物不純物および水分の含有量を、上記の構成により1本の蒸留塔で効率よく低下させ、高純度のHFO-1234yf精製物とするものである。
 具体的には、本発明のHFO-1234yfの精製方法によれば、粗HFO-1234yf中の全有機物量に対するHFO-1234yfの含有割合が5質量%以上99.5質量%未満である粗HFO-1234yfを、精製物中の全有機物量に対するHFO-1234yfの含有割合が99.5質量%以上、さらに好ましくは、99.8質量%以上であるHFO-1234yf精製物とすることができる。
 なお、特にHFO-1234yfと沸点が近い、具体的には、沸点が-40℃~-10℃の範囲にある有機物不純物が、粗HFO-1234yf中のHFO-1234yf量に対して10質量%以上の割合で、粗HFO-1234yfに含まれると、上記精製物中の全有機物量に対するHFO-1234yfの含有割合が99.5質量%以上であるHFO-1234yf精製物を得るためには、以下に説明する蒸留塔の段数Xを大きくする等の対応が必要となる。そこで、沸点が-40℃~-10℃の範囲にある有機物不純物については、上に示した各種反応段階で、得られる粗HFO-1234yfにおけるHFO-1234yf量に対する含有割合が10質量%以上とならないように、従来公知の方法で反応条件を制御することが好ましい。
 また、本発明のHFO-1234yfの精製方法によれば、例えば、HFO-1234yfに対する水の含有割合が100ppm以下、好ましくは50ppm以下である粗HFO-1234yfを、HFO-1234yfに対する水の含有割合が20ppm以下であるHFO-1234yf精製物とすることができる。
 また、本発明のHFO-1234yfの精製方法によれば、例えば、HFO-1234yfに対する水の含有割合が20ppm超である粗HFO-1234yfを、HFO-1234yfに対する水の含有割合が20ppm以下、好ましくは10ppm以下であるHFO-1234yf精製物とすることができる。
<精製方法>
 本発明の精製方法においては、上記のような粗HFO-1234yfを、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置を用いて、以下の方法で精製する。
 上記粗HFO-1234yfを、蒸留塔のm段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に供給し、冷却凝縮する手段において冷却凝縮された留出物の少なくとも一部を蒸留塔のh段目(ただし、hは1≦h≦n-1を満たす整数。)に還流するとともに、蒸留塔のn段目の液相部を抜き出し、これをHFO-1234yfの精製物として得る。
 本発明の精製方法においては、上記冷却凝縮する手段において冷却凝縮された留出物の少なくとも一部を還流液として蒸留塔のh段目に還流する。還流液として蒸留塔に還流する留出物は、塔頂から取り出された留出物の一部であっても全部であってもよい。例えば、還流液として蒸留塔に還流する留出物が、塔頂から取り出された留出物の一部である場合、上記冷却凝縮手段において留出物の一部を抜き出し、残部を還流液としてもよい。
 塔頂から取り出される留出物は、HFO-1234yfと水が共沸する性質から水分含有量の高い組成となるため、この全てを還流液として蒸留塔に還流すると長時間運転する間に蒸留塔内全体として水分含有量が高まる傾向にある。したがって、上記留出物の一部を抜き出すことで、蒸留塔内の水分含有量を一定量以下に抑えることができ好ましい。
 本発明のHFO-1234yfの精製方法においては、さらに、上記冷却凝縮手段において抜き出した一部の留出物を脱水処理し、得られた第1の処理物を、上記蒸留塔のk段目(ただし、kは、n+1≦k≦mを満たす整数。)に供給する操作を加えることが好ましい。これにより、蒸留塔内で高濃度化しやすい水を効率よく蒸留塔の外に排出し、HFO-1234yfを主とする有用な成分を蒸留塔に戻すことができる。この場合、第1の処理物を上記蒸留塔に供給するk段目は、上記粗HFO-1234yfを、上記蒸留塔に供給するm段目と同じ段とする、すなわちk=mであることが好ましい。
 また、蒸留塔内で高濃度化しやすい水を蒸留塔の外に排出する方法としては、上記還流液を蒸留塔に戻す前に脱水処理して蒸留塔に還流する方法を用いてもよい。
 本発明の精製方法は、例えば、本発明のHFO-1234yfの精製装置、具体的には、図1に概略図を示す本発明の精製装置の実施形態の一例を用いて実行できる。
 図1に示す本実施形態の精製装置10Aは、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔1と、蒸留塔1の塔頂3から留出物S10を取り出し冷却凝縮する手段2を備えた装置である。
 蒸留塔1は、m段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に粗HFO-1234yf(F11)を供給する供給口11と、h段目(ただし、hは1≦h≦n-1を満たす整数。)に、冷却凝縮手段2から送られる還流液を還流する供給口12(以下、「還流液供給口12」ともいう。)と、n段目の液相部をHFO-1234yfの精製物S12として抜き出す排出口13(以下、「精製物排出口13」ともいう。)を有する。
 冷却凝縮手段2は、蒸留塔1の塔頂3から取り出された留出物S10の供給を受ける留出物供給口23と、留出物S10の一部S13の抜き出しが可能なように開閉自在に設けられた排出口21(以下、「留出物排出口21」ともいう。)と、残部S11を還流液として抜き出す還流液排出口22を有する。また、留出物排出口21は、留出物S10の一部S13の抜き出し量の調整が可能な機構を有する。なお、冷却凝縮手段2においては、留出物排出口21を閉じれば、留出物S10の全部を還流液S11として還流液排出口22から取り出し蒸留塔1に還流することができる。留出物排出口21を開けた状態では、留出物S10の一部S13が抜き出され、残部がS11(還流液)として還流液排出口22から取り出される。
 以下、図1に概略図を示す本発明の精製装置の実施形態の一例を参照しながら本発明の精製方法について説明する。
 蒸留塔1の段数Xは、3以上であればよい。供給される粗HFO-1234yfの純度によるが精製物の純度を上げるためにXは10以上が好ましく、20以上が特に好ましい。Xの上限は特にないが、操作性や、敷設性等を考慮すれば、50程度が上限として好ましく、40程度がより好ましい。蒸留塔1の各段の位置については、塔頂3に最も近い段が1段目であり、塔底4に最も近い段がX段目である。また、段の位置関係を言う場合、ある段の塔頂3側の段を上の段、塔底4側の段を下の段という。
 蒸留塔1の大きさは、粗HFO-1234yfの純度や処理量によるが、内径については、概ね100~2000mmとすることができる。高さは、内径や蒸留塔1が有する段数Xによる。例えば内径300~1000mmでは1段あたりの高さは0.5~1.0mmと設計することができる。蒸留塔1の材質としては、粗HFO-1234yfに含まれる各種成分に反応しない材質であれば特に制限されない。
 蒸留塔1の温度は、塔頂3付近の温度Ttを10~50℃、塔底4付近の温度Tbを50~150℃とすることが好ましい。Ttは20~40℃がより好ましく、Tbは80~120℃がより好ましい。塔底4付近の温度Tbは塔底をスチーム等で加熱することで調整できる。また、塔頂3付近の温度Ttは、冷却凝縮手段2から還流液として蒸留塔1のh段目に戻される留出物S10の残部S11の温度と供給量により調整できる。蒸留塔1内の温度を上記範囲とすることで、効率よくHFO-1234yfを精製できる。蒸留塔1内の圧力は、例えば、圧力調整弁等により0.3~1.0MPaに調整されることが好ましく、0.5~0.8MPaがより好ましい。蒸留塔1内の圧力を上記範囲とすることで、効率よくHFO-1234yfを精製できる。
 上記粗HFO-1234yf(F11)は、蒸留塔1のm段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に配設された供給口11から供給される。供給される粗HFO-1234yf(F11)の温度については、気液平衡が乱れ段数の低下を防ぐという観点から20~80℃に調整されることが好ましく、40~60℃がより好ましい。供給口11の位置は、蒸留塔1のn+1段目~X段目のいずれかの段から適宜選択される。すなわち、供給口11は、n段目に配設されるHFO-1234yfの精製物S12を抜き出す精製物排出口13より下の段に設けられる。本発明において供給口11は、n+2段目より下の段に設けられることが好ましい。また、蒸留塔1の段数Xによるが、例えばXが20~40の場合、供給口11は、n+2段目より下の段であって、n+20とX-10のうちの大きい数字の段より上の段に設けられることが好ましい。
 本発明において、HFO-1234yfの精製物は、蒸留塔1のn段目に配設されるHFO-1234yf精製物S12の精製物排出口13からn段目(ただし、nは2≦n≦X-1を満たす整数。)の液相部として取り出される。精製物排出口13は蒸留塔1の2段目からX-1段目までのいずれの段に設けられてもよい。
 蒸留塔1においては、塔底4に近いほど、粗HFO-1234yf中のHFO-1234yfより高沸点の有機物不純物の濃度が高い液相部が得られる。HFO-1234yfと水が共沸することから、蒸留塔1の塔頂3に近いほど水とHFO-1234yfの濃度が共に高い液相部が得られるが、塔頂3に近いほどHFO-1234yfに対する水の含有割合は高い傾向にある。
 従来の精製方法においては、塔頂から得られる留出物を冷却凝縮してHFO-1234yf精製物としていたために、ここで得られる精製物は水分含有量が高く、さらに別工程での水分除去が必要とされていた。
 本発明の精製方法においては、冷却凝縮手段2で留出物S10の少なくとも一部が冷却凝縮して得られる還流液S11の蒸留塔への還流を行いつつ、蒸留塔1の2段目以降でありかつ最も下の段(X段)より1以上上の段から選ばれるいずれかの段から、得られる液相部を取り出してHFO-1234yf精製物S12とすることで、HFO-1234yfに対する水分含有割合の低いHFO-1234yf精製物を得ることを可能とした。
 なお、精製物排出口13が配設されるn段目は、蒸留塔1の段数Xによるが、例えば、Xが20~40の場合、2段目または2段目より下の段であって、20とX-10のうちの小さい数字の段より上の段にあることが、純度が高く含有水分量が低い製品を得るという観点から好ましく、同様の観点から、2段目~10段目がより好ましい。
 一方、本発明の精製方法において、蒸留塔1の塔頂3付近の排出口14(以下、「塔頂排出口14」ともいう)から排出される留出物S10は、冷却凝縮手段2に供給される。冷却凝縮手段2において留出物S10は、例えば、留出物S10を30℃以下の冷媒で冷却して液相とする等の方法により、冷却凝縮される。冷却凝縮手段2において、留出物S10の一部S13を留出物排出口21から抜き出す場合には、留出物S10は冷却凝縮される前または後に、すなわち気相としてまたは液相として、その一部S13が留出物排出口21から抜き出される。留出物S10から一部S13が抜き出された場合はその残部であり、また抜き出されなかった場合にはその全部であるS11は液相として還流液排出口22から取り出され、還流液として蒸留塔1のh段目(ただし、hは1≦h≦n-1を満たす整数。nは2≦n≦X-1を満たす整数。)に還流される。以下、必要に応じて、留出物排出口21から抜き出される留出物S10の一部S13を、「抜き出し留出物」S13といい、留出物S10の残部S11を、「還流留出物」S11という。
 なお、冷却凝縮手段2は、図示されないが、冷却凝縮の際に、反応系から粗HFO-1234yfに同伴する等して蒸留塔に供給され最終的に冷却凝縮手段に持ち込まれた窒素ガスや、HFO-1234yfよりも沸点の低い有機物不純物を気相の状態で除去する機構を有してもよい。
 還流留出物S11が還流液として、蒸留塔1に還流される位置であるh段目は、1段目~n-1段目であれば特に制限されない。すなわち、蒸留塔1からHFO-1234yf精製物を取り出すためにn段目に設けられる精製物排出口13より、塔頂3に近い段のいずれかに配設されれば特に制限されないが、蒸留効率を上げる観点から1段目または2段目が好ましい。
 ここで、上記の通り、塔頂から取り出される留出物S10からその一部を、抜き出し留出物S13として抜き出すことで、蒸留塔内の水分含有量を一定量以下に抑えることができる。それにより、蒸留塔1のn段目の液相部を取り出してなるHFO-1234yfの精製物S12における、HFO-1234yfに対する水の含有割合を、安定して十分低く保つことが可能となる。すなわち、本発明の方法においては、塔頂から取り出される留出物S10からその一部を抜き出し留出物S13として抜き出すとともに、残部を還流留出物S11として蒸留塔に還流しつつ蒸留を行うことが好ましい。なお、抜き出し留出物S13の排出量と、蒸留塔1に供給する粗HFO-1234yf(F11)の供給量の比率は、具体的には、以下の通り調整することが好ましい。
 例えば、HFO-1234yfに対する水の含有割合が100ppm以下、好ましくは50ppm以下である粗HFO-1234yf(F11)を、または、HFO-1234yfに対する水の含有割合が20ppm超である粗HFO-1234yf(F11)を、HFO-1234yfに対する水の含有割合が20ppm以下であるHFO-1234yf精製物S12とするためには、抜き出し留出物S13の排出量(質量/H)をSw13とし、粗HFO-1234yf(F11)の供給量(質量/H)をFw11とした場合の、Sw13:Fw11を、0.01:1~1:1の範囲とすることが好ましく、Sw13:Fw11は、0.03:1~0.1:1がさらに好ましい。
 また、蒸留塔1における留出物S10の排出量(質量/H)をSw10、還流留出物S11の供給量(質量/H)をSw11、およびHFO-1234yf精製物S12の排出量Sw12とした場合に、Sw13:Sw11は、0.01:1~1:1の範囲とすることが好ましく、0.03:1~0.1:1がさらに好ましい。Sw12:Fw11は、0.005:1~0.2:1の範囲とすることが好ましく、0.01:1~0.1:1がさらに好ましい。
 なお、上記本発明の実施形態の精製装置10Aを用いた、粗HFO-1234yfの連続的な精製において、精製装置10Aの運転開始から蒸留塔1および冷却凝縮手段2における供給物と排出物の物質収支・組成が平衡状態になるまで、通常、数時間を要する。上記得られるHFO-1234yfの精製物S12における全有機物中のHFO-1234yfの純度やHFO-1234yfに対する水の含有割合は、この平衡状態に達した際のものである。
 以上、本発明のHFO-1234yfの精製方法の実施形態について、図1に概略図を示す本発明のHFO-1234yfの精製装置の実施形態の一例を参照して説明した。本発明のHFO-1234yfの精製方法においては、さらに、上記冷却凝縮手段において抜き出した一部の留出物を脱水処理し、得られた第1の処理物を、上記蒸留塔のk段目(ただし、kは、n+1≦k≦mを満たす整数。)に供給する操作を加えることが好ましい。
 このような操作を加えた、本発明の精製方法の実施形態は、例えば、図2に概略図を示す本発明のHFO-1234yfの精製装置の実施形態の変形例を用いて実行できる。
 図2に示す本実施形態の精製装置10Bは、精製装置10Aにさらに抜き出し留出物S13を脱水処理する第1の脱水処理手段5が設けられ、蒸留塔1がこれにより脱水処理された第1の処理物S14を、蒸留塔1に供給するための第1の処理物供給口15をk段目(ただし、kは、n+1≦k≦mを満たす整数。)に有する以外は精製装置10Aと同様である。
 抜き出し留出物S13を脱水処理する第1の脱水処理手段5として、具体的には、以下の(a)~(d)の方法が挙げられる。
(a)モレキュラーシーブ(合成ゼオライト)やシリカゲル、活性アルミナのような脱水剤を充填した脱水塔を通して、脱水剤に水を吸収させる。
(b)蒸留塔を用いて沸点差で有機成分から水を分離する。
(c)脱水塔により、気相の状態で濃硫酸と接触させて水を吸収させる。
(d)液相の状態で硫酸マグネシウムなどの脱水剤を懸濁させて、脱水剤に水を吸収させた後、濾過等で脱水剤を除去する。
 これらのうちでも、第1の脱水処理手段5としては、操作性やメンテナンスが容易になるという観点から(a)の脱水塔を用いることが好ましい。脱水塔を用いる場合、脱水塔に充填された脱水剤が吸着できる水分量の限界を超えると水分が破過し、脱水塔出口の第1の処理物に含まれる水分量が増加する。このため、水分量が増加し始めた時点で、水分を限界まで吸着した脱水剤は水分吸着が可能な脱水剤と交換される。脱水塔出口の第1の処理物の水分量が増加し始めた時点で脱水剤を交換できるように、本発明に係る装置においては、脱水塔出口の第1の処理物の水分量をモニタリングする機構を有することが好ましい。
 第1の脱水処理手段5においては、抜き出し留出物S13が含有する水分量、脱水処理して得られる第1の処理物S14に求められる水分含有量、および求められる処理量(速度)等に応じて、適宜脱水能力が設定される。脱水塔を用いる場合には、脱水剤の交換の頻度等を考慮した上で、脱水剤の種類や容量等を適宜選択する。
 なお、脱水処理後の第1の処理物S14における水分含有量としては、製品中の水分低減を容易にできる観点から、第1の処理物S14中のHFO-1234yfに対する水の質量割合として100ppm以下となる範囲が好ましく、50ppm以下がより好ましい。
 第1の処理物S14を蒸留塔1に供給するための第1の処理物供給口15を設ける位置、すなわち第1の処理物S14を蒸留塔1に供給する位置であるk段目は、n+1段目からm段目のいずれかの段から適宜選択される。すなわち、第1の処理物供給口15は、n段目に配設されるHFO-1234yfの精製物S12を抜き出す精製物排出口13より下の段であって、粗HFO-1234yf(F11)の供給口11と同じ段(m段目)かそれよりも上の段に設けられる。本発明において第1の処理物供給口15は、m段目に設けられることが好ましく、以下に説明する通り粗HFO-1234yfを供給するための供給口11を第1の処理物供給口15として用いることがより好ましい。蒸留塔1への第1の処理物S14の供給量(質量/H)は、F11の供給量(質量/H)に対して0.03~0.1倍とすることが好ましい。また、蒸留塔1に供給する第1の処理物S14の温度としては、20~80℃が好ましい。
 本発明のHFO-1234yfの精製方法においては、上記冷却凝縮手段において抜き出した一部の留出物を脱水処理し、得られた第1の処理物を、上記粗HFO-1234yfとともに、蒸留塔のm段目から蒸留塔に供給してもよい。このような本発明の精製方法の実施形態は、例えば、図3に概略図を示す本発明のHFO-1234yfの精製装置の実施形態の別の変形例を用いて実行できる。
 図3に示す本実施形態の精製装置10Cは、精製装置10Bにおいて、第1の処理物S14が蒸留塔1のk段目に供給される機構のかわりに、これを粗HFO-1234yfの供給路に合流させる機構を有し、また、蒸留塔1の塔底4から缶出液を取り出してその一部S15を抜き出し、残部を加熱する手段6と加熱された残部を蒸留塔1の塔底4付近に戻す機構を有する以外は精製装置10Bと同様である。なお、これに伴い精製装置10Cにおいて、蒸留塔1は第1の処理物供給口15をk段目に有しない構成である。
 また、蒸留塔1の塔底4から缶出液を取り出してその一部S15を抜き出し、残部を加熱する手段6と加熱された残部を蒸留塔1の塔底4付近に戻す機構は、本発明の精製装置においては任意に有してもよい機構である。このようにして缶出液の残部を加熱して蒸留塔1の塔底4付近に戻すことにより、塔底4付近の温度の調整に寄与できる。缶出液には粗HFO-1234yfが含有するHFO-1234yfより高沸点の有機物不純物が粗HFO-1234yfより高濃度で含まれる。缶出液から取り出された一部S15は、必要に応じて別の分離工程等を経て、上記HFO-1234yfを製造するための原料等に使用される。
 ここで、精製装置10Cにおいて、蒸留塔1のm段目から蒸留塔1に供給される供給物F12は、精製装置10Cの外から供給される粗HFO-1234yf(F11)と、精製装置10C内で発生した第1の処理物S14との混合物となる。このような供給物F12の温度および供給量は、上記精製装置10Aにおいて、粗HFO-1234yf(F11)をm段目から蒸留塔1に供給する場合と同様とすることができる。すなわち、精製装置10Cのような装置を用いて精製を行う場合、供給物F12の供給量(質量/H)をFw12とした場合の、Sw13:Fw12を、上記Sw13:Fw11の値と同様に設定することで、HFO-1234yfに対する水の含有割合が100ppm以下、好ましくは50ppm以下である供給物F12を、または、HFO-1234yfに対する水の含有割合が20ppm超である供給物F12を、HFO-1234yfに対する水の含有割合が20ppm以下であるHFO-1234yf精製物S12とすることができる。
 また、本発明のHFO-1234yfの精製方法において、得られる抜き出し留出物を脱水処理して蒸留塔に供給する工程を有する場合には、この工程を上記冷却凝縮手段において抜き出した一部の留出物を上記粗HFO-1234yfとともに脱水処理し、得られた第2の処理物を上記蒸留塔のm段目に供給する方法で行ってもよい。このような本発明の精製方法の実施形態は、例えば、図4に概略図を示す本発明のHFO-1234yfの精製装置の実施形態のさらに別の変形例を用いて実行できる。
 図4に示す本実施形態の精製装置10Dは、精製装置10Cにおいて、抜き出し留出物S13を脱水処理する第1の脱水処理手段5を配設せず、抜き出し留出物S13として粗HFO-1234yfの供給路に合流させ、合流後の抜き出し留出物S13と粗HFO-1234yf(F11)を同時に脱水処理する第2の脱水処理手段7が設けられ、これにより脱水処理された第2の処理物F13を、蒸留塔1のm段目に設けられた供給口11から蒸留塔1に供給するようにした以外は精製装置10Cと同様である。
 また、精製装置10Dにおける第2の脱水処理手段7は、上記精製装置10B、10Cにおける第1の脱水処理手段5と方法については、好ましい態様を含め同様とすることができる。ただし、処理能力としては、抜き出し留出物S13と粗HFO-1234yf(F11)の合計量を脱水処理するのに見合う処理能力とすることが好ましい。
 さらに、図示されていないが、必要に応じて精製装置10Dに、図3に示す精製装置10Cが有する第1の脱水処理手段5と同様の第1の脱水処理手段5を設けてもよい。
 ここで、精製装置10Dにおいて、蒸留塔1のm段目から蒸留塔1に供給される供給物F13の温度および供給量は、上記精製装置10Aにおいて、粗HFO-1234yf(F11)をm段目から蒸留塔1に供給する場合と同様とすることができる。すなわち、精製装置10Dのような装置を用いて精製を行う場合、供給物F13の供給量(質量/H)をFw13とした場合の、Sw13:Fw13を、上記Sw13:Fw11の値と同様に設定することで、HFO-1234yfに対する水の含有割合が100ppm以下、好ましくは50ppm以下である供給物F13を、または、HFO-1234yfに対する水の含有割合が20ppm超である供給物F13を、HFO-1234yfに対する水の含有割合が20ppm以下であるHFO-1234yf精製物S12とすることができる。
 ここで、粗HFO-1234yf(F11)の水分含有量については、本発明の精製方法が、精製装置10Dを用いる等により、処理対象となる粗HFO-1234yf(F11)の脱水処理を含む場合においては、粗HFO-1234yf(F11)中のHFO-1234yfに対する水の含有割合として、例えば、0.1~0.3質量%程度であってもよい。ただし、本発明の精製方法が、粗HFO-1234yf(F11)の脱水処理を含まない場合においては、HFO-1234yfに対する水の含有割合が20ppm以下であるHFO-1234yf精製物を得るために、粗HFO-1234yf(F11)として、HFO-1234yfに対する水の含有割合が100ppm以下となるように、予め、反応系から得られる粗HFO-1234yfを上記脱水処理と同様の方法で、脱水処理しておくことが好ましい。
<製造方法>
 本発明のHFO-1234yfの製造方法は、上記記載の精製方法を備える製造方法である。本発明のHFO-1234yfの製造方法は、具体的には、以下の(A)工程および(B)工程を有する製造方法である。
(A)原料化合物を反応させて水および有機物不純物を含有する粗HFO-1234yfを得る反応工程
(B)(A)工程で得られた粗HFO-1234yfを上記本発明の精製方法により精製する精製工程
 (A)の反応工程において、粗HFO-1234yfを得る方法は特に限定されないが、例えば、1)HCFC-225の異性体混合物を原料として用いて上記反応経路(1)を経て得る方法、2)PFO-1216ycを原料化合物として用いて上記反応経路(2)を経て得る方法、3)1,2,3-トリクロロプロパンを原料化合物として用いて上記反応経路(3)を経て得る方法、4)1,1,2,3-テトラクロロプロペンを原料化合物として用いて得る方法、等が挙げられる。
 これらの方法によれば、得られる粗HFO-1234yfは、未反応原料化合物や、中間体、副生物等の有機物不純物とともに反応過程で用いられる水を含有する。
 (B)の精製工程において、上記(A)の反応工程で得られた水および有機物不純物を含有する粗HFO-1234yfを上記本発明の精製方法で精製することで、有機物不純物および水分の含有量がともに少ない高純度HFO-1234yfを得ることができる。
 ここで、より高純度のHFO-1234yfを得るために、(A)の反応工程において、特にHFO-1234yfと沸点が近い、具体的には、沸点が-40℃~-10℃の範囲にある有機物不純物の、得られる粗HFO-1234yfにおけるHFO-1234yf量に対する含有割合が10質量%以上とならないように、従来公知の方法で反応条件を制御することが好ましい。
 また、粗HFO-1234yfにおける水の含有割合がHFO-1234yf量に対して100ppmを超える量であると、(B)の精製工程で得られるHFO-1234yf精製物において望ましいとされるHFO-1234yfに対して20ppm以下の水分含有量とすることが困難な場合があるため、(B)の精製工程の前に脱水処理の工程をさらに設けることが好ましい。
 本発明の製造方法においては、このようにして、得られる精製物中の全有機物量に対するHFO-1234yfの含有割合が99.5質量%以上、さらに好ましくは、99.8質量%以上であって、水分含有量が極めて低い、好ましくはHFO-1234yfに対する水分含有量が20ppm以下であるHFO-1234yf精製物が製造できる。
 以上、本発明のHFO-1234yfの精製方法および精製装置、ならびにHFO-1234yfの製造方法について例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて適宜構成を変更することができる。
 以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]
 以下の精製装置を用いて、上記反応経路(1)の方法で得られた粗HFO-1234yfを精製した。
(精製装置)
 図4に示す精製装置10Dと同様の蒸留塔1、冷却凝縮手段2、第2の脱水手段7および加熱手段6を備える精製装置を用いた。
 蒸留塔1として、内径が550mm、SUS316L製、全段数Xが25の蒸留塔1を用いた。蒸留塔1は、21段目(上記「m段目」に相当)に、粗HFO-1234yf(F11)と冷却凝縮手段2で得られた抜き出し留出物S13を一緒に第2の脱水手段7で脱水処理した供給物F13を供給する供給口11、2段目(上記「n段目」に相当)にHFO-1234yf精製物S12を取り出す精製物排出口13、1段目(上記「h段目」に相当)に冷却凝縮手段2から送られる還流液(還流留出物)S11を供給する還流液供給口12を有する構成であった。
 冷却凝縮手段2は蒸留塔1の塔頂3から取り出された留出物S10の供給を受ける留出物供給口23と、留出物の一部(抜き出し留出物)S13を気相または冷却凝縮した液相として抜き出す留出物排出口21と、残部(還流留出物)S11を冷却凝縮した後、蒸留塔1に還流する還流液として取り出す還流液排出口22を有するものである。第2の脱水手段7としては、脱水剤としてモレキュラーシーブを充填した容積が6mの脱水塔を用いた。また、蒸留塔1の塔底4から缶出液を取り出してその一部S15を抜き出し、残部を加熱手段6により加熱後、蒸留塔1の塔底4付近に戻す設計であった。
(粗HFO-1234yfの精製)
 粗HFO-1234yf(F11)を脱水塔7に通過させて得られた処理物を供給物F13として605kg/Hの供給量で蒸留塔1の21段目に供給して、精製装置の運転を開始した。蒸留塔1は、圧力設定を0.7MPaとし、塔頂3付近の温度を約30℃、塔底4付近の温度を約120℃と設定した。精製装置の運転開始から、冷却凝縮手段2、脱水塔7および加熱手段6に連結された蒸留塔1における供給物(供給物S13、還流液(還流留出物)S11、加熱手段から塔底に供給される液相等)と排出物(HFO-1234yf精製物S12、缶出液等)の物質収支・組成が平衡状態になるまで、1~24時間、初期運転を行い、その後、得られた平衡状態による連続運転により粗HFO-1234yfの精製を行った。この平衡状態時の精製装置における物質の供給量、排出量および組成は以下の通りであった。
 蒸留塔1の塔頂3から300kg/Hで取り出した留出物S10を冷却凝縮手段2に供給し、その一部を気相または液相の状態で抜き出し留出物S13として32kg/Hの量、抜き出した後、その全量を粗HFO-1234yf(F11)の供給路に合流させ、脱水塔7に通過させて得られた処理物を供給物F13として605kg/Hの供給量で蒸留塔1の21段目に連続的に供給させた。
 冷却凝縮手段2に蒸留塔1の塔頂3から供給された留出物S10から、抜き出し留出物S13が除かれた残部(還流留出物)S11は、冷却凝縮によりこれを液相とした後、液温約30℃の還流液として268kg/Hの供給量で蒸留塔1の1段目に還流した。
 一方、蒸留塔1の2段目から液相部を、HFO-1234yf精製物S12として、50kg/Hの排出量で取り出した。
 蒸留塔1の塔底4から723kg/Hの排出量で缶出液を取り出し、その一部を加熱手段6により約100℃に加熱し塔底4付近に200kg/Hの量で戻した。缶出液の残部S15の量は523kg/Hであった。
 この平衡状態時の精製装置における、抜き出し留出物S13を粗HFO-1234yf(F11)の供給路に合流させ、脱水塔7に通過させて得られた処理物である供給物F13、残部(還流留出物)S11、HFO-1234yf精製物S12、缶出液の残部S15の組成を表1に示す。なお、粗HFO-1234yf(F11)の組成は、上記F13、S13の流量(605kg/Hおよび32kg/H)と、下記表1に示すF13、S13の組成および脱水塔7の脱水能力から算定できる。
 表1から分かるように、得られたHFO-1234yf精製物S12において、全有機物量に対するHFO-1234yfの含有量は99.95質量%であり、HFO-1234yfに対する水の含有割合は9.0ppmであった。
Figure JPOXMLDOC01-appb-T000004
[実施例2]
 粗HFO-1234yf(F11)に含まれる水分量が、実施例1よりも高いこと以外は実施例1と同様に蒸留を行った。具体的には、平衡状態時の精製装置における供給物F13に含まれる水分が全有機物量に対して13ppm、HFO-1234yfに対する水の含有割合が112ppmであること以外は実施例1と同様に蒸留を行った。その結果、蒸留塔1の精製物排出口13から得られたHFO-1234yf精製物S12-1は、全有機物量に対するHFO-1234yfの含有量は99.9質量%以上であり、全有機物量に対する水分量は40ppmであり、HFO-1234yfに対する水の含有割合は40ppmであった。
[実施例3]
 図5に示す精製装置10Eを用いて、実施例1で用いた粗HFO-1234yf(F11)の精製を行った。精製装置10Eは実施例1で使用した精製装置において、冷却凝縮手段2が留出物の一部(抜き出し留出物)S13を抜き出す留出物排出口21を有しない以外は実施例1と同様の装置である。
 ここで、脱水塔7を経て蒸留塔1に供給された粗HFO-1234yf(F11)においては、全有機物量に対するHFO-1234yfの含有量は13.0質量%、全有機物量に対する水分量は6.5ppmであり、HFO-1234yfに対する水の含有割合は50.0ppmであった。そして、蒸留塔1の精製物排出口13から得られたHFO-1234yf精製物S12は、全有機物量に対するHFO-1234yfの含有量は99.9質量%以上であり、全有機物量に対する水分量は46ppmであり、HFO-1234yfに対する水の含有割合は46ppmであった。HFO-1234yf精製物S12の水分量は実施例1に比べて高い値であったが、還流液(還流留出物)S11におけるHFO-1234yfに対する水の含有割合に比べて低い値である。
[比較例1]
 図6に示す精製装置20を用いて、実施例1で用いた粗HFO-1234yf(F11)の精製を行った。精製装置20は実施例1で使用した精製装置において、蒸留塔1が2段目にHFO-1234yf精製物S12を取り出す精製物排出口13を持たず、さらに、冷却凝縮手段2が留出物の一部(抜き出し留出物)S13を抜き出す留出物排出口21を持たず、そのかわりに、冷却凝縮手段2で留出物S10から得られる還流液S11の一部を蒸留塔1に還流し、その残部をHFO-1234yf精製物S16として抜き出すようにした以外は実施例1と同様の精製装置である。
 その結果、得られたHFO-1234yf精製物S16における、全有機物量に対するHFO-1234yfの含有量は99.9質量%以上であり、全有機物量に対する水分量は220ppmであり、HFO-1234yfに対する水の含有割合は220ppmであった。
[比較例2]
 図7に示す精製装置30を用いて、実施例1で用いた粗HFO-1234yf(F11)の精製を行った。精製装置30は実施例1で使用した精製装置において、蒸留塔1が2段目にHFO-1234yf精製物S12を取り出す精製物排出口13を持たず、そのかわりに、冷却凝縮手段2で留出物S10の残部から得られる還流液S11の一部を蒸留塔1に還流し、その残部をHFO-1234yf精製物S16-1として抜き出すようにした以外は実施例1と同様の装置である。
 その結果、得られたHFO-1234yf精製物S16-1における、全有機物量に対するHFO-1234yfの含有量は99.9質量%以上であり、全有機物量に対する水分量は233ppmであり、HFO-1234yfに対する水の含有割合は233ppmであった。比較例1のHFO-1234yf精製物S16と比較してHFO-1234yf精製物S16-1に含まれる水分量は同程度であり、実施例1に比べて依然水分量は高い値であった。
 本発明によれば、HFC-134aの代替冷媒として有用な、GWPが4と極めて低い2,3,3,3-テトラフルオロプロペンを、有機物不純物および水分の含有量がともに少ない高純度精製物として、効率よく精製することができる。
10A、10B、10C、10D、10E…HFO-1234yfの精製装置、
1…蒸留塔、2…冷却凝縮手段、3…塔頂、4…塔底、5…第1の脱水処理手段、6…加熱手段、7…第2の脱水処理手段、
11…供給口、12…還流液供給口、13…精製物排出口、14…塔頂排出口、15…処理物供給口、
21…留出物排出口、22…還流液排出口、23…留出物供給口

Claims (13)

  1.  水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する方法であって、
     X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置を用い、前記蒸留塔のm段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に前記粗2,3,3,3-テトラフルオロプロペンを供給し、前記冷却凝縮する手段において冷却凝縮された留出物の少なくとも一部を前記蒸留塔のh段目(ただし、hは1≦h≦n-1を満たす整数。)に還流するとともに、前記蒸留塔のn段目の液相部を抜き出して2,3,3,3-テトラフルオロプロペンの精製物を得る2,3,3,3-テトラフルオロプロペンの精製方法。
  2.  前記有機物不純物が、沸点が-40℃~-10℃の有機化合物を含有する請求項1に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  3.  前記有機物不純物が、3,3,3-トリフルオロプロペン、3,3-ジフルオロプロペン、1,2,3,3,3-ペンタフルオロプロペン、1,3,3,3-テトラフルオロプロペン、1,1,3,3,3-ペンタフルオロプロペン、1,1,2,3,3,3-ヘキサフルオロプロペン、1,1,1,2,2-ペンタフルオロプロパンから選ばれる少なくとも1種を含有する請求項1に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  4.  前記粗2,3,3,3-テトラフルオロプロペン中の全有機物量中の2,3,3,3-テトラフルオロプロペンの含有割合が5質量%以上99.5質量%未満であり、前記2,3,3,3-テトラフルオロプロペンの精製物中の全有機物量中の2,3,3,3-テトラフルオロプロペンの含有割合が99.5質量%以上である請求項1~3のいずれか1項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  5.  前記粗2,3,3,3-テトラフルオロプロペンにおける2,3,3,3-テトラフルオロプロペンに対する水の含有割合が100ppm以下であり、前記2,3,3,3-テトラフルオロプロペンの精製物における2,3,3,3-テトラフルオロプロペンに対する水の含有割合が20ppm以下である請求項1~4のいずれか1項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  6.  前記冷却凝縮手段において留出物の一部を抜き出し、残部を還流液として前記蒸留塔のh段目(ただし、hは1≦h≦n-1を満たす整数。)に還流する請求項1~5のいずれか1項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  7.  前記冷却凝縮手段において抜き出した一部の留出物を脱水処理し、得られた第1の処理物を前記蒸留塔のk段目(ただし、kは、n+1≦k≦mを満たす整数。)に供給する、請求項6に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  8.  前記第1の処理物における2,3,3,3-テトラフルオロプロペンに対する水の含有割合が100ppm以下である請求項7に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  9.  前記第1の処理物を、前記粗2,3,3,3-テトラフルオロプロペンとともに、前記蒸留塔のm段目から前記蒸留塔に供給する請求項7または8に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  10.  前記冷却凝縮手段において抜き出した一部の留出物を、前記粗2,3,3,3-テトラフルオロプロペンとともに脱水処理し、得られた第2の処理物を前記蒸留塔のm段目に供給する、請求項6に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  11.  前記脱水処理が、脱水塔を通すことで行われる請求項7~10のいずれか1項に記載の2,3,3,3-テトラフルオロプロペンの精製方法。
  12.  水および有機物不純物を含有する粗2,3,3,3-テトラフルオロプロペンを連続的に精製する、X段(ただし、Xは3以上の整数。塔頂に最も近い段を1段目とする。)の蒸留塔と前記蒸留塔の塔頂から留出物を取り出し冷却凝縮する手段を備えた装置であって、
     前記冷却凝縮手段は、冷却凝縮された留出物の少なくとも一部を還流液として排出する還流液排出口を有し、前記蒸留塔は、m段目(ただし、mは、n+1≦m≦Xを満たす整数。nは、2≦n≦X-1を満たす整数。)に前記粗2,3,3,3-テトラフルオロプロペンを供給する供給口と、h段目(ただし、hは1≦h≦n-1を満たす整数。)に前記還流液を還流する供給口と、n段目の液相部を2,3,3,3-テトラフルオロプロペンの精製物として抜き出す排出口を有する、2,3,3,3-テトラフルオロプロペンの精製装置。
  13.  請求項1~11のいずれか1項に記載の精製方法を備える、2,3,3,3-テトラフルオロプロペンの製造方法。
PCT/JP2012/083449 2011-12-28 2012-12-25 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法 WO2013099856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12861259.5A EP2799415B2 (en) 2011-12-28 2012-12-25 Method for purifying 2,3,3,3-tetrafluoropropene and process for producing same
CN201280065099.2A CN104024189B (zh) 2011-12-28 2012-12-25 2,3,3,3-四氟丙烯的纯化方法,纯化装置及制造方法
JP2013551699A JP6056771B2 (ja) 2011-12-28 2012-12-25 2,3,3,3−テトラフルオロプロペンの精製方法、精製装置および製造方法
US14/305,476 US9193649B2 (en) 2011-12-28 2014-06-16 Purifying method and manufacturing method of 2,3,3,3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289691 2011-12-28
JP2011289691 2011-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/305,476 Continuation US9193649B2 (en) 2011-12-28 2014-06-16 Purifying method and manufacturing method of 2,3,3,3-tetrafluoropropene

Publications (1)

Publication Number Publication Date
WO2013099856A1 true WO2013099856A1 (ja) 2013-07-04

Family

ID=48697341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083449 WO2013099856A1 (ja) 2011-12-28 2012-12-25 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法

Country Status (5)

Country Link
US (1) US9193649B2 (ja)
EP (1) EP2799415B2 (ja)
JP (1) JP6056771B2 (ja)
CN (1) CN104024189B (ja)
WO (1) WO2013099856A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190884A (ja) * 2014-09-26 2016-11-10 ダイキン工業株式会社 ハロオレフィン類組成物
WO2016194794A1 (ja) * 2015-06-02 2016-12-08 セントラル硝子株式会社 ハイドロハロフルオロオレフィンの製造方法
US10351495B2 (en) * 2014-04-16 2019-07-16 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
US10513479B2 (en) 2015-06-02 2019-12-24 Central Glass Company, Limited Method or producing hydrohalofluoroolefins
JP2020536910A (ja) * 2017-10-13 2020-12-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 2,3,3,3−テトラフルオロプロペン(HFO−1234yf)から不飽和ハロゲン化不純物を除去するための方法
WO2021107046A1 (ja) * 2019-11-28 2021-06-03 ダイキン工業株式会社 フッ素系炭化水素化合物の脱水方法
KR20220061994A (ko) 2019-09-12 2022-05-13 칸토 덴카 코교 가부시키가이샤 =cf2 혹은 =chf 의 구조를 가지는 플루오로올레핀의 정제 방법, 그리고 고순도 플루오로올레핀 및 그 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116042183A (zh) 2014-09-26 2023-05-02 大金工业株式会社 卤代烯类组合物及其使用
GB2562103A (en) * 2017-05-05 2018-11-07 Mexichem Fluor Sa De Cv Process
JP6485493B2 (ja) * 2017-06-16 2019-03-20 ダイキン工業株式会社 ペンタフルオロプロパンと水とを含む共沸又は共沸様組成物、並びにペンタフルオロプロパンの製造方法
CN111253211B (zh) * 2020-03-16 2022-08-05 天津绿菱气体有限公司 一种高纯电子级四氟丙烯HFO-1234yf的分离纯化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513719A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペンとフッ化水素とを含む共沸組成物およびその使用
WO2010024366A2 (en) 2008-08-26 2010-03-04 Daikin Industries, Ltd. Azeotropic or azeotrope-like composition and process for producing 2,3,3,3-tetrafluoropropene

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473911A (en) 1943-07-19 1949-06-21 Ici Ltd Production of fluorocarbons
US3475287A (en) 1968-05-16 1969-10-28 Universal Oil Prod Co Fractional distillation system with plural feeds,reboilers and side streams having internal reflux controls
US3887629A (en) 1973-10-01 1975-06-03 Phillips Petroleum Co Purification of fluorocarbons
US5026917A (en) 1990-03-01 1991-06-25 Amoco Corporation Preparation of 2-acyl-6-methylnaphthalenes
JP3581725B2 (ja) * 1994-06-30 2004-10-27 ダイセル化学工業株式会社 アセトアルデヒドとヨウ化メチルの分離方法
US6054603A (en) 1999-04-06 2000-04-25 The Standard Oil Company Acrylonitrile recovery process
CN1206208C (zh) 2000-07-18 2005-06-15 标准石油公司 改进的乙腈精制和回收方法
WO2005044765A2 (en) 2003-11-10 2005-05-19 Showa Denko K.K. Purification method of, 1, 1-difluoroethane
US7982073B2 (en) * 2006-07-13 2011-07-19 E. I. Du Pont De Nemours And Company Catalytic production processes for making tetrafluoropropenes and pentafluoropropenes
GB0614927D0 (en) * 2006-07-27 2006-09-06 Ineos Fluor Holdings Ltd Separation process
CN200963533Y (zh) * 2006-09-05 2007-10-24 上海兖矿能源科技研发有限公司 用于回收费托合成反应水中含氧有机物的精馏塔
US7420094B2 (en) 2006-09-05 2008-09-02 E.I. Du Pont De Nemours And Company Catalytic isomerization processes of 1,3,3,3-tetrafluoropropene for making 2,3,3,3-tetrafluoropropene
ES2483995T3 (es) * 2008-02-21 2014-08-08 E. I. Du Pont De Nemours And Company Procesos para la separación de 1,3,3,3-tetrafluoropropeno del fluoruro de hidrógeno por medio de destilación azeotrópica
US8604255B2 (en) 2010-05-07 2013-12-10 Celanese International Corporation Process for recovering ethanol with sidedraws to regulate C3+ alcohols concentrations
TW201219348A (en) 2010-06-23 2012-05-16 Asahi Glass Co Ltd Process for producing 2,3,3,3-tetrafluoropropene (i)
CN102947257B (zh) 2010-06-23 2014-07-09 旭硝子株式会社 1,1-二氯-2,3,3,3-四氟丙烯及2,3,3,3-四氟丙烯的制造方法
JP5786858B2 (ja) 2010-06-23 2015-09-30 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
WO2011162338A1 (ja) 2010-06-23 2011-12-29 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
JP5713020B2 (ja) 2010-06-23 2015-05-07 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
GB2492847A (en) * 2011-07-15 2013-01-16 Mexichem Amanco Holding Sa A process for reducing TFMA content in R-1234

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513719A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペンとフッ化水素とを含む共沸組成物およびその使用
WO2010024366A2 (en) 2008-08-26 2010-03-04 Daikin Industries, Ltd. Azeotropic or azeotrope-like composition and process for producing 2,3,3,3-tetrafluoropropene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799415A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815173B2 (en) 2014-04-16 2020-10-27 The Chemours Company Fc, Llc Compositions comprising fluoropropenes and fluoropropanes and methods for preparing the compositions
US12060309B2 (en) 2014-04-16 2024-08-13 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes and compositions thereof
JP7483077B2 (ja) 2014-04-16 2024-05-14 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー より望ましいフルオロプロパン及びフルオロプロペンへのクロロフルオロプロパン及びクロロフルオロプロペンの変換
US10351495B2 (en) * 2014-04-16 2019-07-16 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
US20220234971A1 (en) * 2014-04-16 2022-07-28 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
US11332424B2 (en) 2014-04-16 2022-05-17 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
US10584082B2 (en) 2014-04-16 2020-03-10 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
JP2021193197A (ja) * 2014-09-26 2021-12-23 ダイキン工業株式会社 ハロオレフィン類組成物
JP2020090688A (ja) * 2014-09-26 2020-06-11 ダイキン工業株式会社 ハロオレフィン類組成物
JP2016190884A (ja) * 2014-09-26 2016-11-10 ダイキン工業株式会社 ハロオレフィン類組成物
EP3040326B1 (en) 2014-09-26 2020-01-08 Daikin Industries, Ltd. Haloolefin-based composition
EP3040326A4 (en) * 2014-09-26 2017-07-05 Daikin Industries, Ltd. Halo-olefin composition
US10513479B2 (en) 2015-06-02 2019-12-24 Central Glass Company, Limited Method or producing hydrohalofluoroolefins
WO2016194794A1 (ja) * 2015-06-02 2016-12-08 セントラル硝子株式会社 ハイドロハロフルオロオレフィンの製造方法
JP2020536910A (ja) * 2017-10-13 2020-12-17 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 2,3,3,3−テトラフルオロプロペン(HFO−1234yf)から不飽和ハロゲン化不純物を除去するための方法
KR20220061994A (ko) 2019-09-12 2022-05-13 칸토 덴카 코교 가부시키가이샤 =cf2 혹은 =chf 의 구조를 가지는 플루오로올레핀의 정제 방법, 그리고 고순도 플루오로올레핀 및 그 제조 방법
WO2021107046A1 (ja) * 2019-11-28 2021-06-03 ダイキン工業株式会社 フッ素系炭化水素化合物の脱水方法
JP2021091668A (ja) * 2019-11-28 2021-06-17 ダイキン工業株式会社 フッ素系炭化水素化合物の脱水方法

Also Published As

Publication number Publication date
JPWO2013099856A1 (ja) 2015-05-07
CN104024189B (zh) 2016-01-13
CN104024189A (zh) 2014-09-03
EP2799415A4 (en) 2015-07-29
JP6056771B2 (ja) 2017-01-11
EP2799415B1 (en) 2016-06-15
US20140305161A1 (en) 2014-10-16
US9193649B2 (en) 2015-11-24
EP2799415A1 (en) 2014-11-05
EP2799415B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6056771B2 (ja) 2,3,3,3−テトラフルオロプロペンの精製方法、精製装置および製造方法
JP5974004B2 (ja) トランス−1−クロロ−3,3,3−トリフルオロプロペンを製造するための連続低温プロセス
EP2499110B1 (en) Method for purifying 2,3,3,3-tetrafluoropropene
JP6959144B2 (ja) 1,1,3,3−テトラクロロプロペンをベースとする組成物
JP5742893B2 (ja) 共沸又は共沸様組成物、及び2,3,3,3−テトラフルオロプロペンの製造方法
WO2013148300A1 (en) Integrated process to coproduce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
JP2016027051A (ja) 塩素化炭化水素の精製方法
JP2020063304A (ja) フッ化水素からのr−1233の分離
CN110741061B (zh) 含有五氟丙烷和水的共沸或类共沸组合物以及五氟丙烷的制造方法
KR102652080B1 (ko) Hcfo-1233zd를 건조시키는 방법
WO2024015371A1 (en) Method for reducing chlorofluorocarbon impurities in the manufacture of 7rans-1,3,3,3-tetrafluoropropene (hfo-1234ze(e))
US20220281785A1 (en) Purification method for fluoroolefin having structure of =cf2 or =chf, high-purity fluoroolefin, and production method therefor
KR102699994B1 (ko) 1234yf로의 244bb 탈염화수소화 동안 불순물의 형성을 감소시키는 시스템 및 방법
KR20240118069A (ko) 고순도 HFO-E-1,3,3,3-테트라플루오로프로펜(trans-HFO-1234ze) 및 이를 제조하기 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012861259

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE