WO2021107046A1 - フッ素系炭化水素化合物の脱水方法 - Google Patents

フッ素系炭化水素化合物の脱水方法 Download PDF

Info

Publication number
WO2021107046A1
WO2021107046A1 PCT/JP2020/044095 JP2020044095W WO2021107046A1 WO 2021107046 A1 WO2021107046 A1 WO 2021107046A1 JP 2020044095 W JP2020044095 W JP 2020044095W WO 2021107046 A1 WO2021107046 A1 WO 2021107046A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfc
fluorine
zeolite
hydrocarbon compound
composition containing
Prior art date
Application number
PCT/JP2020/044095
Other languages
English (en)
French (fr)
Inventor
友亮 江藤
中村 新吾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020227017610A priority Critical patent/KR20220088480A/ko
Priority to CN202080082290.2A priority patent/CN114746385A/zh
Priority to EP20892783.0A priority patent/EP4067326A4/en
Publication of WO2021107046A1 publication Critical patent/WO2021107046A1/ja
Priority to US17/824,463 priority patent/US20220281786A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa

Definitions

  • the present disclosure relates to a method for dehydrating a fluorinated hydrocarbon compound.
  • Fluorine-based hydrocarbon compounds such as difluoromethane (HFC-32) are widely used as etching gases in semiconductor manufacturing processes.
  • fluorine-based hydrocarbon compounds such as HFC-32 have been dehydrated by adsorbing water using A-type zeolite (for example, Patent Document 1).
  • An object of the present disclosure is to provide a method for dehydrating a composition containing a fluorinated hydrocarbon compound such as HFC-134a.
  • This disclosure includes the following configurations.
  • Item 1 A method for dehydrating a composition containing a fluorinated hydrocarbon compound.
  • the fluorine-based hydrocarbon compounds include 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125), and difluoromethane (HFC-32). ), And at least one compound selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a dehydration method comprising a step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with a zeolite having a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more.
  • Item 2 A method for dehydrating a composition containing a fluorinated hydrocarbon compound.
  • the fluorine-based hydrocarbon compounds include 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125), and difluoromethane (HFC-32). ), And at least one compound selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a dehydration method comprising contacting a composition containing the fluorinated hydrocarbon compound with at least one zeolite selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite.
  • Item 3 The dehydration method according to Item 1 or 2, wherein the step is to reduce the water content to less than 3 ppmwt in the dehydrated composition.
  • Item 4 Item 1 to 3 above, further comprising a step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with the zeolite to remove 1,1,2,2-tetrafluoroethane (HFC-134).
  • the dehydration method according to any one.
  • the step is preferably a dehydration method in which the content of HFC-134 in the dehydrated composition is less than 3 ppmwt).
  • the content (ppm) of HFC-134 is determined by, for example, gas chromatography, mass spectrometry by gas chromatography / mass spectrometry (GC / MS), and then NMR using an NMR spectrum.
  • the body integration rate obtained by dividing the content (volume) of HFC-134 contained in the composition containing the fluorine-based hydrocarbon compound by the volume of the composition containing the fluorine-based hydrocarbon compound. That is, ppmvol (volume / volume).
  • the content (ppm) of HFC-134 can be rephrased as, for example, less than 3 ppm vol.
  • a method for producing a composition containing a fluorinated hydrocarbon compound includes 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125), and difluoromethane (HFC-32). ), And at least one compound selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a production method comprising a step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with a zeolite having a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more.
  • Item 6 A method for producing a composition containing a fluorinated hydrocarbon compound.
  • the fluorine-based hydrocarbon compounds include 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125), and difluoromethane (HFC-32). ), And at least one compound selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a production method comprising contacting a composition containing the fluorine-based hydrocarbon compound with at least one zeolite selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite.
  • Item 7 The production method according to Item 5 or 6, wherein the composition after contacting with the zeolite has a water content of less than 3 ppmwt.
  • Item 8 Item 5 to 7 above, further comprising a step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with the zeolite to remove 1,1,2,2-tetrafluoroethane (HFC-134).
  • the manufacturing method according to any one.
  • composition after contact with the zeolite is preferably a production method in which the content of HFC-134 is less than 3 ppmwt.
  • Item 9 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (1,1,1,2,2-pentafluoroethane) for zeolites with a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more.
  • a method for producing a high-purity fluorine-based hydrocarbon compound which comprises a step of removing impurities contained in the fluorine-based hydrocarbon compound by bringing them into contact with each other.
  • At least one type of zeolite selected from the group consisting of chabazite type zeolite, mordenite type zeolite, beta type zeolite, and Y type zeolite includes 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1. At least selected from the group consisting of 1,2,2-pentafluoroethane (HFC-125), difluoromethane (HFC-32), and 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a method for producing a high-purity fluorine-based hydrocarbon compound which comprises a step of contacting a composition containing a kind of fluorine-based hydrocarbon compound to remove impurities contained in the fluorine-based hydrocarbon compound.
  • Item 11 The dehydration method according to Item 9 or 10, wherein the impurity is at least one component selected from the group consisting of water and 1,1,2,2-tetrafluoroethane (HFC-134).
  • the impurity is at least one component selected from the group consisting of water and 1,1,2,2-tetrafluoroethane (HFC-134).
  • Item 12. The production method according to any one of Items 9 to 11, wherein the water concentration contained in the fluorine-based hydrocarbon compound after removing impurities is less than 3 ppm wt.
  • the concentration of HFC-134 contained in the fluorine-based hydrocarbon compound after removing impurities is preferably a production method in which the content of HFC-134 is less than 3 ppm wt.
  • Item 13 A composition containing a fluorinated hydrocarbon compound.
  • the fluorine-based hydrocarbon compounds include 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,2-pentafluoroethane (HFC-125), and difluoromethane (HFC-32). ), And at least one compound selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFC-125 1,1,1,2,2-pentafluoroethane
  • HFC-32 difluoromethane
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • Item 14 The composition according to Item 13, which is used as an etching gas, a refrigerant, a heat transfer medium, a deposit gas, a building block for organic synthesis, or a cleaning gas.
  • silica a composition containing a fluorine-based hydrocarbon compound such as HFC-134a
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a when dehydrating a composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • the water adsorbed on the zeolite by contacting it with a zeolite having an alumina (SiO 2 / Al 2 O 3 ) ratio (molar ratio) of 5 or more or by contacting it with a chabazite-type zeolite has passed the dehydration treatment time.
  • a zeolite having an alumina (SiO 2 / Al 2 O 3 ) ratio (molar ratio) of 5 or more or by contacting it with a chabazite-type zeolite has passed the dehydration treatment time.
  • the present disclosure includes the following embodiments.
  • a composition containing a fluorine-based hydrocarbon compound is used as silica alumina (SiO 2 / Al). 2 O 3 ) Includes the step of contacting with zeolite having a ratio of 5 or more.
  • the composition containing a fluorine-based hydrocarbon compound is selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite. Includes the step of contacting with at least one type of zeolite.
  • the method for dehydrating a composition containing a fluorine-based hydrocarbon compound of the present disclosure preferably further brings the composition containing the fluorine-based hydrocarbon compound into contact with the zeolite to cause 1,1,2,2-tetra.
  • the fluorine-based hydrocarbon compound is 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2, Includes at least one compound selected from the group consisting of 2-pentafluoroethane (HFC-125), difluoromethane (HFC-32), and 2,3,3,3-tetrafluoropropene (HFO-1234yf). ..
  • the maximum value of the water content is about 10 ppmwt (mass / mass), and the water content is preferably less than 3 ppmwt.
  • the minimum value of water content in the dehydrated composition is about 0.1 ppmwt.
  • the maximum value of the content of HFC-134 in the composition after dehydration is about 10 ppmwt (mass / mass), and the content of HFC-134 is preferably less than 3 ppmwt. In the present disclosure, the minimum content of HFC-134 in the dehydrated composition is about 0.1 ppmwt.
  • the step is more preferably a water content of less than 3 ppmwt and a HFC-134 content of less than 3 ppmwt in the dehydrated composition.
  • the content (ppm) of HFC-134 is mass-analyzed by gas chromatography / mass spectrometry (GC / MS), for example, using gas chromatography, and then using NMR.
  • GC / MS gas chromatography / mass spectrometry
  • NMR nuclear magnetic resonance
  • the content (ppm) of HFC-134 can be rephrased as, for example, less than 3 ppm vol.
  • the dehydration method of the composition containing the fluorine-based hydrocarbon compound of the present disclosure when a specific zeolite is used when dehydrating the fluorine-based hydrocarbon compound such as HFC-134a, the water adsorbed on the zeolite is time-dependent. Even after the lapse of time, the release of zeolite and the like is suppressed, and there is an advantage that water is satisfactorily removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a, more preferably HFC-134a or the like. There is an advantage that HFC-134 is satisfactorily removed from the composition containing the fluorine-based hydrocarbon compound of.
  • Fluorocarbon compounds such as HFC-134a are used as etching gases for silicon oxide and related materials in the production of semiconductors. Fluorine-based hydrocarbon compounds such as HFC-134a used in the semiconductor industry are required to have extremely high purity. It is particularly important to remove water from the etching gas in the semiconductor manufacturing process.
  • the fluorine-based hydrocarbon compound is selected from at least the group consisting of HFC-134a, HFC-125, HFC-32, and HFO-1234yf. Contains a type of compound.
  • the composition containing a fluorine-based hydrocarbon compound such as HFC-134a contains impurities mixed in during the production of the fluorine-based hydrocarbon compound such as HFC-134a.
  • impurities include intermediates, isomers, by-products (for example, hydrogen fluoride, hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, fluoroalkenes, etc.) and the like.
  • the composition containing a fluorine-based hydrocarbon compound such as HFC-134a contains impurities mixed in when the fluorine-based hydrocarbon compound such as HFC-134a is used.
  • impurities water, acids such as HF, fluorocarbon, non-condensed gas (N 2 , CO 2 , CO, CH 4 , CH 4, etc.) O 2 ) etc.
  • acids such as HF, fluorocarbon, non-condensed gas (N 2 , CO 2 , CO, CH 4 , CH 4, etc.) O 2 ) etc.
  • composition containing a fluorine-based hydrocarbon compound such as HFC-134a includes 1,1,2,2-tetrafluoroethane (HFC-134) as an impurity other than water.
  • the fluorine-containing compound When water, hydrogen fluoride, etc. are present as impurities in the composition containing a fluorine-based hydrocarbon compound such as HFC-134a, the fluorine-containing compound has a reactive site such as a double bond. If it is chemically unstable, it may cause deterioration (decomposition, polymerization, isomerization, etc.) of the fluorine-containing compound, resulting in a vicious cycle of further deterioration of purity.
  • a fluorine-based hydrocarbon compound such as HFC-134a
  • the impurities adsorbed and removed by the isomers include those containing water, those containing hydrogen fluoride, those containing hydrocarbons, those containing carbon halide compounds, and halogenated hydrocarbon compounds (HFC-).
  • HFC- halogenated hydrocarbon compounds
  • impurities include heptafluorobutene, chloroheptafluorobutene, methyl iodide, chlorotrifluoroethylene and the like.
  • the method for dehydrating a composition containing a fluorine-based hydrocarbon compound of the present disclosure includes a step of bringing a composition containing a fluorine-based hydrocarbon compound such as HFC-134a into contact with a specific zeolite.
  • Zeolites are a type of clay mineral that contains alkaline or alkaline earth metals with a rigid anionic skeleton with regular channels (tubular pores) and cavities (cavities). Is.
  • Zeolites are generally (M I, M II 1/2) m (Al m Si n O 2 (m + n)) ⁇ xH 2 O, (n ⁇ m) (M I: Li +, Na +, K + , etc., M II: Ca 2+, Mg 2+, Ba 2+ , etc.) Represented by the composition of, the cations compensate for the negative charge of the aluminosilicate skeleton.
  • the type of cation in zeolite is not particularly limited, and H + , Li + , Na + , K + , Ca 2+ , Mg 2+ , Ba 2+, etc. are usually used.
  • the basic unit of the structure is a tetrahedron structure of SiO4 or AlO4 (totally TO4 tetrahedron), and these are infinitely connected in the three-dimensional direction to form a crystal.
  • the crystals are porous, and the diameter of the pores is usually about 0.2 nm to 1.0 nm (2 ⁇ to 10 ⁇ ).
  • molecules larger than the pore size of zeolite have a molecular sieve action that they cannot enter.
  • Zeolites have properties such as solid acidity, ion exchange ability, catalytic ability, and adsorption ability, in addition to the molecular sieving effect of pores derived from the skeletal structure.
  • contacting a composition containing a fluorine-based hydrocarbon compound such as HFC-134a with a specific zeolite means passing the fluorine-based hydrocarbon compound such as HFC-134a through a column or the like filled with zeolite. It also means filling a container filled with zeolite.
  • the usage pattern of the zeolite used is not particularly limited.
  • a composition containing a fluorinated hydrocarbon compound such as HFC-134a may be circulated in an apparatus filled with zeolite, and a composition containing a fluorinated hydrocarbon compound such as HFC-134a may be circulated in a container filled with zeolite.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a, which has been dehydrated after a predetermined time has elapsed, may be extracted.
  • the composition containing a fluorine-based hydrocarbon compound is brought into contact with the following zeolite having a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more.
  • the step includes contacting with at least one zeolite selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the dehydration treatment can be performed.
  • HFC-134 is efficiently suppressed from the viewpoint that the release of water from the zeolite is satisfactorily suppressed even after the lapse of time, and more preferably from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • Zeolites with a silica-alumina ratio (SiO 2 / Al 2 O 3 ratio) (molar ratio) of 5 or more are used because of the fact that In the present disclosure, the SiO 2 / Al 2 O 3 ratio of the zeolite used is preferably 5.5 or more, more preferably 6 or more.
  • the SiO 2 / Al 2 O 3 ratio of the zeolite used is preferably 50 or less, more preferably 45 or less, still more preferably 40 or less.
  • the SiO 2 / Al 2 O 3 ratio when the SiO 2 / Al 2 O 3 ratio is smaller than 5, the polarity of the zeolite is high, and when it is larger than 50, the polarity of the zeolite is low, so that the SiO 2 / Al 2 O 3 ratio is high. It is preferable to use 5 to 50 zeolites.
  • SiO 2 / Al 2 O 3 ratio when the SiO 2 / Al 2 O 3 ratio is smaller than 5, the polarity of the zeolite becomes high, and when the SiO 2 / Al 2 O 3 ratio is larger than 50, the polarity of the zeolite becomes low.
  • SiO 2 / Al 2 O 3 ratio is preferably 5 to 50 zeolite.
  • Chabazite-type zeolite The chabazite- type (CHA-type) structure has a three-dimensional pore structure, a pore diameter of about 0.38 nm (3.8 ⁇ ), and a large cage inside.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is satisfactorily suppressed even after the dehydration treatment time elapses.
  • Chabazite type (CHA type) from the viewpoint that HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • Use zeolite In the present disclosure, a specific chabazite-type zeolite can be used among those commercially available.
  • the genus Chabasite includes glymenite type, erionite type, ruby night type, chabasite type, etc.
  • the chabazite-type zeolite means that it is included in the genus Chabasite, and preferably at least one type selected from the group consisting of chabasite-type, glymenite-type, erionite-type, and ruby-nite-type. Zeolite having is preferably used.
  • the chabazite-type zeolite is more preferably a chavasite-type zeolite, or a mixed zeolite containing a chavasite-type and another chabasite-type genus such as glymenite-type, erionite-type, and rubinite-type.
  • Synthetic zeolite is used, and more preferably, a mixed zeolite (synthetic zeolite) containing a chavasite type and an erionite type as another chavasite type is used.
  • the crystalline system is a mixture of natural minerals chabasite and erionite, that is, chabasite-type synthetic zeolite (chabasite-type zeolite) and erionite-type.
  • Synthetic zeolite which is a mixture with synthetic zeolite (erionite type zeolite), is preferably used.
  • the silica / alumina ratio (SiO 2 / Al 2 O 3 ) of the natural mineral chavasite is generally about 2, but the silica / alumina ratio (SiO 2 / Al 2 O 3 ) of the synthetic chabazite type zeolite is 6.1 to. It is about 6.7.
  • mordenite also referred to as mordenite, chemical formula, (Ca, K 2, Na 2) [AlSi 5 O 12] a 2 ⁇ 7H 2 O
  • the mordenite-type mordenite structure is generally a zeolite having a pore structure consisting of a 12-membered oxygen ring and an 8-membered oxygen ring in which SiO 4 and AlO 4 share oxygen and are bonded to each other, and the pore diameter is the 12-membered oxygen ring. It is about 0.67 nm ⁇ 0.70 nm, and the oxygen 8-membered ring is about 0.29 nm ⁇ 0.57 nm.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is satisfactorily suppressed even after the dehydration treatment time elapses.
  • Mordenite-type zeolite is used because HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • a specific mordenite-type zeolite can be used among those commercially available.
  • Beta-type zeolite is a kind of crystalline aluminosilicate containing Si and Al, and has a three-dimensional pore structure including pores of a 12-membered oxygen ring.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is satisfactorily suppressed even after the dehydration treatment time elapses.
  • Beta-type zeolite is used because HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • specific beta-type zeolites among those commercially available can be used.
  • Y-type zeolite has pore inlets with a diameter of about 0.74 nm and has the largest pores among commercially available zeolites.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is satisfactorily suppressed even after the dehydration treatment time elapses.
  • Y-type zeolite is used because HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • a specific Y-type zeolite can be used among those commercially available.
  • the average pore size of the zeolite used is more preferably 4 ⁇ to 12 ⁇ , and particularly preferably 5 ⁇ to 10 ⁇ .
  • zeolite is preferably porous.
  • the fluorine-based hydrocarbon compound contained in the composition is preferably a compound having 2 carbon atoms (C2 compound) to a compound having 8 carbon atoms (C8 compound).
  • the composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and more preferably HFC.
  • HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as -134a.
  • the cationic species present disclosure zeolite, from a composition comprising a fluorine-based hydrocarbon compounds such as HFC-134a, efficient dehydration can be performed, with time of the dehydration process, the release of moisture from the zeolite Is satisfactorily suppressed, and more preferably, HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • the cationic species) is preferably a cation species such as H + , Li + , Na + , K + , Ca 2+ , Mg 2+ , Ba 2+ , and more preferably H + , Na + or the like. Zeolite can be preferably used.
  • cations in zeolite can be efficiently dehydrated by performing electrostatic interaction with water.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and water is released from the zeolite even after the dehydration treatment time has elapsed. Is satisfactorily suppressed, and more preferably, HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a by the zeolite BET method.
  • the measured specific surface area (hereinafter, also referred to as BET specific surface area) is preferably 50 m 2 / g to 3,000 m 2 / g, more preferably 100 m 2 / g to 1,000 m 2 / g, and even more preferably. It is 200 m 2 / g to 800 m 2 / g, and particularly preferably 250 m 2 / g to 700 m 2 / g.
  • the density of the zeolite particles is not too small, so that the dehydration treatment can be efficiently performed, and more preferably.
  • HFC-134 can be efficiently removed from a composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • the zeolites used in the present disclosure are preferably porous.
  • the zeolite used may be used in the form of powder, granules, or pellets, or may be used as a molded product.
  • the zeolite used is industrially preferably used as a molded product.
  • the shape of the molded body is not particularly limited, but it is preferable to use, for example, a columnar shape having a diameter of about 0.5 mm to 5 mm and a length of about 1 mm to 15 mm, or a spherical shape having a diameter of about 0.5 mm to 10 mm.
  • a conventionally known method using kaolin-based clay as a binder can be adopted.
  • the zeolite used in this disclosure is commercially available.
  • a composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is good even after the dehydration treatment time has elapsed.
  • HFC-134 can be efficiently removed from the composition containing a fluorozeolite compound such as HFC-134a.
  • Silica-alumina ratio (SiO 2 / Al 2 O 3 ratio) (molar ratio) is 5 or more, and at least one selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite. Zeolite is used.
  • Step of contacting a composition containing a fluorine-based hydrocarbon compound with zeolite The method for dehydrating a composition containing a fluorine-based hydrocarbon compound of the present disclosure is to prepare a composition containing a fluorine-based hydrocarbon compound with silica alumina. At least one selected from the process of contacting zeolites with a (SiO 2 / Al 2 O 3 ) ratio of 5 or more and / or the group consisting of chabazite-type zeolites, mordenite-type zeolites, beta-type zeolites, and Y-type zeolites. Including the step of contacting with the zeolite of.
  • the dehydration method preferably further comprises a step of bringing the composition containing the fluorinated hydrocarbon compound into contact with the zeolite to remove HFC-134.
  • contacting the composition with the zeolite means passing the composition through a column or the like filled with the zeolite, or filling the composition in a container filled with the zeolite. Means that.
  • the zeolite is used as a water removing material (dehydrating agent), and the water contained in the composition is removed by contacting (passing) the composition containing a fluorine-based hydrocarbon compound.
  • the dehydration method preferably further removes HFC-134 contained in the composition.
  • a composition containing a fluorohydrocarbon compound and the above-mentioned zeolite are used.
  • the mass ratio (composition containing a fluorine-based hydrocarbon compound: zeolite) is preferably 100: 1 to 1:10, and more preferably 50: 1 to 1: 5.
  • the contact is made at a ratio, and more preferably, the contact is made at a ratio of about 10: 1 to 1: 3.
  • the amount of the zeolite used can be such that a composition containing a fluorine-based hydrocarbon compound is brought into contact with a 10 g filler of zeolite (stainless steel cylinder or the like) in the range of about 10 g to 100 g.
  • the zeolite may be activated before its use.
  • the conditions for the activation treatment are preferably 150 ° C. to 150 ° C. in a vacuum (10 -1 mmHg to 10 -3 mmHg) or in a temperature range in which the crystal structure of zeolite can be maintained under the flow of an inert gas such as nitrogen. Drying treatments such as heating overnight at a temperature within the range of 300 ° C. can be mentioned.
  • zeolite that has not been subjected to the activation treatment can also be preferably used.
  • the usage pattern of the zeolite used is not particularly limited.
  • a composition containing a fluorine-based hydrocarbon compound may be circulated in the device filled with the zeolite, or a container filled with the zeolite may be filled with the composition containing the fluorine-based hydrocarbon compound, and a predetermined time elapses. The composition may be extracted later.
  • the temperature at which the composition containing the fluorinated hydrocarbon compound is brought into contact with the zeolite is not particularly limited. It may be determined in consideration of the boiling point of a fluorine-based hydrocarbon compound such as HFC-134a contained in the composition containing a fluorine-based hydrocarbon compound. Generally, contact at a low temperature is preferable because side reactions such as isomerization of fluorine-based hydrocarbon compounds are suppressed at the time of contact. It is preferably in the range of about -50 ° C to 100 ° C.
  • the time for contacting the composition containing the fluorinated hydrocarbon compound with the zeolite is not particularly limited.
  • the contact step comprises (i) silica alumina (SiO 2) of the composition containing a fluorozeolite compound such as HFC-134a. / Al 2 O 3 ) In contact with zeolites with a ratio of 5 or more, and (ii) at least one type of zeolite selected from the group consisting of chabazite-type zeolites, mordenite-type zeolites, beta-type zeolites, and Y-type zeolites.
  • It may be any one of the steps of contacting, (iii) a step of contacting with a zeolite having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more, and a chabazite type zeolite and a mordenite type.
  • the method may be a combination of a step of contacting with at least one type of zeolite selected from the group consisting of zeolite, beta-type zeolite, and Y-type zeolite.
  • the composition containing a fluorine-based hydrocarbon compound such as HFC-134a is (iv) silica alumina (SiO 2 / Al 2).
  • the step may be a step of contacting with at least one type of zeolite selected from the group consisting of chabazite-type zeolite, hydrocarbon-type zeolite, beta-type zeolite, and Y-type zeolite having a ratio of 5 or more.
  • the method for dehydrating a composition containing a fluorine-based hydrocarbon compound is to use a composition containing a fluorine-based hydrocarbon compound as described above with silica alumina (SiO 2 /).
  • a step of contacting with a zeolite having a ratio of 5 or more a step of contacting with at least one type of zeolite selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite, and / Or contact with at least one zeolite selected from the group consisting of chabazite-type zeolites, mordenite-type zeolites, beta-type zeolites, and Y-type zeolites having a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more. It is preferable to carry out the step in the vapor phase during the step of making the zeolite.
  • the contact step in the gas phase it is preferable to carry out the contact step in the gas phase, and in particular, to carry out the gas phase continuous flow method using a fixed bed reactor.
  • the equipment, operation, etc. can be simplified and it is economically advantageous.
  • the temperature at which the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite in the gas phase is particularly limited. There is no.
  • the lower limit of the contact temperature in the gas phase can be efficiently dehydrated from a composition containing a fluorine-based hydrocarbon compound such as HFC-134a, and the dehydration treatment time.
  • HFC-134 is efficiently removed from the composition containing a fluorinated hydrocarbon compound such as HFC-134a from the viewpoint that the release of water from the zeolite is satisfactorily suppressed even after the lapse of time. It is preferably -30 ° C, more preferably -20 ° C, from the viewpoint that it can be used.
  • the upper limit of the contact temperature in the gas phase is about 100 ° C.
  • the contact temperature in the gas phase is preferably a low temperature because the adsorption force is strong.
  • the temperature of contact in the gas phase is most preferably room temperature when the operation of the equipment and the handling of the equipment are taken into consideration.
  • the time for contacting the composition containing the fluorine-based hydrocarbon compound with a specific zeolite in the gas phase is particularly limited. There is no.
  • fluorine such as HFC-134a can be obtained by appropriately adjusting the reaction temperature and the reaction time (contact time) to be brought into contact with each other when the composition is carried out in the gas phase.
  • the composition containing the hydrocarbon compound can be efficiently dehydrated, and even if the dehydration treatment time elapses, the release of water from the zeolite is satisfactorily suppressed, and more preferably.
  • HFC-134 can be efficiently removed from a composition containing a fluorinated hydrocarbon compound such as HFC-134a.
  • the pressure at which the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite in the gas phase is particularly limited. There is no.
  • the contact pressure can be efficiently dehydrated from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a, and the dehydration treatment time has elapsed.
  • HFC-134 can be efficiently removed from the viewpoint that the release of water from zeolite is satisfactorily suppressed, and more preferably from the composition containing a fluorinated hydrocarbon compound such as HFC-134a. From the point of view, it is preferably -0.05MPa to 2MPa, more preferably -0.01MPa to 1MPa, and further preferably normal pressure to 0.5MPa.
  • pressure shall be gauge pressure unless otherwise stated.
  • a reactor for contacting the composition containing the fluorine-based hydrocarbon compound with a specific zeolite in the gas phase is not particularly limited as long as they can withstand the above temperature and pressure.
  • the reactor include a vertical reactor, a horizontal reactor, a multi-tube reactor and the like.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • a composition containing the fluorine-based hydrocarbon compound is added to a specific zeolite in the reactor in the gas phase. It can be carried out by either a flow method or a batch method in which the fluorohydrocarbon compound after the dehydration treatment is continuously extracted from the reactor through continuous contact. It is preferable to carry out by a distribution method so that the fluorine-based hydrocarbon compound after the dehydration treatment does not stay in the reactor.
  • the step of contacting the composition containing the fluorine-based hydrocarbon compound with a specific zeolite was carried out in a vapor phase, and a fixed bed reactor was particularly used. It is preferable to use the gas phase continuous flow system. When the gas phase continuous flow system is used, the equipment, operation, etc. can be simplified and it is economically advantageous.
  • the atmosphere at the time of dehydration treatment in the gas phase may be performed in the presence of an inert gas from the viewpoint of suppressing deterioration of zeolite. ..
  • the inert gas is preferably at least one selected from the group consisting of nitrogen, helium, argon and carbon dioxide. Among these inert gases, nitrogen is more preferable from the viewpoint of reducing costs.
  • the concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
  • the atmosphere during the dehydration treatment is preferably carried out in the gas phase in the absence of an inert gas.
  • a fluorine-based hydrocarbon such as HFC-134a is formed by contacting the composition containing the fluorine-based hydrocarbon compound with a specific zeolite in the gas phase.
  • the composition containing the compound can be efficiently dehydrated, and even if the dehydration treatment time elapses, the release of water from the zeolite is satisfactorily suppressed, and more preferably, HFC-134a.
  • HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as.
  • the method for dehydrating a composition containing a fluorine-based hydrocarbon compound is to use silica alumina (SiO 2 /) as described above for a composition containing a fluorine-based hydrocarbon compound.
  • SiO 2 / silica alumina
  • Al 2 O 3 Contact with zeolite with a ratio of 5 or more, contact with chabazite-type zeolite, and / or contact with chabazite-type zeolite with a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more.
  • Solvent for Contact Step in Liquid Phase The method of dehydrating a composition containing a fluorine-based hydrocarbon compound of the present disclosure does not require a solvent as long as the fluorine-based hydrocarbon compound is in a liquid phase.
  • the temperature at which the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite in the liquid phase is particularly limited. There is no.
  • the lower limit of the contact temperature in the liquid phase can be efficiently dehydrated from a composition containing a fluorine-based hydrocarbon compound such as HFC-134a, and the dehydration treatment time.
  • HFC-134 is efficiently removed from the composition containing a fluorinated hydrocarbon compound such as HFC-134a from the viewpoint that the release of water from the zeolite is satisfactorily suppressed even after the lapse of time. It is preferably -30 ° C, more preferably -20 ° C, from the viewpoint that it can be used.
  • the upper limit of the contact temperature in the liquid phase is about 100 ° C.
  • the contact temperature in the liquid phase is preferably a low temperature because of its strong adsorptive power.
  • the temperature at which the liquid phase is brought into contact is most preferably room temperature when the operation of the equipment and the handling of the equipment are taken into consideration.
  • the liquid phase condition may be such that the composition containing the fluorine-based hydrocarbon compound is liquefied well, and the reaction of the fluorine-based hydrocarbon compound at a saturated vapor pressure may be used.
  • the composition containing the fluorine-based hydrocarbon compound is converted into a specific zeolite in the liquid phase.
  • the pressure is not particularly limited as long as it can be brought into contact with each other.
  • the step of contacting the composition containing the fluorine-based hydrocarbon compound with a specific zeolite in the liquid phase is a step of contacting the composition containing a fluorine-based hydrocarbon compound with a fluorine-based hydrocarbon such as HFC-134a.
  • the composition containing the compound can be efficiently dehydrated, and even if the dehydration treatment time elapses, the release of water from the zeolite is satisfactorily suppressed, and more preferably, HFC-. From the viewpoint that HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as 134a, it can be preferably carried out in a closed reaction system and / or a pressure reaction system.
  • the reactor that brings the composition containing the fluorine-based hydrocarbon compound into contact with a specific zeolite in the liquid phase may be one that can withstand the reaction.
  • the shape and structure are not particularly limited.
  • the reaction system is sealed using a batch-type pressure-resistant reaction vessel as the closed reaction system in the liquid phase.
  • the reaction pressure is set to be equal to or higher than the saturated vapor pressure of the target fluorine-based hydrocarbon compound as a condition for liquefaction. It is preferable to do so.
  • reaction pressure shall be gauge pressure unless otherwise noted.
  • the closed reaction system and / or the pressurized reaction system in the liquid phase is not limited to the reactor, but for example, in a pressure vessel such as an autoclave. It is preferable that the composition containing the fluorine-based hydrocarbon compound or the like is charged, the temperature is raised to an appropriate reaction temperature with a heater, and the reaction is carried out under stirring for a certain period of time.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • As the reaction atmosphere it is preferable to carry out the reaction in an atmosphere of an inert gas such as nitrogen, helium or carbon dioxide.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • the reaction pressure of the pressurized reaction system in the liquid phase is the pressure inside the reaction vessel used for the pressurized reaction system.
  • the reaction pressure at which the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite is set to include a fluorine-based hydrocarbon compound such as HFC-134a.
  • the composition can be efficiently dehydrated, and even if the dehydration treatment time elapses, the release of water from the zeolite is satisfactorily suppressed. Therefore, the conditions are preferably liquefiable, more preferably. It is preferable to react under a pressure of 0.5 MPa or more, more preferably 0.7 MPa or more, and particularly preferably 1.0 MPa or more.
  • the upper limit of the reaction pressure at which the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite in the liquid phase is determined from the same point as described above. , It is about 1.0MPa.
  • the pressure in the reaction system can be increased by sending an inert gas such as nitrogen, helium, or carbon dioxide gas into the reaction system.
  • a continuous phase tank reactor in the step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with a specific zeolite in a liquid phase, a continuous phase tank reactor (The reaction may be carried out continuously and under pressure while extracting the liquid by connecting a back pressure valve to CSTR) or by gasifying and extracting the product.
  • the composition containing the fluorine-based hydrocarbon compound is brought into contact with a specific zeolite in a liquid phase, a closed reaction system and / or a pressure reaction system.
  • a fluorohydrocarbon compound such as HFC-134a
  • HFC-134a can be efficiently dehydrated, and the release of water from the zeolite is well suppressed even after the dehydration treatment time has elapsed.
  • HFC-134 can be efficiently removed from the composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • the water content and / and the content of HFC-134 should be less than 3 ppmwt
  • the zeolite-based such as HFC-134a
  • zeolite having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite
  • a fluorine-based hydrocarbon compound such as HFC-134a
  • the amount of water in the composition containing the above can be less than about 10 ppmwt (mass / mass), preferably less than about 3 ppmwt.
  • the minimum value of water content in the dehydrated composition is about 0.1 ppmwt.
  • a fluorine-based hydrocarbon compound such as HFC-134a
  • the content of HFC-134 in the composition containing the above can be less than about 10 ppmwt (mass / mass), preferably less than about 3 ppmwt.
  • the minimum content of HFC-134 in the dehydrated composition is about 0.1 ppmwt.
  • the water content in the composition containing a fluorine-based hydrocarbon compound such as HFC-134a is set to less than about 3 ppmwt, and HFC- The content of 134 can be less than about 3 ppmwt.
  • the water content of HFC-134a or the like is dehydrated (removed).
  • a fluorine-based hydrocarbon compound more preferably, a fluorine-based hydrocarbon compound such as HFC-134a from which HFC-134 has been removed can be suitably used as an etching gas for semiconductor production. It is also possible to suppress corrosion and premature deterioration of the device.
  • the above-mentioned fluorine-based hydrocarbon compound is HFC-134a, HFC-125, HFC-.
  • a composition containing at least one compound selected from the group consisting of 32 and HFO-1234yf and containing the fluorohydrocarbon compound is a zeolite having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more. Includes the step of contacting with.
  • the fluorine-based hydrocarbon compound is selected from the group consisting of HFC-134a, HFC-125, HFC-32, and HFO-1234yf at least.
  • the method for producing a composition containing a fluorine-based hydrocarbon compound of the present disclosure preferably further comprises a step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with the zeolite to remove HFC-134. ..
  • the step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with various zeolites the step of the dehydration method described above can be adopted.
  • the water content of the composition after contact with the zeolite is less than about 10 ppmwt, preferably less than about 3 ppmwt.
  • the minimum value of water content in the composition is about 0.1 ppmwt.
  • the content of HFC-134 in the composition after contact with the zeolite is less than about 10 ppmwt, preferably less than about 3 ppmwt. ..
  • the minimum content of HFC-134 in the composition is about 0.1 ppmwt.
  • the composition after contact with the zeolite is more preferably less than about 3 ppmwt in water content and 3 ppm wt in HFC-134. Less than a degree.
  • the production method of the present disclosure comprises 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2 for a zeolite having a silica-alumina (SiO 2 / Al 2 O 3) ratio of 5 or more. , 2-Pentafluoroethane (HFC-125), difluoromethane (HFC-32), and at least one fluorine-based selected from the group consisting of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
  • a method for producing a high-purity fluorine-based hydrocarbon compound which comprises a step of bringing the hydrocarbon compounds into contact with each other to remove impurities contained in the fluorine-based hydrocarbon compound.
  • the production method of the present disclosure comprises 1,1,1,2-tetrafluoroethane (HFC) in at least one zeolite selected from the group consisting of chabazite-type zeolite, hydrocarbon-type zeolite, beta-type zeolite, and Y-type zeolite.
  • HFC 1,1,1,2-tetrafluoroethane
  • a method for producing a high-purity fluorine-based hydrocarbon compound which comprises a step of contacting at least one fluorine-based hydrocarbon compound selected from the above group to remove impurities contained in the fluorine-based hydrocarbon compound.
  • the impurity is preferably at least one component selected from the group consisting of water and HFC-134.
  • the step of bringing the composition containing the fluorine-based hydrocarbon compound into contact with various zeolites the step of the dehydration method described above can be adopted.
  • the impurity to be removed is, for example, the water described above.
  • the water concentration contained in the fluorine-based hydrocarbon compound after removing the impurities is such that the water content is less than about 10 ppmwt, preferably less than about 3 ppmwt. In the present disclosure, the minimum value of water content is about 0.1 ppmwt.
  • the impurity to be removed is, for example, HFC-134 described above.
  • the concentration of HFC-134 contained in the fluorine-based hydrocarbon compound after removing impurities is such that the content of HFC-134 is less than about 10 ppmwt, preferably less than about 3 ppmwt.
  • the minimum value of the content of HFC-134 is about 0.1 ppmwt.
  • the water concentration and the HFC-134 concentration contained in the fluorine-based hydrocarbon compound after removing the impurities are more preferably the water content of less than about 3 ppmwt and the content of HFC-134 of less than about 3 ppmwt.
  • the step water is adsorbed on the zeolite from the composition containing the fluorine-based hydrocarbon compound, dehydrated, and the water is removed from the composition before it is brought into contact with the zeolite.
  • the step also more preferably removes HFC-134 from the composition comprising the fluorinated hydrocarbon compound.
  • the composition containing a fluorine-based hydrocarbon compound such as HFC-134a is subjected to silica alumina (SiO 2 / Al 2 O 3 ). Any one step of contacting with a zeolite having a ratio of 5 or more and a step of contacting with at least one type of zeolite selected from the group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite.
  • It may be, or it may consist of a process of contacting a zeolite having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more and a group consisting of chabazite-type zeolite, mordenite-type zeolite, beta-type zeolite, and Y-type zeolite. It may be a step in combination with a step of contacting with at least one selected zeolite.
  • the contact step in the contact step, the composition containing a fluorine-based hydrocarbon compound such as HFC-134a is subjected to silica alumina (SiO 2 / Al 2 O 3 ).
  • the step may be a step of contacting with at least one type of zeolite selected from the group consisting of chabazite-type zeolite, hydrocarbon-type zeolite, beta-type zeolite, and Y-type zeolite having a ratio of 5 or more.
  • the water content in the composition after contact with the zeolite, particularly in the composition containing a fluorinated hydrocarbon compound such as HFC-134a can be preferably less than 3 ppmwt. ..
  • the content of HFC-134 in the composition after contact with the zeolite, particularly in the composition containing a fluorinated hydrocarbon compound such as HFC-134a is preferably less than 3 ppmwt. Is possible.
  • the composition containing the fluorine-based hydrocarbon compound to be dehydrated, the zeolite to be used, and the composition containing the fluorine-based hydrocarbon compound are brought into contact with the zeolite.
  • the fluorohydrocarbon compounds are HFC-134a, HFC-125, HFC-32, and HFO-. It contains at least one compound selected from the group consisting of 1234yf and has a water content of less than 3 ppmwt.
  • the fluorine-based hydrocarbon compound is at least one compound selected from the group consisting of HFC-134a, HFC-125, HFC-32, and HFO-1234yf.
  • the content of HFC-134 is less than 3 ppmwt.
  • composition containing the fluorinated hydrocarbon compound of the present disclosure more preferably has a water content of less than 3 ppmwt and a HFC-134 content of less than 3 ppmwt.
  • the water content of the composition containing the fluorine-based hydrocarbon compound of the present disclosure is the water content measured using a Karl Fischer titer, and is the water content based on the Karl Fischer method. Specifically, it refers to a value measured by a titration method in which 1 g of a composition (liquefied gas) containing a fluorine-based hydrocarbon compound is charged into a Karl Fischer titer, and the water is collected in a solvent.
  • the water content (ppm) is a mass fraction obtained by dividing the water content (mass) contained in the composition containing the fluorine-based hydrocarbon compound by the mass of the composition containing the fluorine-based hydrocarbon compound, that is, ppm wt (mass / mass). ).
  • HFC-134 content of the composition containing the fluorinated hydrocarbon compound of the present disclosure can be measured based on mass spectrometry and structural analysis.
  • the content of HFC-134 in the composition containing the fluorine-based hydrocarbon compound of the present disclosure can be determined by, for example, gas chromatography using gas chromatography (for example, manufactured by Shimadzu Corporation, trade name "GC-2014”). It can be measured by performing mass spectrometry by mass spectrometry (GC / MS) and then performing structural analysis by NMR spectrum using NMR (for example, manufactured by JEOL Ltd., trade name "400YH").
  • the content (ppm) of the HFC-134 content when an apparatus is used for these is the content (volume) of HFC-134 contained in the composition containing a fluorine-based hydrocarbon compound.
  • the content (ppm) of HFC-134 can be rephrased as, for example, less than 3 ppm vol.
  • the composition containing the fluorine-based hydrocarbon compound of the present disclosure like HFC-134a, HFC-125, HFC-32, HFO-1234yf, etc., is etched to form the most advanced microstructures of semiconductors, liquid crystals, etc. In addition to gas, it is preferably used as a refrigerant or a heat transfer medium.
  • the composition containing the fluorine-based hydrocarbon compound of the present disclosure can be effectively used for various applications such as a deposit gas, a building block for organic synthesis, and a cleaning gas, in addition to an etching gas.
  • composition containing the fluorinated hydrocarbon compound of the present disclosure is preferably used as an etching gas, a refrigerant, a heat transfer medium, a deposit gas, a building block for organic synthesis, or a cleaning gas.
  • the deposit gas is a gas that deposits an etching resistant polymer layer.
  • the building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton.
  • a composition containing a fluorine-based hydrocarbon compound of the present disclosure is reacted with a fluorine-containing organosilicon compound such as CF 3 Si (CH 3 ) 3, a fluoroalkyl group such as CF 3 is introduced to be a cleaning agent. It can be converted into a substance that can be a fluorine-containing pharmaceutical intermediate.
  • Measuring device Karl Fischer titer Measuring condition: Coulometric titration method
  • the water content of the composition containing the fluorine-based hydrocarbon compound was the water content measured using a Karl Fischer titer, and was taken as the water content based on the Karl Fischer titration method. Specifically, 1 g of a composition containing a fluorine-based hydrocarbon compound was put into a Karl Fischer titer, the water was collected in a solvent, and the value measured by the titration method was used.
  • the water content (ppm) is a mass fraction obtained by dividing the water content (mass) contained in the composition containing the fluorine-based hydrocarbon compound by the mass of the composition containing the fluorine-based hydrocarbon compound, that is, ppm wt (mass / mass). ).
  • HFC-134a A composition containing HFC-134a having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more, chabazite-type zeolite (Example 1), mordenite-type zeolite (Example 2), and beta-type zeolite (implementation). It was brought into contact with Example 3) or Y-type zeolite (Example 4).
  • each zeolite (dehydrating agent) was filled in a stainless steel cylinder with a capacity of 75 mL shown in Table 1.
  • the cylinder was filled with a composition containing a specified amount (10 g) of HFC-134a. Stir appropriately, and after 24 hours (24hr), 48 hours (48hr), 72 hours (72hr), and 96 hours (96hr) from the start of dehydration (0hr), adjust the water content of the liquid phase with Karl Fischer. It was measured.
  • the water content was less than 3 ppm wt.
  • silica-alumina (SiO 2 / Al 2 O 3 ) ratio is 5 or more and chabazite-type zeolite is used as a dehydrating agent, water does not desorb from the zeolite over time and contains HFC-134a. No increase in the amount of water in the composition was observed.
  • each zeolite (dehydrating agent) was filled in a stainless steel cylinder with a capacity of 75 mL shown in Table 2.
  • the cylinder was filled with a composition containing a specified amount (10 g) of HFC-134a. Stir appropriately, and after 24 hours (24hr), 48 hours (48hr), 72 hours (72hr), and 96 hours (96hr) from the start of dehydration (0hr), adjust the water content of the liquid phase with Karl Fischer. It was measured.
  • the water content exceeded 3 ppmwt.
  • a zeolite having a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of about 2 is used as a dehydrating agent, the adsorbed water is desorbed from the zeolite over time, and the water content in the composition containing HFC-134a is removed. There was an increase in volume.
  • HFC-134a This HFC-134a is a sample containing 5 ppmwt (mass / mass) of water.
  • the zeolite to be used (molecular sieves (MS)) is activated by heating it in vacuum (10 -1 mmHg to 10 -3 mmHg) at a temperature of 180 ° C. to remove water from the zeolite before its use.
  • Chemical treatment pretreatment
  • the composition (gas) containing HFC-134a has a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more, chabazite-type zeolite (Example 8), and silica-alumina (SiO 2 / Al 2 O). 3 ) Contact was made with type A zeolite (Comparative Examples 9 and 10) having a ratio of less than 5 and not chabazite type.
  • the zeolite of Example 8 was able to efficiently remove water from the composition (gas) containing HFC-134a in a short time.
  • water can be removed more efficiently and in a short time from the composition (gas) containing HFC-134a. It was.
  • each of the zeolites of Comparative Examples 9 and 10 could not efficiently remove water from the composition (gas) containing HFC-134a.
  • HFC-134a This HFC-134a is a sample containing 5 ppmwt (mass / mass) of water and HFC-134 at 500 ppmvol (volume / volume).
  • the zeolite to be used (molecular sieves (MS)) is activated by heating it in vacuum (10 -1 mmHg to 10 -3 mmHg) at a temperature of 180 ° C. to remove water from the zeolite before its use.
  • Chemical treatment pretreatment
  • the composition (gas) containing HFC-134a has a silica-alumina (SiO 2 / Al 2 O 3 ) ratio of 5 or more, chabazite-type zeolite (Example 11), and silica-alumina (SiO 2 / Al 2 O). 3 ) Contact was made with type A zeolite (Comparative Examples 12 and 13) having a ratio of less than 5 and not chabazite type.
  • the zeolite of Example 11 was able to remove HFC-134 efficiently and in a short time. At this time, no water was detected.
  • HFC-134 can be removed from the composition (gas) containing HFC-134a more efficiently and in a short time by activating (pre-treating) the zeolite to be used before its use. Was done.
  • each zeolite of Comparative Examples 12 and 13 broke in 6 minutes, HFC-134 was detected, and the detected amount continued to increase.
  • Each of the zeolites of Comparative Examples 12 and 13 could not efficiently remove HFC-134 from the composition (gas) containing HFC-134a.
  • the chabazite type (A-like type) zeolite used in the examples has a crystalline system of a mixture of the natural minerals chabasite and erionite, that is, a chabasite type synthetic zeolite (chabasite). It is a synthetic zeolite of a mixture of (type zeolite) and erionite type synthetic zeolite (erionite type zeolite).
  • the method for dehydrating a composition containing a fluorine-based hydrocarbon compound and the method for producing a composition containing a fluorine-based hydrocarbon compound according to the present disclosure are used when dehydrating a composition containing a fluorine-based hydrocarbon compound such as HFC-134a.
  • a fluorine-based hydrocarbon compound such as HFC-134a.
  • the amount of water in the composition containing a fluorine-based hydrocarbon compound such as HFC-134a can be less than 3 ppmwt.
  • a composition containing a fluorinated hydrocarbon compound (HFC-134a, etc.) having a water content of less than 3 ppmwt is advantageous for etching fine contact holes and forming fine circuit patterns in semiconductor integrated circuit devices. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本開示は、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する方法を提供することを目的とする。 フッ素系炭化水素化合物を含む組成物をゼオライトに接触させる工程を含む、脱水方法。

Description

フッ素系炭化水素化合物の脱水方法
 本開示は、フッ素系炭化水素化合物の脱水方法に関する。
 ジフルオロメタン(HFC-32)等のフッ素系炭化水素化合物は、半導体製造プロセスにおけるエッチングガスとして、広く用いられている。
 従来、HFC-32等のフッ素系炭化水素化合物は、A型ゼオライトを用いて、水分を吸着させて、脱水されている(例えば、特許文献1)。
特許第5446710号
 本開示は、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する方法を提供することを目的とする。
 本開示は、以下の構成を包含する。
 項1.
 フッ素系炭化水素化合物を含む組成物の脱水方法であって、
 前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
 前記フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む、脱水方法。
 項2.
 フッ素系炭化水素化合物を含む組成物の脱水方法であって、
 前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
 前記フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む、脱水方法。
 項3.
 前記工程は、脱水後の組成物において、水分量を3ppmwt未満とする、前記項1又は2に記載の脱水方法。
 項4.
 更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、1,1,2,2-テトラフルオロエタン(HFC-134)を除去する工程を含む、前記項1~3のいずれかに記載の脱水方法。
 前記工程は、好ましくは、脱水後の組成物において、HFC-134の含有量を3ppmwt)未満とする、脱水方法である。
 また、HFC-134の含有量(ppm)は、例えば、ガスクロマトグラフィーを用いて、ガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、次いで、NMRを用いて、NMRスペクトルによる構造解析を行うことにより測定する場合、フッ素系炭化水素化合物を含む組成物に含まれるHFC-134の含有量(体積)を、フッ素系炭化水素化合物を含む組成物の体積で除した体積分率、即ちppmvol(体積/体積)となる。
 HFC-134の含有量(ppm)を、例えば、3ppmvol未満と言い換えることができる。
 項5.
 フッ素系炭化水素化合物を含む組成物の製造方法であって、
 前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
 前記フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む、製造方法。
 項6.
 フッ素系炭化水素化合物を含む組成物の製造方法であって、
 前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
 前記フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む、製造方法。
 項7.
 前記ゼオライトに接触させた後の組成物は、水分量が3ppmwt未満である、前記項5又は6に記載の製造方法。
 項8.
 更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、1,1,2,2-テトラフルオロエタン(HFC-134)を除去する工程を含む、前記項5~7のいずれかに記載の製造方法。
 前記ゼオライトに接触させた後の組成物は、好ましくは、HFC-134の含有量が3ppmwt未満である、製造方法である。
 項9.
 シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を含む組成物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法。
 項10.
 チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を含む組成物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法。
 項11.
 前記不純物は、水、及び、1,1,2,2-テトラフルオロエタン(HFC-134)からなる群から選択される少なくとも一種の成分である、前記項9又は10に記載の脱水方法。
 項12.
 前記不純物除去後のフッ素系炭化水素化合物に含まれる水分濃度は、水分量が3ppmwt未満である、前記項9~11のいずれかに記載の製造方法。
 前記不純物除去後のフッ素系炭化水素化合物に含まれるHFC-134濃度は、好ましくは、HFC-134の含有量が3ppmwt未満である、製造方法である。
 項13.
 フッ素系炭化水素化合物を含む組成物であって、
 前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物を含み、
 水分量が3ppmwt未満である、又は/及び、HFC-134の含有量が3ppmwt未満である組成物。
 項14.
 エッチングガス、冷媒、熱移動媒体、デポジットガス、有機合成用ビルディングブロック、又は、クリーニングガスとして用いられる、前記項13に記載の組成物。
 本開示によれば、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する方法を提供することができる。
 半導体製造プロセスにおけるエッチングガスは水分の除去が重要である。
 本発明者らは、鋭意研究を行った結果、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する際に、HFC-134a等のフッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比(モル比)が5以上のゼオライトに接触させることや、チャバザイト型ゼオライトに接触させることによって、ゼオライトに吸着された水分は、脱水処理の時間が経過しても、ゼオライトからの水分の放出が抑制されており、HFC-134a等のフッ素系炭化水素化合物を含む組成物から良好に水分が除去されること(脱水されること)を見出した。
 本開示は、かかる知見に基づき、更に研究を重ねた結果完成されたものである。
 本開示は、以下の実施形態を含む。
 (1)フッ素系炭化水素化合物を含む組成物の脱水方法
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、好ましくは、更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、1,1,2,2-テトラフルオロエタン(HFC-134)を除去する工程を含む。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物を含む。
 本開示では、前記工程は、脱水後の組成物において、水分量の最大値は10ppmwt(質量/質量)程度であり、水分量を、好ましくは3ppmwt未満とする。本開示では、脱水後の組成物において、水分量の最小値は0.1ppmwt程度である。
 本開示では、前記工程は、脱水後の組成物において、HFC-134の含有量の最大値は10ppmwt(質量/質量)程度であり、HFC-134の含有量を、好ましくは3ppmwt未満とする。本開示では、脱水後の組成物において、HFC-134の含有量の最小値は0.1ppmwt程度である。
 本開示では、前記工程は、脱水後の組成物において、より好ましくは、水分量は3ppmwt未満であり、HFC-134の含有量は3ppmwt未満である。
 本開示では、また、HFC-134の含有量(ppm)は、例えば、ガスクロマトグラフィーを用いて、ガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、次いで、NMRを用いて、NMRスペクトルによる構造解析を行うことにより測定する場合、フッ素系炭化水素化合物を含む組成物に含まれるHFC-134の含有量(体積)を、フッ素系炭化水素化合物を含む組成物の体積で除した体積分率、即ちppmvol(体積/体積)となる。
 HFC-134の含有量(ppm)を、例えば、3ppmvol未満と言い換えることができる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、HFC-134a等のフッ素系炭化水素化合物を脱水する際に、特定のゼオライトを用いることで、ゼオライトに吸着された水分は、時間が経過しても、ゼオライトらの放出が抑制されており、HFC-134a等のフッ素系炭化水素化合物を含む組成物から良好に水分が除去されるという利点、更に、好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から良好にHFC-134が除去されるという利点がある。
 (1-1)フッ素系炭化水素化合物を含む組成物
 HFC-134a等のフッ素系炭化水素化合物は、半導体の製造において酸化ケイ素及び関連材料の為のエッチングガス等として使用される。半導体産業で使用されるHFC-134a等のフッ素系炭化水素化合物は、極めて高純度であることが要求される。半導体製造プロセスにおけるエッチングガスは、特に水分の除去が重要である。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記フッ素系炭化水素化合物は、HFC-134a、HFC-125、HFC-32、及び、HFO-1234yfからなる群から選択される少なくとも一種の化合物を含む。
 HFC-134a等のフッ素系炭化水素化合物を含む組成物には、HFC-134a等のフッ素系炭化水素化合物の製造時に混入される不純物が含まれる。その不純物としては、中間体、異性体、副生成物(例えば、フッ化水素、ハイドロフルオロカーボン類、ハイドロクロロフルオロカーボン類、クロロフルオロカーボン類、フルオロアルケン類等)等がある。
 また、HFC-134a等のフッ素系炭化水素化合物を含む組成物には、HFC-134a等のフッ素系炭化水素化合物の使用時に混入される不純物が含まれる。HFC-134a等のフッ素系炭化水素化合物を、半導体製造用エッチングガスとして使用する場合、不純物として、水、HF等の酸分、フルオロカーボン、非凝縮ガス(N2、CO2、CO、CH4、O2)等がある。冷凍機冷媒用として使用する場合、不純物として、水がある。
 HFC-134a等のフッ素系炭化水素化合物を含む組成物には、水以外の不純物として、1,1,2,2-テトラフルオロエタン(HFC-134)がある。
 HFC-134a等のフッ素系炭化水素化合物を含む組成物に、不純物として、水、フッ化水素等が存在すると、特に含フッ素化合物が二重結合等の反応性部位を持っている等の理由で化学的に不安定な場合、含フッ素化合物の変質(分解や重合、異性化等)を引き起こし、更なる純度の低下を招くという悪循環に陥るおそれがある。
 本開示では、ゼオライトにより吸着除去される不純物としては、特に水を含むものや、フッ化水素を含むもの、炭化水素を含むもの、ハロゲン化炭素化合物を含むもの、ハロゲン化炭化水素化合物(HFC-134等)を含むもの、当該ゼオライトに接触させる含フッ素化合物の異性体、例えば炭素-炭素二重結合の位置異性体、環状異性体等を含むものがある。
 前記不純物として、具体的には、ヘプタフルオロブテン、クロロヘプタフルオロブテン、ヨウ化メチル、クロロトリフルオロエチレン等が挙げられる。
 半導体産業では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、特に水分の除去が重要である。
 (1-2)ゼオライト
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、HFC-134a等のフッ素系炭化水素化合物を含む組成物を、特定のゼオライトに接触させる工程を含む。
 ゼオライト(Zeolite)は、粘土鉱物の一種であり、規則的なチャンネル(管状細孔)とキャビティ(空洞)を有する剛直な陰イオン性の骨格からなるアルカリ又はアルカリ土類金属を含む含水アルミノケイ酸塩である。
 ゼオライトは、一般に、
  (MI,MII 1/2)m(AlmSinO2(m+n))・xH2O, (n≧m) 
  (MI:Li+、Na+、K+等、MII:Ca2+、Mg2+、Ba2+等)
 の組成で表され、陽イオンが、アルミノケイ酸塩の骨格の負電荷を補償する。
 ゼオライト中の陽イオンの種類に特に制限はなく、通常、H+、Li+、Na+、K+、Ca2+、Mg2+、Ba2+等が用いられる。
 構造の基本的な単位は、SiO4或はAlO4の四面体構造(合わせてTO4四面体)であり、これらが3次元方向に無限に連なり、結晶を形成する。ゼオライトでは、その結晶は、多孔質で、細孔の直径は、通常、0.2nm~1.0nm(2Å~10Å)程度である。ゼオライトでは、ゼオライトの細孔径よりも大きな分子は、進入することはできないという分子篩作用(molecular sieve)を有する。ゼオライトは、その骨格構造に由来する細孔による分子篩効果に加え、固体酸性、イオン交換能、触媒能、吸着能等の特性を有している。
 本開示でHFC-134a等のフッ素系炭化水素化合物を含む組成物を、特定のゼオライトに接触させることとは、HFC-134a等のフッ素系炭化水素化合物を、ゼオライトを充填したカラム等に通過させることや、ゼオライトを充填した容器に充填することを意味する。
 本開示では、使用するゼオライトの使用形態は、特に制限はない。ゼオライトを充填した装置に、HFC-134a等のフッ素系炭化水素化合物を含む組成物を流通させても良く、また、ゼオライトを充填した容器に、HFC-134a等のフッ素系炭化水素化合物を含む組成物を充填し、所定時間経過後に、脱水処理されたHFC-134a等のフッ素系炭化水素化合物を含む組成物を抜き出しても良い。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、下記のシリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程や、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む。
 シリカアルミナ比(SiO 2 /Al 2 O 3 比)が5以上のゼオライト
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、シリカアルミナ比(SiO2/Al2O3比)(モル比)が5以上のゼオライトを用いる。本開示では、用いるゼオライトのSiO2/Al2O3比は、好ましくは5.5以上であり、より好ましくは6以上である。
 本開示では、用いるゼオライトのSiO2/Al2O3比は、好ましくは50以下であり、より好ましくは45以下であり、更に好ましくは40以下である。
 本開示では、SiO2/Al2O3比が、5より小さいと、ゼオライトの極性が高くなり、また、50より大きいと、ゼオライトの極性が低くなるので、SiO2/Al2O3比が5~50のゼオライトを用いることが好ましい。
 本開示では、SiO2/Al2O3比が、5より小さいと、ゼオライトの極性が高くなり、また、SiO2/Al2O3比が、50より大きいと、ゼオライトの極性が低くなるので、SiO2/Al2O3比は5~50のゼオライトを用いることが好ましい。
 (i)チャバザイト型ゼオライト
 チャバザイト型(CHA型)構造は、3次元の細孔構造を有し、細孔径は約0.38nm(3.8Å)あり、内部に大きなケージを有している。
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、チャバザイト(Chabazite)型(CHA型)ゼオライトを用いる。本開示では、市販されているものの内、特定のチャバザイト型ゼオライトを用いることができる。
 チャバサイト属には、グリメナイト型、エリオナイト型、ルビーナイト型、チャバサイト型等が有る。
 本開示では、チャバザイト型ゼオライトとはチャバサイト属に含まれることを意味し、好ましくは、チャバサイト型、グリメナイト型、エリオナイト型、及びルビーナイト型からなる群から選択される少なくとも1つの型を有するゼオライトを好ましく用いる。本開示では、チャバザイト型ゼオライトとして、より好ましくは、チャバサイト型ゼオライト、又は、チャバサイト型と、別のチャバサイト属として、グリメナイト型、エリオナイト型、ルビーナイト型等とが含まれる混合ゼオライト(合成ゼオライト)を用い、更に好ましくは、チャバサイト型と、別のチャバサイト属として、エリオナイト型とが含まれる混合ゼオライト(合成ゼオライト)を用いる。
 本開示では、具体的には、チャバザイト型ゼオライトとして、結晶系は、天然鉱物のチャバサイトとエリオナイトとの混合物であり、即ち、チャバサイト型の合成ゼオライト(チャバサイト型ゼオライト)とエリオナイト型の合成ゼオライト(エリオナイト型ゼオライト)との混合物の合成ゼオライトを好ましく用いる。
 天然鉱物のチャバサイトのシリカ/アルミナ比(SiO2/Al2O3)は、一般に2程度であるが、合成チャバザイト型ゼオライトのシリカ/アルミナ比(SiO2/Al2O3)は、6.1~6.7程度である。
 (ii)モルデナイト型ゼオライト
 モルデナイト(mordenite)は、モルデン沸石とも称され、化学式は、(Ca,K2,Na2)〔AlSi5O122・7H2Oであり、ケイ酸塩鉱物である。モルデナイト型のモルデナイト構造は、一般に、SiO4とAlO4が酸素を共有して結合した酸素12員環と8員環からなる細孔構造を有するゼオライトであり、その細孔径は酸素12員環が0.67nm×0.70nm程度であり、酸素8員環が0.29nm×0.57nm程度である。
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、モルデナイト型ゼオライトを用いる。本開示では、市販されているものの内、特定のモルデナイト型ゼオライトを用いることができる。
 (iii)ベータ型ゼオライト
 ベータ型ゼオライトは、Si及びAlを含む結晶性アルミノケイ酸塩の1種であって、酸素12員環の細孔を含む3次元の細孔構造を有している。
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、ベータ型ゼオライトを用いる。本開示では、市販されているものの内、特定のベータ型ゼオライトを用いることができる。
 (iv)Y型ゼオライト
 Y型ゼオライトは、直径0.74nm程度の細孔入口を有し、市販のゼオライトの中では最も大きな細孔をもつゼオライトである。
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、Y型ゼオライトを用いる。本開示では、市販されているものの内、特定のY型ゼオライトを用いることができる。
 ゼオライトの細孔径
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、好ましくは3Å~15Åの平均細孔径を有するゼオライトを用いる。本開示では、用いるゼオライトの平均細孔径は、より好ましくは4Å~12Åであり、特に好ましくは5Å~10Åの平均細孔径を有するゼオライトである。
 本開示では、ゼオライトは、好ましくは多孔質である。
 本開示では、用いるゼオライトの平均細孔径が3Å~15Åであることで、組成物に含まれるフッ素系炭化水素化合物が、好ましくは炭素数2化合物(C2化合物)~炭素数8化合物(C8化合物)である時に、より好ましくはC2化合物~C4化合物である時に、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができる利点、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる利点がある。
 ゼオライトのカチオン種
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、ゼオライトのカチオン種(陽イオン種)は、好ましくは、H+、Li+、Na+、K+、Ca2+、Mg2+、Ba2+等であり、更に好ましくは、H+、Na+等であるカチオン種のゼオライトを好ましく用いることができる。
 本開示では、ゼオライト中の陽イオンは、水との静電相互作用をすることにより脱水処理を効率良く行うことができる。
 ゼオライトの比表面積
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、ゼオライトのBET法により測定した比表面積(以下、BET比表面積とも称する。)は、好ましくは50m2/g~3,000m2/gであり、より好ましくは100m2/g~1,000m2/gであり、更に好ましくは200m2/g~800m2/gであり、特に好ましくは250m2/g~700m2/gである。
 本開示では、ゼオライトの触媒のBET比表面積がこのような範囲にある場合、ゼオライトの粒子の密度が小さ過ぎることがない為、脱水処理を効率良く行うことができる利点、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる利点がある。
 ゼオライトの性状
 本開示で使用するゼオライトは、好ましくは多孔質である。
 本開示では、使用するゼオライトは、粉末状、顆粒状、又はペレット状で用いても良く、成形体として用いても良い。使用するゼオライトは、工業的には成形体として用いることが好ましい。成形体の形状に特に制限はないが、例えば直径0.5mm~5mm程度、長さ1mm~15mm程度の円柱状、或は直径0.5mm~10mm程度の球状のものを用いることが好ましい。
 本開示では、ゼオライトの成形体の製造方法に特に制限はなく、例えばバインダーとしてカオリン系粘土を用いる従来公知の方法を採用することができる。
 本開示で使用するゼオライトは、商業的に入手可能である。
 好ましいゼオライト
 本開示では、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、上記説明の通り、好ましくは、シリカアルミナ比(SiO2/Al2O3比)(モル比)が5以上であり、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトを用いる。
 (1-3)フッ素系炭化水素化合物を含む組成物をゼオライトに接触させる工程
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程、及び/又は、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む。前記脱水方法は、好ましくは、更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、HFC-134を除去する工程を含む。
 本開示では、前記組成物を前記ゼオライトに接触させることとは、前記組成物を、前記ゼオライトを充填したカラム等に通過させること、若しくは、前記組成物を、前記ゼオライトを充填した容器に充填することを意味する。
 本開示では、前記ゼオライトを水分の除去材(脱水剤)として用い、これにフッ素系炭化水素化合物を含む組成物を接触させる(通過させる)ことにより、この組成物に含まれる水分を除去する。前記脱水方法は、好ましくは、更に、前記組成物に含まれるHFC-134を除去する。
 本開示では、水分を効果的に除去する(脱水する)には、更に、好ましくは、HFC-134を効果的に除去するには、フッ素系炭化水素化合物を含む組成物と前記ゼオライトとを、質量比(フッ素系炭化水素化合物を含む組成物:ゼオライト)で、好ましくは、100:1~1:10程度の割合で接触させることであり、より好ましくは、50:1~1:5程度の割合で接触させることであり、更に好ましくは、10:1~1:3程度の割合で接触させることである。本開示では、前記ゼオライトの使用量は、例えば、ゼオライトの10g充填物(ステンレス製シリンダー等)に、フッ素系炭化水素化合物を含む組成物を、10g~100g程度の範囲で接触させることができる。
 本開示では、前記ゼオライトを、その使用前に、活性化処理しても良い。活性化処理の条件として、好ましくは、真空中(10-1mmHg~10-3mmHg)、或は、窒素等の不活性ガス流通下、ゼオライトの結晶構造を維持できる温度範囲として、150℃~300℃の範囲内の温度で一晩加熱する等の乾燥処理が挙げられる。
 本開示では、前記活性化処理を施していないゼオライトも、好適に使用できる。
 本開示では、使用するゼオライトの使用形態は特に制限はない。前記ゼオライトを充填した装置に、フッ素系炭化水素化合物を含む組成物を流通させても良く、また、前記ゼオライトを充填した容器に、フッ素系炭化水素化合物を含む組成物を充填し、所定時間経過後に前記組成物を抜き出しても良い。
 本開示では、フッ素系炭化水素化合物を含む組成物と前記ゼオライトとを接触させる温度は特に制限はない。フッ素系炭化水素化合物を含む組成物に含まれるHFC-134a等のフッ素系炭化水素化合物の沸点等を勘案して決めれば良い。一般には低温で接触させることが、接触時、フッ素系炭化水素化合物の異性化等の副反応が抑制される点で好ましい。好ましくは-50℃~100℃程度の範囲である。
 本開示では、フッ素系炭化水素化合物を含む組成物と前記ゼオライトとを接触させる時間は特に制限はない。
 好ましい接触工程
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記接触工程は、前記HFC-134a等のフッ素系炭化水素化合物を含む組成物を、(i)シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程、及び(ii)チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程のうち、いずれか1つの工程であっても良いし、(iii)シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程と、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程と、を組み合わせた方法であっても良い。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記接触工程は、前記HFC-134a等のフッ素系炭化水素化合物を含む組成物を、(iv)シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程であっても良い。
 (1-4)気相での接触工程
 本開示では、フッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、上記の通り、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程、及び/又は、シリカアルミナ(SiO2/Al2O3)比が5以上の、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程の際に、当該工程を気相で行うことが好ましい。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記接触工程を気相で行い、特に、固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 気相での接触工程の温度
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる温度は特に制限はない。
 本開示における前記接触工程は、気相での接触させる温度の下限値は、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、好ましくは-30℃であり、より好ましくは-20℃である。
 本開示における前記接触工程は、気相での接触させる温度の上限値は、100℃程度である。
 本開示における前記接触工程は、気相での接触させる温度は、吸着力が強いという理由から、低温が好ましい。本開示における前記接触工程は、気相での接触させる温度は、設備の運転、設備の取り扱いを考慮する場合、常温が最も好ましい。
 気相での接触工程の時間
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる時間は特に制限はない。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で行う際に、前記接触させる反応温度と反応時間(接触時間)とを適宜調整することで、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される利点、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる利点がある。
 気相での接触工程の圧力
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる圧力は特に制限はない。
 本開示における塩素化反応する工程では、その接触させる圧力は、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、好ましくは-0.05MPa~2MPaであり、より好ましくは-0.01MPa~1MPaであり、更に好ましくは常圧~0.5MPaである。
 本開示において、圧力については表記が無い場合はゲージ圧とする。
 気相での接触工程の容器
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる為の反応器としては、上記温度及び圧力に耐え得るものであれば、形状及び構造は特に限定されない。前記反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
 気相での接触工程の例示
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記反応器において、特定のゼオライトに、前記フッ素系炭化水素化合物を含む組成物を連続的に接触させて、当該反応器から、脱水処理後のフッ素系炭化水素化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。脱水処理後のフッ素系炭化水素化合物が反応器に留まらないように、流通式で実施することが好ましい。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる工程を、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できると共に、経済的に有利である。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、脱水処理を行う際の雰囲気については、ゼオライトの劣化を抑制する点から、不活性ガス存在下で行っても良い。当該不活性ガスは、窒素、ヘリウム、アルゴン及び二酸化炭素からなる群より選択される少なくとも1種であることが好ましい。これらの不活性ガスの中でも、コストを抑える点から、窒素がより好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50mol%とすることが好ましい。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、脱水処理を行う際の雰囲気については、好ましくは、不活性ガスの不存在下で行う。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させた後は、必要に応じて常法に従って、精製処理を行い、脱水されたフッ素系炭化水素化合物を得ることができる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、気相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させることで、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される利点、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる利点がある。
 (1-5)液相での接触工程
 本開示では、フッ素系炭化水素化合物を含む組成物の脱水方法は、フッ素系炭化水素化合物を含む組成物を、上記の通り、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程、チャバザイト型ゼオライトに接触させる工程、及び/又は、シリカアルミナ(SiO2/Al2O3)比が5以上のチャバザイト型ゼオライトに接触させる工程の際に、当該工程を液相で行うことが好ましい。
 液相での接触工程の溶媒
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で行う時は、フッ素系炭化水素化合物が液状ではあれば、特に溶媒を必要としない。
 液相での接触工程の温度
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる温度は特に制限はない。
 本開示における前記接触工程は、液相での接触させる温度の下限値は、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、好ましくは-30℃であり、より好ましくは-20℃である。
 本開示における前記接触工程は、液相での接触させる温度の上限値は、100℃程度である。
 本開示における前記接触工程は、液相での接触させる温度は、吸着力が強いという理由から、低温が好ましい。本開示における前記接触工程は、液相での接触させる温度は、設備の運転、設備の取り扱いを考慮する場合、常温が最も好ましい。
 液相での接触工程の圧力
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させることができれば、反応器に制限は無い。前記液相の条件は、前記フッ素系炭化水素化合物を含む組成物が良好に液化すればよく、フッ素系炭化水素化合物の飽和蒸気圧での反応でも良い。
 液相での密閉反応系及び/又は加圧反応系
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させることができれば、反応器において、圧力は特に制限はない。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる工程は、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる点から、好ましくは、密閉反応系及び/又は加圧反応系で行うことができる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる反応器としては、反応に耐えうるものであれば、形状及び構造は特に限定されない。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相での密閉反応系としては、バッチ式の耐圧反応容器を用いて反応系を密閉させて反応を行うことが好ましい。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相での加圧反応系としては、液化できる条件として、反応圧力を対象となるフッ素系炭化水素化合物の飽和蒸気圧以上とすることが好ましい。
 本開示では、断りが無ければ、反応圧力はゲージ圧とする。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相での密閉反応系及び/又は加圧反応系に、反応器に制限は無いが、例えば、オートクレーブ等の圧力容器に、前記フッ素系炭化水素化合物を含む組成物等を仕込み、ヒーターにて適切な反応温度まで昇温させ、撹拌下に一定時間反応することが好ましい。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。反応雰囲気としては、窒素、ヘリウム、炭酸ガス等の不活性ガスの雰囲気中で反応を行うことが好ましい。例えば、バッチ式の耐圧反応容器(オートクレーブ等)を用いて反応系を密閉させて、反応を行うことが好ましい。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相での加圧反応系の反応圧力は、加圧反応系に用いる反応容器内部の圧力である。本開示のフッ素系炭化水素化合物を含む組成物の脱水方法で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる反応圧力を、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される点から、好ましくは液化できる条件であり、より好ましくは0.5MPa以上、更に好ましくは0.7MPa以上、特に好ましくは1.0MPa以上の圧力下で反応させることが好ましい。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法で、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる反応圧力の上限値は、上記同様の点から、通1.0MPa程度である。加圧には、反応系に、窒素、ヘリウム、炭酸ガス等の不活性ガスを送り込むことで、反応系内の圧力を上昇させることができる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法で、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させる工程では、また、連続相槽型反応器(CSTR)に背圧弁を接続する等の方法により、液を抜き出しながら、若しくは生成物をガス化させて抜き出しながら、連続且つ加圧での反応形態で行っても良い。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させた後は、必要に応じて常法に従って、精製処理を行い、脱水されたフッ素系炭化水素化合物を得ることができる。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法では、液相で、密閉反応系及び/又は加圧反応系で、前記フッ素系炭化水素化合物を含む組成物を特定のゼオライトに接触させることで、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良く脱水処理を行うことができ、脱水処理の時間が経過しても、ゼオライトからの水分の放出が良好に抑制される利点、また、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物から、効率良くHFC-134を除去することができる利点がある。
 (1-6)水分量、又は/及び、HFC-134の含有量を3ppmwt未満とすること
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法によれば、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する際に、前記シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトや、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトを用いることで、時間が経過しても、ゼオライトに吸着された水分の放出が抑制されている。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法によれば、脱水後の組成物において、つまり、前記ゼオライトに接触させた後の組成物において、HFC-134a等のフッ素系炭化水素化合物を含む組成物中の水分量を、10ppmwt(質量/質量)程度未満とすることが可能であり、好ましくは3ppmwt程度未満とすることが可能である。本開示では、脱水後の組成物において、水分量の最小値は0.1ppmwt程度である。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法によれば、脱水後の組成物において、つまり、前記ゼオライトに接触させた後の組成物において、HFC-134a等のフッ素系炭化水素化合物を含む組成物中のHFC-134の含有量を、10ppmwt(質量/質量)程度未満とすることが可能であり、好ましくは3ppmwt程度未満とすることが可能である。本開示では、脱水後の組成物において、HFC-134の含有量の最小値は0.1ppmwt程度である。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法によれば、より好ましくは、HFC-134a等のフッ素系炭化水素化合物を含む組成物中に、水分量を3ppmwt程度未満とし、HFC-134の含有量を3ppmwt程度未満とすることが可能である。
 本開示によれば、HFC-134a等のフッ素系炭化水素化合物を含む組成物中の水分量を効果的に脱水(除去)することにより、この水分が脱水(除去)されたHFC-134a等のフッ素系炭化水素化合物を、より好ましくは、HFC-134が除去されたHFC-134a等のフッ素系炭化水素化合物を、半導体製造用のエッチングガスとして好適に用いることができる。また、装置の腐食や早期劣化を抑えることも可能である。
 (2)フッ素系炭化水素化合物を含む組成物の製造方法
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法は、前記フッ素系炭化水素化合物は、HFC-134a、HFC-125、HFC-32、及び、HFO-1234yfからなる群から選択される少なくとも一種の化合物を含み、前記フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法は、前記フッ素系炭化水素化合物は、HFC-134a、HFC-125、HFC-32、及び、HFO-1234yfからなる群から選択される少なくとも一種の化合物を含み、前記フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法は、好ましくは、更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、HFC-134を除去する工程を含む。
 前記フッ素系炭化水素化合物を含む組成物を、各種ゼオライトに接触させる工程は、前記説明の脱水方法での工程を採用できる。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法では、前記ゼオライトに接触させた後の組成物では、水分量は、10ppmwt程度未満であり、好ましくは3ppmwt程度未満である。本開示では、前記組成物において、水分量の最小値は0.1ppmwt程度である。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法では、前記ゼオライトに接触させた後の組成物では、HFC-134の含有量は、10ppmwt程度未満であり、好ましくは3ppmwt程度未満である。本開示では、前記組成物において、HFC-134の含有量の最小値は0.1ppmwt程度である。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法では、前記ゼオライトに接触させた後の組成物では、より好ましくは、水分量は3ppmwt程度未満であり、HFC-134の含有量は3ppmwt程度未満である。
 本開示の製造方法は、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法である。
 本開示の製造方法は、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法である。
 前記不純物は、好ましくは、水、及び、HFC-134からなる群から選択される少なくとも一種の成分である。
 前記フッ素系炭化水素化合物を含む組成物を、各種ゼオライトに接触させる工程は、前記説明の脱水方法での工程を採用できる。
 本開示の製造方法において、前記除去される不純物は、例えば、前記説明の水である。前記不純物除去後のフッ素系炭化水素化合物に含まれる水分濃度は、水分量が、10ppmwt程度未満であり、好ましくは3ppmwt程度未満である。本開示では、水分量の最小値は0.1ppmwt程度である。
 本開示の製造方法において、前記除去される不純物は、例えば、前記説明のHFC-134である。前記不純物除去後のフッ素系炭化水素化合物に含まれるHFC-134濃度は、HFC-134の含有量が、10ppmwt程度未満であり、好ましくは3ppmwt程度未満である。本開示では、HFC-134の含有量の最小値は0.1ppmwt程度である。
 前記不純物除去後のフッ素系炭化水素化合物に含まれる水分濃度及びHFC-134濃度は、より好ましくは、水分量が3ppmwt程度未満であり、HFC-134の含有量が3ppmwt程度未満である。
 本開示では、前記工程は、前記フッ素系炭化水素化合物を含む組成物から、水分を前記ゼオライトに吸着させて、脱水し、前記ゼオライトに接触させる前の組成物から水分を除去することが好ましい。本開示では、前記工程は、また、より好ましくは、前記フッ素系炭化水素化合物を含む組成物から、HFC-134を除去する。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法は、前記接触工程は、前記HFC-134a等のフッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程とチャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程とのいずれか1つの工程であっても良いし、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程とチャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程との組み合わせの工程であっても良い。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法では、前記接触工程は、前記HFC-134a等のフッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程であっても良い。
 本開示では、前記ゼオライトに接触させた後の組成物中、特に、HFC-134a等のフッ素系炭化水素化合物を含む組成物中の水分量は、好ましくは、3ppmwt未満とすることが可能である。
 本開示では、前記ゼオライトに接触させた後の組成物中、特に、HFC-134a等のフッ素系炭化水素化合物を含む組成物中のHFC-134の含有量は、好ましくは、3ppmwt未満とすることが可能である。
 本開示のフッ素系炭化水素化合物を含む組成物の製造方法において、脱水処理する対象のフッ素系炭化水素化合物を含む組成物、使用するゼオライト、フッ素系炭化水素化合物を含む組成物をゼオライトに接触させる工程、気相での接触工程、液相での接触工程、水分量を3ppmwt未満とすること、HFC-134の含有量を3ppmwt未満とすること等は、前記本開示のフッ素系炭化水素化合物を含む組成物の脱水方法で説明した通りである。
 (3)フッ素系炭化水素化合物を含む組成物
 本開示のフッ素系炭化水素化合物を含む組成物は、前記フッ素系炭化水素化合物は、HFC-134a、HFC-125、HFC-32、及び、HFO-1234yfからなる群から選択される少なくとも一種の化合物を含み、水分量が3ppmwt未満である。
 本開示のフッ素系炭化水素化合物を含む組成物は、前記フッ素系炭化水素化合物は、HFC-134a、HFC-125、HFC-32、及び、HFO-1234yfからなる群から選択される少なくとも一種の化合物を含み、HFC-134の含有量が3ppmwt未満である。
 本開示のフッ素系炭化水素化合物を含む組成物は、より好ましくは、水分量が3ppmwt未満であり、HFC-134の含有量が3ppmwt未満である。
 水分量の測定
 本開示のフッ素系炭化水素化合物を含む組成物の水分量は、カールフィッシャー水分計を用いて測定した水分量であり、カールフィッシャー法に基づく水分量とする。具体的には、カールフィッシャー水分計に、フッ素系炭化水素化合物を含む組成物(液化ガス)を1g投入し、水分を溶媒に捕集し、滴定法で測定した値をいう。
 水分量(ppm)は、フッ素系炭化水素化合物を含む組成物に含まれる水分量(質量)を、フッ素系炭化水素化合物を含む組成物の質量で除した質量分率、即ちppmwt(質量/質量)である。
 HFC-134の含有量の測定
 本開示のフッ素系炭化水素化合物を含む組成物のHFC-134の含有量は、質量分析及び構造解析に基づき、測定することが可能である。
 本開示のフッ素系炭化水素化合物を含む組成物のHFC-134の含有量は、例えば、ガスクロマトグラフィー(例えば、島津製作所社製、商品名「GC-2014」)を用いて、ガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、次いで、NMR(例えば、JEOL社製、商品名「400YH」)を用いて、NMRスペクトルによる構造解析を行うことにより、測定することが出来る。
 本開示では、これらに機器を用いた場合のHFC-134の含有量の含有量(ppm)は、フッ素系炭化水素化合物を含む組成物に含まれるHFC-134の含有量(体積)を、フッ素系炭化水素化合物を含む組成物の体積で除した体積分率、即ちppmvol(体積/体積)である。
 HFC-134の含有量(ppm)を、例えば、3ppmvol未満と言い換えることができる。
 本開示のフッ素系炭化水素化合物を含む組成物は、HFC-134a、HFC-125、HFC-32、HFO-1234yf等と同様に、半導体、液晶等の最先端の微細構造を形成する為のエッチングガスの他、冷媒、又は熱移動媒体として用いられることが好ましい。本開示のフッ素系炭化水素化合物を含む組成物は、また、エッチングガスの他、デポジットガス、有機合成用ビルディングブロック、クリーニングガス等の各種用途に有効利用できる。
 本開示のフッ素系炭化水素化合物を含む組成物は、好ましくは、エッチングガス、冷媒、熱移動媒体、デポジットガス、有機合成用ビルディングブロック、又は、クリーニングガスとして用いられる。
 前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。
 前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示のフッ素系炭化水素化合物を含む組成物とCF3Si(CH3)3等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体と成り得る物質に変換することが可能である。
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
 以下に実施例を挙げ、本開示を具体的に説明するが、本開示は、これら実施例によって何ら限定されるものではない。
 フッ素系炭化水素化合物を含む組成物中の水分量の測定
 下記の測定の装置、条件及び方法により、水分量を測定した。
 測定装置:カールフィッシャー水分計
 測定条件:電量滴定法
 フッ素系炭化水素化合物を含む組成物の水分量は、カールフィッシャー水分計を用いて測定した水分量であり、カールフィッシャー法の電量滴定法に基づく水分量とした。具体的には、カールフィッシャー水分計に、フッ素系炭化水素化合物を含む組成物を1g投入し、水分を溶媒に捕集し、滴定法で測定した値を使用した。
 水分量(ppm)は、フッ素系炭化水素化合物を含む組成物に含まれる水分量(質量)を、フッ素系炭化水素化合物を含む組成物の質量で除した質量分率、即ちppmwt(質量/質量)とした。
 (1)実施例のフッ素系炭化水素化合物を含む組成物の脱水方法(液相)
 フッ素系炭化水素化合物:HFC-134a
 HFC-134aを含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型ゼオライト(実施例1)、モルデナイト型ゼオライト(実施例2)、ベータ型ゼオライト(実施例3)、又は、Y型ゼオライト(実施例4)に接触させた。
 表1に示す、容量75mLのステンレス製シリンダーに各ゼオライト(脱水剤)1gを充填した。そのシリンダーに、規定量(10g)のHFC-134aを含む組成物を充填した。適宜撹拌し、脱水開始(0hr)から、24時間後(24hr)、48時間後(48hr)、72時間後(72hr)、96時間後(96hr)に、液相の水分量をカールフィッシャーにて測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例の各ゼオライトに接触させた後の組成物では、水分量は3ppmwt未満であった。シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型のゼオライトを脱水剤として用いた場合、時間が経過しても、ゼオライトから水分は脱離せず、HFC-134aを含む組成物中の水分量の増加は見られなかった。
 (2)比較例のフッ素系炭化水素化合物を含む組成物の脱水方法(液相)
 HFC-134aを含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5未満であり、チャバザイト型ではないA型ゼオライトに接触させた。
 表2に示す、容量75mLのステンレス製シリンダーに各ゼオライト(脱水剤)1gを充填した。そのシリンダーに、規定量(10g)のHFC-134aを含む組成物を充填した。適宜撹拌し、脱水開始(0hr)から、24時間後(24hr)、48時間後(48hr)、72時間後(72hr)、96時間後(96hr)に、液相の水分量をカールフィッシャーにて測定した。
Figure JPOXMLDOC01-appb-T000002
 比較例の各ゼオライトに接触させた後の組成物では、水分量は3ppmwtを超えた。シリカアルミナ(SiO2/Al2O3)比が2程度のゼオライトを脱水剤として用いた場合、時間が経過すると、ゼオライトから、吸着した水分が脱離し、HFC-134aを含む組成物中の水分量の増加が見られた。
 (3)気相でのフッ素系炭化水素化合物を含む組成物の脱水方法
 フッ素系炭化水素化合物:HFC-134a
 このHFC-134aは、5ppmwt(質量/質量)の水を含む試料である。
 使用するゼオライト(molecular sieves(MS))を、その使用前に、真空中(10-1mmHg~10-3mmHg)で、180℃の温度で加熱し、ゼオライトから水を除去することにより、活性化処理(前処理)した。
 HFC-134aを含む組成物(ガス)を、シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型ゼオライト(実施例8)、また、シリカアルミナ(SiO2/Al2O3)比が5未満であり、チャバザイト型ではないA型ゼオライト(比較例9及び10)に接触させた。気相での脱水方法は、HFC-134aを含むガスを、ゼオライトの層に、W/F=0.2~0.6g/(cc/sec)、HFC-134aのフローレイト:1.7cm/secの条件で、通過させた。
Figure JPOXMLDOC01-appb-T000003
 実施例8のゼオライトは、HFC-134aを含む組成物(ガス)から、効率良く、短時間で、水を除去することができた。また、使用するゼオライトを、その使用前に、活性化処理(前処理)することにより、HFC-134aを含む組成物(ガス)から、より効率良く、短時間で、水を除去することができた。
 一方、比較例9及び10の各ゼオライトは、HFC-134aを含む組成物(ガス)から、効率良く、水を除去することができなかった。
 (4)気相でのフッ素系炭化水素化合物を含む組成物のHFC-134の除去方法
 フッ素系炭化水素化合物:HFC-134a
 このHFC-134aは、5ppmwt(質量/質量)の水とHFC-134を500ppmvol(体積/体積)含む試料である。
 使用するゼオライト(molecular sieves(MS))を、その使用前に、真空中(10-1mmHg~10-3mmHg)で、180℃の温度で加熱し、ゼオライトから水を除去することにより、活性化処理(前処理)した。
 HFC-134aを含む組成物(ガス)を、シリカアルミナ(SiO2/Al2O3)比が5以上であり、チャバザイト型ゼオライト(実施例11)、また、シリカアルミナ(SiO2/Al2O3)比が5未満であり、チャバザイト型ではないA型ゼオライト(比較例12及び13)に接触させた。気相でのHFC-134を除去する方法は、HFC-134aを含むガスを、ゼオライトの層に、W/F=100g/(cc/sec)の条件で、出口でHFC-134濃度が検出されるまで通過させた。
Figure JPOXMLDOC01-appb-T000004
 実施例11のゼオライトは、W/F=100 g/(cc/sec)の条件で、HFC-134aを含む組成物(ガス)を12時間流しても、破過せず、HFC-134は検出できなかった。実施例11のゼオライトは、効率良く、短時間で、HFC-134を除去することができている。この時、水は検出されなかった。また、使用するゼオライトを、その使用前に、活性化処理(前処理)することにより、HFC-134aを含む組成物(ガス)から、より効率良く、短時間で、HFC-134を除去することができた。
 一方、比較例12及び13の各ゼオライトは、6分で破過し、HFC-134が検出され、その検出量は増加し続けた。比較例12及び13の各ゼオライトは、HFC-134aを含む組成物(ガス)から、効率良く、HFC-134を除去することができなかった。
 (5)実施例で使用したチャバザイト型(A類似型)ゼオライト(MS)の説明
 実施例で使用したチャバザイト型(A類似型)ゼオライトは、合成ゼオライトであるA型ゼオライトの5AのAlO4を、SiO4で置き換え、その結晶構造がチャバサイトと同じ結晶構造を有しているゼオライトである。
 実施例で使用したチャバザイト型(A類似型)ゼオライトは、X線回折の結果、結晶系は、天然鉱物のチャバサイトとエリオナイトとの混合物であり、即ち、チャバサイト型の合成ゼオライト(チャバサイト型ゼオライト)とエリオナイト型の合成ゼオライト(エリオナイト型ゼオライト)との混合物の合成ゼオライトである。
 (6)フッ素系炭化水素化合物を含む組成物の脱水方法のまとめ
 半導体集積回路デバイスは、その高速化・高集積化に伴い、回路パターンの微細化が進んでいる。HFC-134a等のフッ素系炭化水素化合物は最も微細なコンタクトホールをエッチングするのに必須のガスである。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法やフッ素系炭化水素化合物を含む組成物の製造方法は、HFC-134a等のフッ素系炭化水素化合物を含む組成物を脱水する際に、前記特定のゼオライトを用いることで、ゼオライトに吸着された水分は、時間が経過しても、ゼオライトらの放出が抑制されており、HFC-134a等のフッ素系炭化水素化合物を含む組成物から良好に水分が除去されるという利点がある。
 本開示のフッ素系炭化水素化合物を含む組成物の脱水方法やフッ素系炭化水素化合物を含む組成物の製造方法によれば、HFC-134a等のフッ素系炭化水素化合物を含む組成物中、水分量を3ppmwt未満とすることが可能である。水分量が3ppmwt未満であるフッ素系炭化水素化合物(HFC-134a等)を含む組成物は、半導体集積回路デバイスにおいて、微細なコンタクトホールをエッチングし、微細な回路パターンを形成する際に有利である。

Claims (14)

  1.  フッ素系炭化水素化合物を含む組成物の脱水方法であって、
     前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
     前記フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む、脱水方法。
  2.  フッ素系炭化水素化合物を含む組成物の脱水方法であって、
     前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
     前記フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む、脱水方法。
  3.  前記工程は、脱水後の組成物において、水分量を3ppmwt未満とする、請求項1又は2に記載の脱水方法。
  4.  更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、1,1,2,2-テトラフルオロエタン(HFC-134)を除去する工程を含む、請求項1~3のいずれかに記載の脱水方法。
  5.  フッ素系炭化水素化合物を含む組成物の製造方法であって、
     前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
     前記フッ素系炭化水素化合物を含む組成物を、シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに接触させる工程を含む、製造方法。
  6.  フッ素系炭化水素化合物を含む組成物の製造方法であって、
     前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物であり、
     前記フッ素系炭化水素化合物を含む組成物を、チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに接触させる工程を含む、製造方法。
  7.  前記ゼオライトに接触させた後の組成物は、水分量が3ppmwt未満である、請求項5又は6に記載の製造方法。
  8.  更に、前記フッ素系炭化水素化合物を含む組成物を、前記ゼオライトに接触させて、1,1,2,2-テトラフルオロエタン(HFC-134)を除去する工程を含む、請求項5~7のいずれかに記載の製造方法。
  9.  シリカアルミナ(SiO2/Al2O3)比が5以上のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を含む組成物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法。
  10.  チャバザイト型ゼオライト、モルデナイト型ゼオライト、ベータ型ゼオライト、及び、Y型ゼオライトからなる群から選択される少なくとも一種のゼオライトに、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種のフッ素系炭化水素化合物を含む組成物を接触させて、該フッ素系炭化水素化合物に含まれる不純物を除去する工程を有することを特徴とする高純度フッ素系炭化水素化合物の製造方法。
  11.  前記不純物は、水、及び、1,1,2,2-テトラフルオロエタン(HFC-134)からなる群から選択される少なくとも一種の成分である、請求項9又は10に記載の脱水方法。
  12.  前記不純物除去後のフッ素系炭化水素化合物に含まれる水分濃度は、水分量が3ppmwt未満である、請求項9~11のいずれかに記載の製造方法。
  13.  フッ素系炭化水素化合物を含む組成物であって、
     前記フッ素系炭化水素化合物は、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,2-ペンタフルオロエタン(HFC-125)、ジフルオロメタン(HFC-32)、及び、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)からなる群から選択される少なくとも一種の化合物を含み、
     水分量が3ppmwt未満である、又は/及び、HFC-134の含有量が3ppmwt未満である組成物。
  14.  エッチングガス、冷媒、熱移動媒体、デポジットガス、有機合成用ビルディングブロック、又は、クリーニングガスとして用いられる、請求項13に記載の組成物。
PCT/JP2020/044095 2019-11-28 2020-11-26 フッ素系炭化水素化合物の脱水方法 WO2021107046A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227017610A KR20220088480A (ko) 2019-11-28 2020-11-26 불소계 탄화수소 화합물의 탈수 방법
CN202080082290.2A CN114746385A (zh) 2019-11-28 2020-11-26 氟系烃化合物的脱水方法
EP20892783.0A EP4067326A4 (en) 2019-11-28 2020-11-26 DEHYDRATION PROCESS FOR FLUORINE-BASED HYDROCARBON COMPOUND
US17/824,463 US20220281786A1 (en) 2019-11-28 2022-05-25 Dehydration method for fluorine-based hydrocarbon compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019215296 2019-11-28
JP2019-215296 2019-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/824,463 Continuation US20220281786A1 (en) 2019-11-28 2022-05-25 Dehydration method for fluorine-based hydrocarbon compound

Publications (1)

Publication Number Publication Date
WO2021107046A1 true WO2021107046A1 (ja) 2021-06-03

Family

ID=76130567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044095 WO2021107046A1 (ja) 2019-11-28 2020-11-26 フッ素系炭化水素化合物の脱水方法

Country Status (6)

Country Link
US (1) US20220281786A1 (ja)
EP (1) EP4067326A4 (ja)
JP (2) JP7321989B2 (ja)
KR (1) KR20220088480A (ja)
CN (1) CN114746385A (ja)
WO (1) WO2021107046A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107572A (ja) * 1992-09-30 1994-04-19 Showa Denko Kk 1,1,1,2−テトラフルオロエタンの精製方法
US5446710A (en) 1992-11-06 1995-08-29 International Business Machines Corporation Focus error detection using an equal path length lateral shearing interferometer
JPH08206493A (ja) * 1995-02-02 1996-08-13 Tosoh Corp 乾燥剤及びその用途
JPH08206494A (ja) * 1995-02-06 1996-08-13 Tosoh Corp 乾燥剤、及び乾燥剤の用途
WO1998008790A1 (fr) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Procede de fabrication de difluoromethane
JP2003261476A (ja) * 2002-03-11 2003-09-16 Showa Denko Kk フルオロエタンの製造方法およびその用途
JP2011083726A (ja) * 2009-10-16 2011-04-28 Tosoh Corp 冷媒用脱水剤及びそれを用いた脱水方法
WO2013099856A1 (ja) * 2011-12-28 2013-07-04 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116777D0 (en) * 1991-08-02 1991-09-18 Ici Plc Purification of 1,1,1,2-tetrafluoroethane
GB9214449D0 (en) * 1992-07-08 1992-08-19 Ici Plc Purification of 1,1,1,2-tetrafluoroethane
US5470442A (en) * 1994-03-11 1995-11-28 E. I. Du Pont De Nemours And Company Separating and removing impurities from tetrafluoroethanes by using extractive distillation
FR2806077B1 (fr) * 2000-03-07 2004-01-30 Solvay Procede pour l'obtention d'un hydrofluoroalcane epure, hydrofluoroalcane epure, utilisation de l'hydrofluoroalcane et methode d'analyse d'un hydrofluoroalcane
US7084315B2 (en) * 2000-05-04 2006-08-01 Ineos Fluor Holdings Limited Removal of (hydro)haloalkene impurities from product streams
JP6107572B2 (ja) 2013-09-26 2017-04-05 ブラザー工業株式会社 液体吐出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107572A (ja) * 1992-09-30 1994-04-19 Showa Denko Kk 1,1,1,2−テトラフルオロエタンの精製方法
US5446710A (en) 1992-11-06 1995-08-29 International Business Machines Corporation Focus error detection using an equal path length lateral shearing interferometer
JPH08206493A (ja) * 1995-02-02 1996-08-13 Tosoh Corp 乾燥剤及びその用途
JPH08206494A (ja) * 1995-02-06 1996-08-13 Tosoh Corp 乾燥剤、及び乾燥剤の用途
WO1998008790A1 (fr) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Procede de fabrication de difluoromethane
JP2003261476A (ja) * 2002-03-11 2003-09-16 Showa Denko Kk フルオロエタンの製造方法およびその用途
JP2011083726A (ja) * 2009-10-16 2011-04-28 Tosoh Corp 冷媒用脱水剤及びそれを用いた脱水方法
WO2013099856A1 (ja) * 2011-12-28 2013-07-04 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの精製方法、精製装置および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067326A4

Also Published As

Publication number Publication date
EP4067326A1 (en) 2022-10-05
KR20220088480A (ko) 2022-06-27
US20220281786A1 (en) 2022-09-08
CN114746385A (zh) 2022-07-12
EP4067326A4 (en) 2024-01-03
JP7321989B2 (ja) 2023-08-07
JP2021091668A (ja) 2021-06-17
JP2022008829A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
TWI816959B (zh) 六氟丁二烯之純化方法
JP6107466B2 (ja) トランス−1,3,3,3−テトラフルオロプロペンの精製方法
DE60307908T2 (de) Verfahren zur Reinigung von Hexafluor-1,3-Butadien
DK2813290T3 (en) PROCEDURE FOR CLEANING A C5-C6 FRACTION CONTAINING Saturated Molecules
JPH0813683B2 (ja) Nf3とcf4の混合物から精製nf3の回収法
JP5899974B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
JP7321989B2 (ja) フッ素系炭化水素化合物の脱水方法
JP2021095412A (ja) トランス−1,2−ジフルオロエチレン(hfo−1132(e))及び/又はシス−1,2−ジフルオロエチレン(hfo−1132(z))と水とを含有する精製物
CA2268489C (en) Adsorbent for separating halogenated aromatic compounds and separation method using it
RU2789056C1 (ru) Способ очистки гексафторбутадиена
JP7341953B2 (ja) アルカンの製造方法
KR100426957B1 (ko) C4 올레핀 분리용 흡착제의 제조방법 및 응용
JPS623131B2 (ja)
CN116323525A (zh) 用于纯化呈气相的氟化烯烃的方法
US20200055019A1 (en) Zeolite-containing adsorbent for selective separation of isomers from aromatic hydrocarbon mixtures, and production and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017610

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892783

Country of ref document: EP

Effective date: 20220628