JPWO2010137254A1 - スパッタリングターゲット及びスパッタリングターゲットの処理方法 - Google Patents

スパッタリングターゲット及びスパッタリングターゲットの処理方法 Download PDF

Info

Publication number
JPWO2010137254A1
JPWO2010137254A1 JP2011515862A JP2011515862A JPWO2010137254A1 JP WO2010137254 A1 JPWO2010137254 A1 JP WO2010137254A1 JP 2011515862 A JP2011515862 A JP 2011515862A JP 2011515862 A JP2011515862 A JP 2011515862A JP WO2010137254 A1 JPWO2010137254 A1 JP WO2010137254A1
Authority
JP
Japan
Prior art keywords
target
sputtering
piece
hydrogen
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011515862A
Other languages
English (en)
Other versions
JP5232915B2 (ja
Inventor
彰 大場
彰 大場
純一 新田
純一 新田
宣宏 原田
宣宏 原田
金 豊
豊 金
美原 康雄
康雄 美原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011515862A priority Critical patent/JP5232915B2/ja
Publication of JPWO2010137254A1 publication Critical patent/JPWO2010137254A1/ja
Application granted granted Critical
Publication of JP5232915B2 publication Critical patent/JP5232915B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】単純な処理で成分金属を分離することができるスパッタリングターゲット及び当該スパッタリングターゲットの処理方法を提供すること。【解決手段】本発明に係るスパッタリングターゲットの処理方法は、非水素脆性材料である第1の材料からなる第1のターゲット部分3と、水素脆性材料である第2の材料からなる第2のターゲット部分4とが接合されたスパッタリングターゲット1を水素脆化処理することで、スパッタリングターゲット1から第2のターゲット部分4を分離させ、第2の材料を回収し、第1の材料を回収する。第1の材料と第2の材料の水素脆性の違いを利用して、第1の材料と第2の材料とを分離、回収する。第1の材料と第2の材料を効率的に回収することが可能である。【選択図】図1

Description

本発明は、構成材料の回収が容易なスパッタリングターゲット及びスパッタリングターゲットの処理方法に関する。
成膜方法の一種であるスパッタリング法は、高エネルギーを有する粒子を金属等からなるスパッタリングターゲット(以下、ターゲット)の表面(被スパッタ面)に衝突させ、ターゲットから放出された原子を基材に堆積させる成膜方法である。スパッタリングにおいては、基材の表面に均一に成膜するためには、ある程度の被スパッタ面積を有するターゲットを用いる必要がある。スパッタリングに供された使用済みのターゲットは、金属材料として再利用することが可能である。特に近年、FPD(Flat Panel Display)等の基材(被成膜物)の大面積化、成膜材料の高価値化等に伴い、使用済ターゲット材料の再利用の重要性が増加している。
一般にスパッタリング法では、上述のような原理から、基材の組成とターゲットの組成は相関する。このため、合金を成膜する場合、合金からなるターゲットが用いられる。しかしながら、合金からなるターゲットは、合金を構成する金属(成分金属)を単離することが困難であるために、その合金組成としての用途に限られ、単一の金属からなるターゲットに比し、その再利用価値が著しく低下するという問題がある。
一方、合金を成膜する場合、成分金属のそれぞれからなる複数のターゲット片を接合したターゲットをスパッタリングすることによっても、基材上に合金を成膜することが可能となる。例えば特許文献1には、ターゲット材を固相拡散接合することによりターゲットを形成する方法が開示されている。当該方法では、熱間静水圧プレス等を用いて同種あるいは異種材料からなるターゲット材を固相拡散接合し、これらの材料が高強度に接合された大面積ターゲットを得ることが可能とされている。
特開2004−204253号公報(段落[0012])
しかしながら、特許文献1に記載の方法を用いて形成されたターゲットは、複数のターゲット材が固相拡散接合により強固に接合されている。このため、複数種のターゲット材が固相拡散接合されたターゲットの場合、成分金属毎に分離するには、機械加工等が必要で作業に手間がかかる。一方で、成分金属毎にターゲット材を分離し易いように、接合強度が弱い接合方法により接合する場合、接合箇所でのアーク放電によるパーティクルの発生、ターゲット材の熱膨張による変形等が発生すると考えられる。
以上のような事情に鑑み、本発明の目的は、単純な処理で成分金属を分離することができるスパッタリングターゲット及び当該スパッタリングターゲットの処理方法を提供することにある。
上記目的を達成するため、本発明の一形態に係るスパッタリングターゲットの処理方法は、非水素脆性材料である第1の材料からなる第1のターゲット部分と、水素脆性材料からなる第2の材料である第2のターゲット部分とが接合されたスパッタリングターゲットを水素脆化処理することで、上記スパッタリングターゲットから上記第2のターゲット部分を分離させることを含む。
上記第2の材料は回収される。
上記第1の材料は回収される。
上記目的を達成するため、本発明の一形態に係るスパッタリングターゲットは、合金からなる薄膜を成膜するための、被スパッタ面を有するスパッタリングターゲットであって、第1のターゲット部分と、第2のターゲット部分とを具備する。
上記第1のターゲット部分は、水素雰囲気中で脆化されない非水素脆性材料である第1の材料からなり、上記被スパッタ面の一部を形成する。
上記第2のターゲット部分は、上記水素雰囲気中で脆化する水素脆性材料である第2の材料からなり、上記第1のターゲット部分と接合され、上記被スパッタ面の他の一部を形成する。
第1の実施形態に係るスパッタリングターゲットを示す平面図である。 第1の実施形態に係るスパッタリングターゲットを示す斜視図である。 第1の実施形態に係るスパッタリングターゲットの製造方法を説明する図である。 第1の実施形態に係るスパッタリングターゲットを用いるスパッタリング装置の概略構成を示す図である。 第2の実施形態に係るスパッタリングターゲットを示す平面図である。 第2の実施形態に係るスパッタリングターゲットを示す斜視図である。 第2の実施形態に係るスパッタリングターゲットの製造方法を説明する図である。 変形例1に係るスパッタリングターゲットを示す図である。 変形例2に係るスパッタリングターゲットを示す図である。 変形例3に係るスパッタリングターゲットを示す図である。
本発明の一実施形態に係るスパッタリングターゲットの処理方法は、非水素脆性材料である第1の材料からなる第1のターゲット部分と、水素脆性材料である第2の材料からなる第2のターゲット部分とが接合されたスパッタリングターゲットを水素脆化処理することで、上記スパッタリングターゲットから上記第2のターゲット部分を分離させることを含む。
上記第2の材料は回収される。
上記第1の材料は回収される。
水素脆化処理により、第2のターゲット部分は脆化して破壊される一方、第1のターゲット部分は脆化しないためそのままの状態で残存する。このため、第1の材料と第2の材料を選択的に回収することが可能となる。第2のターゲット部分は水素脆化により破壊されるため、第1のターゲット部分と第2のターゲット部分が強固に接合されている場合、あるいは第1のターゲット部分が微細なターゲット片から構成されている場合であっても容易に回収することが可能である。以上のように、本実施形態に係るスパッタリングターゲットの処理方法によれば、第1の材料と第2の材料、あるいは異種の第1の材料同士と第2の材料とを選択的に回収することが可能である。即ち、単純な処理で成分金属を分離することが可能である。
上記水素脆化処理する工程は、上記スパッタリングターゲットを水素雰囲気中において第1の温度に維持し、その後第1の温度より低い第2の温度とすることを含んでもよい。
第1の温度において水素が第2のターゲット部分に吸収され、第2の温度において当該吸収された水素が気体となって膨張し、第2のターゲット部分が脆化する。即ち、同一のスパッタリングターゲットに含まれる第2のターゲット部分を水素脆化させ、第1のターゲット部分を脆化させないことが可能である。
本発明の一実施形態に係るスパッタリングターゲットは、合金からなる薄膜を成膜するための、被スパッタ面を有するスパッタリングターゲットであって、第1のターゲット部分と、第2のターゲット部分とを具備する。
上記第1のターゲット部分は、水素雰囲気中で脆化されない非水素脆性材料である第1の材料からなり、上記被スパッタ面の一部を形成する。
上記第2のターゲット部分は、上記水素雰囲気中で脆化する水素脆性材料である第2の材料からなり、上記第1のターゲット部分と接合され、上記被スパッタ面の他の一部を形成する。
当該スパッタリングターゲットを用いてスパッタリングすることにより、基材上に第1の材料と第2の材料の合金からなる薄膜が形成される。被スパッタ面上において第1のターゲット部分と第2のターゲット部分が占める面積により、合金薄膜の組成を制御することが可能である。当該スパッタリングターゲットは、上述のように水素脆化処理をすることにより第2のターゲット部分が水素脆化されるため、第1のターゲット部分と第2のターゲット部分が分離される。これにより第1の材料と第2の材料を峻別して回収することが可能である。
上記第1のターゲット部分は複数の第1のターゲット片からなり、上記第2のターゲット部分は複数の第2のターゲット片からなり、上記複数の第1のターゲット片の間には、上記第2のターゲット片が介在してもよい。
第1のターゲット片の各々が第2のターゲット片に接合されているため、第2のターゲット片が水素脆化処理によって除去されると、第1のターゲット部分を第1のターゲット片毎に分離することが可能である。
上記第1の材料は、第1の元素を含む第1の材料種と、前記第1の元素とは異なる第2の元素を含む第2の材料種とを含み、前記複数の第1のターゲット片は、各前記第1の材料種からなるターゲット片と、前記第2の材料種からなるターゲット片とを含んでもよい。
構成材料が異なる複数種の第1のターゲット片を用いることにより、第1のターゲット部分を複数の材料から構成することが可能である。水素脆化処理により第1のターゲット部分は第1のターゲット片毎に分離されるため、第1のターゲット部分が複数の材料からなる場合であっても、第1の材料を種類毎に回収することが可能である。
上記第1の材料種はAl、Cu、W、Mo、Pt、Crのうちのいずれかであり、上記第2の材料種はTi、Zr、Fe、Ni、Ta、Nbのうちのいずれかであってもよい。
(第1の実施形態)
図1は本実施形態に係るスパッタリングターゲット(以下、ターゲット)1を示す平面図である。同図は被スパッタ面側から見たターゲット1を示す。なお、以下の各図面において、被スパッタ面に平行な一方向をX方向、被スパッタ面に平行でX方向に垂直な方向をY方向、X方向及びY方向に垂直な方向をZ方向とする。
図2はターゲット1の一部を拡大して示す斜視図である。
これらの図に示すように、ターゲット1は、バッキングプレート2上に接合されている。
バッキングプレート2は、ターゲット1を保持し、これを冷却し、また、電極として機能する。バッキングプレート2の材質は特に限定されず、例えばCuとすることができる。
ターゲット1は、第1のターゲット部分3と第2のターゲット部分4を有する。ターゲット1はバッキングプレート2にろう接、機械的保持等の方法により接合されている。ターゲット1の表面(バッキングプレート2に接合されている面と反対側の面)を被スパッタ面とする。
ターゲット1は、後述するように、構成金属が各々異なる2種のターゲット片から構成される。ターゲット1は、非水素脆性材料からなる第1のターゲット片5と、水素脆性材料からなる第2のターゲット片6とを含む。即ち、ターゲット1は、これらの材料を成分として含む薄膜を形成するためのターゲットである。
第1のターゲット部分3は、複数の第1のターゲット片5から構成され、被スパッタ面の一部を形成する。第1のターゲット片5は、Al、Cu、W、Mo、Pt、Cr等の金属、これらの合金、酸化物等の非水素脆性材料(水素脆化しない材料)の中から選択することができ、第1のターゲット部分3の材料として選択した材料を第1の材料とする。本実施形態に係る第1の材料は一種類の材料種からなり、第1のターゲット片5はいずれも当該材料種からなる。第1のターゲット片5は例えば、X方向に長辺、Y方向に短辺を有する矩形板状の形状を有し、それぞれが同一の大きさに形成されている。
第2のターゲット部分4は、複数の第2のターゲット片6から構成され、被スパッタ面の一部を形成する。第2のターゲット片6は、Ti、Zr、Fe、Ni、Ta、Nb等の金属、これらの合金、酸化物等の水素脆性材料(水素脆化する材料)の中から選択することができる。第2のターゲット部分4の材料として選択した材料を第2の材料とする。第2のターゲット片6は例えば、X方向に第1のターゲット片5と同一の長さの長辺、Y方向に短辺を有する矩形板状の形状を有し、それぞれが同一の大きさに形成されている。
なお、上記第1及び第2の材料の組み合わせは、作製すべき合金薄膜の元素組成に応じて選定される。
第1のターゲット片5と第2のターゲット片6は、それぞれがX方向に交互となるように配列されている。第1のターゲット片5及び第2のターゲット片6の大きさ、配置数等は適宜変更可能である。第1のターゲット片5及び第2のターゲット片6の大きさは、ターゲット1の被スパッタ面において第1のターゲット部分3と第2のターゲット部分4が占める面積を規定する。即ち、スパッタリングにおいて成膜される合金の組成比を制御することが可能である。
第1のターゲット片5及び第2のターゲット片6は、隣接する第1のターゲット片5、あるいは第2のターゲット片6と接合され、また、それぞれがバッキングプレート2と接合されている。接合方法はろう接、拡散接合等限定されないが、拡散接合することにより、ターゲット片間の隙間において生じるアーク放電によるパーティクルの発生、熱膨張率の違いによる応力の集中を防止することが可能である。
次に、本実施形態にかかるターゲット1の製造方法について説明する。
図3は、ターゲット1の製造方法を説明する図である。
第1の材料からなる第1の板5’と第2の材料からなる第2の板6’をそれぞれ複数準備する。第1の板5’及び第2の板6’は、例えば溶解鋳造、焼結等の方法により作製することが可能である。第1の板5’は、第1のターゲット片5の短辺と同一の厚さ(Y方向)、第1のターゲット片5の長辺と同一の一辺(X方向)を有する矩形形状とすることができる。第2の板6’は、第2のターゲット片6の短辺と同一の厚さ(Y方向)、第2のターゲット片6の長辺と同一の一辺(X方向)を有する矩形形状とすることができる。
次に、図3(A)に示すように、第1の板5’と、第2の板6’を複数毎ずつ交互にY方向に積み重ね、接合する。これは、例えば拡散接合とすることができる。第1の板5’と第2の板6’に対してY方向に圧力を印加することにより、第1の板5’と第2の板6’を十分な強度で接合することが可能である。
次に、図3(B)に示すように、第1の板5’と第2の板6’を図3(B)に破線で示すX−Y平面と平行な面で切断する。例えば、機械的切削により接合することが可能である。このように切断することによって、第1の板5’と第2の板6’がそれぞれ分断され、交互に配列した第1のターゲット片5と第2のターゲット片6が形成される。
このようにして、図3(C)に示すように、ターゲットとなる板が切り出される。当該板をバッキングプレートにボンディングすることによってターゲット1が製造される。このようにして、ターゲット1を製造することによって、第1のターゲット片5と第2のターゲット片6の端面を接合する場合に比べ、第1のターゲット片5と第2のターゲット片6の接合強度を高くすることが可能である。
次に、ターゲット1を用いたスパッタリングについて説明する。本実施形態に係るターゲット1は、種々のスパッタリング法、(AC(Alternating Current)法、DC(Direct Current)法、RF(radio frequency)法、マグネトロン法等)に供することが可能であるが、ここでは、ターゲット1をマグネトロンスパッタリング法に供する場合を例にとる。図4は、スパッタリング装置10の概略構成を示す図である。
同図に示すように、スパッタリング装置10は、チャンバ11と、このチャンバ11の内部に配置されるスパッタカソード12と、このスパッタカソード12近傍に配置された、磁場分布を形成するための磁場形成部13とを備えている。スパッタカソード12は、ターゲット1を含む。また、チャンバ11内には、基材Sが載置されている。
チャンバ11には、チャンバ11を真空排気する真空排気系14と、チャンバ11にプロセスガスを導入するガス導入系15が接続されている。また、チャンバ11内部には、基材Sを支持し、アノードとなるステージ16が設けられている。基材Sは、スパッタカソード12と対向するように配置される。
スパッタカソード12は、ターゲット1とバッキングプレート2とで構成される。バッキングプレート2のターゲット1が接合されている面(表面)の反対方向の面(裏面)方向には、磁場形成部13が配置される。この磁場形成部13は、ターゲット1の表面近傍に、図4に示すような磁場分布を形成する。
当該スパッタリング装置10によるスパッタリングでは、最初に、チャンバ11内が真空配置され、次に、チャンバ11内にAr等のプロセスガスが導入される。次に、スパッタカソード12とアノードであるステージ16との間に電圧が印加され、磁場形成部13によってスパッタカソード12の近傍に磁場が形成される。電場及び磁場によりプロセスガスがプラズマ化され、ターゲット1の表面にイオンが衝突することによりスパッタリングが成される。
ターゲット1の第1のターゲット部分3から第1の材料が、第2のターゲット部分4から第2の材料がスパッタ粒子として飛散し、基材S上で第1の材料と第2の材料の合金として成膜される。ターゲット1の被スパッタ面における第1のターゲット部分3と第2のターゲット部分4の占める面積により、成膜される合金の組成が制御される。
プロセスガスのイオンがターゲット1の被スパッタ面に衝突する位置は、磁場の形成位置等によって影響を受け、被スパッタ面上で均一とはならない。スパッタリングの進行と共に、被スパッタ面上には、イオンの衝突頻度が高く、ターゲット材の損耗が大きいエロージョン領域と、イオンの衝突頻度が低く、ターゲット材の損耗が小さい非エロージョン領域が形成される。エロージョン領域に相等するターゲット材の厚さが減少すると、非エロージョン領域に相等するターゲット材が十分残存していても、ターゲットは交換される必要がある。即ち、交換されたターゲットには、依然ターゲット材が存在しており、このターゲット材は再利用の余地がある。なお、非エロージョン領域はマグネトロンスパッタリング以外の他のスパッタリング法においても発生する。
次に、ターゲット1から第1の材料及び第2の材料を回収する方法について説明する。
スパッタリングに供されたターゲット1を、バッキングプレート2から取り外す。ターゲット1は、例えば、ロー材の融点以上に加熱されることにより取り外される。
次に、スパッタリングに供されたターゲット1に水素脆化処理を施す。ターゲット1を処理用チャンバに収容し、処理用チャンバを真空排気した後、水素ガスを導入する。水素ガスは、例えば大気圧以上の圧力となるまで導入される。
次にターゲット1を加熱する。加熱は、第2の材料に水素が吸収され得る温度(第1の温度)(例えば600℃)において、所定時間維持される。第1の温度は、第2の材料の種類によって調節される。
次に、加熱温度を第1の温度より低い第2の温度とする。第2の温度は、第1の温度において第2の材料に吸収された水素が気体化する温度とされ、第2の材料の種類によって調節される。ターゲット1を第2の温度(例えば420℃)において一定時間維持することにより、第2の材料に吸収されていた水素が気体化し、第2のターゲット部分4が脆性破壊される。以上のようにしてターゲット1が水素脆化処理される。なお、水素脆化処理はここに示したものに限られない。
次に、第1の材料及び第2の材料を回収する。水素脆化処理によって、第2のターゲット部分4であった第1の材料は破砕されており、第1のターゲット部分3であった第1の材料は第1のターゲット片5の形状を維持しているため、容易に分離することが可能である。
第2の材料は、破砕された破片を収集することにより回収され、第1の材料は第1のターゲット片5として回収される。ターゲット1から分離された第1のターゲット片5は、第2のターゲット片6と接合されていた部分に第2の材料が付着あるいは拡散している場合がある。この場合、ブラスト処理、機械的研磨等により当該第2の材料を除去することによって、高純度の第1の材料を回収することが可能である。
以上のようにして、第1の材料及び第2の材料が回収される。水素脆化処理を利用することによって、第1のターゲット片5と第2のターゲット片6の接合強度に拠らず、高純度の状態で回収することが可能となる。
以上のように、本実施形態に係るターゲットは、本実施形態に係る処理方法により再利用性が高い態様で、その構成材料を回収することが可能である。
(第2の実施形態)
以下、第2の実施形態について説明する。第2の実施形態においては、第1のターゲット部分が2種以上の材料種からなる点で第1の実施形態と異なる。なお、第1の実施形態について説明した内容と重複する箇所は記載を省略する。
図5は本実施形態に係るターゲット21を示す平面図である。同図は被スパッタ面側から見たターゲット21を示す。
図6はターゲット21の一部を拡大して示す斜視図である。
これらの図に示すように、ターゲット21は、バッキングプレート22上に接合されている。
ターゲット21は、第1のターゲット部分23と第2のターゲット部分24を有する。ターゲット21はバッキングプレート22にろう接、機械的保持等の方法により接合されている。ターゲット21の表面(バッキングプレート22に接合されている面と反対側の面)を被スパッタ面とする。
ターゲット21は、後述するように、構成金属が各々異なる3種のターゲット片から構成される。ターゲット21は、非水素脆性材料からなる第1のターゲット片25aと、第1のターゲット片25aと異なる非水素脆性材料からなる第1のターゲット片25bと、水素脆性材料からなる第2のターゲット片26とを含む。即ち、ターゲット21は、これらの材料を成分として含む薄膜を形成するためのターゲットである。
第1のターゲット部分23は、複数の第1のターゲット片25から構成され、被スパッタ面の一部を形成する。第1のターゲット片25は、Al、Cu、W、Mo、Pt、Cr等の金属、これらの合金、酸化物等の非水素脆性材料(水素脆性しない材料)の中から選択することができ、第1のターゲット部分23の材料として選択した材料を第1の材料とする。本実施形態に係る第1の材料は2種類の材料種(第1の材料種及び第2の材料種)からなる。第1のターゲット片25のうち、第1の材料種からなるものを第1のターゲット片25aとし、第2の材料種からなるものを第1のターゲット片25bとする。第1のターゲット片25は例えば、X方向に短辺、Y方向に長辺を有する矩形板状の形状を有する。第1のターゲット片25aと第1のターゲット片25bは長辺が同一の長さを有するように形成される。
第1のターゲット片25aと第1のターゲット片25bの短辺は同一の長さに形成されてもよく、異なる長さに形成されてもよい。
第2のターゲット部分24は、複数の第2のターゲット片26から構成され、被スパッタ面の一部を形成する。第2のターゲット片26は、Ti、Zr、Fe、Ni、Ta、Nb等の金属、これらの合金、酸化物等の水素脆性材料(水素脆性する材料)の中から選択することができる。第2のターゲット部分24の材料として選択した材料を第2の材料とする。第2のターゲット片26は例えば、X方向に短辺、Y方向に第1のターゲット片5と同一の長さの長辺を有する矩形板状の形状を有し、それぞれが同一の大きさに形成されている。
なお、上記第1及び第2の材料の組み合わせは、作製すべき合金薄膜の元素組成に応じて選定される。
第1のターゲット片25と第2のターゲット片26は、それぞれX方向に交互となるように配列されている。なお、第1のターゲット片25は、第1のターゲット片25aと第1のターゲット片25bが交互となるように配列されている。第1のターゲット片5及び第2のターゲット片6の大きさ、配置数等は適宜変更可能である。第1のターゲット片25a、第1のターゲット片25b及び第2のターゲット片26の大きさは、ターゲット1の被スパッタ面において第1のターゲット部分23と第2のターゲット部分24が占める面積を規定する。即ち、スパッタリングにおいて成膜される合金の組成を制御することが可能である。
第1のターゲット片25及び第2のターゲット片26は、隣接する第1のターゲット片25、あるいは第2のターゲット片26と接合され、また、それぞれがバッキングプレート22と接合されている。接合方法はろう接、拡散接合等限定されないが、拡散接合することにより、ターゲット片間の隙間において生じるアーク放電によるパーティクルの発生、熱膨張率の違いによる応力の集中を防止することが可能である。
次に、本実施形態にかかるターゲット1の製造方法について説明する。
図7は、ターゲット1の製造方法を説明する図である。
第1の材料種からなる第1の板25a’と第2の材料種からなる第1の板25b’と、第2の材料からなる第2の板26’をそれぞれ複数準備する。第1の板25a’第1の板25b’及び第2の板26’は、例えば溶解鋳造、焼結等の方法により作製することが可能である。第1の板25a’は、第1のターゲット片25aの短辺と同一の厚さ(Y方向)、第1のターゲット片25の長辺と同一の一辺(X方向)を有する矩形形状とすることができる。第1の板25b’は、第1のターゲット片25bの短辺と同一の厚さ(Y方向)、第1のターゲット片25bの長辺と同一の一辺(X方向)を有する矩形形状とすることができる。第2の板26’は、第2のターゲット片26の短辺と同一の厚さ(Y方向)、第2のターゲット片26の長辺と同一の一辺(X方向)を有する矩形形状とすることができる。
次に、図7(A)に示すように、第1の板25a’、第1の板25b’及び第2の板26’を複数毎ずつY方向に積み重ね、接合する。ここで、第1の板25a’と第1の板25b’が交互となり、第1の板25a’と第1の板25b’との間には第2の板26’が介在するように積み重ねる。当該接合は、例えば拡散接合とすることができる。第1の板25a’、第1の板25b’及び第2の板26’に対してZ方向に圧力を印加することによりこれらを十分な強度で接合することが可能である。
次に、図7(B)に示すように、第1の板25a’、第1の板25b’及び第2の板26’を図7(B)に破線で示すX−Y平面に平行な面で切断する。例えば、機械的切削により接合することが可能である。このように切断することによって、第1の板25a’、第1の板25b’及び第2の板26’がそれぞれ分断され、交互に配列した第1のターゲット片25と第2のターゲット片26が形成される。
このようにして、図7(C)に示すように、ターゲットとなる板が切り出される。当該板をバッキングプレートにボンディングすることによってターゲット21が製造される。このようにして、ターゲット21を製造することによって、第1のターゲット片25と第2のターゲット片26の端面を接合する場合に比べ、第1のターゲット片25と第2のターゲット片26の接合強度を高くすることが可能である。
次に、ターゲット21から第1の材料(第1の材料種、第2の材料種)及び第2の材料を回収する方法について説明する。
スパッタリングに供されたターゲット21を、バッキングプレート22から取り外す。ターゲット21は、例えば、ロー材の融点以上に加熱されることにより殆どが取り外され、その後、エッチングにより完全にロー材は取り除かれる。
次に、スパッタリングに供されたターゲット21に水素脆化処理を施す。ターゲット21を処理用チャンバに収容し、処理用チャンバを真空排気した後、水素ガスを導入する。水素ガスは、例えば大気圧以上の圧力となるまで導入される。
次にターゲット21を加熱する。加熱は、第2の材料に水素が吸収され得る温度(第1の温度)(例えば600℃)において、所定時間維持される。第1の温度は、第2の材料の種類によって調節される。
次に、加熱温度を第1の温度より低い第2の温度とする。第2の温度は、第1の温度において第2の材料に吸収された水素が気体化する温度とされ、第2の材料の種類によって調節される。ターゲット1を第2の温度(例えば420℃)において一定時間維持することにより、第2の材料に吸収されていた水素が気体化し、第2のターゲット部分24が脆性破壊される。以上のようにしてターゲット1が水素脆化処理される。なお、水素脆化処理はここに示したものに限られない。
次に、第1の材料(第1の材料種、第2の材料種)及び第2の材料を回収する。水素脆化処理によって、第2のターゲット部分24であった第1の材料は破砕されており、第1のターゲット部分23であった第1の材料は第1のターゲット片25a、第1のターゲット片25bの形状を維持しているため、容易に分離することが可能である。第1の材料が複数種の材料種(第1の材料種、第2の材料種)から構成されている場合であっても、一つの材料種毎に一つのターゲット片が形成されているため、ターゲット片毎に分離することが可能である。
第2の材料は、破砕された破片を収集することにより回収され、第1の材料は第1のターゲット片25として回収される。ターゲット1から分離された第1のターゲット片25は、第2のターゲット片26と接合されていた部分に第1の材料が付着あるいは拡散している場合がある。この場合、ブラスト処理、機械的研磨等により当該第1の材料を除去することによって、高純度の第1の材料を回収することが可能である。
以上のようにして、第1の材料(第1の材料種、第2の材料種)及び第2の材料が回収される。水素脆化処理を利用することによって、第1のターゲット片25と第2のターゲット片26の接合強度に拠らず、高純度の状態で回収することが可能となる。
以上のように、本実施形態に係るターゲットは、本実施形態に係る処理方法により再利用性が高い態様で、その構成材料を回収することが可能である。また、本実施形態では第1の材料は2種類の材料種を含むものとしたが、これに限られず、3種類以上の材料種を含むものとしてもよい。この場合であっても、水素脆化処理を利用することによって、各材料種毎に分離することが可能である。
以下、実施例を説明する。
本実施例は、基材上にTi−W合金(Ti10%、W90%)を成膜するためのターゲットに関する。
第1のターゲット部分は非水素脆性材料であるW(第1の材料)からなり、第2のターゲット部分は水素脆性材料であるTi(第2の材料)からなるものとした。
図3を参照して、当該ターゲットの製造方法について説明する。
一辺(X方向)130mm、他辺(Z方向)100mm、厚さ(Y方向)7mmのWからなる板(第1の板5’)39枚と、一辺(X方向)130mm、他辺(Z方向)100mm、厚さ(Y方向)3mmのTiからなる板(第2の板6’)を図3(A)に示すように重ね合わせ、拡散接合させた。拡散接合は、真空ホットプレス法を用い、5.0×10−3Pa以下の圧力下、1300〜1400℃において300〜400kg/cmの圧力を印加した。これにより、図3(B)に示すように、一辺(X方向)130mm、他辺(Z方向)100mm、厚さ(Y方向)390mmのブロックが形成された。
次に、図3(B)に破線で示すように、当該ブロックを切削によって厚さ6mm(Z方向)に切断した。これにより図3(C)に示すように、長辺(Y方向)390mm、短辺(X方向)130mm、厚さ(Z方向)6mmのターゲットとなる板が切り出された。当該板をバッキングプレートにIn等のロー材でボンディングし、ターゲットを得た。
以上のように作製されたターゲットを用いたスパッタリングについて説明する。
当該ターゲットを、図4に概略構成を示すスパッタリング装置に取り付け、スパッタリングを実施した。スパッタリング条件は、印加電圧3.5kV、圧力7×10−3とした。
スパッタリング後、基材上にはTi−W合金からなる均一な組成を有する薄膜が成膜されていた。
スパッタリングに供された当該ターゲットから、W(第1の材料)及びTi(第2の材料)を回収する方法について説明する。
当該使用済みターゲットを200℃に加熱し、Inからなるロー材を溶融させ、バッキングプレートから取り外した後、エッチングを行ってロー材を除去した。当該使用済みターゲットを処理用チャンバに収容し、処理用チャンバを真空排気した。処理用チャンバ内に水素ガスを導入し、1.2気圧まで加圧した。この、100%水素雰囲気中でターゲットを600℃に加熱し、1時間維持した。その後、ターゲットの加熱温度を420℃とし、14時間維持した(水素脆化処理)。
このような水素脆化処理により、Tiが水素脆化により破砕され、Wはターゲット片の形態のまま回収された。回収されたWは高純度であり、例えばこのWを原料としてWターゲットとして利用することが可能である。
本発明は上述の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更され得る。
(変形例1)
本発明の変形例1について説明する。
図8は変形例1に係るターゲット31を示す図である。
図8(A)は、ターゲット31を被スパッタ面側からみた平面図であり、図8(B)はターゲット31の一部を拡大して示す斜視図である。
同図に示すように、ターゲット31は、複数の正方形の第1のターゲット片35からなる第1のターゲット部分33と、複数の正方形の第2のターゲット片36からなる第2のターゲット部分34から構成され、バッキングプレート32に接合されている。それぞれの第1のターゲット片35と第2のターゲット片36とは、隣接しないように、市松模様状に配置されている。なお、第1のターゲット部分33は2種以上の材料(第1の材料種及び第2の材料種)からなるものであってもよい。この場合、第1の材料種からなる第1のターゲット片35と、第2の材料種からなる第1のターゲット片35は第2のターゲット片36を介して交互に配置される。ターゲット31は、上述のように水素脆化処理されることにより、第2のターゲット片36が脆性破壊され、第1のターゲット片35はその形状を維持して残存する。このため、第1の材料と第2の材料を有効に分離させ、回収することが可能である。
(変形例2)
本発明の変形例2について説明する。
図9は変形例2に係るターゲット41を示す図である。
図9(A)は、ターゲット41を被スパッタ面側からみた平面図であり、図9(B)はターゲット41の一部を拡大して示す斜視図である。
同図に示すように、ターゲット41は、複数の正方形の第1のターゲット片45からなる第1のターゲット部分43と、格子状の単一部材からなる第2のターゲット部分44から構成され、バッキングプレート42に接合されている。それぞれの第1のターゲット片45は、第2のターゲット部分44の格子間の隙間に嵌め込まれ、それぞれ周囲の第2のターゲット部分44に接合され、他の第1のターゲット片45との間は第2のターゲット部分44によって隔てられている。なお、第1のターゲット部分43は2種以上の材料(第1の材料種及び第2の材料種)からなるものであってもよい。この場合、第1の材料種からなる第1のターゲット片45と、第2の材料種からなる第1のターゲット片45は第2のターゲット部分44を介して交互に配置される。ターゲット41は、上述のように水素脆化処理されることにより、第2のターゲット部分44が脆性破壊され、第1のターゲット片45はその形状を維持して残存する。このため、第1の材料と第2の材料を有効に分離させ、回収することが可能である。
(変形例3)
本発明の変形例3について説明する。
図10は変形例3に係るターゲット51を示す図である。
図10(A)は、ターゲット51を被スパッタ面側からみた平面図であり、図10(B)はターゲット51の一部を拡大して示す斜視図である。
同図に示すように、ターゲット51は、単一部材からなる櫛歯状の第1のターゲット部分53と、単一部材からなる櫛歯状の第2のターゲット部分54から構成され、各々の歯に対応する部分が互い違いとなるように組み合わされて、バッキングプレート52に接合されている。これにより、第1の材料と第2の材料の合金組成を均一化することが可能である。ターゲット51は、上述のように水素脆化処理されることにより、第2のターゲット部分54が脆性破壊され、第1のターゲット片55はその形状を維持して残存する。このため、第1の材料と第2の材料を有効に分離させ、回収することが可能である。
上述の各実施形態において、ターゲットは矩形であるものを例としたが、これらに限られず、円形その他の形状とすることが可能である。また、ターゲットは平面的なものに限られず、円柱形等の立体的な形状であってもよい。
1 スパッタリングターゲット
2 バッキングプレート
3 第1のターゲット部分
4 第2のターゲット部分
5 第1のターゲット片
6 第2のターゲット片
21 ターゲット
22 バッキングプレート
23 第1のターゲット部分
24 第2のターゲット部分
25 第1のターゲット片
26 第2のターゲット片
31 ターゲット
32 バッキングプレート
33 第1のターゲット部分
34 第2のターゲット部分
35 第1のターゲット片
36 第2のターゲット片
41 ターゲット
42 バッキングプレート
43 第1のターゲット部分
44 第2のターゲット部分
45 第1のターゲット片
51 ターゲット
52 バッキングプレート
53 第1のターゲット部分
54 第2のターゲット部分
55 第1のターゲット片

Claims (6)

  1. 非水素脆性材料である第1の材料からなる第1のターゲット部分と、水素脆性材料である第2の材料からなる第2のターゲット部分とが接合されたスパッタリングターゲットを水素脆化処理することで、前記スパッタリングターゲットから前記第2のターゲット部分を分離させ、
    前記第2の材料を回収し、
    前記第1の材料を回収する
    スパッタリングターゲットの処理方法。
  2. 請求項1に記載のスパッタリングターゲットの処理方法であって、
    前記水素脆化処理する工程は、前記スパッタリングターゲットを水素雰囲気中において第1の温度に維持し、その後第1の温度より低い第2の温度とすることを含む
    スパッタリングターゲットの処理方法。
  3. 合金からなる薄膜を成膜するための、被スパッタ面を有するスパッタリングターゲットであって、
    水素雰囲気中で脆化されない非水素脆性材料である第1の材料からなり、前記被スパッタ面の一部を形成する第1のターゲット部分と、
    前記水素雰囲気中で脆化する水素脆性材料である第2の材料からなり、前記第1のターゲット部分と接合された、前記被スパッタ面の他の一部を形成する第2のターゲット部分と
    を具備するスパッタリングターゲット。
  4. 請求項3に記載のスパッタリングターゲットであって、
    前記第1のターゲット部分は、複数の第1のターゲット片からなり、
    前記第2のターゲット部分は、複数の第2のターゲット片からなり、
    前記複数の第1のターゲット片の間には、前記第2のターゲット片が介在する
    スパッタリングターゲット。
  5. 請求項4に記載のスパッタリングターゲットであって、
    前記第1の材料は、第1の元素を含む第1の材料種と、前記第1の元素とは異なる第2の元素を含む第2の材料種とを含み、
    前記複数の第1のターゲット片は、各前記第1の材料種からなるターゲット片と、前記第2の材料種からなるターゲット片とを含む
    スパッタリングターゲット。
  6. 請求項5に記載のスパッタリングターゲットであって、
    前記第1の材料種は、Al、Cu、W、Mo、Pt、Crのうちのいずれかであり、
    前記第2の材料種は、Ti、Zr、Fe、Ni、Ta、Nbのうちのいずれかである
    スパッタリングターゲット。
JP2011515862A 2009-05-28 2010-05-18 スパッタリングターゲットの処理方法 Active JP5232915B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515862A JP5232915B2 (ja) 2009-05-28 2010-05-18 スパッタリングターゲットの処理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009129095 2009-05-28
JP2009129095 2009-05-28
PCT/JP2010/003326 WO2010137254A1 (ja) 2009-05-28 2010-05-18 スパッタリングターゲット及びスパッタリングターゲットの処理方法
JP2011515862A JP5232915B2 (ja) 2009-05-28 2010-05-18 スパッタリングターゲットの処理方法

Publications (2)

Publication Number Publication Date
JPWO2010137254A1 true JPWO2010137254A1 (ja) 2012-11-12
JP5232915B2 JP5232915B2 (ja) 2013-07-10

Family

ID=43222383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515862A Active JP5232915B2 (ja) 2009-05-28 2010-05-18 スパッタリングターゲットの処理方法

Country Status (7)

Country Link
US (1) US20120055787A1 (ja)
JP (1) JP5232915B2 (ja)
KR (1) KR20110106920A (ja)
CN (1) CN102317498A (ja)
DE (1) DE112010002097T5 (ja)
TW (1) TW201107512A (ja)
WO (1) WO2010137254A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014639B (zh) * 2012-12-12 2015-02-25 京东方科技集团股份有限公司 溅射靶材及溅射装置
JP6639922B2 (ja) * 2016-01-20 2020-02-05 国立大学法人広島大学 炭化珪素半導体装置及びその製造方法
JP7473112B2 (ja) 2020-11-17 2024-04-23 国立大学法人東北大学 圧電体薄膜、圧電体薄膜の製造装置、圧電体薄膜の製造方法、および、疲労推定システム
US20220197146A1 (en) * 2020-12-22 2022-06-23 Applied Materials, Inc. Photoresists by physical vapor deposition
JP2022108909A (ja) * 2021-01-14 2022-07-27 東京エレクトロン株式会社 成膜装置及び成膜方法
CN114150279A (zh) * 2021-12-09 2022-03-08 株洲硬质合金集团有限公司 一种钼铌合金轧制靶材的热处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064438A (en) * 1976-01-29 1977-12-20 The University Of Utah Nondestructive detection and measurement of hydrogen embrittlement
JPS63317670A (ja) * 1987-06-18 1988-12-26 Fuji Electric Co Ltd 酸化物薄膜の製造方法
JP2898515B2 (ja) * 1993-07-15 1999-06-02 株式会社ジャパンエナジー モザイクターゲット
JPH0762528A (ja) * 1993-08-24 1995-03-07 Toshiba Corp スパッタリングターゲット
US6140198A (en) * 1998-11-06 2000-10-31 United Microelectronics Corp. Method of fabricating load resistor
JP2004204253A (ja) 2002-12-24 2004-07-22 Hitachi Metals Ltd ターゲット
JP5000115B2 (ja) * 2005-09-26 2012-08-15 株式会社日本製鋼所 水素透過合金
JP5200334B2 (ja) * 2006-05-29 2013-06-05 トヨタ自動車株式会社 貴金属めっきを有する金属製部材およびその製造方法

Also Published As

Publication number Publication date
KR20110106920A (ko) 2011-09-29
TW201107512A (en) 2011-03-01
CN102317498A (zh) 2012-01-11
WO2010137254A1 (ja) 2010-12-02
DE112010002097T5 (de) 2012-04-19
JP5232915B2 (ja) 2013-07-10
US20120055787A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5232915B2 (ja) スパッタリングターゲットの処理方法
JP4828782B2 (ja) 中空カソードターゲットおよびその製造方法
US6619537B1 (en) Diffusion bonding of copper sputtering targets to backing plates using nickel alloy interlayers
RU2304633C2 (ru) Обновление изделий из тугоплавких металлов
US7721939B2 (en) Sputter target and backing plate assembly
JP4465662B2 (ja) 金属粉末の製造方法およびターゲット材の製造方法
KR20040103920A (ko) 레이저 형성 및 용융에 의한 고융점 금속 및 합금 정련
WO2005083148A1 (ja) 表面欠陥の少ないスパッタリングターゲット及びその表面加工方法
JP2001342506A (ja) 粉末原料の製造方法およびターゲット材の製造方法
US9546418B2 (en) Diffusion-bonded sputter target assembly and method of manufacturing
JP2004289065A (ja) シリコン焼結体及びその製造方法
CN113272468B (zh) 溅射靶制品以及溅射靶制品的再生品的制造方法
JP5708472B2 (ja) マグネトロンスパッタリングカソード及びこれを備えたスパッタリング装置
JP2010106330A (ja) スパッタリングターゲットの製造方法、スパッタリングターゲット、スパッタリング装置
JPH0734234A (ja) モザイクターゲット
KR20180047843A (ko) 귀금속 스퍼터링 타겟의 재생방법 및 그에 따라 재생된 귀금속 스퍼터링 타겟
KR20150049884A (ko) 귀금속 스퍼터링 폐 타겟의 재생방법 및 이에 의해 재생된 귀금속 스퍼터링 타겟
JP4354721B2 (ja) シリコン焼結体の製造方法
WO2015064810A1 (ko) 스퍼터링 폐 타겟의 재생방법 및 이에 의해 재생된 스퍼터링 타겟
JP2014169467A (ja) 成膜用ターゲットの再生方法
US20230220538A1 (en) METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD
JP2007162039A (ja) 真空成膜装置における装置構成部品
JP2003147518A (ja) スパッタリングターゲット
JP2016160522A (ja) ターゲット
JP6359901B2 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250