JPWO2004083930A1 - 顕微鏡及び試料観察方法 - Google Patents

顕微鏡及び試料観察方法 Download PDF

Info

Publication number
JPWO2004083930A1
JPWO2004083930A1 JP2005503756A JP2005503756A JPWO2004083930A1 JP WO2004083930 A1 JPWO2004083930 A1 JP WO2004083930A1 JP 2005503756 A JP2005503756 A JP 2005503756A JP 2005503756 A JP2005503756 A JP 2005503756A JP WO2004083930 A1 JPWO2004083930 A1 JP WO2004083930A1
Authority
JP
Japan
Prior art keywords
image
sample
semiconductor device
solid immersion
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005503756A
Other languages
English (en)
Other versions
JP4567594B2 (ja
Inventor
寺田 浩敏
浩敏 寺田
育男 荒田
育男 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of JPWO2004083930A1 publication Critical patent/JPWO2004083930A1/ja
Application granted granted Critical
Publication of JP4567594B2 publication Critical patent/JP4567594B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/368Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements details of associated display arrangements, e.g. mounting of LCD monitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0342Solid sample being immersed, e.g. equiindex fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

観察対象の試料となる半導体デバイスSに対し、半導体デバイスSの観察を行うための画像取得部1と、対物レンズ20を含む光学系2とを設置する。また、半導体デバイスSの画像を拡大するための固浸レンズ(SIL)3を、半導体デバイスSから対物レンズ20への光軸を含み、半導体デバイスSの表面に密着して設置される挿入位置と、光軸を外れた待機位置との間を移動可能に設置する。そして、SIL3を挿入した際にSIL3からの反射光を含む画像を取得し、その画像を参照して、SIL駆動部30によってSIL3の挿入位置を調整する。これにより、半導体デバイスの微細構造解析などに必要な試料の観察を容易に行うことが可能な半導体検査装置(顕微鏡)、及び半導体検査方法(試料観察方法)が実現される。

Description

本発明は、半導体デバイスなどの試料を観察するために用いられる顕微鏡、及び試料観察方法に関するものである。
半導体検査においては、半導体デバイスを試料として顕微鏡等で観察し、それによって半導体デバイスの故障解析や信頼性評価などを行う方法が用いられる。半導体検査装置としては、エミッション顕微鏡やIR−OBIRCH装置などが知られている(特開平7−190946号公報、特公平7−18806号公報参照)。しかしながら、近年、検査対象となる半導体デバイスの微細化が進んでおり、可視光や赤外光を使用した従来の検査装置では、光学系での回折限界に起因する制限により、微細構造の解析が困難になってきている。
このため、このような半導体デバイスの微細構造について解析を行って、半導体デバイス中に形成されたトランジスタや配線などの回路パターンに発生した異常箇所を検出する場合、まず、可視光や赤外光を使用した検査装置によって異常箇所が存在する範囲をある程度まで絞り込む。そして、その絞り込まれた範囲について、より高分解能な電子顕微鏡などの観察装置を用いて観察を行うことで、半導体デバイスでの異常箇所を検出する方法が用いられている。
上記したように、光を使用した検査を行った後に電子顕微鏡で高分解能の観察を行う方法では、検査対象となる半導体デバイスの準備、設置が複雑であるなどの理由により、半導体デバイスの検査に大変な手間と時間を要するという問題がある。
一方、観察対象の画像を拡大するレンズとして、固浸レンズ(SIL:Solid Immersion Lens)が知られている。SILは、半球形状、またはワイエルストラス球と呼ばれる超半球形状のレンズである。このSILを観察対象の表面に密着させて設置すれば、開口数NA及び倍率をともに拡大することができ、高い空間分解能での観察が可能となる。しかしながら、SILは、大きさが1mm程度と小型のレンズ素子である。このため、半導体デバイスの検査においては、その取り扱いや観察制御の難しさなどにより、SILを用いた検査は実用化されていない。これは、半導体デバイス以外の試料の観察においても同様である。
本発明は、以上の問題点を解決するためになされたものであり、半導体デバイスの微細構造解析などに必要な試料の観察を容易に行うことが可能な顕微鏡、及び試料観察方法を提供することを目的とする。
このような目的を達成するために、本発明による顕微鏡は、試料を観察するための顕微鏡であって、(1)試料からの光が入射する対物レンズを含み、試料の画像を導く光学系と、(3)試料から対物レンズへの光軸を含む挿入位置、及び光軸を外れた待機位置の間を移動可能に設けられた固浸レンズと、(4)固浸レンズを挿入位置及び待機位置の間で駆動するとともに、対物レンズに対する固浸レンズの挿入位置を調整する固浸レンズ駆動手段と、(5)固浸レンズからの反射光を含む画像を参照して、固浸レンズの挿入位置の調整を指示する指示手段とを備えることを特徴とする。
また、本発明による試料観察方法は、試料を観察する試料観察方法であって、(a)試料の観察画像を、試料からの光が入射する対物レンズを含む光学系を介して取得する第1画像取得ステップと、(b)観察画像から試料での観察箇所を設定する観察設定ステップと、(c)固浸レンズを、試料から対物レンズへの光軸を外れた待機位置から、光軸を含む挿入位置へと移動するレンズ挿入ステップと、(d)固浸レンズからの反射光を含む画像を取得し、その画像を参照して、対物レンズに対する固浸レンズの挿入位置を調整する位置調整ステップと、(e)固浸レンズによって拡大された試料の観察画像を、固浸レンズ及び光学系を介して取得する第2画像取得ステップとを備えることを特徴とする。
上記した顕微鏡及び試料観察方法においては、観察対象である半導体デバイスなどの試料と対物レンズとの間に固浸レンズがない通常の状態での観察画像、及び固浸レンズを挿入した状態での拡大観察画像の両者を取得可能なように顕微鏡を構成している。そして、固浸レンズを挿入した際に、固浸レンズからの反射光を含む画像を取得し、その画像を参照することによって固浸レンズの位置を調整することとしている。
このような構成によれば、試料に対して、固浸レンズを介して高分解能の観察を行うことができる。また、固浸レンズを挿入した状態での観察画像を利用して位置合わせを行うことにより、試料の観察への適用において、固浸レンズを効率良く取り扱うことが可能となる。以上により、試料の微細構造などの観察を容易に行うことが可能な顕微鏡、及び試料観察方法が実現される。ここで、顕微鏡においては、試料の画像を導く光学系に対し、試料の画像を取得する画像取得手段を設けても良い。
上記した顕微鏡は、半導体デバイスの画像を取得して、その異常箇所を検出する半導体検査装置であって、検査対象となる半導体デバイスの画像を取得する画像取得手段と、半導体デバイスからの光が入射する対物レンズを含み、半導体デバイスの画像を画像取得手段へと導く光学系と、半導体デバイスから対物レンズへの光軸を含む挿入位置、及び光軸を外れた待機位置の間を移動可能に設けられた固浸レンズと、固浸レンズを挿入位置及び待機位置の間で駆動するとともに、対物レンズに対する固浸レンズの挿入位置を調整する固浸レンズ駆動手段と、画像取得手段で取得された固浸レンズからの反射光を含む画像を参照して、固浸レンズの挿入位置の調整を指示する指示手段とを備える半導体検査装置に適用することが可能である。
また、上記した試料観察方法は、半導体デバイスの画像を取得して、その異常箇所を検出する半導体検査方法であって、検査対象となる半導体デバイスの観察画像を、半導体デバイスからの光が入射する対物レンズを含む光学系を介して取得する第1画像取得ステップと、観察画像から半導体デバイスでの検査箇所を設定する検査設定ステップと、固浸レンズを、半導体デバイスから対物レンズへの光軸を外れた待機位置から、光軸を含む挿入位置へと移動するレンズ挿入ステップと、固浸レンズからの反射光を含む画像を取得し、その画像を参照して、対物レンズに対する固浸レンズの挿入位置を調整する位置調整ステップと、固浸レンズによって拡大された半導体デバイスの観察画像を、固浸レンズ及び光学系を介して取得する第2画像取得ステップとを備える半導体検査方法に適用することが可能である。
上記した半導体検査装置及び検査方法においては、観察対象である半導体デバイスと対物レンズとの間に固浸レンズがない通常の状態での観察画像、及び固浸レンズを挿入した状態での拡大観察画像の両者を取得可能なように検査装置を構成している。そして、固浸レンズを挿入した際に、固浸レンズからの反射光を含む画像を取得し、その画像を参照することによって固浸レンズの位置を調整することとしている。
このような構成によれば、半導体デバイスに対して、固浸レンズを介して高分解能の観察を行うことができる。また、固浸レンズを挿入した状態での観察画像を利用して位置合わせを行うことにより、半導体デバイスの検査への適用において、固浸レンズを効率良く取り扱うことが可能となる。以上により、微細構造解析などの半導体デバイスの検査を容易に行うことが可能な半導体検査装置、及び検査方法が実現される。
ここで、上記した顕微鏡は、指示手段が、固浸レンズからの反射光を含む画像を参照し、反射光像の重心位置が試料での観察箇所に対して一致するように、固浸レンズの挿入位置の調整を指示することが好ましい。同様に、試料観察方法は、位置調整ステップにおいて、固浸レンズからの反射光を含む画像を参照し、反射光像の重心位置が試料での観察箇所に対して一致するように、固浸レンズの挿入位置を調整することが好ましい。これにより、固浸レンズを挿入した状態での観察画像を利用した位置合わせを確実に行うことができる。なお、試料での観察箇所は、半導体検査装置及び検査方法においては、半導体デバイスでの検査箇所となる。
また、顕微鏡は、指示手段が、固浸レンズの挿入位置の調整と合わせて、対物レンズと試料との間の距離の調整を指示することとしても良い。同様に、試料観察方法は、対物レンズと試料との間の距離を調整する距離調整ステップを備えることとしても良い。これにより、対物レンズを含む光学系、及び固浸レンズを介して、半導体デバイスなどの試料の拡大観察画像を良好な画像として取得することができる。
図1は、半導体検査装置の一実施形態の構成を模式的に示すブロック図である。
図2A及び図2Bは、(A)半球形状、及び(B)超半球形状の固浸レンズについて示す図である。
図3は、図1に示した半導体検査装置を用いた半導体検査方法を示すフローチャートである。
図4は、固浸レンズを挿入した状態で取得される画像を示す写真である。
図5は、半導体検査装置の他の実施形態を示す構成図である。
図6は、図5に示した半導体検査装置を側面から示す構成図である。
図7A及び図7Bは、固浸レンズに対して取得される反射光像での反射光パターンの例を示す図である。
図8A及び図8Bは、固浸レンズに対して取得される反射光像での反射光パターンの例を示す図である。
図9A及び図9Bは、固浸レンズに対して取得される反射光像での反射光パターンの例を示す図である。
以下、図面とともに本発明による顕徴鏡、及び試料観察方法の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
まず、本発明による顕微鏡である半導体検査装置の基本的構成について説明する。図1は、本発明による半導体検査装置の一実施形態の構成を模式的に示すブロック図である。本装置は、例えばトランジスタや配線などからなる回路パターンが形成された半導体デバイスSを観察対象(検査対象)の試料とし、半導体デバイスSの画像を取得して、その異常箇所を検出する検査装置である。ここで、本発明による顕微鏡及び試料観察方法は、一般に試料を観察する場合に適用可能であるが、以下においては、主にその適用例である半導体検査装置及び検査方法について説明する。
本実施形態による半導体検査装置は、半導体デバイスSの観察を行う観察部Aと、観察部Aの各部の動作を制御する制御部Bと、半導体デバイスSの検査に必要な処理や指示等を行う解析部Cとを備えている。また、本検査装置による検査対象、すなわち顕微鏡による観察対象の試料となる半導体デバイスSは、観察部Aに設けられたステージ18上に載置されている。
観察部Aは、暗箱(図示していない)内に設置された画像取得部1と、光学系2と、固浸レンズ(SIL:Solid Immersion Lens)3とを有している。画像取得部1は、例えば光検出器や撮像装置などからなり、半導体デバイスSの画像を取得する手段である。また、画像取得部1と、ステージ18上に載置された半導体デバイスSとの間には、半導体デバイスSからの光による画像を画像取得部1へと導く光学系2が設けられている。
光学系2には、その半導体デバイスSに対向する所定位置に、半導体デバイスSからの光が入射する対物レンズ20が設けられている。半導体デバイスSから出射、あるいは反射等された光は対物レンズ20へと入射し、この対物レンズ20を含む光学系2を介して画像取得部1に到達する。そして、画像取得部1において、検査に用いられる半導体デバイスSの画像が取得される。
画像取得部1と光学系2とは、互いの光軸が一致された状態で、一体に構成されている。また、これらの画像取得部1及び光学系2に対し、XYZステージ15が設置されている。これにより、画像取得部1及び光学系2は、X、Y方向(水平方向)、及びZ方向(垂直方向)のそれぞれで必要に応じて移動させて、半導体デバイスSに対して位置合わせ及び焦点合わせが可能な構成となっている。なお、半導体デバイスSに対する位置合わせ及び焦点合わせについては、半導体デバイスSを載置するステージ18を駆動することによって行っても良い。
また、検査対象となる半導体デバイスSに対して、検査部16が設けられている。検査部16は、半導体デバイスSの検査を行う際に、必要に応じて、半導体デバイスSの状態の制御等を行う。検査部16による半導体デバイスSの状態の制御方法は、半導体デバイスSに対して適用する具体的な検査方法によって異なるが、例えば、半導体デバイスSに形成された回路パターンの所定部分に電圧を供給する方法、あるいは、半導体デバイスSに対してプローブ光となるレーザ光を照射する方法などが用いられる。
本実施形態においては、この観察部Aには、さらに、SIL3が設置されている。図2A及び図2Bは、固浸レンズ(SIL)の構成及び使用方法の例を示す図である。SIL3は、半球形状、またはワイエルストラス球と呼ばれる超半球形状を有するレンズであり、図2A及び図2Bに示すように、観察対象である半導体デバイスSの表面に密着して設置される。ここで、SIL3の半径をR、屈折率をnとする。
このようなSIL3のレンズ形状は、収差がなくなる条件によって決まるものである。半球形状を有するSILでは、図2Aに示すように、その球心が焦点となる。このとき、開口率NA及び倍率はともにn倍となる。一方、超半球形状を有するSILでは、図2Bに示すように、球心からR/nだけ下方にずれた位置が焦点となる。このとき、開口率NA及び倍率はともにn倍となる。あるいは、球心と、球心からR/nだけ下方にずれた位置との間の位置を焦点とするなど、半導体デバイスSに対する具体的な観察条件等に応じて、図2A及び図2Bに示した以外の条件でSIL3を用いても良い。
図1に示した半導体検査装置においては、このSIL3は、画像取得部1及び光学系2と、ステージ18上に載置された半導体デバイスSとに対して移動可能に設置されている。具体的には、SIL3は、半導体デバイスSから対物レンズ20への光軸を含み、上記したように半導体デバイスSの表面に密着して設置される挿入位置と、光軸を外れた位置(待機位置)との間を移動可能に構成されている。SIL3は挿入位置では、その平面状もしくは凸面状のレンズ下面が半導体デバイスSに密着するように配置される。このようなSILとしては、例えばplano−convex lens、bi−convex lensが知られている(例えば、特開平5−157701号公報、及び米国特許第6594086号公報参照)。
また、SIL3に対し、固浸レンズ駆動部(SIL駆動部)30が設けられている。SIL駆動部30は、SIL3を駆動して上記した挿入位置及び待機位置の間を移動させる駆動手段である。また、SIL駆動部30は、SIL3の位置を微小に移動させることにより、光学系2の対物レンズ20に対するSIL3の挿入位置を調整する。なお、図1においては、対物レンズ20と半導体デバイスSとの間の挿入位置に配置された状態でSIL3を図示している。
半導体デバイスSを検査するための観察等を行う観察部Aに対して、制御部B及び解析部Cが設けられている。
制御部Bは、観察制御部51と、ステージ制御部52と、SIL制御部53とを有している。観察制御部51は、画像取得部1及び検査部16の動作を制御することによって、観察部Aにおいて行われる半導体デバイスSの観察の実行や観察条件の設定などを制御する。
ステージ制御部52は、XYZステージ15の動作を制御することによって、本検査装置における検査箇所となる画像取得部1及び光学系2による半導体デバイスSの観察箇所の設定、あるいはその位置合わせ、焦点合わせ等を制御する。また、SIL制御部53は、SIL駆動部30の動作を制御することによって、挿入位置及び待機位置の間でのSIL3の移動、あるいはSIL3の挿入位置の調整等を制御する。
解析部Cは、画像解析部61と、指示部62とを有している。画像解析部61は、画像取得部1によって取得された画像に対して、必要な解析処理等を行う。また、指示部62は、操作者からの入力内容や、画像解析部61による解析内容などを参照し、制御部Bを介して、観察部Aにおける半導体デバイスSの検査の実行に関する必要な指示を行う。
特に、本実施形態においては、解析部Cは、観察部AにSIL3及びSIL駆動部30が設置されていることに対応して、SIL3を用いた半導体デバイスSの観察及び検査に関して必要な処理及び指示を行う。
すなわち、対物レンズ20と試料である半導体デバイスSとの間にSIL3を挿入する場合、観察部Aにおいて、画像取得部1は、SIL3が挿入位置にある状態でSIL3からの反射光を含む画像を取得する。また、解析部Cにおいて、画像解析部61は、画像取得部1で取得されたSIL3からの反射光を含む画像について、その反射光像の重心位置を求めるなどの所定の解析を行う。そして、指示部62は、画像解析部61で解析されたSIL3からの反射光を含む画像を参照し、SIL制御部53に対して、反射光像の重心位置が半導体デバイスSでの検査箇所(観察箇所)に対して一致するように、SIL3の挿入位置の調整を指示する。
本発明による試料観察方法である半導体検査方法について説明する。図3は、図1に示した半導体検査装置を用いた半導体検査方法を示すフローチャートである。
まず、検査対象である半導体デバイスSに対し、光軸を外れた待機位置にSIL3を配置した状態で観察を行う。ここでは、画像取得部1により、対物レンズ20を含む光学系2を介して、半導体デバイスSの観察画像である回路パターンのパターン画像を取得する(ステップS101)。また、検査部16によって半導体デバイスSの状態を所定の状態に制御するとともに、半導体デバイスSの異常箇所を検出するための異常観察画像を取得する(S102、第1画像取得ステップ)。
次に、画像取得部1で取得されたパターン画像及び異常観察画像を用いて、半導体デバイスSに異常箇所があるかどうかを調べる。異常箇所がある場合にはその位置を検出するとともに、検出された異常箇所を半導体検査装置による検査箇所として設定する。ここで設定される検査箇所は、顕微鏡を用いた試料観察における観察箇所である(S103、検査設定ステップ、観察設定ステップ)。そして、設定された検査箇所(観察箇所)が画像取得部1によって取得される画像の中央に位置するように、XYZステージ15によって画像取得部1及び光学系2の位置を設定する。
続いて、半導体デバイスSの検査箇所に対してSIL3の設置を行う(S104)。まず、光軸を外れた待機位置にあるSIL3をSIL駆動部30によって駆動して、半導体デバイスSから対物レンズ20への光軸を含む挿入位置へとSIL3を移動する(S105、レンズ挿入ステップ)。
半導体デバイスSと対物レンズ20との間にSIL3を挿入したら、SIL3の挿入位置の調整を行う(S106、位置調整ステップ)。まず、画像取得部1により、SIL3からの反射光を含む画像を取得する。SIL3の挿入位置の調整は、この画像に含まれる反射光像におけるSIL3の面頂からの反射光をガイドとして行われる。
図4は、半導体デバイスSと対物レンズ20との間にSIL3を挿入した状態で画像取得部1によって取得される画像を示す写真である。この写真の中央にある明るい部分が、SIL3の面頂からの反射光に相当する。画像解析部61は、このようなSIL3からの反射光を含む画像に対し、自動で、または操作者からの指示に基づいて解析を行い、反射光像の重心位置を求める。そして、指示部62は、SIL制御部53を介しSIL3及びSIL駆動部30に対して、画像解析部61で得られた反射光像の重心位置が半導体デバイスSでの検査箇所に対して一致するように、SIL3の挿入位置の調整を指示する。これにより、SIL3の半導体デバイスS及び対物レンズ20に対する位置合わせが行われる。
さらに、指示部62は、上記したSIL3の挿入位置の調整と合わせて、ステージ制御部52を介しXYZステージ15に対して、SIL3が密着して設置されている半導体デバイスSと、光学系2の対物レンズ20との間の距離の調整を指示する(S107、距離調整ステップ)。これにより、SIL3が挿入された状態における焦点合わせが行われる。そして、画像取得部1は、半導体デバイスS上に配置されたSIL3、及び対物レンズ20を含む光学系2を介して、半導体デバイスSの拡大された観察画像を取得する(S108、第2画像取得ステップ)。
本実施形態による半導体検査装置、及び半導体検査方法の効果について説明する。
図1に示した半導体検査装置、及び図3に示した半導体検査方法においては、観察対象である半導体デバイスSと対物レンズ20との間にSIL3がない通常の状態での観察画像、及びSIL3を挿入した状態での拡大観察画像の両者を、画像取得部1によって取得可能な構成を用いている。そして、SIL3を挿入した際に、SIL3からの反射光を含む画像を取得し、その画像を参照することによってSIL3の位置を調整することとしている。
このような構成によれば、試料である半導体デバイスSに対して、SIL3を介して高分解能の観察を行うことができる。また、SIL3を挿入した状態での観察画像を利用して位置合わせを行うことにより、半導体デバイスSの検査(試料の観察)への適用において、SIL3を効率良く取り扱うことが可能となる。以上により、微細構造解析などの半導体デバイスSの検査を容易に行うことが可能な半導体検査装置、及び検査方法が実現される。また、上記のような構成を有する顕微鏡、及び試料観察方法によれば、試料の微細構造などの観察を容易に行うことが可能となる。
SIL3からの反射光を含む画像を用いてSIL3の位置合わせを行う場合、具体的には上記したように、SIL3からの反射光像の重心位置を求め、その重心位置が半導体デバイスSでの検査箇所、すなわち試料での観察箇所に対して一致するようにSIL3の挿入位置を調整することが好ましい。これにより、SIL3の位置合わせを確実に行うことができる。あるいは、これ以外の位置合わせ方法を用いても良い。例えば、SIL3からの反射光像の重心位置が、半導体デバイスSでの検査箇所の重心位置に対して一致するようにSIL3の挿入位置を調整することとしても良い。
また、SIL3を用いて半導体デバイスSの検査を行う場合、半導体デバイスSの検査箇所を画像取得部1によって取得される画像の中央とすることが好ましい。これにより、半導体デバイスSの観察において対物レンズ20の瞳を有効に用いることができる。すなわち、SIL3を使用した場合、対物レンズ20の瞳は一部分のみが使用され、画角に応じてその使用位置が変わることとなる。したがって、対物レンズ20の光軸上にSIL3を配置することにより、光の利用効率が最も高くなる。また、このようなSIL3の配置では、SIL3で発生するシェーディングを小さくすることができる。
なお、図1に示した半導体検査装置では、半導体デバイスSに対する画像取得部1及び光学系2の位置合わせ及び焦点合わせを行うため、画像取得部1及び光学系2に対してXYZステージ15を設置している。このようなXYZステージについては、半導体デバイスSが載置されているステージ18としてXYZステージを用いても良い。また、角度方向に可動に構成されたθステージをさらに設置しても良い。
図5は、本発明による半導体検査装置の他の実施形態を示す構成図である。また、図6は、図5に示した半導体検査装置を側面から示す構成図である。本実施形態は、図1に示した半導体検査装置について、その具体的な構成を示すものとなっている。なお、図6においては、解析部C等について図示を省略している。
本実施形態による半導体検査装置は、観察部Aと、制御部Bと、解析部Cとを備えている。検査対象となる半導体デバイスSは、観察部Aに設けられたステージ18上に載置されている。さらに、本実施形態においては、半導体デバイスSに対して検査に必要な電気信号等を印加するテストフィクスチャ19が設置されている。半導体デバイスSは、例えば、その裏面が対物レンズ20に対面するように配置される。
観察部Aは、暗箱(図示していない)内に設置された高感度カメラ10と、レーザスキャン光学系(LSM:Laser Scanning Microscope)ユニット12と、光学系22、24と、XYZステージ15と、SIL3と、SIL駆動部30とを有している。
これらのうち、カメラ10及びLSMユニット12は、図1に示した構成における画像取得部1に相当している。また、光学系22、24は、光学系2に相当している。光学系22、24の半導体デバイスS側には、対物レンズ20が設けられている。本実施形態においては、図5及び図6に示すように、それぞれ異なる倍率を有する複数の対物レンズ20が切り換え可能に設けられている。また、テストフィクスチャ19は、検査部16に相当している。また、LSMユニット12は、画像取得部1としての機能と合わせて、検査部16としての機能も有している。
光学系22は、対物レンズ20を介して入射された半導体デバイスSからの光をカメラ10へと導くカメラ用光学系である。このカメラ用光学系22は、対物レンズ20によって所定の倍率で拡大された画像をカメラ10内部の受光面に結像させるための結像レンズ22aを有している。また、対物レンズ20と結像レンズ22aとの間には、光学系24のビームスプリッタ24aが介在している。高感度カメラ10としては、例えば冷却CCDカメラなどが用いられる。
このような構成において、半導体デバイスSからの光は、対物レンズ20及びカメラ用光学系22を含む光学系を介してカメラ10へと導かれる。そして、カメラ10によって、半導体デバイスSのパターン画像などの画像が取得される。あるいは、半導体デバイスSの発光画像を取得することも可能である。この場合には、テストフィクスチャ19によって電圧を印加した状態で半導体デバイスSから発生した光が、光学系を介してカメラ10へと導かれる。そして、カメラ10によって、異常観察画像として用いられる半導体デバイスSの発光画像が取得される。半導体デバイスSからの発光としては、半導体デバイスの欠陥に基づく異常箇所に起因するものや、半導体デバイス中のトランジスタのスイッチング動作に伴うトランジェント発光などが例として挙げられる。さらに、取得される画像は、デバイスの欠陥に基づく発熱画像であっても良い。
LSMユニット12は、赤外レーザ光を照射するためのレーザ光導入用光ファイバ12aと、光ファイバ12aから照射されたレーザ光を平行光とするコリメータレンズ12bと、レンズ12bによって平行光とされたレーザ光を反射するビームスプリッタ12eと、ビームスプリッタ12eで反射されたレーザ光をXY方向に走査して半導体デバイスS側へと出射するXYスキャナ12fとを有している。
また、LSMユニット12は、半導体デバイスS側からXYスキャナ12fを介して入射され、ビームスプリッタ12eを透過した光を集光するコンデンサレンズ12dと、コンデンサレンズ12dによって集光された光を検出するための検出用光ファイバ12cとを有している。
光学系24は、半導体デバイスS及び対物レンズ20と、LSMユニット12のXYスキャナ12fとの間で光を導くLSMユニット用光学系である。LSMユニット用光学系24は、半導体デバイスSから対物レンズ20を介して入射された光の一部を反射するビームスプリッタ24aと、ビームスプリッタ24aで反射された光の光路をLSMユニット12に向かう光路へと変換するミラー24bと、ミラー24bで反射された光を集光するレンズ24cとを有している。
このような構成において、レーザ光源(図示していない)からレーザ光導入用光ファイバ12aを介して出射された赤外レーザ光は、レンズ12b、ビームスプリッタ12e、XYスキャナ12f、光学系24、及び対物レンズ20を通って半導体デバイスSへと照射され、半導体デバイスS内へと入射する。
この入射光に対する半導体デバイスSからの反射散乱光は、半導体デバイスSに設けられている回路パターンを反映している。半導体デバイスSからの反射光は、入射光とは逆の光路を通ってビームスプリッタ12eへと到達し、ビームスプリッタ12eを透過する。そして、ビームスプリッタ12eを透過した光は、レンズ12dを介して検出用光ファイバ12cへと入射し、検出用光ファイバ12cに接続された光検出器によって検出される。
検出用光ファイバ12cを介して光検出器で検出される光の強度は、上記したように、半導体デバイスSに設けられている回路パターンを反映した強度となっている。したがって、XYスキャナ12fによって赤外レーザ光が半導体デバイスS上をX−Y走査することにより、半導体デバイスS内部の回路パターンなどの画像を鮮明に撮像することができる。
観察部Aには、さらに、SIL3が設置されている。SIL3は、高感度カメラ10、LSMユニット12、光学系22、24、及び対物レンズ20と、ステージ18上に載置された半導体デバイスSとに対して、上述した挿入位置と待機位置との間を移動可能に構成されている。また、このSIL3に対し、SIL駆動部30が設けられている。SIL駆動部30は、SIL3を支持する支持部31を有するレンズマニピュレータから構成され、SIL3をX、Y方向、及びZ方向に移動させるXYZ駆動機構である。
半導体デバイスSを検査するための観察等を行う観察部Aに対して、制御部B及び解析部Cが設けられている。
制御部Bは、カメラ制御部51aと、LSM制御部51bと、OBIRCH制御部51cと、ステージ制御部52と、SIL制御部53とを有している。これらのうち、ステージ制御部52及びSIL制御部53については、図1に関して上述した通りである。また、カメラ制御部51a、LSM制御部51b、及びOBIRCH制御部51cは、図1に示した構成における観察制御部51に相当している。
カメラ制御部51a及びLSM制御部51bは、それぞれ高感度カメラ10及びLSMユニット12の動作を制御することによって、観察部Aにおいて行われる半導体デバイスSの画像の取得を制御する。また、OBIRCH制御部51cは、半導体デバイスSの検査に用いられるOBIRCH(Optical Beam Induced Resistance Change)画像を取得するためのものであり、レーザ光を走査した際に発生する半導体デバイスSでの電流変化を抽出する。
解析部Cは、画像解析部61と、指示部62とを有し、例えばコンピュータなどによって構成される。カメラ制御部51a、及びLSM制御部51bからの画像情報は、解析部Cのコンピュータに備えられた画像取込ボードを介して入力される。なお、画像解析部61及び指示部62については、図1に関して上述した通りである。また、解析部Cによって取得または解析された画像、データ等は、必要に応じて、解析部Cに接続された表示装置63に表示される。
図5及び図6に示した半導体検査装置を用いた半導体検査方法について、図3のフローチャートを参照して概略的に説明する。
まず、SIL3が待機位置にある通常の状態で、LSMユニット12によって半導体デバイスSを走査して、半導体デバイスSのパターン画像を取得する(ステップS101)。また、半導体デバイスSでの異常箇所の検出に用いられる異常観察画像を取得する(ステップS102)。この異常観察画像としては、OBIRCH制御部51cによって取得されるOBIRCH画像、あるいは、カメラ10によって取得される発光画像などが用いられる。これらのパターン画像及び異常観察画像については、必要に応じて、各画像の重ね合わせ、及び表示装置63への表示等が行われる。
次に、取得された画像を用いて半導体デバイスSの異常箇所を調べて、検出された異常箇所を検査箇所とし(S103)、検査箇所が画像の中央に位置するようにXYZステージ15等を設定する。続いて、半導体デバイスSの検査箇所に対してSIL3の挿入、位置調整、距離調整を行う(S104、S105〜S107)。
そして、半導体デバイスS上に配置されたSIL3、及び対物レンズ20等を介して、拡大されたパターン画像、OBIRCH画像、発光画像などの画像を取得する(S108)。また、必要に応じて、各画像の重ね合わせ、表示装置63への表示等を行う。なお、発光画像を取得する際には、SIL3によって発生する色収差量に合わせてステージ等を適宜移動させ、倍率をソフトウェアで合わせて画像の重ね合わせを行う。
図4に例を示したSIL3からの反射光を含む画像について、図7A〜図9Bを参照してさらに具体的に説明する。SIL3に対して取得される反射光像については、これらの各図に示すように様々な反射光パターンが考えられる。なお、図7A〜図9Bにおいては、SIL3への入射光を実線で、反射光を破線で示している。また、図7A及び図9Bでは、SIL3の球心へと延びる線を点線で図示している。また、SIL3に対する入射光及び反射光の光路が重なる場合には、説明のため、それらをずらして図示している。
図7Aは、SIL3の球面状の上面3aに垂直入射した光が上面3aで反射される反射光パターンを示している。この場合、光を一点に結像するため位置合わせをしやすく、高い精度で位置合わせをすることが可能である。図7Bは、SIL3の下面3bの焦点位置(中心位置)で光が反射される反射光パターンを示している。これは、SIL3の下面3bを観察している状態である。この場合、シェーディングが大きいために、輝度が最大となる箇所を中心に合わせることで位置合わせができる。
図8Aは、SIL3の上面3aの焦点位置(頂点位置)で光が反射される反射光パターンを示している。これは、SIL3の上面3aを観察している状態である。この場合、シェーディングが大きいために、輝度が最大となる箇所を中心に合わせることで位置合わせができる。図8Bは、SIL3の平面状の下面3bに垂直入射した光が下面3bで反射される反射光パターンを示している。この場合、光を一点に結像するため位置合わせをしやすく、高い精度で位置合わせをすることが可能である。
図9Aは、SIL3の下面3b、上面3aの焦点位置(頂点位置)、下面3bで光が反射される反射光パターンを示している。これは、SIL3の上面3aを裏側から観察している状態である。この場合、シェーディングが大きいために、輝度が最大となる箇所を中心に合わせることで位置合わせができる。図9Bは、SIL3の下面3bを介して上面3aに裏側から垂直入射した光が上面3aで反射され、下面3bを介して出射される反射光パターンを示している。この場合、光を一点に結像するため位置合わせをしやすく、高い精度で位置合わせをすることが可能である。
本発明による顕微鏡、及び試料観察方法は、上記した実施形態及び構成例に限られるものではなく、様々な変形が可能である。例えば、上記した半導体検査装置では、画像取得部1、光学系2、検査部16等の具体的な構成、及び半導体デバイスSを検査するための具体的な検査方法等については、図5及び図6はその構成の一例を示すものであり、これ以外にも様々な構成及び検査方法を用いることができる。また、半導体デバイスなどの各種のデバイスについて観察のみを行う場合には、検査部16を設けずにデバイス観察装置として構成しても良い。また、画像取得部1についても、操作者が直接に画像を観察する場合など不要であれば設けなくても良い。
また、SILの構成及び使用方法については、図2A及び図2Bでは半導体デバイスSの表面に焦点がある状態で図示したが、裏面観察等の場合には、半導体デバイスSの裏面または内部の所定位置が焦点となるようにSILが用いられる。
また、上記した実施形態では、半導体デバイスを観察対象とした半導体検査装置、及び半導体検査方法について説明したが、本発明は、半導体デバイス以外を試料とする場合にも、試料を観察するために用いられる顕微鏡、及び試料観察方法として適用が可能である。これにより、試料の観察において、試料の微細構造などの観察を容易に行うことが可能となる。
例えば、上記実施形態では、観察対象の試料を半導体デバイスとしているが、一般に半導体デバイスなどの各種のデバイスを試料とする場合には、対象となるデバイスとしては、半導体基板を用いたものに限らず、ポリシリコン薄膜トランジスタなどのように、ガラスやプラスチックなどを基板とする集積回路を観察対象としても良い。例えば液晶デバイスではガラス基板上に、また、有機ELではプラスチック基板上にデバイスが作製される。また、さらに一般的な試料としては、上記した半導体デバイスや液晶デバイスなどの各種のデバイスの他にも、プレパラートを用いたバイオ関連サンプルなどが挙げられる。
本発明による顕微鏡、及び試料観察方法は、以上詳細に説明したように、半導体デバイスの微細構造解析などに必要な試料の観察を容易に行うことが可能な顕微鏡、及び試料観察方法として利用可能である。すなわち、観察対象である半導体デバイスなどの試料と対物レンズとの間に固浸レンズがない状態での観察画像、及び固浸レンズを挿入した状態での拡大観察画像の両者を取得可能なように顕微鏡を構成するとともに、固浸レンズを挿入した際に、固浸レンズからの反射光を含む画像を取得し、その画像を参照して固浸レンズの位置を調整する構成によれば、試料に対して、固浸レンズを介して高分解能の観察を行うことができる。
また、固浸レンズを挿入した状態での観察画像を利用して位置合わせを行うことにより、例えば半導体デバイスの検査など、試料の観察への適用において、固浸レンズを効率良く取り扱うことが可能となる。以上により、試料の微細構造などの観察を容易に行うことが可能な顕微鏡、及び試料観察方法が実現される。また、このような顕微鏡、及び試料観察方法を適用した半導体検査装置、及び検査方法によれば、微細構造解析などの半導体デバイスの検査を容易に行うことが可能な半導体検査装置、及び検査方法が実現される。

Claims (6)

  1. 試料を観察するための顕微鏡であって、
    前記試料からの光が入射する対物レンズを含み、前記試料の画像を導く光学系と、
    前記試料から前記対物レンズへの光軸を含む挿入位置、及び前記光軸を外れた待機位置の間を移動可能に設けられた固浸レンズと、
    前記固浸レンズを前記挿入位置及び前記待機位置の間で駆動するとともに、前記対物レンズに対する前記固浸レンズの前記挿入位置を調整する固浸レンズ駆動手段と、
    前記固浸レンズからの反射光を含む画像を参照して、前記固浸レンズの前記挿入位置の調整を指示する指示手段と
    を備えることを特徴とする顕微鏡。
  2. 前記指示手段は、前記固浸レンズからの反射光を含む画像を参照し、反射光像の重心位置が前記試料での観察箇所に対して一致するように、前記固浸レンズの前記挿入位置の調整を指示することを特徴とする請求項1記載の顕微鏡。
  3. 前記指示手段は、前記固浸レンズの前記挿入位置の調整と合わせて、前記対物レンズと前記試料との間の距離の調整を指示することを特徴とする請求項1または2記載の顕微鏡。
  4. 試料を観察する試料観察方法であって、
    試料の観察画像を、前記試料からの光が入射する対物レンズを含む光学系を介して取得する第1画像取得ステップと、
    前記観察画像から前記試料での観察箇所を設定する観察設定ステップと、
    固浸レンズを、前記試料から前記対物レンズへの光軸を外れた待機位置から、前記光軸を含む挿入位置へと移動するレンズ挿入ステップと、
    前記固浸レンズからの反射光を含む画像を取得し、その画像を参照して、前記対物レンズに対する前記固浸レンズの前記挿入位置を調整する位置調整ステップと、
    前記固浸レンズによって拡大された前記試料の観察画像を、前記固浸レンズ及び前記光学系を介して取得する第2画像取得ステップと
    を備えることを特徴とする試料観察方法。
  5. 前記位置調整ステップにおいて、前記固浸レンズからの反射光を含む画像を参照し、反射光像の重心位置が前記試料での前記観察箇所に対して一致するように、前記固浸レンズの前記挿入位置を調整することを特徴とする請求項4記載の試料観察方法。
  6. 前記対物レンズと前記試料との間の距離を調整する距離調整ステップを備えることを特徴とする請求項4または5記載の試料観察方法。
JP2005503756A 2003-03-20 2004-03-19 顕微鏡、試料観察方法、及び半導体検査方法 Expired - Fee Related JP4567594B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003078819 2003-03-20
JP2003078819 2003-03-20
PCT/JP2004/003740 WO2004083930A1 (ja) 2003-03-20 2004-03-19 顕微鏡及び試料観察方法

Publications (2)

Publication Number Publication Date
JPWO2004083930A1 true JPWO2004083930A1 (ja) 2006-06-22
JP4567594B2 JP4567594B2 (ja) 2010-10-20

Family

ID=33027986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005503756A Expired - Fee Related JP4567594B2 (ja) 2003-03-20 2004-03-19 顕微鏡、試料観察方法、及び半導体検査方法

Country Status (6)

Country Link
US (2) US7221502B2 (ja)
EP (1) EP1607786B1 (ja)
JP (1) JP4567594B2 (ja)
KR (1) KR101074560B1 (ja)
CN (3) CN100345021C (ja)
WO (1) WO2004083930A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612590A4 (en) * 2003-03-20 2011-05-04 Hamamatsu Photonics Kk SOLID IMMERSION LENS AND MICROSCOPE
EP1607786B1 (en) 2003-03-20 2012-09-05 Hamamatsu Photonics K.K. Microscope and sample observing method
KR101110468B1 (ko) * 2003-10-31 2012-01-31 하마마츠 포토닉스 가부시키가이샤 시료 관찰 방법 및 현미경, 및 이것에 이용하는 고침 렌즈및 광학 밀착액
JP4643994B2 (ja) * 2005-01-19 2011-03-02 浜松ホトニクス株式会社 固浸レンズホルダ
US7110172B2 (en) * 2004-02-27 2006-09-19 Hamamatsu Photonics K.K. Microscope and sample observation method
DE102005013969A1 (de) * 2005-03-26 2006-10-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur mikroskopischen Untersuchung einer räumlichen Feinstruktur
DE102005036252A1 (de) * 2005-08-02 2007-02-08 Carl Zeiss Jena Gmbh Haltemodul, das eine Festkörperimmersionslinse trägt
JP4906442B2 (ja) * 2006-08-29 2012-03-28 オリンパス株式会社 顕微鏡撮像システム、顕微鏡撮像方法、及び、記録媒体
JP5187843B2 (ja) * 2008-09-01 2013-04-24 浜松ホトニクス株式会社 半導体検査装置及び検査方法
JP5364452B2 (ja) 2009-06-03 2013-12-11 浜松ホトニクス株式会社 イマージョンレンズ支持装置
JP5957852B2 (ja) * 2011-11-10 2016-07-27 株式会社ソシオネクスト 半導体装置の検査装置及び検査方法
KR101821449B1 (ko) * 2011-11-16 2018-01-23 디씨지 시스템스 인코포레이티드 편광 다이버시티 이미징 및 정렬을 위한 장치 및 방법
CN102735188B (zh) * 2012-06-21 2014-09-10 南京邮电大学 一种测量球面曲率半径的方法
SG10201708329XA (en) * 2013-04-10 2017-11-29 Dcg Systems Inc Optimized wavelength photon emission microscope for vlsi devices
CN105339799A (zh) 2013-05-23 2016-02-17 应用材料以色列公司 评估系统和用于评估基板的方法
CN106596563A (zh) * 2016-12-30 2017-04-26 镇江苏仪德科技有限公司 一种太阳能电池片机器视觉检测平台
JP7025280B2 (ja) * 2018-05-08 2022-02-24 浜松ホトニクス株式会社 メタレンズユニット、半導体故障解析装置、及び半導体故障解析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121930A (ja) * 1998-10-14 2000-04-28 Nikon Corp 固体浸レンズを用いた結像光学系並びにこの結像光学系を用いた光ディスク記録再生装置および顕微鏡
JP2002236087A (ja) * 2001-02-08 2002-08-23 Minolta Co Ltd 光学系調整方法、並びにその光学系調整方法を利用した光記録再生装置、顕微鏡装置及び加工装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2809554A (en) * 1954-07-16 1957-10-15 Zeiss Carl Microscope objective with low magnification for epi-microscopes
JPH0123442Y2 (ja) * 1979-04-23 1989-07-19
DD215640A1 (de) * 1983-05-02 1984-11-14 Zeiss Jena Veb Carl Frontlinsengruppe fuer immersionsmikroskopobjektiv in hd-ausfuehrung mit hoher apertur
US5004307A (en) * 1990-04-12 1991-04-02 The Board Of Trustees Of The Leland Stanford Junior University Near field and solid immersion optical microscope
US5220403A (en) 1991-03-11 1993-06-15 International Business Machines Corporation Apparatus and a method for high numerical aperture microscopic examination of materials
US5208648A (en) 1991-03-11 1993-05-04 International Business Machines Corporation Apparatus and a method for high numerical aperture microscopic examination of materials
US5125750A (en) * 1991-03-14 1992-06-30 The Board Of Trustees Of The Leland Stanford Junior University Optical recording system employing a solid immersion lens
US5121256A (en) 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH07117639B2 (ja) 1992-03-30 1995-12-18 オリンパス光学工業株式会社 自動焦点装置を備えた顕微鏡
DE4231267B4 (de) * 1992-09-18 2004-09-09 Leica Microsystems Wetzlar Gmbh Auflichtbeleuchtungssystem für ein Mikroskop
US5422498A (en) 1993-04-13 1995-06-06 Nec Corporation Apparatus for diagnosing interconnections of semiconductor integrated circuits
JP2765427B2 (ja) 1993-04-13 1998-06-18 日本電気株式会社 半導体集積回路内部相互配線の検査方法および装置
JPH0718806A (ja) 1993-07-02 1995-01-20 Sekisui Chem Co Ltd 屋外用ステップ構造
JP3478612B2 (ja) 1993-11-16 2003-12-15 浜松ホトニクス株式会社 半導体デバイス検査システム
US6002792A (en) 1993-11-16 1999-12-14 Hamamatsu Photonics Kk Semiconductor device inspection system
WO1998047138A1 (fr) 1997-04-14 1998-10-22 Toray Industries, Inc. Dispositif d'enregistrement optique et support d'enregistrement optique
JPH113534A (ja) 1997-04-14 1999-01-06 Toray Ind Inc 光記録装置および光記録媒体
US5939709A (en) 1997-06-19 1999-08-17 Ghislain; Lucien P. Scanning probe optical microscope using a solid immersion lens
JP3642947B2 (ja) * 1998-03-31 2005-04-27 パイオニア株式会社 光ディスク原盤記録装置
US6496468B2 (en) * 1998-05-29 2002-12-17 Terastor Corp. Beam focusing in near-field optical recording and reading
US6441359B1 (en) * 1998-10-20 2002-08-27 The Board Of Trustees Of The Leland Stanford Junior University Near field optical scanning system employing microfabricated solid immersion lens
JP3997029B2 (ja) 1999-02-15 2007-10-24 キヤノン株式会社 光検出または光照射用のプローブ及びその製造方法
WO2000079313A1 (en) * 1999-06-21 2000-12-28 Trustees Of Boston University Numerical aperture increasing lens (nail) techniques for high-resolution sub-surface imaging
US6687058B1 (en) 1999-06-21 2004-02-03 The Trustees Of Boston University Numerical aperature increasing lens (nail) techniques for high-resolution sub-surface imaging
US6236513B1 (en) * 1999-06-30 2001-05-22 Quantum Corporation Integrated objective/solid immersion lens for near field recording
JP2001023227A (ja) * 1999-07-08 2001-01-26 Sony Corp 光学ピックアップ装置、光ディスク装置、及び記録及び/又は再生方法
JP2001023230A (ja) 1999-07-12 2001-01-26 Nikon Corp 光ヘッド及び光記録再生装置
JP2001236663A (ja) * 2000-02-18 2001-08-31 Sony Corp 光学系の位置制御装置、光学系の位置制御方法および記録再生装置
JP4269471B2 (ja) 2000-02-21 2009-05-27 ソニー株式会社 光記録媒体、光ピックアップおよび光記録再生装置
JP3602465B2 (ja) 2000-10-10 2004-12-15 Necエレクトロニクス株式会社 半導体装置、半導体装置の評価解析方法及び半導体装置の加工装置
JP3995875B2 (ja) 2000-10-13 2007-10-24 直道 片平
US6621275B2 (en) 2001-11-28 2003-09-16 Optonics Inc. Time resolved non-invasive diagnostics system
US6594086B1 (en) 2002-01-16 2003-07-15 Optonics, Inc. (A Credence Company) Bi-convex solid immersion lens
US6961672B2 (en) 2002-03-05 2005-11-01 Credence Systems Coporation Universal diagnostic platform for specimen analysis
US6828811B2 (en) 2002-04-10 2004-12-07 Credence Systems Corporation Optics landing system and method therefor
US7123035B2 (en) 2002-04-10 2006-10-17 Credence Systems Corporation Optics landing system and method therefor
US6683724B2 (en) 2002-06-13 2004-01-27 Eastman Kodak Company Solid immersion lens array and methods for producing a solid immersion lens array
AU2003218274A1 (en) 2002-06-28 2004-01-19 Seagate Technology Llc Heat assisted magnetic recording head with a planar waveguide
EP1607786B1 (en) 2003-03-20 2012-09-05 Hamamatsu Photonics K.K. Microscope and sample observing method
TWI269886B (en) 2003-03-20 2007-01-01 Hamamatsu Photonics Kk Microscope and specimen observation method
US20050002028A1 (en) 2003-07-02 2005-01-06 Steven Kasapi Time resolved emission spectral analysis system
US20050094258A1 (en) 2003-10-31 2005-05-05 Hamamatsu Photonics K.K. Solid immersion lens moving device and microscope using the same
US7576928B2 (en) * 2003-10-31 2009-08-18 Hamamatsu Photonics K.K. Solid immersion lens holder
US7110172B2 (en) 2004-02-27 2006-09-19 Hamamatsu Photonics K.K. Microscope and sample observation method
US20050220266A1 (en) * 2004-03-31 2005-10-06 Gregory Hirsch Methods for achieving high resolution microfluoroscopy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121930A (ja) * 1998-10-14 2000-04-28 Nikon Corp 固体浸レンズを用いた結像光学系並びにこの結像光学系を用いた光ディスク記録再生装置および顕微鏡
JP2002236087A (ja) * 2001-02-08 2002-08-23 Minolta Co Ltd 光学系調整方法、並びにその光学系調整方法を利用した光記録再生装置、顕微鏡装置及び加工装置

Also Published As

Publication number Publication date
CN1761903A (zh) 2006-04-19
KR101074560B1 (ko) 2011-10-17
CN1761901A (zh) 2006-04-19
US7221502B2 (en) 2007-05-22
CN1761902A (zh) 2006-04-19
CN100345021C (zh) 2007-10-24
EP1607786A4 (en) 2011-05-04
WO2004083930A1 (ja) 2004-09-30
US20070146871A1 (en) 2007-06-28
US20040240051A1 (en) 2004-12-02
JP4567594B2 (ja) 2010-10-20
EP1607786B1 (en) 2012-09-05
KR20050107502A (ko) 2005-11-11
CN100529831C (zh) 2009-08-19
CN100535700C (zh) 2009-09-02
EP1607786A1 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
KR101074560B1 (ko) 현미경 및 시료 관찰 방법
KR101184771B1 (ko) 현미경 및 시료 관찰 방법
JP4938782B2 (ja) 光学的基準を利用する方法および装置
JP4713185B2 (ja) 異物欠陥検査方法及びその装置
JP4680501B2 (ja) 共焦点ウェハ検査系
KR101808388B1 (ko) 프로브 장치 및 프로브 방법
JPH1183753A (ja) 光学式基板検査装置
JP2016134412A (ja) 欠陥観察方法および装置
KR20110134809A (ko) 온-프로브 소자-매핑 기능을 갖는 탐측 장치
JP2008166806A (ja) プロービング装置で焦点を合わせて多平面画像を取得する装置と方法
JP2010080144A (ja) 複合型顕微鏡装置及び試料観察方法
TWI269886B (en) Microscope and specimen observation method
JP4140490B2 (ja) X線分析装置とその焦点合わせ装置
JP4279412B2 (ja) 半導体デバイス検査装置
JP2017053775A (ja) 光透過性を備えた物体内部の撮像装置および検査装置
JP2004535601A (ja) 顕微鏡対物レンズの構成
JP2010091468A (ja) 収差測定装置
JP3125124U (ja) 赤外顕微鏡
KR102579029B1 (ko) 광전자소자의 결함 분석용 현미경
JP2005021916A (ja) 欠陥修正機能付き顕微鏡装置
JP2014056078A (ja) 画像取得装置、画像取得システム及び顕微鏡装置
JP2010085272A (ja) 光学系評価装置
JP2020186964A (ja) 瞳レンズ測定装置及び測定方法
JPS61228796A (ja) 固体撮像装置の検査方法
JP2000162505A (ja) 半導体検査装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees