JPWO2003074751A1 - 表面処理鋼板およびその製造方法 - Google Patents

表面処理鋼板およびその製造方法 Download PDF

Info

Publication number
JPWO2003074751A1
JPWO2003074751A1 JP2003573192A JP2003573192A JPWO2003074751A1 JP WO2003074751 A1 JPWO2003074751 A1 JP WO2003074751A1 JP 2003573192 A JP2003573192 A JP 2003573192A JP 2003573192 A JP2003573192 A JP 2003573192A JP WO2003074751 A1 JPWO2003074751 A1 JP WO2003074751A1
Authority
JP
Japan
Prior art keywords
steel sheet
layer
mass
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003573192A
Other languages
English (en)
Other versions
JP4457667B2 (ja
Inventor
善継 鈴木
善継 鈴木
一章 京野
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27792236&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2003074751(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2003074751A1 publication Critical patent/JPWO2003074751A1/ja
Application granted granted Critical
Publication of JP4457667B2 publication Critical patent/JP4457667B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本発明は、質量%でAl:0.1%以上3%未満を含有する鋼組成を有する鋼板の表面に表面処理層を有する表面処理鋼板であって、下記AまたはBを満たしている。A:前記鋼板と前記表面処理層との界面近傍の地鉄側にAlN析出層が存在している。B:前記鋼板の表面直下の地鉄内に、Alの酸化物が存在している。

Description

技術分野
本発明は、自動車、建材、家電等の分野において好適に用いることができる表面処理鋼板と、表面処理鋼板の製造方法に関する。
背景技術
近年、自動車、建材、家電等の分野において、高張力鋼板の使用が増加している。特に自動車業界においては、車体の軽量化による燃費向上、衝突安全性の向上等の観点から、高張力鋼板の使用が急増している。
また、高張力化に加えて、延性を確保して複雑なプレス成形に耐えられるようにするため、残留オーステナイトを有する組織とし、この残留オーステナイトの歪誘起変態現象を活用した高延性高張力鋼板の開発が盛んに行われている。
これらの高張力鋼板としては、例えば、特公平3−51778号公報に開示されているように、Si,Mn,Ti,Al,Pなどの元素を添加した組成を有するものなどがある。しかし、Si含有率を高くすると、焼鈍工程において鋼板表面にSi酸化皮膜が形成し、化成処理性、電気亜鉛めっきの密着性、溶融亜鉛めっき性、溶融亜鉛めっきの密着性等が劣化することが知られている。特に、Siを含有する高張力鋼板の溶融亜鉛系めっき性の不良、すなわち、溶融亜鉛めっきを施した際に、部分的に溶融亜鉛が付着せずに、いわゆる不めっきが発生したり、めっき層の密着性不良などが大きな問題となっており、鋼板がSiを0.1質量%以上含有する場合には、RTH(オールラジアントチューブ)型加熱炉や、NOF(無酸化炉)型加熱炉を有する連続式溶融亜鉛めっきラインでも、めっきを施すことが困難であったり、安定してめっき層を形成させることができないという問題を抱えていた。
また、Si含有量を高めずに高延性高張力化する方法として、特開平5−171344号公報に開示されているように、Alを鋼中に積極的に添加してSi添加量を低減することで、Si添加鋼特有の表面品質劣化を阻止し、同時に残留オーステナイトを安定化させる技術が開示されている。
しかしながら、AlもSiと同様に易酸化性元素であるため、焼鈍時にSiだけでなくAl酸化皮膜が生成するため、Si添加鋼と同様に溶融亜鉛めっき性やめっき密着性の劣化の問題は解決できなかった。
また一般に、Alは溶接性を劣化させる元素であることが知られており、Al添加鋼を実用化するために、スポット溶接性を向上させることも課題となっている。
また、高強度鋼板を自動車用途に使用する場合は、化成処理や電着塗装した後、必要に応じて上塗塗装が施されるが、近年の防錆性への要求の高まりに伴い、電着塗装後の耐食性の向上が、ますます重要な課題となってきている。しかし、高強度鋼板は、反応性に富む合金元素を多量に含むため、軟鋼などと比べて耐食性が劣る。そのため、耐食性をさらに向上させようとすると、高強度化が困難になってくるという問題もあった。
本発明は、従来技術における上述の課題を解決するためになされたものであり、Alを含有する鋼板であっても、めっき密着性に優れた表面処理鋼板、および表面処理鋼板の製造方法を提供することを目的とする。
発明の開示
上記課題を解決するために、本発明に係る表面処理鋼板は、質量%でAl:0.1%以上3%未満を含有する鋼組成を有する鋼板の表面に表面処理層を有する表面処理鋼板であって、前記鋼板と前記表面処理層との界面近傍の地鉄側にAlN析出層が存在しているか、または、前記鋼板の表面直下の地鉄内に、Alの酸化物が存在している。
また、前記表面処理層は、溶融亜鉛めっき層であって、質量%でAl:0.1%〜1.0%を含有していることが好ましい。
また、前記表面処理層は、さらに質量%でFe:7〜15%を含有する合金化溶融亜鉛めっき層であることが好ましい。
また、前記AlN析出層の厚さは、1μm以上100μm以下であることが好ましい。
また、前記鋼組成は、さらに質量%でSi:0.1%以上、Mn:0.5%以上のうちから選ばれる1種または2種を含有することが好ましい。
また、前記鋼組成は、さらに質量%でMo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種を含有することが好ましい。
また、前記鋼組成は、さらに質量%でCu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下を含有することが好ましい。
また、前記鋼組成が、さらに質量%でC:0.03〜0.25%、Si:0.001〜1.0%、Mn:0.5〜3.0%、P:0.001〜0.10%を含有することが好ましい。
また、前記地鉄内に、さらにSiO,MnO,FeSiO,FeSiO,MnSiO,MnSiO及びPから選ばれた1種以上の酸化物が存在することが好ましい。
また、前記酸化物量が、合計で片面当たり0.01〜1.0g/mであることが好ましい。
また、前記鋼組成が、さらに質量%でMo:0.01〜1.0%およびNb:0.005〜0.2%を含有することが好ましい。
また、前記鋼組成が、さらに質量%でCu:0.01〜0.5%、Ni:0.01〜1.0%、Mo:0.01〜1.0%を含有することが好ましい。
また、前記表面処理層が、加熱合金化処理されていることが好ましい。
また、加熱合金化処理された前記表面処理層中のFe含有率が質量%で7〜15%であることが好ましい。
一方、本発明に係る表面処理鋼板の製造方法は、鋼片を加熱保持した後、熱間圧延して得られる鋼板を溶融亜鉛めっきする表面処理鋼板の製造方法において、前記鋼片を質量%でAlを0.1%以上3%未満含有する鋼片とし、前記加熱保持を、O:1vol%以上20vol%以下、N:70vol%以上を含有する雰囲気中で、下記式(1)を満たす条件とし、前記溶融亜鉛めっきを、浴温が440〜500℃、浴中Al濃度が0.14〜0.24質量%の亜鉛めっき浴を用いて行う方法である。
[加熱保持温度(℃)−(1050+25Al)]×加熱保持時間(min)≧3000 …(1)
但し、Al:鋼中のAl含有量(質量%)である。
ここで、前記鋼板を、浴温が440〜500℃、浴中Al濃度が0.10〜0.20質量%の亜鉛めっき浴を用いて溶融亜鉛めっきした後、さらに、460〜550℃で溶融亜鉛めっき層の合金化処理を施すことが好ましい。
また、前記熱間圧延と溶融亜鉛めっきとの間で、冷間圧延を行うことが好ましい。
また、前記鋼片は、さらに質量%でSi:0.1%以上、Mn:0.5%以上のうちから選ばれる1種または2種を含有することが好ましい。
また、前記鋼片は、さらに質量%でMo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種を含有することが好ましい。
また、前記鋼片は、さらに質量%でCu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下を含有することが好ましい。
発明を実施するための最良の形態
以下、本発明に係る表面処理鋼板、特に、溶融亜鉛めっき鋼板及びその製造方法の実施形態について説明する。
(1)第1の実施形態
まず、本発明に係る第1の実施形態として、めっき原板である鋼板の成分組成について説明する。なお、以下の説明において鋼中の各元素の含有量は単に%と記し、全て質量%を意味するものとする。
[Al:0.1%以上3%未満]
本実施形態では、鋼中にAlを0.1%以上含有するものを対象とする。これは、鋼中のAlが0.1%未満では、Alの表面濃化によるめっき密着性の低下は問題とならず、また、後述するAlNの生成も生じないためである。また、本実施形態では、強度−延性バランス確保の観点から、残留オーステナイトを含有する鋼組織とすることが好ましいが、Al含有量が0.1%未満であると、残留オーステナイトが不安定となるため、良好な強度延性バランスを得る観点からもAlは0.1%以上含有されることを必要とする。ただし、Al含有量が3.0質量%以上の鋼板は、後述するように鋼板の表層にAlNを生成させたとしても焼鈍時におけるAlの表面濃化量が多くなり、窒化層の形成方法に工夫を加えたとしてもめっき密着性向上効果を確保することが困難となる。したがって、鋼中のAl含有量は3.0%未満とする。
[Si:0.1%以上、Mn:0.5%以上のうちの1種または2種]
Si、Mnは鋼を高強度化するのに有利な元素であるため含有されてもよく、特に、Siは0.1%以上、Mnは0.5%以上含有されることが高強度化の観点から好ましい。しかしSiは1.0%、Mnは0.5%を超えて含有されると溶接性やめっき密着性の確保が困難となるため、上限はSiの場合1.0%、Mnの場合3.5%とすることが好ましい。
[Mo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種]
Mo、Nbは地鉄組織の細粒化と再結晶遅延による昇温過程の内部酸化促進によるAlの表面濃化抑制効果があるため、良好なめっき密着性を得るために含有させることができる。この効果は、Moの場合0.01%以上で、Nbの場合0.005%以上で発現する。ただし、Moは1%を超えて含有されると、めっき原板となる鋼板の製造工程である熱延工程において表面性状が劣化する傾向が見られ、また、Nbは0.2%を超えて含有されると鋼の硬度が上昇して圧延性が劣化する傾向がある。よって、Mo、Nbはそれぞれ、0.01%以上1%以下、0.005%以上0.2%以下の範囲で含有されることが好ましい。この範囲内でMoとNbとを複合添加してもかまわない。
[Cu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下]
Cu、Ni、Moを複合添加すると、めっき密着性が改善される。Cu、Ni、Moの複合添加によるめっき密着性の改善機構については、明らかとなっていないが、これら元素を単独ではなく複合添加すると焼鈍時にAlの内部酸化を促進させて表面濃化を抑制でき、めっき密着性が良好となることを確認している。
その他の成分としては、製造コストや、自動車用鋼板として用いる際の加工性を考慮すると、C:0.0005〜0.25質量%、P:0.001〜0.20質量%、S:0.0001〜0.01質量%を含有する鋼板が好適である。また、これら元素に加えて、さらに強度延性バランスを制御するために、Ti:0.15質量%以下、Cr:1質量%以下、B:0.001〜0.005質量%を含有する鋼板であっても差し支えない。なお、残部はFeおよび不可避的不純物であることが好ましい。
次に、本実施形態において重要となる、表層部に形成されるAlN析出層について説明する。
本発明では、鋼板の表層部に、Alが主にAlNとして存在するAlN析出層が形成されている。このため、めっき前の加熱工程においても、表層部における鋼中Alは、窒化物として地鉄内部に固定され、鋼板表面に拡散することが抑制される。
また、AlN析出層が存在すると、原因は不明であるがAl以外の易酸化性元素であるSi、Mnが焼鈍時に表面濃化することを抑制する効果も認められる。そのため、鋼中にSiやMnを比較的多く含有し、めっき密着性の劣化や不めっきが発生し易い鋼板であってもAlN析出層の存在により良好な溶融めっき性、めっき密着性が得られる。
ここで、AlN析出層とは、母材中のAlの20%以上が窒化物として存在する状態である層のことを言う。窒化物として存在するAl量が20%未満では固溶状態で存在するAlが80%超となり、残存する固溶Alが鋼板表面に拡散するため、めっき密着性向上効果が小さくなる。
AlNとして析出しているAl量は以下の手法にて求められる。すなわち、表層から所定の厚み(例えば5μmずつ)について10w/v%アセチルアセトン−1w/v%テトラメチルアンモニウムクロライド−メタノールを用いて電解法で所定量を溶解し、溶解残さを分析することでAlNの存在が確認できる。この残さAlNを水蒸気蒸留法で分解し、Nのみを分離定量することでAlNとして析出しているNが定量できるので、この値をもとにしてAlNとして析出したAl量を定量する。また、固溶Alの定量は残さ以外の部分を蒸発乾固・再度酸溶解し、JIS G 1257に準拠した原子吸光法で算出することで実施できる。これらの結果からAlN析出層中のAlの窒化割合が算出できる。
なお、AlNの存在は、鋼板の断面をEPMA分析してN、Al両方を分析することで確認可能であるため、AlNの存在の確認には簡易的にEPMA分析により行うことができる。
図1に、表層にAlN析出層が形成している鋼板断面の電子顕微鏡(SEM)観察結果、図2にEPMAによるAl存在状態の分析結果を示す。図1及び図2によると、Alは窒化物として柱状もしくは角張った形態として地鉄界面から10〜20μm深さまでの領域にかけて分布しており、この領域内において、AlNが析出していない部分はAl固溶量が減少していることがわかる。この領域がAlN析出層に相当する。したがって、焼鈍時にこの領域からの固溶Alの表面への拡散が抑制され、よってめっき密着性が劣化しないのである。また、この領域よりさらに深い部分では窒化物の存在は認められず、Alはほとんど固溶状態として存在していることがわかる。
AlN析出層の厚さは1μm以上100μm以下であることが好ましい。これは多少なりとも表層にAlN析出層が存在すれば、Alの表面濃化防止効果が発現するのであるが、AlN析出層の厚さが1μm以上になるとこの効果が顕著になり、また、厚さが100μmを超えるAlN析出層を形成させることは実用上困難であるとともに、100μmを超える厚さになると材質への影響が無視できなくなるためである。
以上説明した、鋼組成およびAlN析出層を有する溶融亜鉛めっき用鋼板をめっき原板として溶融亜鉛めっきを施すことにより、めっき密着性の優れた溶融亜鉛めっき鋼板が得られる。
次に、本実施形態の溶融亜鉛めっき用鋼板を製造するのに好適な製造方法について説明する。
本実施形態の溶融亜鉛めっき用鋼板(めっき原板)は、通常の溶融亜鉛めっき用鋼板と同様に、連続鋳造等により製造された鋼片を加熱保持後、熱間圧延工程を経て、あるいは、さらに冷間圧延工程を経て製造される。本発明では、溶融亜鉛めっき前の焼鈍工程においてAlが表面濃化しないように、焼鈍前あるいは焼鈍時にAlN析出層を鋼板表層に形成させておく必要がある。
本発明者らは、AlN析出層を形成させる方法に関して、上記の鋼片の加熱保持時に、鋼片表層のAlを窒化させておけば、その後の熱間圧延、酸洗、冷間圧延後にも表層のAlをAlNとして存在せしめることが可能であるという発想にもとづき、鋼片加熱保持時の条件について検討を行った。
その結果、Alは窒化しやすい元素として知られているが、Oを含むN主体の雰囲気で高温で加熱するとさらに優先的に窒化することがわかった。OがAlの窒化を促進するメカニズムについては必ずしも明確ではないが、O存在雰囲気下では、鋼表面での酸化量が多くなるため、この酸化物が窒素供給の拡散パスとなっていることが要因の一つと考えられる。そして、鋼片の加熱保持時にAlを窒化させるためには、O濃度は少なくとも1vol%以上である必要があることがわかった。ここで、O濃度を20vol%以上とすることは、加熱保持を行う加熱炉内に酸素を吹き込むための方策が別途必要であるだけでなく、地鉄自体の酸化が著しく促進して窒化層の確保が困難となるため、O濃度は20vol%以下とする必要がある。なお、O、N以外の成分としてCO、CO等が混入してもかまわないが、窒化を生じさせるために、Nは70vol%以上とする必要がある。
また、上述の鋼片の加熱保持をNを有する雰囲気で、加熱保持温度を高く、加熱保持時間を長くすることにより鋼片表層のAlを窒化させることができる。このとき、鋼中Al量が多いと、その分Alを窒化するための加熱保持時間が長くなる。そこで、種々のAl含有量の鋼について、熱間圧延前の加熱保持時間と加熱保持温度が、溶融亜鉛めっきの密着性に及ぼす影響について調査した。
すなわち、Al:0.1〜3%、Si:0.5%、Mn:2.2%を含有する組成の鋼片を用い、鋼片の加熱保持時の雰囲気はO:3vol%、残部Nとして熱間圧延して2.8mm厚とした。得られた熱延鋼板の表面に生成した酸化スケールを酸洗により除去した後、1.6mm厚に冷間圧延し、さらに、810〜825℃での焼鈍、400〜460℃での過時効処理を施し、その後にAl濃度0.13質量%の溶融亜鉛Zn浴にて溶融亜鉛めっきを施し、引き続き500℃で合金化処理を施した。
得られた合金化溶融亜鉛めっき鋼板からめっき密着性を評価するためのサンプルを採取し、めっき密着性の評価を行った。めっき密着性の評価は、表面にセロハンテープを貼り、テープ面を90°曲げ、曲げ戻しを行った後、テープを剥がし、単位長さ当りのめっきの剥離量を蛍光X線によりZnカウント数を測定し、表1に示す基準に照らしてランク1、2のものを良好(○、△)、3以上のものを不良(×)として評価した。
Figure 2003074751
この結果を図3に示す。図3から熱間圧延工程前の鋼片の加熱保持を、加熱保持温度、加熱保持時間、鋼中Al含有量が下記式(1)を満たす条件で行うことにより良好なめっき密着性の溶融亜鉛めっき鋼板が製造可能となることがわかる。
[加熱保持温度(℃)−(1050+25Al)]×加熱保持時間(mm)≧3000 …(1)
但し、Al:鋼中のAl含有量(質量%)である。
なお、冷間圧延後の鋼板について、AlN析出層の有無を観察した結果、上記式(1)を満たしている場合、表層部にAlN析出層が形成していることが確認できた。
このように、Al:0.1%以上3%未満を含有する鋼組成の鋼片について、熱間圧延前の加熱保持を、O:1vol%以上20vol%以下含有する雰囲気中で、上記式(1)を満たす条件することで、表層部にAlN析出層を有する鋼板を製造することができ、Alを含有、さらにはSiやMn等の易酸化性元素を含有している鋼板であるにもかかわらず、溶融亜鉛めっき後のめっきの密着性は良好となる。
なお、以上説明した方法で形成させたAlNは、表層部の鋼板内部だけでなく、地鉄表面に露出している場合もあるが、このような場合でも鋼板の圧延性、機械的性質や、めっき密着性等の表面品質への影響はない。これはAlN析出層が極表層部に限られており、かつ地鉄表面への露出もごく一部に限られるためと考えられる。
上記条件で加熱保持後に熱間圧延して得られる熱延鋼板を、酸洗した後、あるいは、酸洗、冷間圧延、焼鈍した後、溶融亜鉛めっきが施される。
熱間圧延後の酸洗は、表面に形成した酸化スケールを除去する目的で行う。酸洗の条件は特に限定されないが、AlN析出層を残存させる必要があることから、酸洗時に地鉄を多量に溶解させないよう配慮する必要がある。酸としては塩酸が好ましいが、硫酸等の他の酸を用いることも可能である。酸濃度は1〜mass20%が好ましい。地鉄を多量に溶解させないためには、酸洗液中にインヒビター(溶解抑制剤)を添加することが好ましい。
冷間圧延は、最終製品の機械的特性や板厚を制御するために、必要に応じて実施できる。冷間圧延を行う場合は、後の焼鈍時における再結晶の促進のため圧下率を30%以上で行うことが好ましい。但し80%以上とすると圧延機に負荷がかかり、圧延が困難となるので、圧下率は30〜80%が好ましい。
溶融亜鉛めっき直前の焼鈍は、公知のいわゆる連続式焼鈍方法で焼鈍直後に連続して溶融亜鉛めっきを施す方法でも構わないし、一度焼鈍(一次焼鈍)した鋼板を冷却後、酸洗して表面を活性化するとともに一次焼鈍で生成した表面酸化物を酸洗で除去した後、再度加熱(二次焼鈍)し、引き続き溶融亜鉛めっきを施す方法でも構わない。但し、めっき直前の焼鈍工程においては、少なくとも部分的にH−Nを主体とする還元性雰囲気状態で均熱する工程を含むことがFe系の表面酸化皮膜を還元し、めっきのぬれ性を確保する観点から好ましい。NOF(無酸化炉)型加熱炉等で、昇温過程では表面にFe系酸化皮膜を形成させ、その後還元するという工程でも構わない。なお、一次焼鈍は、適正な組織を得るためには750〜930℃とすることが好ましい。また、一次焼鈍温度が930℃を超えるとSi等の易酸化性元素が表面濃化してめっき性や合金化処理性に対して悪影響を及ぼす。二次焼鈍は、酸洗時に生じた酸化皮膜を還元する目的で650℃以上とすることが好ましい。また、鋼組織の粗大化等を防止する観点から850℃以下が好ましい。
また、一次焼鈍後の酸洗は、例として、5mass%程度の塩酸で60℃で数秒間軽酸洗する方法が挙げられる。また、硫酸など他の酸を使用しても良い。一般的には、酸濃度はpH≦1、温度は40〜90℃で、1〜20sec酸洗することが好ましい。温度が40℃未満、時間が1sec未満では表面濃化物除去効果が得られず、温度が90℃超、時間が20sec超では、過酸洗のため、表面荒れが発生することがある。
鋼板に良好な強度延性バランスを得るためには、連続式焼鈍法で焼鈍と溶融亜鉛めっきとを連続して行う場合には、2相域加熱を行った後に350〜500℃で2分以上過時効処理を行うことでベイナイト変態をさせながらオーステナイト中にCを濃化させ、その後引き続き溶融亜鉛めっきを施すことが好ましい。また、一次焼鈍、冷却、酸洗、二次焼鈍を経た後に溶融亜鉛めっきを施す場合には、一次焼鈍で2相域加熱を行った後40℃/s以上で300℃以下まで急冷してフェライト−マルテンサイト相からなる焼入れ組織を作り、めっき直前に725〜840℃に加熱した後5℃/s以上で冷却して焼戻し処理を行うことで、フェライト−焼戻しマルテンサイト−残留オーステナイトの複合組織を形成させた上で、引き続き溶融亜鉛めっきを施すことが好ましい。
なお、AlN析出層を形成させる方法として、熱間圧延前の加熱保持条件を調整する方法について説明したが、本発明の溶融亜鉛めっき用鋼の製造は、この方法以外にも、例えば、溶融亜鉛めっき直前の焼鈍工程において、COやNHを微量混入させたH−N系といった窒化性元素雰囲気中で焼鈍することによっても行うことができる。
次に、本実施形態の溶融亜鉛めっき鋼板について説明する。
本実施形態の溶融亜鉛めっき鋼板は、上述したAlN析出層を有する溶融亜鉛めっき用鋼板に溶融亜鉛めっきを施すことで得られる。AlN析出層は、溶融亜鉛めっき後には、鋼板と溶融亜鉛めっき層との界面近傍の地鉄側に残存する。このようにして得られた溶融亜鉛めっき鋼板は、地鉄とめっき層との界面のAl,Si,Mn等の易酸化性元素の濃化が抑制されているので、めっき密着性が良好となる。
溶融亜鉛めっき層(以下単にめっき層という)は、Alを0.1〜1%含有する組成を有するめっき層、あるいはさらこの組成に、Fe:7〜15%を含有する組成の合金化溶融亜鉛めっき層とすることが好ましい。
めっき層の合金化を施さない溶融亜鉛めっき鋼板(以下GIという)では、めっき層中のAl含有量が0.1%未満であるとめっき工程においてFe−Zn合金化反応が速く進行し、外観ムラが発生する。特にGIの場合は、合金化を抑制する目的で0.2%以上とすることがより好ましい。また、めっき層中のAl含有量が1%を超えると、めっき工程においてめっきと地鉄との界面近傍のめっき層側に生成するFe−Al合金層が厚くなり、溶接性が低下する。
なお、めっき層中に、めっき浴中に微量含有されることがあるPb,Sb,Niがそれぞれ0.1%以下の範囲で含有されていてもめっき特性上全く問題ない。また、めっき浴中に溶出したFe、或いは地鉄Feのめっき層への混入も0.1%以下程度であれば、同様に問題ない。さらに、耐食性を付与する目的で、Mgを5%以下の範囲で含有させるようにしてもよい。なお、以上説明した元素以外はZnおよび不可避的不純物であることが好ましい。
めっき層の合金化が施される合金化溶融亜鉛めっき鋼板(以下GAという)の場合にも、めっき層中のAl量は0.1〜1%である必要がある。これは、Al含有量が0.1%未満であると、合金化処理時にFe−Zn合金化反応が速く進行してめっき密着性が劣化し、一方、Al含有量が1%を超えると、めっき工程においてめっきと地鉄との界面近傍のめっき層側に生成するFe−Al合金層が厚く生成してFe−Zn合金化反応を遅延させるためである。さらに好ましいAl濃度は0.3%以下である。また、合金化溶融亜鉛めっき層の場合、めっき層中のFe含有量が7%未満であると柔かいZn−Fe合金層が形成されて摺動性が劣化する。また、Fe含有量が15%超であると地鉄とめっき層との界面近傍のめっき層側に固くて脆いFe−Zn合金層が形成されるため、めっき密着性が劣化する。このため、合金化溶融亜鉛めっき層中のFe含有率は7〜15%であることが好ましい。なお、合金化溶融亜鉛めっき層中にPb,Sb,Niがそれぞれ0.1%以下の範囲で含有されていてもめっき特性上全く問題ない。また、耐食性を確保する目的でMgが5%以下の範囲で含有されていても全く問題ない。なお、残部はZnおよび不可避的不純物とすることが好ましい。
溶融亜鉛めっき方法については、公知の方法が適用できるが、例えば、浴温は440〜500℃とし、浴中Al濃度は、後述する合金化処理を施す場合は0.10〜0.20%、合金化処理を施さない場合は、0.14〜0.24%が好ましい。また、耐食性を向上させるために浴中にMgを含有させてもよい。
溶融亜鉛めっきを施した後にめっき層に合金化処理を施す場合には、460〜550℃の範囲で行うことが最適である。460℃未満では合金化進行が遅く、550℃超では過合金により地鉄界面に生成する固くて脆いZn−Fe合金層が多量に生成し、めっき密着性が劣化してしまう。さらに、鋼中に残留オーステナイト相を形成させた鋼板である場合、合金化処理温度が550℃を超えると残留オーステナイト相が分解してしまい、強度延性バランスの劣化が生じやすくなる。めっきの付着量は特に定めないが、耐食性及びめっき付着量制御の精度の観点から10g/m以上が好ましく、また加工性の観点からは120g/m以下が好ましい。
[実施例]
表2に示した組成を有するスラブを、加熱炉で表3、表4に示すO濃度のN雰囲気中で表3、表4に示す温度、保持条件で加熱保持し、引き続き熱間圧延により2.8mm厚として540〜600℃で巻取った。その後、酸洗を行って黒皮スケールを除去した。酸洗を施した熱延鋼板の一部は冷間圧延により1.6mm厚の冷延鋼板とした。得られた熱延鋼板または冷延鋼板を表3、表4に示す条件で一次焼鈍、過時効処理を施し、引き続き浴温460℃の溶融Zn浴にて溶融亜鉛めっきを施すか、あるいは二次焼鈍を施す場合には、一次焼鈍を施してから冷却し、60℃の5%HClで酸洗処理を施した。その後、表3、表4に示す二次焼鈍温度に加熱し、引き続き浴温460℃の溶融Zn浴にて溶融亜鉛めっきを施した。
なお、溶融Zn浴中のAl濃度は表5、表6に示すように調整した。めっきの付着量はガスワイピングにより片面当り50±5g/mに調節した。また、めっき層を合金化する場合は、460〜610℃で合金化処理を施した。
得られた溶融亜鉛めっき鋼板について、外観性の評価、めっき密着性、および、機械的特性の評価を行った。また、得られためっき鋼板からサンプルを採取し、地鉄とめっき層との界面直下の地鉄側に形成されているのAlN析出層の厚さ、めっき層中のAl濃度およびFe濃度を測定した。表5、表6にこれらの調査結果を示す。
Figure 2003074751
Figure 2003074751
Figure 2003074751
Figure 2003074751
Figure 2003074751
表5、表6中には、めっき種類として溶融亜鉛めっき層の合金化処理を施したものをGA、合金化処理を施さなかったものをGIと表わした。また、めっき原板種類として、熱延鋼板をめっき原板として用いた場合をHOT、冷延鋼板に対して1回焼鈍を施したものを用いた場合をCR、冷延鋼板に対して焼鈍―酸洗―再加熱という処理を施したものを用いた場合をCALと表わした。
また、外観性の評価は、下記の基準に照らし合わせてめっき性を目視により判定した。
○:不めっきなし
△:不めっきが少し発生するが概ね問題なし
×:不めっきが著しく発生
めっき密着性の評価は、めっき層の合金化を施した合金化溶融亜鉛めっき鋼板(GA)については、めっき鋼板にセロハンテープを貼り、テープ面を90°曲げ曲げ戻しした後、テープを剥がし、単位長さ当りのめっきの剥離量を蛍光X線によりZnカウント数を測定し、表1に示す基準に照らしてランク1、2のものを良好(○、△)、3以上のものを不良(×)として評価した。
合金化を施さなかった溶融亜鉛めっき鋼板(GI)に対しては、ボールインパクト試験を行い、加工部にセロハンテープを貼った後に剥離し、めっき層の剥離の有無を以下の基準により評価した。
○:めっき層の剥離なし
△:めっき層が少量剥離
×:めっき層が著しく剥離
また、機械的特性の評価は、JIS 5号引張試験片を採取し、引張試験を行って測定した引張強さTS(MPa)および伸びEl(%)より、TS×Elの値が20000MPa・%以上である場合を良好な強度延性バランスを示すとして、機械的特性良好とした。
めっき層中のAl濃度は、めっき層をインヒビターを添加したNaOH、KOHなどのアルカリまたはHCl、HSOなどの酸で溶解し、その液をプラズマ発光分光機(ICP)などで分析定量することにより測定した。
めっき層中のFe濃度は、同様にICPなどでFeを分析定量することにより測定した。
AlN析出層の厚さは、めっき鋼板の断面をEPMAを用いて分析し、AlN析出が存在し、なおかつ、地鉄部分のAl濃度が鋼板の中央部分よりも小さくなっている領域の厚さを測定することにより求めた。また、AlN析出層における地鉄部分のAl濃度を前述の溶解残さの分析により求めた。
表5、表6から、本発明例の溶融亜鉛めっき鋼板(GAまたはGI)は、めっき外観の評価が△あるいは○であり、また、めっき密着性の評価も△あるいは○であり、めっき性およびめっき密着性に優れていることがわかる。さらに、機械的性質についても、20000Mpa・%以上の良好な強度延性バランスを示す。
これに対し、比較例1、2、7、8、10、11では、AlN析出層が存在していないため、めっき外観、めっき密着性が悪い。また、比較例3、13では、めっき層中のAl濃度が少ないため、めっき密着性が悪い。比較例4、5、14、15は合金化溶融亜鉛めっき鋼板の例であるが、比較例4、14はめっき層中のAl濃度が多く、さらに、めっき層中のFe濃度が少ないため、合金化ムラが発生しており、比較例5、15ではめっき層中のFe濃度が多すぎるため、めっき密着性が不良であった。また、比較例6、9は、めっき原板として鋼中Al含有量が少ない鋼板を用いた例であるが、機械的特性が劣っていることがわかる。比較例12は、一次焼鈍温度が高すぎるため、めっき層の合金化が進行しておらず、さらには、めっき密着性、機械的特性も悪い。
(2)第2の実施形態
次に、本発明に係る第2の実施形態として、電気めっき、あるいは化成処理の原板となる鋼板の成分組成について説明する。なお、本実施形態も、鋼中の各元素の含有量は単に%と記し、全て質量%を意味するものとする。
[Al:0.1%以上3%未満]
本実施形態では、第1の実施形態と同様に、鋼中にAlを0.1%以上含有するものを対象とする。これは、鋼中のAlが0.1%未満では、Alの表面濃化量が少ないため、電気めっきの密着性や電気めっきあるいは化成処理被膜の付着ムラや外観ムラは問題とならず、また、AlNの生成も生じないためである。また、本実施形態も、強度−延性バランス確保の観点から、残留オーステナイトを含有する鋼組成とすることが好ましいが、Al含有量が0.1%未満であると、残留オーステナイトが不安定となるため、鋼板の強度と延性とのバランスを良好にする観点からも、Alは0.1%以上含有されることを必要とする。ただし、Al含有量が3.0質量%以上の鋼板は、鋼板の表層にAlNを生成させたとしても、焼鈍時におけるAlの表面濃化量が多くなり、窒化層の形成方法に工夫を加えたわりにはめっき密着性の向上効果を確保することが困難となるので、鋼中のAl含有量を3.0%未満とする。
[Si:0.1%以上、Mn:0.5%以上のうちの1種または2種]
第1実施形態と同様の理由で、Si、Mnのうちの一種または2種を上記の範囲とする。
[Mo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種]
第1実施形態と同様の理由で、Mo、Nbのうちの一種または2種を上記の範囲とする。
[Cu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下]
Cu、Ni、Moを複合添加すると、鋼板のめっき密着性が改善される。Cu、Ni、Moの複合添加による電気めっきの密着性や化成処理性の改善機構は、今のところまだ明らかとなっていないが、本発明者は、これら元素を単独ではなく複合添加すると、焼鈍時にAlの内部酸化を促進させて表面濃化を抑制でき、めっき密着性を良好にすることを確認している。
その他の成分としては、製造コストや、自動車用鋼板として用いる際の加工性を考慮すると、C:0.0005〜0.25%、P:0.001〜0.20%、S:0.0001〜0.01%を含有するのが良い。また、これら元素に加えて、さらに鋼板の強度と延性とのバランスを制御するために、Ti:0.15%以下、Cr:1%以下、B:0.001〜0.005%を含有していても差し支えない。なお、残部は、Fe及び不可避的不純物である。
次に、本実施形態の重要ポイントである鋼板の表層部に形成されるAlN析出層について説明する。
本実施形態も、前述した第1の実施形態と同様に、鋼板の表層部にAlN析出層を形成させ、焼鈍工程や酸洗工程においても、表層部の鋼中Alが、窒化物として地鉄内部に固定されて鋼板表面に拡散することを抑制している。
AlN析出層が存在すると、今のところ原因は不明であるが、Al以外の易酸化性元素であるSi、Mnが焼鈍時に表面濃化することを抑制する効果も認められる。そのため、鋼中にSi、Mnを比較的多く含有し、めっき密着性の劣化や不めっきが発生し易い鋼板であっても,AlN析出層の存在により良好な電気めっき性、めっき密着性が得られる。
表層部にAlN析出層を形成した鋼板の断面は、第1の実施形態で示した図1(電子顕微鏡(SEM)で観察した結果)と同様であり、EPMAによるAlの存在状態も、第1の実施形態で示した図2と同様である。したがって、Alは、窒化物として柱状もしくは角張った形状として、地鉄界面から深さ10〜20μmの領域にかけて分布しており、この領域内でAlNが析出していない部分はAlの固溶量が減少していることが明らかである。つまり、この領域がAlN析出層に相当する。したがって、焼鈍時にこの領域からの固溶Alの表面への拡散が抑制され、よって電気めっきの密着性や化成処理性が劣化しないのである。また、この領域よりさらに深い部分では、窒化物の存在は認められず、Alはほとんど固溶状態として存在していることもわかる。
本実施形態も、第1の実施形態と同様の理由で、AlN析出層の厚さを、1以上100μm以下であることが好ましい。
次に、本発明に係る表面処理用鋼板の好適な製造方法について説明する。
この鋼板(電気めっきあるいは化成処理用の原板)は、通常の鋼板と同様に、連続鋳造等により製造された鋼鋳片を一定時間にわたり加熱保持後、熱間圧延工程を経て、あるいは、必要に応じてさらに冷間圧延工程を経て製造される。ただし、本発明では、電気めっきあるいは化成処理前の焼鈍工程においてAlが表面濃化しないように、焼鈍前あるいは酸洗前にAlN析出層を鋼板の表層部に形成させておくのである。
そこで、本発明者らは、このAlN析出層を形成させるために、上記鋼鋳片の加熱保持を、第1の実施形態と同様に、O:1vol%以上20vol%以下、N:70vol%以上を含有する雰囲気中で行うようにした。
また、上記鋼鋳片の加熱保持を、Nを有する雰囲気下で、保持温度を高く、保持時間を長くすれば、鋼鋳片表層部のAlを窒化させることができる。その際、鋼鋳片中のAl含有量が多いと、その分Alを窒化するための加熱保持時間が長くなる。そこで、種々のAl含有量の鋼について、熱間圧延前の加熱保持時間と加熱保持温度が電気めっきの密着性及び化成処理性に及ぼす影響について、以下のような調査を行った。
まず、Al:0.1〜3%、Si:0.5%、Mn:2.2%を含有する組成の鋼鋳片を、雰囲気をO:70vol%、残部Nとして加熱保持した後、熱間圧延を施し、2.8mm厚の鋼板とした。得られた熱延鋼板の表面に生成した酸化スケールを酸洗により除去した後、1.6mm厚にまで冷間圧延し、さらに、810〜825℃での焼鈍、400〜460℃での過時効処理を施し、その後に電気亜鉛めっき、燐酸亜鉛系化成処理をそれぞれ公知の方法で実施した。
得られた電気亜鉛めっき鋼板については、以下のOT曲げ試験により、めっき密着性の評価を行った。
OT曲げ試験は、電気めっき鋼板を、めっき密着性の評価面が外側となるように隙間なく二つ折りにし、該折り曲げ部にセロハンテープを貼り付けた後に剥離し、セロハンテープに付着しためっき層の量を目視観察する。そして、以下の基準1に従い評価した。
(基準1)
○:めっき層の剥離なし
△:めっき層が僅かに剥離するも問題ないレベル
×:めっき層が著しく剥離
また、得られた燐酸亜鉛系化成処理鋼板については、燐酸亜鉛系化成皮膜の付着ムラがあるかを目視で判定し、以下の基準2に従い評価した。
(基準2)
○:付着量ムラなし
△:付着量ムラが僅かに認められるが問題ないレベル
×:付着量ムラが著しく発生
これらの評価において、電気めっきの密着性及び化成処理性の両方が○又は△の評価であるものを○印とし、電気めっきの密着性及び化成処理性のいずれか一方、あるいは両方が×の評価であるものを×印とすると、本実施形態の評価結果は、第1の実施形態においてめっき密着性を評価した結果を示した図3と同様の評価結果を示した。
したがって、図3より、熱間圧延工程前の鋼鋳片の加熱保持を、加熱保持温度、加熱保持時間及び鋼中Al含有量が下記(1)式を満たす、つまり、○印及び×印の境界線が(1)式であり、その線より上方領域を満たす条件で行うと、良好なめっき密着性を有する電気亜鉛めっき鋼板を製造できることが明らかである。
[加熱保持温度(℃)−(1050+25Al)]×加熱保持時間(mm)≧3000 …(1)
但し、Al:鋼中のAl含有量(質量%)である。
また、上記(1)式を満たしている場合には、鋼板の表層部にAl析出層が形成していることが確認できた。
このように、Al:0.1%以上3%未満を含有する鋼組成の鋼鋳片について、熱間圧延前の加熱保持を、O:1vol%以上20vol%以下含有する雰囲気下で、且つ上記(1)式を満たす条件で行えば、表層部にAlN析出層を有する鋼板を製造することができ、Al、さらにはSiやMn等の易酸化性元素を含有している鋼板であるにもかかわらず、電気めっきの密着性及び化成処理性が良好となる。
上記条件で加熱保持後に熱間圧延して得られる熱延鋼板は、酸洗した後、あるいは酸洗、冷間圧延、焼鈍した後に、電気めっきや化成処理が施される。
本実施形態では、熱間圧延後の酸洗は、表面に形成した酸化スケールを除去する目的で行うが、酸洗の条件は特に限定しない。ただし、AlN析出層を残存させる必要があるので、酸洗時に地鉄を多量に溶解させないよう配慮する必要がある。酸としては塩酸が好ましいが、硫酸等の他の酸を用いることも可能である。酸濃度は、1〜20mass%が好ましい。地鉄を多量に溶解させないためには、酸洗液中にインヒビター(溶解抑制剤)を添加しても良い。
また、本実施形態では、冷間圧延は、最終製品の機械的特性や板厚を制御するために、必要に応じて実施する。冷間圧延を行う場合には、後の焼鈍時における再結晶の促進のため圧下率を30%以上で行うことが好ましい。ただし、圧下率を80%以上とすると、圧延機に負荷がかかり圧延が困難となるので、圧下率は30〜80%が好ましい。
さらに、本実施形態では、焼鈍は、公知の連続焼鈍法で行えば良い。また、冷間圧延後の鋼板だけでなく、熱間圧延後の鋼板に焼鈍を施しても構わない。鋼板の強度と延性とのバランスを良好にするには、連続式焼鈍法で焼鈍と電気亜鉛めっきとを連続して行う場合、2相域での加熱を行った後に350〜500℃で2分以上過時効処理を行い、ベイナイト変態をさせながらオーステナイト中にCを濃化させ、その後引き続き電気亜鉛めっきを施すのが好ましい。また、一次焼鈍、冷却、酸洗、二次焼鈍を経た後に、電気亜鉛めっきを施す場合には、一次焼鈍で2相域加熱を行った後、40℃/s以上で300℃以下まで急冷してフェライト−マルテンサイト相からなる焼入れ組織を形成させ、めっき直前に725〜840℃に加熱した後、5℃/s以上で冷却して焼戻し処理することで、フェライト−焼戻しマルテンサイト−残留オーステナイトの複合組織を形成させるのが好ましい。
なお、以上述べたAlN析出層を形成させる技術は、熱間圧延前の加熱保持条件を調整するものであったが、本実施形態に係る表面処理用鋼板を製造するには、この加熱保持条件を調整する技術を採用しなくても良い。例えば、焼鈍工程において、COやNHを微量混入させたH−N系といった窒化性元素の雰囲気下で焼鈍することでも製造が可能である。
本実施形態に係る表面処理用鋼板に施す電気めっきとしては、亜鉛を主成分とする電気亜鉛系めっきが好適である。例えば、純亜鉛電気めっきの他、Fe、Ni、Co、Mo等の元素を含有する亜鉛合金電気めっき、さらに、これらの亜鉛系電気めっきに無機化合物や有機化合物を分散または共析させた亜鉛系電気めっきが挙げられる。化成処理としては、燐酸亜鉛系化成処理等、一般的な方法が適用可能である。
つまり、本実施形態に係る表面処理用鋼板は、これらの電気めっき、あるいは化成処理が施されても、そのめっきの密着性、付着量ムラ、はじき、及び化成処理による結晶粒の粗大化等が大幅に改善されるのである。
[実施例]
表7に示した組成を有する鋼鋳片(スラブ)を、加熱炉で表8に示す条件で加熱保持し、引き続き熱間圧延により2.8mm厚の鋼帯として540〜600℃でコイル状に巻取った。その後、酸洗を行って、鋼帯表面の黒皮スケールを除去した。酸洗を施した熱延鋼板の一部は、冷間圧延により1.6mm厚の冷延鋼帯とし、さらに、800〜850℃で焼鈍して400〜500℃で過時効処理を施した後に、冷却した。
得られた熱延鋼帯あるいは冷延鋼帯を原板として、公知の方法で、燐酸亜鉛系化成処理、電気純亜鉛めっき、電気亜鉛−ニッケル合金めっき、電気亜鉛−鉄めっきのいずれかを行った。なお、原板についてはAlN析出層の厚さ、AlN析出層中のAlの固溶率についても測定した。電気めっき後の鋼板については、前述したOT曲げ試験を行い、めっき密着性の評価を行った。また、電気めっき性あるいは化成処理性は、外観性として、付着量ムラ等の外観ムラがあるかを目視により判定し、前記基準2に従って評価を行った。
さらに、機械的特性は、前記鋼帯よりJISに規定された5号引張試験片を採取し、引張試験を行って引張り強さ(TS(MPa))及び伸び(El(%))を測定した。そして、それらの値よりTS×Elを求め、その値が20、000(MPa・%)以上である場合を、その鋼板の強度と延性とが良好なバランスを示すと判断し、機械的特性が良好とした。
表8により、電気めっきを施した本発明例では、めっき密着性、外観性に優れ、且つ良好な機械的特性を示すことが明らかである。また、化成処理を施した本発明例でも、外観性に優れ、且つ良好な機械的特性を示すことが明らかである。
Figure 2003074751
Figure 2003074751
(3)第3の実施形態
次に、本発明に係る第3の実施形態として、高強度鋼板および高強度溶融亜鉛めっき鋼板原板となる鋼板の成分組成について説明する。なお、本実施形態も、鋼中の各元素の含有量は単に%と記し、全て質量%を意味するものとする。
[Al:0.1以上3.0%未満]
第1実施形態と同様の理由で、Al含有量を上記の範囲とする。
[C:0.03〜0.25%]
Cは、所望の組織を確保するために、0.03%以上含有させることが必要である。しかし、C量が多くなると溶接性が劣化するため、上限は0.25%以下に制限する。
[Si:0.001〜1.0%]
Siは、所望の強度と組織を得るために、0.001%以上添加する。また、SiはAlと同様に表層において内部酸化物として存在していれば、表面処理性の問題は回避できる。しかし、鋼中のSi含有量が1.0%を超えると、Siが表層において鋼板内部で酸化物として存在しても、表面処理を行った後の塗装後耐食性が悪くなる。そのため、上限は1.0%とする。
[Mn:0.5〜3.0%]
Mnは、所望の強度を得るために、0.5%以上添加する。しかし、添加量が3%を上回ると溶接性が劣化するので、3.0%以下に制限する。
[P:0.001〜0.10%]
Pは、深絞り性を劣化せずに高強度化することができる元素であるが、過剰な添加は合金化を遅延したり、二次加工脆性を劣化させたりするので、0.10%以下に制限する。下限値は、不可避的に含有されるレベルである0.001%とする。
本発明の鋼板は、上記必須成分のほか、必要に応じて下記の成分を含有させることができる。
[Mo:0.01〜1.0%、Nb:0.005〜0.2%]
MoおよびNbは、地鉄組織の細粒化と、再結晶を遅延させて昇温過程での内部酸化を促進して表面濃化を抑制する効果があり、良好な表面処理性やめっき密着性を得るためには複合して添加することが好ましい。しかし、複合添加する場合、Moは、1.0%を超えると熱延板の表面性状が劣化する傾向が見られ、0.01%未満だと効果が少ない。一方、Nbは、0.2%を超えると硬度が上昇して圧延性が劣化する傾向が見られ、0.005%未満だと効果が少ない。そのため、Mo:0.01〜1.0%、Nb:0.005〜0.2%とするのが好ましい。
[Cu:0.01〜0.5%、Ni:0.01〜1.0%、Mo:0.01〜1.0%]
Cu,NiおよびMoは、良好なめっき密着性を得るために好ましい元素であるが、複合添加されることにより初めて焼鈍時の内部酸化を促進して表面濃化を抑制する効果が発揮される。しかし、多量の添加は熱延板の表面性状を劣化する傾向が見られるので、それぞれの添加量は、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Mo:0.01〜1.0%を満たすことが必要である。
その他の成分としては、自動車用鋼板等として用いることを考慮し、強度−延性バランスを向上するため、必要に応じて、Ti:0.15%以下、Cr:1%以下、B:0.001〜0.005%の範囲で含有しても良い。
上述した元素以外の残部は、Feおよび不可避的不純物であることが好ましい。
次いで、本実施形態に係る高強度鋼板および高強度溶融亜鉛めっき鋼板が有すべき内部酸化層について説明する。
本実施形態においては、酸化物層は鋼板の表面ではなく、地鉄表面直下にいわゆる内部酸化層として生成せしめることが必要である。酸化物が鋼板表面に存在する量が多くなると表面処理性やめっき密着性のほか、溶接性等や塗装後耐食性等が劣化するからである。ここで、上記内部酸化層が存在する表面直下の領域(表層部)は、鋼板表面から概ね0.1〜100μmまでの範囲であることが好ましい。Al酸化物の存在する領域の厚みが0.1μm未満では、酸化物の生成量が少な過ぎて、Alの表面酸化を抑制できず、一方、100μmを超えると鋼板自体の機械的特性の劣化が懸念される。
また、内部酸化させることにより、Al酸化物は、地鉄表面直下の結晶粒内に内部酸化層として存在するほか、結晶粒界にも多く存在するようになる。この結晶粒界に存在するAl酸化物は、粒界から進行しやすい腐食反応を抑制する効果があり、また、粒内に存在する酸化物も、粒界から粒内への腐食反応の進行を抑える効果がある。このメカニズムの詳細は不明であるが、上記効果は、他の酸化物との共存によって更に高められるので、Fe,Si,Mn,P等の酸化物と共存させることが、耐食性の向上にとって好ましい。これらの元素の酸化物としては、SiO,MnO,FeSiO,FeSiO,MnSiO,MnSiO及びP等が挙げられる。
また、これら酸化物が共存することによりプレス加工時のめっき密着性が向上する。これは酸化物層が適量存在することで、加工時の圧縮応力を吸収する作用があるものと推定される。そのため、Alだけでなく、他の酸化物が共存することがめっき密着性のさらなる向上には効果的である。
さらに、Al酸化物を内部酸化層として存在させることで、スポット溶接性を向上することができる。これは、溶接性を劣化させるAlが、鋼板表面で酸化させることなく鋼中に酸化物として固定されることにより、地鉄表層部における実質的な固溶Al量が低減し、溶接性が改善されるためと考えられる。
以上説明したように、本実施形態の鋼板においては、鋼板表面の直下に内部酸化物層を存在させる必要があり、上記効果を得るためには、その酸化物量は片面当たり0.01g/m以上であることが必要である。一方、酸化物量が、1.0g/mを超えると内部酸化が進み過ぎるため、表面処理性やめっき密着性等が劣化するようになる。さらに、表面荒れにより外観を損ねたり耐食性が劣化したりする。
なお、上記内部酸化物量は、めっき層等の表面処理層がある場合はこれらを除去した後、鋼中酸素量を測定することで得ることができる。ここで、めっき層の除去する方法は、20wt%NaOH−10wt%トリエタノールアミン水溶液と35wt%H水溶液とを体積比195:7で混合した溶液やインヒビターを含有した希HCl溶液でも可能であり、その他の酸・アルカリを用いてもよい。但し、めっき層除去後、鋼板表面が酸化しないように注意する必要がある。また、鋼中酸素量を測定するには、鋼板母材の酸素量を差し引く必要があるため、めっき層を除去後、表裏の表層部を100μm以上機械研磨した試料についての鋼中酸素量を差し引いて、表層部のみの酸化物量を算出し、単位面積あたりに換算して内部酸化物量を得る。鋼中酸素量は、例えば、「インパルス炉溶融−赤外線吸収法」で測定することができる。酸化物の種類の同定は、鋼板断面の抽出レプリカを採取し、TEM観察やEDXで分析することで可能である。但し、生成量が少なく同定が困難な場合は、Br−メタノール法で抽出し、ICP法分析を行ってもよい。
上記内部酸化層は、熱延後の巻取温度(CT)を640℃以上の高温とするか、あるいは連続焼鈍ライン(CAL)又は溶融亜鉛めっきライン(CGL)を用いて焼鈍を施し、焼鈍炉内の雰囲気の露点(DP)をやや高めに設定することにより生成させることができる。内部酸化層の生成は、前者の場合には、黒皮スケールから供給される酸素によって引き起こされ、後者の場合には、雰囲気内のHOが鋼板表面で分解して生成した酸素によって引き起こされる。したがって、熱延後のCTを低くしたい場合には、焼鈍炉内で内部酸化させることができる。特に、Alは内部酸化しやすいため、通常の露点(DP=−40〜−30℃)程度でも酸化が起こり、添加量が2%近い多量の場合でも、表面濃化が充分に抑制される。但し、露点が−50℃未満となると、内部酸化は起こり難くなる。そのため、高CTで巻き取る場合には、焼鈍時の雰囲気の露点は問わないが、低CTで巻き取る場合には、露点を−45℃以上、好ましくは−40℃以上に設定するのが好ましい。また、表層のSi,Mn,Pについても、高CT化あるいは連続焼鈍時の露点制御により内部酸化し、上述した酸化物として表面直下の地鉄内に存在することとなる。
以上説明した高CT化あるいは連続焼鈍時露点制御により、本発明の高強度鋼板を製造できる。さらに本発明の高強度鋼板に対して溶融亜鉛めっきを施せば、本実施形態の溶融亜鉛めっき鋼板が製造できる。
次いで、本実施形態の鋼板を製造する際の焼鈍および溶融亜鉛めっきの好適条件について説明する。
連続焼鈍ライン(CAL)における焼鈍条件は、(α+γ)2相域の温度に加熱して再結晶を行わせた後、350〜500℃で2分以上の過時効処理を行うことにより、オーステナイト中にCを濃化させ、ベイナイト変態させることが高強度化の観点からは好ましい。また、溶融亜鉛めっきを施す場合には、上記の再結晶、過時効処理を行った鋼板に対して溶融亜鉛めっきを施してもよいし、溶融亜鉛めっきライン(CGL)において、上記2相域焼鈍を行った後、引き続き、溶融亜鉛めっき処理を施してもよい。なお、溶融亜鉛めっき鋼板の場合には、CALにおいて上記2相域焼鈍を行った後、40℃/sec以上で300℃以下まで急冷してフェライトとマルテンサイト相からなる焼入組織とし、その後、CGLで再度、725〜840℃で焼鈍後、5℃/sec以上で冷却して焼戻し処理し、フェライト−焼戻しマルテンサイト−残留オーステナイト相の複合組織を形成させた上で、引き続き溶融亜鉛めっきを施す2回焼鈍法を採用すると、特に高強度高延性の溶融亜鉛めっきとすることが可能である。
CALおよびCGLの焼鈍炉は、いわゆる全還元性雰囲気のオールラジアントチューブ加熱タイプ(RTH)の炉でも良く、また、昇温過程については、無酸化炉(NOF)、直火型加熱炉(DFF)タイプの炉でも構わない。
本実施形態を溶融亜鉛めっき鋼板に適用する場合のめっき方法は、公知の方法で行うことができる。例えば、浴温は440〜500℃とし、浴中Al濃度は、合金化処理を行う場合は0.10〜0.20%、行わない場合は0.14〜0.24%程度とするのが好ましい。Al濃度が低過ぎると、いずれの場合もめっき密着性が劣化し、一方、高過ぎると、非合金の場合は溶接性が劣化し、合金化する場合は合金化の遅延が起こる。さらに、耐食性を向上させるために、浴中にMgを添加しても良い。めっき付着量は,特に限定されないが、耐食性及びめっき付着量を制御する観点からは10g/m以上が好ましく、加工性の観点から120g/m以下が好ましい。
溶融亜鉛めっきに続き、必要に応じて合金化処理を施すことができる。合金化処理を行う場合の温度は、460〜550℃の範囲で行うのが好ましい。460℃未満では合金化の進行が遅く、550℃以上では過合金となり、めっき層と地鉄との界面に生成する固くて脆いZn−Fe合金層が生成し過ぎてめっき密着性が劣化するだけでなく、残留オーステナイト層が分解して、強度−延性バランスも劣化する。なお、合金化処理した後のめっき層中のFe含有量が7%未満では、めっき層表面に柔らかいZn−Fe合金層が形成され摺動性が劣化する。一方、15%を超えると、めっき層中の地鉄界面に固くて脆いFe−Zn合金層が形成され、めっき密着性が劣化するため好ましくない。
なお、本実施形態の高強度鋼板に対して、上記溶融亜鉛めっきだけでなく、溶融Zn−5%Alめっき、溶融Zn−55%Alめっき、溶融Alめっき等を施すことも可能である。また、本実施形態を適用する鋼板は、所望の機械的特性が確保できれば、冷延、熱延鋼板を問わない。
[実施例1]
表9に示した成分組成を有する鋼スラブを、加熱炉で1150℃×25分加熱した後、2.8mmまで熱間圧延を行い、450〜780℃で巻き取り、熱延鋼帯とした。その後、酸洗して黒皮スケールを除去し、1.4mmまで冷間圧延した後、800〜850℃で再結晶焼鈍後、400〜500℃で過時効処理を行う連続焼鈍を施し、冷延鋼帯とした。
この冷延鋼帯に対し、各種表面処理、すなわち、電気Znめっきあるいは電気Zn−Niめっきあるいは燐酸亜鉛化成処理を行い、外観、めっき密着性(電気めっきの場合のみ)、耐食性(燐酸亜鉛化成処理の場合のみ)の評価を行った。なお、電気メッキの付着量は20g/m、化成処理は2g/mとした。
Figure 2003074751
上記のようにして得た鋼板の特性の評価は、下記の要領で行った。
外観評価:目視で不めっきや付着ムラなどの有無を観察し、欠陥がないものを良好(○)と判断した。
めっき密着性:電気めっきを施した鋼板に対してボールインパクト試験を行った後、加工部にセロハンテープを貼り付けてから剥がして、めっき層剥離の有無を目視観察し、めっき層の剥離無しを○、めっき層が少し剥離を△、めっき層が著しく剥離を×として評価した。
耐食性試験:上記燐酸亜鉛化成処理を施した鋼板に対して、電着塗装を行い、カッターナイフでクロスカットを施した後、5%NaCl、55℃塩水中に240hr浸漬してから取り出して乾燥し、クロスカット部をテープ剥離し、剥離幅を測定した。そして、剥離幅が3.5mm未満を良好(○)、3.5〜4mm未満をやや良好(△)、4mm以上を不良(×)として評価した。
また、表面処理を施す前の冷延鋼板に対して、溶接性の評価を下記の要領で行った。
溶接性試験:2枚の試験片を、溶接電極としてドーム型先端径6mmφを使用し、電極加圧力4.3kN、溶接電流8kA、squeeze time:25サイクル、setup time:3サイクル、welding time:13サイクル、holding time:1サイクルの条件でスポット溶接し、その後、JIS Z3136に準拠した引張剪断試験における引張最大荷重(TSS)とJIS Z3137に準拠した十字引張試験における引張最大荷重(CTS)を測定した。そして、延性比(CTS/TSS)が0.25以上で、かつ、引張荷重(TSS)が板厚1.4mmの場合の基準引張剪断荷重(11062N)以上のものを優(○)とし、これらに満たないものを劣(×)と評価した。
さらに、表面処理を施す前の冷延鋼板に対して、前述の方法により内部酸化物量を測定するとともに、内部酸化物の同定を行った。なお、酸化物が表面から0.1μm以上までの範囲に存在する場合を酸化物有りとした。
上記の試験結果をまとめて表10に示す。この表から明らかなように、本発明の高強度鋼板は、Al及びSiを多量に含有するにも関わらず、いずれも表面処理性、めっき性、スポット溶接性、塗装後耐食性に優れていることが判る。
Figure 2003074751
[実施例2]
実施例1と同じ表9に示した成分組成を有する鋼スラブを、加熱炉で1150℃、25分加熱した後、2.8mmまで熱間圧延を行い、450〜780℃で巻き取り、熱延鋼帯とした。その後、酸洗して黒皮スケールを除去し、1.2mmまで冷間圧延した後、CGLにて、表12に示す条件で焼鈍を施した後、引き続き、溶融亜鉛めっき処理を施し、必要に応じて450〜570℃で合金化処理を行った。めっき浴の温度は450〜460℃に保持し、浴組成は、Alを0.13〜0.20mass%含有したZn浴の他、5mass%Al−Zn浴、4mass%Al−1.5mass%Mg−Zn浴の3種を用いた。また、めっき付着量は、ガスワイピングにより片面当たり50±5g/mに調節した。
得られた溶融亜鉛めっき鋼板について、実施例1と同様にして内部酸化量、酸化物の同定を行うとともに、下記の要領で外観、合金化度(合金化処理を行ったもののみ)、めっき密着性、耐食性について調査した。
合金化度:めっき層を20wt%NaOH−10wt%トリエタノールアミン水溶液と35wt%H水溶液とを体積比195:7で混合した溶液で溶解後、溶解液をICP分析によりFe含有量(%)を測定することで行った。
外観評価:不めっきやめっきムラの有無を目視で評価した。
めっき密着性:
(非合金化溶融亜鉛めっき鋼板) ボールインパクト試験を行った後、加工部にセロハンテープを貼り付けてから剥がして、めっき層剥離の有無を目視観察し、めっき層の剥離無しを○、めっき層が少し剥離を△、めっき層が著しく剥離を×として評価した。
(合金化溶融亜鉛めっき鋼板) 鋼板の表面にセロハンテープを貼り付けた面を90℃に曲げ・曲げ戻しをした後、テープ剥離を行い、テープに付着したZn量を蛍光X線で測定し、このときのZnのカウント数を、表11の基準に照らして評価を行った。なお、蛍光X線による測定は、Rh管球を使用し、40kV−50mA、120secの条件で行った。
耐食性試験:上記方法で製作した鋼板表面に、化成処理、電着塗装処理を施した後、カッターナイフでクロスカットを入れた試験片を、下記の一連の処理を1サイクルとするCCT試験を50サイクル実施し、その後、クロスカット部をテープ剥離し、塗装膜の剥離幅を測定した。判定は、剥離幅が4mm未満を良好(○)とし、4mm以上を不良(×)と評価した。
湿潤(2H)→塩水噴霧(2H)→乾燥(1H)→湿潤(6H)→乾燥(2H)→湿潤(6H)→乾燥(2H)→低温(3H)
また、溶融亜鉛めっき前の冷延鋼板に対して、溶接性の評価を下記の要領で行った。
溶接性試験:2枚の試験片を、溶接電極としてドーム型先端径6mmφを使用し、電極加圧力3.1kN、溶接電流7kA、squeeze time:25サイクル、setup time:3サイクル、welding time:13サイクル、holding time:1サイクルの条件でスポット溶接し、その後、JIS Z3136に準拠した引張剪断試験における引張最大荷重(TSS)とJIS Z3137に準拠した十字引張試験における引張最大荷重(CTS)を測定した。そして、延性比(CTS/TSS)が0.25以上で、かつ、引張荷重(TSS)が板厚1.2mmの場合の基準引張剪断荷重(8787N)以上のものを優(○)とし、これらに満たないものを劣(×)と評価した。
Figure 2003074751
試験結果をまとめて表12に示した。この表から、本発明の溶融亜鉛めっき鋼板は、Al及びSiを多量に含有するにも関わらず、いずれもめっき密着性、スポット溶接性、塗装後耐食性に優れていることが判る。
Figure 2003074751
産業上の利用可能性
例えば、自動車業界においては、車体の軽量化による燃費向上、衝突安全性の向上等の観点から、高張力鋼板の使用が急増している。高張力鋼板は、Si、Mn、Ti、Al、Pなどの元素を添加した鋼組成を有しているが、Sのi含有量が多くなると、焼鈍したときに、Siの酸化膜が鋼板表面に形成され、化成処理性や電気亜鉛めっき密着性、溶融亜鉛めっき性・めっき密着性等が劣化することが知られている。中でも、Siを多く含有する高強度鋼板を溶融亜鉛めっきする場合、濡れ性が悪くて部分的に溶融亜鉛が付着せずにいわゆる不めっきを起こしたり、プレス加工の際にめっき層が剥離する密着不良が起こったりする。Si含有量を高めずに高延性高張力化する方法として、Alを鋼中に積極的に添加してSi添加量を低減することで、Si添加鋼特有の表面品質劣化を阻止し、同時に残留オーステナイトを安定化させる技術がある。
しかしながら、AlもSiと同様に易酸化性元素であるため、焼鈍時にSiだけでなくAl酸化皮膜が生成するため、Si添加鋼と同様に溶融亜鉛めっき性やめっき密着性の劣化の問題が解決できなかった。
本発明の表面処理鋼板およびその製造方法によると、Alの鋼板表面への拡散を阻止すると同時に、表層部の固溶Al量を低減し、もって、所望の組織と機械的特性を確保することができる。また、表面処理性や溶融亜鉛めっき性、塗装後耐食性および溶接性を向上させることができる。さらに、鋼中Al含有量が高いにもかかわらず、密着性に優れためっき層を有することができる。
【図面の簡単な説明】
図1は、AlN析出層の電子顕微鏡観察結果を示す図である。図2は、AlN析出層のEPMAによる分析結果を示す図である。図3は、スラブ加熱時の保持温度及び保持時間が、めっき密着性、AlN析出層の発現に及ぼす影響を示すグラフである。

Claims (20)

  1. 質量%でAl:0.1%以上3%未満を含有する鋼組成を有する鋼板の表面に表面処理層を有する表面処理鋼板であって、下記AまたはBを満たしていることを特徴とする表面処理鋼板。
    A:前記鋼板と前記表面処理層との界面近傍の地鉄側にAlN析出層が存在している。
    B:前記鋼板の表面直下の地鉄内に、Alの酸化物が存在している。
  2. 前記表面処理層が、溶融亜鉛めっき層であって、質量%でAl:0.1%〜1.0%を含有していることを特徴とする請求項1記載の表面処理鋼板。
  3. 前記表面処理層は、さらに質量%でFe:7〜15%を含有する合金化溶融亜鉛めっき層であることを特徴とする請求項2に記載の表面処理鋼板。
  4. 前記鋼板と前記表面処理層との界面近傍の地鉄側にAlN析出層が存在していて、前記AlN析出層の厚さが1μm以上100μm以下であることを特徴とする請求項2または3に記載の表面処理鋼板。
  5. 前記鋼組成が、さらに質量%でSi:0.1%以上、Mn:0.5%以上のうちから選ばれる1種または2種を含有することを特徴とする請求項2または3に記載の表面処理鋼板。
  6. 前記鋼組成が、さらに質量%でMo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項2または3に記載の表面処理鋼板。
  7. 前記鋼組成が、さらに質量%でCu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下を含有することを特徴とする請求項2または3に記載の表面処理鋼板。
  8. 前記鋼組成が、さらに質量%でC:0.03〜0.25%、Si:0.001〜1.0%、Mn:0.5〜3.0%、P:0.001〜0.10%を含有することを特徴とする請求項2に記載の表面処理鋼板。
  9. 前記地鉄内に、さらにSiO,MnO,FeSiO,FeSiO,MnSiO,MnSiO及びPから選ばれた1種以上の酸化物が存在することを特徴とする請求項8に記載の表面処理鋼板。
  10. 前記酸化物量が合計で片面当たり0.01〜1.0g/mであることを特徴とする請求項8または9に記載の表面処理鋼板。
  11. 前記鋼組成が、さらに質量%でMo:0.01〜1.0%およびNb:0.005〜0.2%を含有することを特徴とする請求項8または9に記載の表面処理鋼板。
  12. 前記鋼組成が、さらに質量%でCu:0.01〜0.5%、Ni:0.01〜1.0%、Mo:0.01〜1.0%を含有することを特徴とする請求項8または9に記載の表面処理鋼板。
  13. 前記表面処理層が、溶融亜鉛めっき層であって、且つ、加熱合金化処理されていることを特徴とする請求項8または9に記載の表面処理鋼板。
  14. 加熱合金化処理された前記表面処理層中のFe含有率が質量%で7〜15%であることを特徴とする請求項13に記載の表面処理鋼板。
  15. 鋼片を加熱保持した後、熱間圧延して得られる鋼板を溶融亜鉛めっきする、表面処理鋼板の製造方法において、前記鋼片を質量%でAlを0.1%以上3%未満含有する鋼片とし、前記加熱保持を、O:1vol%以上20vol%以下、N:70vol%以上を含有する雰囲気中で、下記式(1)を満たす条件とし、前記溶融亜鉛めっきを、浴温が440〜500℃、浴中Al濃度が0.14〜0.24質量%の亜鉛めっき浴を用いて行うことを特徴とする表面処理鋼板の製造方法。
    [加熱保持温度(℃)−(1050+25Al)]×加熱保持時間(min)≧3000 …(1)
    但し、Al:鋼中のAl含有量(質量%)である。
  16. 前記鋼板を、浴温が440〜500℃、浴中Al濃度が0.10〜0.20質量%の溶融亜鉛めっき浴を用いて溶融亜鉛めっきした後、さらに、460〜550℃で溶融亜鉛めっき層の合金化処理を施すことを特徴とする請求項15に記載の表面処理鋼板の製造方法。
  17. 前記熱間圧延と溶融亜鉛めっきとの間で、冷間圧延を行うことを特徴とする請求項15または16に記載の表面処理鋼板の製造方法。
  18. 前記鋼片が、さらに質量%でSi:0.1%以上、Mn:0.5%以上のうちから選ばれる1種または2種を含有することを特徴とする請求項15または16に記載の表面処理鋼板の製造方法。
  19. 前記鋼片が、さらに質量%でMo:0.01%以上1%以下、Nb:0.005%以上0.2%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項15または16に記載の表面処理鋼板の製造方法。
  20. 前記鋼片が、さらに質量%でCu:0.01%以上0.5%以下、Ni:0.01%以上1%以下、Mo:0.01%以上1%以下を含有することを特徴とする請求項15または16に記載の表面処理鋼板の製造方法。
JP2003573192A 2002-03-01 2003-02-26 表面処理鋼板 Expired - Fee Related JP4457667B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2002056139 2002-03-01
JP2002056139 2002-03-01
JP2002229586 2002-08-07
JP2002229586 2002-08-07
JP2002270281 2002-09-17
JP2002270281 2002-09-17
JP2002307635 2002-09-17
JP2002307635 2002-09-17
PCT/JP2003/002147 WO2003074751A1 (fr) 2002-03-01 2003-02-26 Plaque d'acier a surface traitee et procede de production correspondant

Publications (2)

Publication Number Publication Date
JPWO2003074751A1 true JPWO2003074751A1 (ja) 2005-06-30
JP4457667B2 JP4457667B2 (ja) 2010-04-28

Family

ID=27792236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003573192A Expired - Fee Related JP4457667B2 (ja) 2002-03-01 2003-02-26 表面処理鋼板

Country Status (11)

Country Link
US (1) US7074497B2 (ja)
EP (2) EP2343393B2 (ja)
JP (1) JP4457667B2 (ja)
KR (2) KR100888908B1 (ja)
CN (1) CN100540718C (ja)
AT (1) ATE510040T1 (ja)
AU (1) AU2003211728A1 (ja)
CA (1) CA2459134C (ja)
MX (1) MXPA04006178A (ja)
TW (2) TWI314955B (ja)
WO (1) WO2003074751A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
WO2006038736A1 (ja) * 2004-10-07 2006-04-13 Jfe Steel Corporation 溶融亜鉛めっき鋼板およびその製造方法
US8986468B2 (en) * 2005-03-31 2015-03-24 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
CN101297051B (zh) * 2005-12-06 2010-12-29 株式会社神户制钢所 耐粉化性优异的高强度合金化熔融镀锌钢板及其制造方法
WO2007086158A1 (ja) 2006-01-30 2007-08-02 Nippon Steel Corporation 成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置
CN101627142B (zh) * 2007-02-23 2012-10-03 塔塔钢铁艾默伊登有限责任公司 冷轧且连续退火的高强度钢带材及生产所述钢的方法
EP2009127A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Process for manufacturing a galvanized or a galvannealed steel sheet by DFF regulation
EP2009128A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Galvanized or galvannealed silicon steel
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5365112B2 (ja) * 2008-09-10 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2010126757A (ja) * 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5663833B2 (ja) 2008-11-27 2015-02-04 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP5418168B2 (ja) * 2008-11-28 2014-02-19 Jfeスチール株式会社 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
JP5206705B2 (ja) 2009-03-31 2013-06-12 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR20110117220A (ko) * 2009-03-31 2011-10-26 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5370244B2 (ja) * 2009-03-31 2013-12-18 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN102400141B (zh) * 2010-09-07 2014-05-07 鞍钢股份有限公司 一种合金化镀锌钢板制造方法及其合金化镀锌钢板
JP5609494B2 (ja) 2010-09-29 2014-10-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN103154297B (zh) * 2010-09-30 2016-05-18 杰富意钢铁株式会社 高强度钢板及其制造方法
JP5862002B2 (ja) * 2010-09-30 2016-02-16 Jfeスチール株式会社 疲労特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
BR112013007154A2 (pt) * 2010-09-30 2016-06-14 Jfe Steel Corp folha de aço de alta resistência e método para fabricação da mesma
JP5906628B2 (ja) * 2011-09-20 2016-04-20 Jfeスチール株式会社 塗装後耐食性に優れる合金化溶融亜鉛めっき鋼板
JP5906633B2 (ja) * 2011-09-26 2016-04-20 Jfeスチール株式会社 塗装後耐食性に優れる合金化溶融亜鉛めっき鋼板
KR101428151B1 (ko) * 2011-12-27 2014-08-08 주식회사 포스코 고망간 열연 아연도금강판 및 그 제조방법
JP5783269B2 (ja) * 2012-01-05 2015-09-24 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板
CA2914464C (en) * 2013-06-11 2017-07-18 Nippon Steel & Sumitomo Metal Corporation Hot stamp molded body, and method for producing hot stamp molded body
CN104109464A (zh) * 2014-06-17 2014-10-22 安徽省六安市朝晖机械制造有限公司 一种抗剥离铝合金表面处理剂
TWI675924B (zh) * 2017-07-31 2019-11-01 日商日本製鐵股份有限公司 熔融鍍鋅鋼板
BR112020001437A2 (pt) 2017-07-31 2020-07-28 Nippon Steel Corporation chapa de aço galvanizada por imersão a quente
WO2019092483A1 (en) * 2017-11-10 2019-05-16 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
EP3725904B1 (en) * 2017-12-15 2024-03-06 Nippon Steel Corporation Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet
US20190382875A1 (en) * 2018-06-14 2019-12-19 The Nanosteel Company, Inc. High Strength Steel Alloys With Ductility Characteristics
CN114761596B (zh) * 2019-12-19 2023-05-09 日本制铁株式会社 钢板及其制造方法
JP7481651B2 (ja) 2020-09-30 2024-05-13 日本製鉄株式会社 鋼板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559491A (ja) * 1991-08-30 1993-03-09 Sumitomo Metal Ind Ltd プレス加工用の高張力薄鋼板とその製造法
JPH05271857A (ja) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd 高張力薄鋼板とその製造方法
WO2000050658A1 (fr) * 1999-02-22 2000-08-31 Nippon Steel Corporation Plaque d'acier galvanise a haute resistance, d'excellent comportement pour l'adhesion des placages de metal et la mise en forme sous presse, et plaque d'acier allie galvanise a haute resistance, et procede de production correspondant
JP2002047535A (ja) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板とその製造方法
JP2003105492A (ja) * 2001-09-28 2003-04-09 Nippon Steel Corp 耐食性に優れた高強度高延性溶融亜鉛めっき鋼板及びその製造方法
JP2004162163A (ja) * 2002-03-01 2004-06-10 Jfe Steel Kk 表面処理用鋼板、表面処理鋼板およびそれらの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US60A (en) * 1836-10-20 Ptjllinq ttp hope yaons
US3A (en) * 1836-08-11 Thomas blanchard
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US5A (en) * 1836-08-10 Thomas blancharjq
US2002A (en) * 1841-03-12 Tor and planter for plowing
US1009396A (en) * 1911-06-03 1911-11-21 Arthur E Fahrman Perforating-machine.
GB1396419A (en) * 1972-08-17 1975-06-04 Gkn South Wales Ltd Hot-dip zinc galvanizing of ferrous articles
US3925579A (en) * 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
FR2411891A1 (fr) 1977-12-14 1979-07-13 Siderurgie Fse Inst Rech Procede de traitement thermique de pieces d'acier destinees a etre recouvertes superficiellement a chaud par un autre compose
JPS6017052A (ja) 1983-07-06 1985-01-28 Kobe Steel Ltd 強度−延性バランスのすぐれた深絞り用高強度冷延鋼板
JPS5974236A (ja) * 1983-09-05 1984-04-26 Sumitomo Metal Ind Ltd 成形性のすぐれた深絞り用亜鉛めつき鋼板の製造法
JPS5974237A (ja) * 1983-09-05 1984-04-26 Sumitomo Metal Ind Ltd 成形性のすぐれた深絞り用亜鉛めつき鋼板の製造法
JPH0351778A (ja) 1989-07-19 1991-03-06 Nec Corp Icのハンドリング装置
FR2661426B1 (fr) * 1990-04-27 1992-08-07 Maubeuge Fer Procede de galvanisation au trempe et en continu.
JP3350944B2 (ja) * 1991-12-21 2002-11-25 住友金属工業株式会社 延性,耐食性の優れた高張力冷延薄鋼板と製造法
JP3444007B2 (ja) * 1995-03-10 2003-09-08 Jfeスチール株式会社 高加工性、高強度溶融亜鉛めっき鋼板の製造方法
WO1998030729A1 (fr) * 1997-01-13 1998-07-16 Kawasaki Steel Corporation Tole d'acier galvanise a chaud presentant peu de defauts par suite d'un placage defectueux, ainsi que d'excellentes caracteristiques d'adherence de depot par contact, et son procede de production
FR2742449B1 (fr) * 1995-12-14 1998-01-09 Lorraine Laminage Procede de galvanisation de tole d'acier contenant des elements d'addition oxydables
BE1011131A6 (fr) * 1997-04-28 1999-05-04 Centre Rech Metallurgique Procede de revetement d'une bande d'acier par galvanisation a chaud.
JP2000290762A (ja) * 1999-04-07 2000-10-17 Kawasaki Steel Corp 溶融めっき鋼板の製造方法
DE19936151A1 (de) * 1999-07-31 2001-02-08 Thyssenkrupp Stahl Ag Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung
DE60143989D1 (de) * 2000-09-12 2011-03-17 Jfe Steel Corp Schmelztauchbeschichtetes stahlblech mit hoher zugfestigkeit und herstellungsverfahren hierfür
KR20070026882A (ko) * 2001-06-06 2007-03-08 신닛뽄세이테쯔 카부시키카이샤 고가공(高加工)시의 내피로성, 내식성, 연성 및 도금부착성을 갖는 고강도 용융 아연 도금 강판 및 합금화 용융아연 도금 강판
JP4464720B2 (ja) * 2003-04-10 2010-05-19 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559491A (ja) * 1991-08-30 1993-03-09 Sumitomo Metal Ind Ltd プレス加工用の高張力薄鋼板とその製造法
JPH05271857A (ja) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd 高張力薄鋼板とその製造方法
WO2000050658A1 (fr) * 1999-02-22 2000-08-31 Nippon Steel Corporation Plaque d'acier galvanise a haute resistance, d'excellent comportement pour l'adhesion des placages de metal et la mise en forme sous presse, et plaque d'acier allie galvanise a haute resistance, et procede de production correspondant
JP2002047535A (ja) * 2000-07-31 2002-02-15 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板とその製造方法
JP2003105492A (ja) * 2001-09-28 2003-04-09 Nippon Steel Corp 耐食性に優れた高強度高延性溶融亜鉛めっき鋼板及びその製造方法
JP2004162163A (ja) * 2002-03-01 2004-06-10 Jfe Steel Kk 表面処理用鋼板、表面処理鋼板およびそれらの製造方法
JP4123976B2 (ja) * 2002-03-01 2008-07-23 Jfeスチール株式会社 溶融亜鉛めっき鋼板及びその製造方法

Also Published As

Publication number Publication date
US7074497B2 (en) 2006-07-11
TW200304961A (en) 2003-10-16
KR20040089070A (ko) 2004-10-20
CA2459134A1 (en) 2003-09-12
ATE510040T1 (de) 2011-06-15
CA2459134C (en) 2009-09-01
TWI452170B (zh) 2014-09-11
KR20090007501A (ko) 2009-01-16
EP2343393A3 (en) 2011-10-19
CN1639376A (zh) 2005-07-13
JP4457667B2 (ja) 2010-04-28
EP2343393A2 (en) 2011-07-13
US20040234807A1 (en) 2004-11-25
AU2003211728A1 (en) 2003-09-16
KR100888908B1 (ko) 2009-03-16
CN100540718C (zh) 2009-09-16
EP1482066B1 (en) 2011-05-18
KR100928860B1 (ko) 2009-11-30
WO2003074751A1 (fr) 2003-09-12
EP1482066A1 (en) 2004-12-01
EP2343393B1 (en) 2013-11-20
EP2343393B2 (en) 2017-03-01
TW200946715A (en) 2009-11-16
TWI314955B (en) 2009-09-21
EP1482066A4 (en) 2008-12-31
MXPA04006178A (es) 2004-12-06

Similar Documents

Publication Publication Date Title
JP4457667B2 (ja) 表面処理鋼板
KR100595947B1 (ko) 고강도 박강판, 고강도 합금화 용융아연도금 강판 및이들의 제조방법
KR101707984B1 (ko) 용융 Al-Zn계 도금 강판
TWI437122B (zh) 熔融Al-Zn系鍍覆鋼板及其製造方法
JP3898923B2 (ja) 高加工時のめっき密着性および延性に優れた高強度溶融Znめっき鋼板及びその製造方法
KR20010042985A (ko) 강판, 용융 도금 강판 및 합금화 용융 도금 강판과 이들의제조 방법
JP2005060742A (ja) 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
KR20180072809A (ko) 고강도 용융 아연 도금 강판의 제조 방법, 고강도 용융 아연 도금 강판용 열연 강판의 제조 방법, 고강도 용융 아연 도금 강판용 냉연 강판의 제조 방법 및, 고강도 용융 아연 도금 강판
WO2020148944A1 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5392116B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2023054818A (ja) Fe系電気めっき鋼板及び合金化溶融亜鉛めっき鋼板、並びにこれらの製造方法
JP3752898B2 (ja) 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5315795B2 (ja) 高加工時の耐めっき剥離性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびその製造方法
JP4123976B2 (ja) 溶融亜鉛めっき鋼板及びその製造方法
JP2006077329A (ja) 高強度合金化溶融亜鉛めっき鋼板
JP6838665B2 (ja) 高強度合金化電気亜鉛めっき鋼板およびその製造方法
JPWO2019189067A1 (ja) 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2002047547A (ja) 溶融めっき高張力鋼板の製造方法
JP7235165B2 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および合金化溶融亜鉛めっき鋼板の製造方法
JP5354178B2 (ja) 高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5971155B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
EP4296385A1 (en) Method for manufacturing steel sheet
JP3058911B2 (ja) 焼付硬化性および耐孔あき腐食性に優れた良加工性溶融亜鉛めっき鋼板の製造方法
JPH06248410A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5962544B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4457667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees