CN103154297B - 高强度钢板及其制造方法 - Google Patents

高强度钢板及其制造方法 Download PDF

Info

Publication number
CN103154297B
CN103154297B CN201080069338.2A CN201080069338A CN103154297B CN 103154297 B CN103154297 B CN 103154297B CN 201080069338 A CN201080069338 A CN 201080069338A CN 103154297 B CN103154297 B CN 103154297B
Authority
CN
China
Prior art keywords
steel plate
steel sheet
temperature
carry out
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080069338.2A
Other languages
English (en)
Other versions
CN103154297A (zh
Inventor
伏胁祐介
铃木善继
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN103154297A publication Critical patent/CN103154297A/zh
Application granted granted Critical
Publication of CN103154297B publication Critical patent/CN103154297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明提供一种即使在Si含量较多时,也具有优良的化学转化处理性和电沉积涂装后的耐腐蚀性的高强度钢板及其制造方法。在对具有如下组成的钢板实施连续退火时,在加热过程中,在使加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的温度区域的气氛露点为-10℃以上的条件下进行,其中,所述钢板的组成为:以质量%计,含有C:0.01~0.18%、Si:0.4~2.0%、Mn:1.0~3.0%、Al:0.001~1.0%、P:0.005~0.060%、S≤0.01%,并且余量由Fe和不可避免的杂质构成。

Description

高强度钢板及其制造方法
技术领域
本发明涉及一种即使在Si含量较多时,也具有优良的化学转化处理性和电沉积涂装后的耐腐蚀性的高强度钢板及其制造方法。
背景技术
近年来,从提高汽车的燃料效率以及提高汽车的碰撞安全性的观点出发,对于通过车身材料的高强度化来实现薄壁化,从而使车身自身轻量化并且高强度化的要求不断提高。因此,促进了高强度钢板在汽车中的使用。
一般而言,汽车用钢板在涂装后使用,并且作为该涂装的预处理,实施被称作磷酸盐处理的化学转化处理。钢板的化学转化处理是用于确保涂装后的耐腐蚀性的重要处理之一。
为了提高钢板的强度和延展性,添加Si是有效的。然而,在连续退火时,Si即使在不会引起Fe的氧化(使Fe氧化物发生还原)的还原性的N2+H2气氛中进行退火的情况下也会发生氧化,在钢板最表层形成Si氧化物(SiO2)。由于该SiO2阻碍化学转化处理中化学转化被膜的生成反应,因此会形成未生成化学转化被膜的微小区域(以后,也称为未覆盖区域),化学转化处理性下降。
作为改善高Si含量钢板的化学转化处理性的现有技术,专利文献1中公开了使用电镀方法在钢板上形成20~1500mg/m2铁被覆层的方法。然而,该方法存在有另外需要电镀设备,工序增加部分的成本也增加的问题。
此外,专利文献2通过规定Mn/Si的比率,专利文献3通过添加Ni,均提高了磷酸盐处理性。然而,其效果取决于钢板中的Si含量,并且认为对于Si含量高的钢板来说,还需要进一步改善。
此外,专利文献4中公开了使退火时的露点为-25~0℃,从而在离钢板基底表面深度为1μm以内形成由含Si氧化物所构成的内部氧化层,并且使钢板表面长度10μm中含Si氧化物所占的比例为80%以下的方法。然而,专利文献4中所述的方法,其前提是控制了露点的区域为炉内整体,因此露点的控制性困难,并且难以稳定操作。此外,在不稳定的露点控制下进行退火时,可以确认钢板中形成的内部氧化物的分布状态存在偏差,在钢板的长度方向和宽度方向上可能会产生化学转化处理性的不均匀(在整体或部分上未覆盖)。进而,即使提高了化学转化处理性,由于在化学转化处理被膜的正下方存在含Si氧化物,也有电沉积涂装后的耐腐蚀性差的问题。
此外,专利文献5中记载了一种在氧化性气氛中使钢板温度达到350~650℃从而在钢板表面上形成氧化膜,然后在还原性气氛中加热至再结晶温度,并且冷却的方法。然而,在该方法中,钢板表面上所形成的氧化被膜的厚度随着氧化方法而不同,可能未充分发生氧化,也可能氧化被膜变得过厚,从而在之后的还原性气氛中退火时,氧化膜残留或剥离,表面性状变差。虽然实施例中记载了在大气中氧化的技术,但大气中的氧化生成了较厚的氧化物,存在有之后的还原困难,或者需要高氢浓度的还原气氛等问题。
此外,专利文献6中记载了如下方法,对于以质量%计含有0.1%以上Si和/或1.0%以上Mn的冷轧钢板,在钢板温度400℃以上,在铁的氧化气氛中在所述钢板表面形成氧化膜,然后在铁的还原气氛中还原所述钢板表面的氧化膜。具体而言为如下方法,在400℃以上,使用空气比为0.93以上且1.10以下的直火燃烧器使钢板表面的Fe氧化后,在使Fe氧化物发生还原的N2+H2气氛下退火,由此抑制了导致化学转化处理性变差的SiO2在最表面的氧化,并且使Fe的氧化层在最表面形成。虽然专利文献6中具体记载了直火燃烧器的加热温度,但在含有较多(大概为0.6%以上)Si时,Si比Fe更容易氧化,其氧化量变多,从而抑制了Fe的氧化,Fe的氧化本身变得过少。结果还原后表面Fe还原层的形成不足,在还原后的钢板表面仍存在有SiO2,有时会产生化学被膜的未覆盖区域。
现有技术文献
专利文献
专利文献1:日本特开平5-320952号公报
专利文献2:日本特开2004-323969号公报
专利文献3:日本特开平6-10096号公报
专利文献4:日本特开2003-113441号公报
专利文献5:日本特开昭55-145122号公报
专利文献6:日本特开2006-45615号公报
发明内容
发明所要解决的问题
本发明鉴于上述情况而完成,其目的在于提供一种即使在Si含量较多时,也具有优良的化学转化处理性和电沉积涂装后的耐腐蚀性的高强度钢板及其制造方法。
用于解决问题的方法
以往,仅通过提高退火炉内整体的水蒸气分压或氧分压来提高露点或氧浓度,从而使钢板内部过度氧化,因此如上所述,产生了露点或氧化控制性的问题,化学转化处理性不均匀,电沉积涂装后的耐腐蚀性变差等各种问题。因此,本发明人未局限于以往的观点,并以新的方法研究了解决问题的方法。结果发现,通过对可能成为电沉积涂装后耐腐蚀性变差起点的钢板表层的组织、结构进行高度控制,可以得到化学转化处理性和电沉积涂装后的耐腐蚀性优良的高强度钢板。具体来说,在加热过程中加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的限定温度区域中,将气氛的露点控制为-10℃以上,进行退火,并且进行化学转化处理。通过进行这样的处理,可以抑制选择性表面氧化,并且可以抑制表面富集,能够得到化学转化处理性和电沉积涂装后的耐腐蚀性优良的高强度钢板。需要说明的是,化学转化处理性优良,是指化学转化处理后具有不存在无覆盖区域及不均匀的外观。
并且,通过以上方法所得的高强度钢板,形成了下述组织、结构:在离钢板表面100μm以内的钢板表层部中,以每单面0.010~0.50g/m2形成选自Fe、Si、Mn、Al、P、以及B、Nb、Ti、Cr、Mo、Cu、Ni中的一种以上的氧化物,此外,在离钢板表面10μm以内的区域中,在离晶界1μm以内的钢基晶粒中析出有结晶性Si、Mn系氧化物。由此,可以实现电沉积涂装后的腐蚀性的变差,并且化学转化处理性优良。
本发明基于上述见解而完成,其特征如下所述。
[1]一种高强度钢板的制造方法,其特征在于,在对具有如下组成的钢板实施连续退火时,在加热过程中,在使加热炉内温度为A℃以上且B℃以下的温度区域的气氛露点为-10℃以上的条件下进行,其中,A:600≤A≤780,B:800≤B≤900,所述钢板的组成为:以质量%计,含有C:0.01~0.18%、Si:0.4~2.0%、Mn:1.0~3.0%、Al:0.001~1.0%、P:0.005~0.060%、S≤0.01%,并且余量由Fe和不可避免的杂质构成。
[2]如上述[1]所述的高强度钢板的制造方法,其特征在于,所述钢板的成分组成,以质量%计,进一步含有选自B:0.001~0.005%、Nb:0.005~0.05%、Ti:0.005~0.05%、Cr:0.001~1.0%、Mo:0.05~1.0%、Cu:0.05~1.0%、Ni:0.05~1.0%中的1种以上的元素。
[3]如上述[1]或[2]所述的高强度钢板的制造方法,其特征在于,在进行所述连续退火后,在含有硫酸的水溶液中进行电解酸洗。
[4]一种高强度钢板,其特征在于,通过所述[1]~[3]中任一项所述的制造方法制造,并且在离钢板表面100μm以内的钢板表层部中,以每单面0.010~0.50g/m2形成选自Fe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Ni中的一种以上的氧化物,此外,在离钢板表面10μm以内的区域中,在离钢板晶界1μm以内的晶粒内存在有结晶性Si、Mn系氧化物。
另外,在本发明中,高强度是指拉伸强度TS为340MPa以上。此外,本发明的高强度钢板,包括冷轧钢板和热轧钢板中的任一种。
发明效果
根据本发明,可以得到即使在Si含量较多时,也具有优良的化学转化处理性和电沉积涂装后的耐腐蚀性的高强度钢板。
具体实施方式
以下,对本发明进行具体说明。另外,在以下的说明中,钢成分组成的各元素含量的单位均为“质量%”,以下,只要没有特别说明就仅以“%”表示。
首先,对于本发明中最重要的条件,即决定钢板表面结构的退火气氛条件进行说明。
在退火炉内的加热过程中,在加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的限定温度区域中,将气氛的露点控制为-10℃以上,进行连续退火,然后进行化学转化处理,由此,可以使易氧化性元素(Si、Mn等)的氧化物(以下,称为内部氧化)适量存在于钢板表层10μm以内的内部,抑制使退火后的化学转化处理性变差的钢中Si、Mn等在钢板表层的选择性表面氧化(以后,称为表面富集)。
使下限温度A为600≤A≤780的原因如下所述。在低于600℃的温度区域中,即使不实施露点控制而不使内部氧化形成,由于其原本就是表面富集少的温度区域,因此也不会阻碍化学转化处理性。此外,在不控制露点而升温至温度超过780℃时,由于表面富集多,因此阻碍了氧的内部扩散,难以发生内部氧化。因此,必须从至少为780℃以下的温度区域起控制为-10℃以上的露点。由以上可知,A的容许范围为A:600≤A≤780,并且基于上述原因,在该范围中A优选为尽可能低的值。
使上限温度B为800≤B≤900的原因如下所述。通过形成内部氧化,形成了钢板表层10μm以内的内部易氧化性元素(Si、Mn等)的固溶量减少的区域(以下,称为缺乏层),从而抑制了易氧化性元素从钢中向表面扩散。为了形成该内部氧化、抑制表面富集从而形成充分的缺乏层,必须使B为800≤B≤900。当低于800℃时,无法充分形成内部氧化。此外,超过900℃,则内部氧化的形成量过多,成为电沉积涂装后耐腐蚀性变差的起点。
使A℃以上且B℃以下的温度区域中的露点为-10℃以上的原因如下所述。通过提高露点,能够提高H2O分解所产生的O2电势,从而促进内部氧化。在低于-10℃的温度区域中,内部氧化的形成量少。此外,对于露点的上限来说,没有特别规定,但如果超过90℃,则Fe的氧化量变多,退火炉壁和辊可能会劣化,因此优选为90℃以下。
接着,对作为本发明对象的高强度钢板的钢成分组成进行说明。
C:0.01~0.18%
C通过形成马氏体等作为钢组织而提高了加工性。为此,必须为0.01%以上。另一方面,如果超过0.18%,则伸长率下降,材质变差,并进一步导致焊接性变差。因此,使C量为0.01%以上且0.18%以下。
Si:0.4~2.0%
Si是对于使钢强化,提高伸长率,从而得到良好材质的有效元素,而为了得到本发明的目标强度,必须为0.4%以上。当Si不到0.4%时,无法得到本发明适用范围的强度,而对于化学转化处理性没有特别问题。另一方面,如果超过2.0%,则钢的强化能力和伸长率提高效果饱和。此外,还变得难以改善化学转化处理性。因此,使Si量为0.4%以上且2.0%以下。
Mn:1.0~3.0%
Mn是对钢的高强度化有效的元素。为了确保机械特性和强度,必须含有1.0%以上。另一方面,如果超过3.0%,则难以确保焊接性,以及强度和延展性的平衡。因此,使Mn量为1.0%以上且3.0%以下。
Al:0.001~1.0%
Al是为了钢水的脱氧而添加的。钢水的脱氧效果在0.001%以上时可以得到。另一方面,如果超过1.0%,则成本上升。而且,Al的表面富集变多,难以改善化学转化处理性。因此,使Al量为0.001%以上且1.0%以下。
P:0.005~0.060%以下
P是不可避免含有的元素之一,为了使其低于0.005%,可能会增大成本,因此使其为0.005%以上。另一方面,如果P的含量超过0.060%,则焊接性变差。而且,化学转化处理性急剧变差,并且即使采用本发明也难以提高化学转化处理性。因此,使P量为0.005%以上且0.060%以下。
S≤0.01%
S是不可避免含有的元素之一。其下限没有规定,并且如果大量含有,则焊接性和耐腐蚀性变差,因此使其为0.01%以下。
另外,为了控制强度和延展性的平衡,可以根据需要添加选自B:0.001~0.005%、Nb:0.005~0.05%、Ti:0.005~0.05%、Cr:0.001~1.0%、Mo:0.05~1.0%、Cu:0.05~1.0%、Ni:0.05~1.0%中的1种以上的元素。
在添加这些元素时,适当添加量的限定理由如下所述。
B:0.001~0.005%
B在不到0.001%时,难以得到促进淬火的效果。另一方面,当其超过0.005%时,化学转化处理性变差。因此,在含有时,使B量为0.001%以上且0.005%以下。
Nb:0.005~0.05%
当Nb不到0.005%时,难以得到调节强度的效果。另一方面,当其超过0.05%时,导致成本上升。因此,在含有时,使Nb量为0.005%以上且0.05%以下。
Ti:0.005~0.05%
当Ti不到0.005%时,难以得到调节强度的效果。另一方面,当其超过0.05%时,导致化学转化处理性变差。因此,在含有时,使Ti量为0.005%以上且0.05%以下。
Cr:0.001~1.0%
当Cr不到0.001%时,难以得到促进淬火的效果。另一方面,当其超过1.0%时,由于Cr发生表面富集,因此焊接性变差。因此,在含有时,使Cr量为0.001%以上且1.0%以下。
Mo:0.05~1.0%
当Mo不到0.05%时,难以得到调节强度的效果。另一方面,当其超过1.0%时,导致成本上升。因此,在含有时,使Mo量为0.05%以上且1.0%以下。
Cu:0.05~1.0%
当Cu不到0.05%时,难以得到促进残余γ相形成的效果。另一方面,当其超过1.0%时,导致成本上升。因此,在含有时,使Cu量为0.05%以上且1.0%以下。
Ni:0.05~1.0%
当Ni不到0.05%时,难以得到促进残余γ相形成的效果。另一方面,当其超过1.0%时,导致成本上升。因此,在含有时,使Ni量为0.05%以上且1.0%以下。
上述以外的余量为Fe和不可避免的杂质。
接着,对本发明的高强度钢板的制造方法及其限定理由进行说明。
例如,对具有上述化学成分的钢进行热轧后,进行冷轧,接着,在连续退火设备中进行退火,然后进行化学转化处理。需要说明的是,在本发明中,在退火时的加热过程中,在加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的温度区域的气氛露点为-10℃以上的条件下进行。这是本发明中最重要的条件。通过如上所述在退火工序中对露点、即气氛中的氧分压进行控制,提高了氧电势,使易氧化性元素Si、Mn等在即将进行化学转化处理前预先发生内部氧化,降低了钢板表层部中Si、Mn的活度。因此,抑制了这些元素的外部氧化,结果改善了化学转化处理性。此外,在上述过程中,有时在热轧结束后不实施冷轧而直接进行退火。
热轧
可以在通常进行热轧的条件下进行。
酸洗
在热轧后优选进行酸洗处理。通过酸洗工序,除去表面上生成的黑氧化皮,然后进行冷轧。另外,酸洗条件没有特别限定。
冷轧
优选以40%以上且80%以下的轧制率进行冷轧。当轧制率不到40%时,由于再结晶温度低温化,因此机械特性容易变差。另一方面,当轧制率超过80%时,由于为高强度钢板,因此不仅轧制成本上升,而且退火时的表面富集增加,有时化学转化处理性会变差。
对于冷轧后的钢板或热轧后的钢板进行退火,接着实施化学转化处理。
在退火炉中,在前段加热带上进行将钢板加热至预定温度的加热工序,在后段均热带上进行在预定温度下保持预定时间的均热工序。接着进行冷却工序。
并且,如上所述,将加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的温度区域的气氛露点控制为-10℃以上进行退火。在A℃以上且B℃以下的区域以外的退火炉内气氛的露点没有特别限定,但优选为-50℃~-10℃的范围。
另外,退火炉内的气体成分由氮气、氢气和不可避免的杂质构成。只要不损害本发明效果,则可以含有其它的气体成分。当退火炉内气氛中的氢气浓度不到1体积%时,无法通过还原得到活化效果,化学转化处理性变差。上限没有特别规定,但是在超过50体积%时,成本上升,并且效果饱和。因此,氢气浓度优选为1体积%以上且50体积%以下。另外,退火炉内的气体成分,除了氢气以外,由氮气和不可避免的杂质气体构成。只要不损害本发明效果,则可以含有其它的气体成分。
在从750℃以上的温度区域进行冷却后,可以根据需要进行淬火、回火。该条件没有特别限定,回火优选在150~400℃的温度下进行。这是由于,当不到150℃时,伸长率存在变差的趋势,而当超过400℃时,硬度存在有下降的趋势。
在本发明中,即使不实施电解酸洗,也能够确保良好的化学转化处理性,但为了除去退火时不可避免生成的微量表面富集物,确保更良好的化学转化处理性,优选进行电解酸洗。
电解酸洗的条件没有特别限定,而为了有效地除去退火后所形成的不可避免地发生表面富集的Si和Mn的氧化物,优选电流密度为1A/dm2以上的交流电解。采用交流电解的原因在于,一直将钢板保持在阴极时酸洗效果小,反之,一直在将钢板保持在阳极时,电解时溶出的Fe在酸洗液中蓄积,酸洗液中的Fe浓度变大,附着到钢板表面时会产生干污垢(乾き汚れ)等问题。
而且,电解酸洗中使用的酸洗液没有特别限定,但由于硝酸或氢氟酸对设备的腐蚀性强,在操作时需要注意,因此不优选。此外,盐酸可能会在阴极产生氯气,因此不优选。因此,考虑到腐蚀性和环境,优选使用硫酸。硫酸浓度优选为5质量%以上且20质量%以下。当硫酸浓度不到5质量%时,由于导电率变低,因此电解时的电解槽电压上升,有时会导致电源负荷变大。另一方面,当超过20质量%时,因为废酸洗液而导致损失较大,存在有成本问题。
电解液的温度优选为40℃以上且70℃以下。由于连续电解发热而导致浴温上升,因此在低于40℃时,酸洗效果有时会下降。并且,有时难以将温度维持在低于40℃。此外,从电解槽内衬的耐久性的观点考虑,温度超过70℃是不优选的。
根据上述内容,可以得到本发明的高强度钢板。
钢板表面的结构具有如下特征。
在离钢板表面100μm以内的钢板表层部中,以每单面0.010~0.50g/m2形成选自Fe、Si、Mn、Al、P、以及B、Nb、Ti、Cr、Mo、Cu、Ni中的一种以上的氧化物。此外,在离钢板表面10μm以内的区域中,在离晶界1μm以内的钢基晶粒内存在有结晶性Si、Mn系氧化物。
在钢中添加有Si和大量Mn的高强度钢板中,为了满足电沉积涂装后的耐腐蚀性,必须更高度地控制可能成为腐蚀裂纹等的起点的钢板表层的组织、结构。因此,在本发明中,首先为了确保化学转化处理性,在退火工序中提高了氧电势,为此如上所述进行了露点控制。因此,通过提高氧电势而使易氧化性元素Si、Mn等在即将进行化学转化处理前预先发生内部氧化,降低了钢板表层部中Si、Mn的活度。因此,抑制了这些元素的外部氧化,结果改善了化学转化处理性和电沉积涂装后的耐腐蚀性。而且,该改善效果使得在离钢板表面100μm以内的钢板表层部中,以每单面0.010g/m2以上存在选自Fe、Si、Mn、Al、P、以及B、Nb、Ti、Cr、Mo、Cu、Ni中的一种以上的氧化物。另一方面,即使超过0.50g/m2存在,该效果饱和,因此使其上限为0.50g/m2
此外,当内部氧化物仅存在于晶界,而不存在于晶粒内部时,可以抑制钢中易氧化性元素的晶界扩散,但有时无法充分抑制晶粒内扩散。因此,本发明中,如上所述,通过将加热炉内温度为A℃以上且B℃以下(A:600≤A≤780,B:800≤B≤900)的温度区域的气氛露点控制为-10℃以上,不仅在晶界,而且在晶粒内部也发生了内部氧化。具体来说,在离钢板表面10μm以内的区域中,在离晶界1μm以内的钢基晶粒内存在有结晶性Si、Mn系氧化物。通过在钢基晶粒内存在有氧化物,降低了氧化物附近的钢基晶粒内固溶Si、Mn的量。因此,可以抑制Si、Mn的晶粒内扩散而导致的表面富集。
另外,通过本发明的制造方法所得的高强度钢板的钢板表面的结构如上所述,例如,即使前述氧化物在离钢板表面超过100μm的区域中生长,也没有问题。此外,即使在离钢板表面超过10μm的区域中,在离晶界1μm以上的钢基晶粒内存在有结晶性Si、Mn系氧化物,也没有问题。
实施例1
以下,基于实施例具体说明本发明。
对由表1所示的钢组成所构成的热轧钢板进行酸洗,除去黑氧化皮,然后冷轧,得到厚度为1.0mm的冷轧钢板。另外,还准备一部分未实施冷轧而直接是除去黑氧化皮后的热轧钢板(厚度为2.0mm)。
表1(质量%)
下划线是指在本发明范围以外
接着,将上述所得的冷轧钢板和热轧钢板装入到连续式退火设备中。在退火设备中,如表2所示,控制加热炉内温度和露点,通板并进行退火,然后,水淬火后进行300℃×140秒的回火。接着,在40℃、5质量%的硫酸水溶液中,在表2所示的电流密度条件下,通过使试验材料每3秒依次为阳极、阴极的交流电解进行电解酸洗,得到试验材料。另外,上述控制了露点的区域以外的退火炉的露点基本为-35℃。此外,气氛的气体成分由氮气、氢气以及不可避免的杂质气体构成,并且露点通过吸收除去气氛中的水分来控制。气氛中的氢气浓度基本为10体积%。
根据JISZ2241金属材料拉伸试验方法,对所得的试验材料测定TS、El。此外,对于所得的试验材料,考察其化学转化处理性和耐腐蚀性。测定钢板表层正下方至100μm以内的钢板表层部中存在的氧化物的量(内部氧化量)。测定方法和评价基准如下所述。
化学转化处理性
化学转化处理性的评价方法如下所述。
化学转化处理液使用日本帕卡濑精株式会社制的化学转化处理液(パルボンドL3080(注册商标)),并根据下述方法实施化学转化处理。
在使用日本帕卡濑精株式会社制的脱脂液ファインクリーナー(注册商标)进行脱脂后进行水洗,接着使用日本帕卡濑精株式会社制的表面调整剂プレパレンZ(注册商标)进行30秒表面调整,并在43℃的化学转化处理液(パルボンドL3080)中浸渍120秒,然后水洗并热风干燥。
使用扫描型电子显微镜(SEM)以500倍的倍率对化学转化处理后的试验材料随机观察5个视野,通过图像处理测定化学转化处理被膜的未覆盖面积率,并根据未覆盖面积率进行以下评价。○为合格水平。
○:10%以下
×:超过10%
电沉积涂装后的耐腐蚀性
从通过上述方法所得的实施了化学转化处理的试验材料上切下尺寸为70mm×150mm的试验片,并用日本油漆株式会社制的PN-150G(注册商标)进行阳离子电沉积涂装(烧结条件:170℃×20分钟,膜厚为25μm)。然后,用Al带密封端部和不进行评价一侧的表面,并用切割刀切出直至钢基的交叉切割口(交叉角度为60°),将其作为试验材料。
接着,将试验材料在5质量%NaCl水溶液(55℃)中浸渍240小时后取出,水洗、干燥,然后用胶带剥离交叉切割部,测定剥离宽度,并进行以下评价。○表示合格。
○:剥离宽度在单侧不到2.5mm
×:剥离宽度在单侧为2.5mm以上
加工性
对于加工性来说,在相对于轧制方向呈90°的方向上从试料上裁取JIS5号拉伸试验片,并按照JISZ2241的规定,使十字头速度恒定为10mm/分钟进行拉伸试验,测定拉伸强度(TS/MPa)和伸长率(El%)。当TS不到650MPa时,TS×El≥22000为良好,TS×El<22000为不良。当TS为650MPa以上且不到900MPa时,TS×El≥20000为良好,TS×El<20000为不良。当TS为900MPa以上时,TS×El≥18000为良好,TS×El<18000为不良。
钢板表层100μm以内的区域中的内部氧化量
内部氧化量通过“脉冲炉熔融-红外线吸收法”测定。但是,由于需要减去原材(即,实施退火前的高强度钢板)中所含的氧量,因此在本发明中,将连续退火后的高强度钢板两面的表层部研磨100μm以上,测定钢中氧浓度,并将该测定值作为原材中所含的氧量OH,此外,测定连续退火后的高强度钢板在板厚方向整体的钢中氧浓度,将该测定值作为内部氧化后的氧量OI。使用如上述所得的高强度钢板的内部氧化后的氧量OI和原材中所含的氧量OH,算出OI和OH的差(=OI-OH),并将进一步换算为每单面单位面积(即1m2)的量的值(g/m2)作为内部氧化量。
将通过上述所得的结果和制造条件一起示于表2。
表2
下划线是本发明范围以外的制造条件
表2续
下划线是本发明范围以外的制造条件
由表2所示可知,通过本发明方法所制造的高强度钢板,即使为含有大量Si、Mn等易氧化性元素的高强度钢板,其化学转化处理性、电沉积涂装后的耐腐蚀性和加工性也优良。
另一方面,在比较例中,化学转化处理性、电沉积涂装后的耐腐蚀性和加工性中的任意一项以上较差。
产业上的可利用性
本发明的高强度钢板,其化学转化处理性、耐腐蚀性和加工性优良,可以用作使汽车车身本身轻量化并且高强度化的表面处理钢板。此外,除了汽车以外,其作为赋予原材钢板防锈性的表面处理钢板,可以适用于家电、建材等广泛的领域。

Claims (4)

1.一种高强度钢板的制造方法,其特征在于,在对具有如下组成的钢板实施连续退火时,在加热过程中,在使加热炉内温度为A℃以上且B℃以下的温度区域的气氛露点为-10℃以上的条件下进行,从750℃以上的温度区域进行冷却后进行淬火,并在150~400℃的温度下进行回火,其中,A:600≤A≤780,B:800≤B≤900,所述钢板的组成为:以质量%计,含有C:0.01~0.18%、Si:0.4~2.0%、Mn:1.0~3.0%、Al:0.001~1.0%、P:0.005~0.060%、S≤0.01%,并且余量由Fe和不可避免的杂质构成。
2.如权利要求1所述的高强度钢板的制造方法,其特征在于,所述钢板的成分组成,以质量%计,进一步含有选自B:0.001~0.005%、Nb:0.005~0.05%、Ti:0.005~0.05%、Cr:0.001~1.0%、Mo:0.05~1.0%、Cu:0.05~1.0%、Ni:0.05~1.0%中的1种以上的元素。
3.如权利要求1或2所述的高强度钢板的制造方法,其特征在于,在进行所述连续退火后,在含有硫酸的水溶液中进行电解酸洗。
4.一种高强度钢板,其特征在于,通过权利要求1~3中任一项所述的制造方法制造,并且在离钢板表面100μm以内的钢板表层部中,以每单面0.010~0.50g/m2形成选自Fe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Ni中的一种以上的氧化物,此外,在离钢板表面10μm以内的区域中,在离钢板晶界1μm以内的晶粒内存在有结晶性Si、Mn系氧化物。
CN201080069338.2A 2010-09-30 2010-09-30 高强度钢板及其制造方法 Active CN103154297B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067612 WO2012042677A1 (ja) 2010-09-30 2010-09-30 高強度鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN103154297A CN103154297A (zh) 2013-06-12
CN103154297B true CN103154297B (zh) 2016-05-18

Family

ID=45892180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080069338.2A Active CN103154297B (zh) 2010-09-30 2010-09-30 高强度钢板及其制造方法

Country Status (7)

Country Link
US (1) US20130327452A1 (zh)
EP (1) EP2623631B1 (zh)
KR (1) KR20130049820A (zh)
CN (1) CN103154297B (zh)
BR (1) BR112013007163A2 (zh)
CA (1) CA2811489C (zh)
WO (1) WO2012042677A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982905B2 (ja) 2012-03-19 2016-08-31 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN105026600B (zh) * 2013-03-04 2018-04-06 杰富意钢铁株式会社 高强度钢板及其制造方法以及高强度热镀锌钢板及其制造方法
JP5935720B2 (ja) * 2013-03-05 2016-06-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP5794284B2 (ja) 2013-11-22 2015-10-14 Jfeスチール株式会社 高強度鋼板の製造方法
JP5852728B2 (ja) * 2013-12-25 2016-02-03 株式会社神戸製鋼所 熱間成形用鋼板および熱間プレス成形鋼部材の製造方法
JP5884196B2 (ja) 2014-02-18 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
JP6032221B2 (ja) * 2014-02-18 2016-11-24 Jfeスチール株式会社 高強度鋼板の製造方法
CN104513927B (zh) * 2014-12-19 2017-04-05 宝山钢铁股份有限公司 一种抗拉强度800MPa级高强度高韧性钢板及其制造方法
CN106244923B (zh) * 2016-08-30 2018-07-06 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法
CN106350731B (zh) * 2016-08-30 2018-08-10 宝山钢铁股份有限公司 一种具有优良磷化性能和成形性的冷轧高强度钢板及其制造方法
KR102330604B1 (ko) 2019-12-03 2021-11-24 주식회사 포스코 전기저항 점용접부의 피로강도가 우수한 아연도금강판 및 그 제조방법
KR20210080670A (ko) 2019-12-20 2021-07-01 주식회사 포스코 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
CN111647733B (zh) * 2020-05-11 2022-03-22 首钢集团有限公司 提高低碳铝镇静钢汽车板磷化性能的方法、汽车板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287854A (zh) * 2005-10-14 2008-10-15 新日本制铁株式会社 含Si钢板的连续退火热浸镀方法以及连续退火热浸镀装置
JP2010126758A (ja) * 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322445A (ja) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd 連続焼鈍によるほうろう用冷延鋼板の製造方法
JP2792434B2 (ja) * 1994-05-24 1998-09-03 住友金属工業株式会社 難合金化めっき母材の合金化溶融亜鉛めっき方法
JPH0919775A (ja) * 1995-07-06 1997-01-21 Yamaki Kogyo Kk 鉛複合鋼板及びその製造方法
JPH10110300A (ja) * 1996-10-03 1998-04-28 Hitachi Metals Ltd 鋼材の表面清浄化方法および鋼材
TWI314955B (en) * 2002-03-01 2009-09-21 Hot-dip galvanizing steel sheet and method for manufacturing a coated steel sheet
PL1980638T3 (pl) * 2006-01-30 2014-03-31 Nippon Steel & Sumitomo Metal Corp Wysokowytrzymała blacha cynkowana ogniowo o doskonałej podatności na formowanie i nadająca się do platerowania, wysokowytrzymała stopowa blacha cynkowana ogniowo oraz procesy i urządzenie do ich wytwarzania
JP5315795B2 (ja) * 2008-05-30 2013-10-16 Jfeスチール株式会社 高加工時の耐めっき剥離性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびその製造方法
JP5256936B2 (ja) * 2008-08-26 2013-08-07 Jfeスチール株式会社 高強度冷延鋼板の製造方法
CA2751593C (en) * 2009-03-31 2013-08-27 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287854A (zh) * 2005-10-14 2008-10-15 新日本制铁株式会社 含Si钢板的连续退火热浸镀方法以及连续退火热浸镀装置
JP2010126758A (ja) * 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汽车用先进高强度钢板的可镀性与Wagner模型预测效果研究现状;刘华初等;《材料保护》;20090930;第42卷(第9期);第41页第2栏第35-38行 *

Also Published As

Publication number Publication date
WO2012042677A1 (ja) 2012-04-05
EP2623631B1 (en) 2022-11-02
EP2623631A1 (en) 2013-08-07
US20130327452A1 (en) 2013-12-12
BR112013007163A2 (pt) 2016-06-14
KR20130049820A (ko) 2013-05-14
EP2623631A4 (en) 2016-11-23
CA2811489C (en) 2016-11-22
CN103154297A (zh) 2013-06-12
CA2811489A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
CN103154297B (zh) 高强度钢板及其制造方法
CN102369305B (zh) 高强度热镀锌钢板及其制造方法
CN105026600B (zh) 高强度钢板及其制造方法以及高强度热镀锌钢板及其制造方法
CN104508156B (zh) 高强度钢板及其制造方法
CN103124799B (zh) 高强度钢板及其制造方法
CN103140597A (zh) 高强度钢板及其制造方法
JP5760361B2 (ja) 高強度鋼板およびその製造方法
CN106029919A (zh) 高强度钢板和高强度钢板的制造方法
JP2012072451A (ja) 高強度鋼板およびその製造方法
JP6090200B2 (ja) 高強度鋼板およびその製造方法
JP2013122074A (ja) 高強度鋼板およびその製造方法
CN104508155A (zh) 高强度钢板及其制造方法
CN105765089B (zh) 高强度钢板及其制造方法
CN106029918B (zh) 高强度钢板及其制造方法
JP5834870B2 (ja) 高強度鋼板およびその製造方法
JP5716338B2 (ja) 高強度鋼板およびその製造方法
CN104364410B (zh) 高强度钢板和高强度热镀锌钢板以及它们的制造方法
JP6114957B2 (ja) 高強度鋼板およびその製造方法
JP2012072448A (ja) 高強度鋼板およびその製造方法
JP5962542B2 (ja) 高強度鋼板の製造方法
TWI491741B (zh) 高強度鋼板及其製造方法
JP2012072450A (ja) 高強度鋼板およびその製造方法
JP2013124381A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant