JPH0687A - リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法 - Google Patents

リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法

Info

Publication number
JPH0687A
JPH0687A JP18309392A JP18309392A JPH0687A JP H0687 A JPH0687 A JP H0687A JP 18309392 A JP18309392 A JP 18309392A JP 18309392 A JP18309392 A JP 18309392A JP H0687 A JPH0687 A JP H0687A
Authority
JP
Japan
Prior art keywords
protein
lipase activity
leu
gly
pseudomonas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18309392A
Other languages
English (en)
Inventor
Shigeyuki Aoyama
茂之 青山
Naoyuki Yoshida
尚之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP18309392A priority Critical patent/JPH0687A/ja
Priority to DK93109539T priority patent/DK0576899T3/da
Priority to SG1996002647A priority patent/SG47524A1/en
Priority to DE69320555T priority patent/DE69320555D1/de
Priority to EP19930109539 priority patent/EP0576899B1/en
Publication of JPH0687A publication Critical patent/JPH0687A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【目的】 工業的に利用価値の高いシュードモナス属細
菌由来のリパーゼ活性を有するタンパク質の提供。 【構成】 シュードモナス属細菌由来のリパーゼ活性を
有すタンパク質をコードする遺伝子、該遺伝子を含むシ
ュードモナス属細菌内で複製可能な組換え体DNA及び
該組換え体DNAを含むシュードモナス属細菌。 【効果】 本発明において得られた形質転換株は、リパ
ーゼ活性を有すタンパク質を大量生産上有効な分泌生産
した。従って本発明は酵素製造業界における有用な方法
を提供する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、シュ−ドモナス属細菌
由来のリパ−ゼ活性を有すタンパク質をコ−ドする遺伝
子、該遺伝子を含む組換え体DNA及びそれを含むシュ
−ドモナス属細菌、更に菌体外分泌生産を特徴とするリ
パ−ゼ活性を有すタンパク質の製造法に関する。
【0002】
【従来の技術とその問題点】リパ−ゼは脂質を加水分解
する酵素として油脂加工、臨床診断薬、洗剤、消化薬な
どに使用されているほか、近年は化成品、特に光学活性
化合物の製造法となるエステルの加水分解、エステル合
成、或はエステル変換を触媒する重要な酵素である。ま
た、シュ−ドモナス属細菌はエステルの加水分解、エス
テル合成或はエステル変換の触媒に有用なリパ−ゼを生
産することで知られている(特開昭62−16689
8)。この様な特性をもつシュ−ドモナス属細菌のリパ
−ゼを工業的に利用するためには、酵素の大量生産が望
まれる。しかも工業的スケ−ルでの生産には、連続培養
及び酵素回収の容易さなどの利点から酵素の培養液中へ
の分泌生産が有効とされている。近年遺伝子組換え技術
の応用が有用タンパク質の大量生産に導入されるように
なっており、シュ−ドモナス属細菌のリパ−ゼについて
も試みられている。しかしこれらは効率良い培養液中へ
のリパ−ゼ分泌生産系の完成まで至っておらず、工業的
に利用するには問題があった。例えば大腸菌を宿主菌と
した場合、生産されたリパ−ゼの回収は菌体内からおこ
なわれている(特開昭62−188072、特開昭62
−228279、特願平1−7757)。このような菌
体内生産の場合、生産物質の回収には超音波処理などの
菌破壊工程と宿主菌由来のきょう雑物質を除くための多
くの精製工程が必要で物質生産上不利とされている。ま
た、例えばシュ−ドモナス菌を宿主菌とした場合、リパ
−ゼの回収は工業的利用に有利な培養液中からおこなわ
れている(特願昭63−300386、特願平1−33
8250)。しかしこれらの場合その生産には例えば3
日間の培養をしており、かならずしも効率よい生産とは
いえない。
【0003】
【発明が解決しようとする問題点】本発明者らは上記問
題点を解決するため、シュ−ドモナス属細菌由来のリパ
−ゼ活性を有すタンパク質の高分泌生産菌株を遺伝子組
換え技術を用いて創製することによって、リパ−ゼの工
業的スケ−ルでの生産が可能となると考え、鋭意検討し
た。その結果シュ−ドモナス属細菌の染色体DNAより
リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子を含
むDNA断片を単離し、該DNA断片を有する組換え体
DNAを得、この組換え体DNAをによって形質転換さ
れたシュ−ドモナス属細菌が培養液中に著量のリパ−ゼ
活性を有すタンパク質を分泌生産することを見いだし、
本発明を完成した。即ち、本発明の目的はシュ−ドモナ
ス属細菌由来のリパ−ゼ活性を有すタンパク質をコ−ド
する遺伝子を含むDNA断片、該DNA断片を有す組換
え体DNA、該組換え体DNAによって形質転換され、
リパ−ゼ活性を有すタンパク質の効率よい分泌生産に好
適であるシュ−ドモナス属細菌、及びそれを用いたリパ
−ゼ活性を有すタンパク質の製造法を提供することにあ
る。
【0004】
【問題点を解決するための手段】本発明は下記の構成を
有する。 (1)下記の塩基配列を有することを特徴とするシュ−
ドモナス(Pseudomonas)属細菌由来のリパ−ゼ活性を有
するタンパク質をコ−ドする遺伝子。 10 20 30 40 50 60 5'ATGAAACATT TAATACAGTT TGTTTTGCTA ATGTCTGCGC CCCAAACAAC AAAAACAGGT 70 80 90 100 110 120 CATCACATGC GCAGGCTCTC CCTACTCATC CCTTGGCGGG GATGCATCCT GTCCATCGTC 130 140 150 160 170 180 AGTGAACGTG CCATAGCAGC ACCCTCGCCG TATTCCACCA TGATCGTGTT CGGCGACAGC 190 200 210 220 230 240 CTGAGCGACT CGGGGCATTT TCCAGGGGTC GGCACAGGCA TGCGCTTCAC CAACCGCACC 250 260 270 280 290 300 GGGCCGACGT ACAGGGATTA CCGGGGGGAG GAATATGCTG CAGTAACGCC CACGCGGCTG 310 320 330 340 350 360 GGCACCCAAC TGGGGATCGC CCCCGCAGAC CTGCGCCCGT CCACTTCGCC GGGCAACTCT 370 380 390 400 410 420 CTTGCAGGGG AGCCCGACGG CAACAACTGG GCGGTCGGCG GCTATCGCAC AGACCAGATC 430 440 450 460 470 480 CTCAATTCCA TCAAGACCGA GTCAAAGGTC GCCATCCCGG ATGACTGGTC CTTCGTCGGC 490 500 510 520 530 540 GGCTACGTCC TGCGCAGCAA GCCTGGCTAC CTTGTGCAGA ACAGCTTCAC GGCTGACCCC 550 560 570 580 590 600 AAGGCGTTGT ATTTCATTTC AGGCGGCGGT AATGACTTTC TCCAAGGCAA GGTCACCAAC 610 620 630 640 650 660 CCCGCCGAGG CAGGCCAAGC CGCACAAAGG CTGGCGGCAA GCGCCCACAC CCTGCAACAG 670 680 690 700 710 720 GCAGGGGCAC GCTACATCAT GGTCTGGCTG CTGCCCGATC TGGGCCTGAC GCCAGCCGTT 730 740 750 760 770 780 TACGGTACAC CCACCCAGGC TGGCACCAGC GCCCTGAGCG CCCTGTTCAA TCATGAGCTA 790 800 810 820 830 840 ACCCAGCAAC TGGCGCAGAT AGACGCCGAA GTGATTCCCC TCAATATCCC GCTGCTGCTG 850 860 870 880 890 900 CGTGAAGCCA TCGCCGACCC CGCCCGTTAT GGCCTGGCAC TGGGGCAGGA CCTTGTCGCG 910 920 930 940 950 960 ACCTGTTTCA ATGGCGAAGA GTGTACGGAA AACCCGCAGT ACGGACTCAA CAGCGCAACC 970 980 990 1000 1010 1020 CCCAACCCGG CCAAACTGCT ATTCAACGAC TCGGTACACC CCACCGAGAC AGGGCAACAG 1030 1040 1050 1060 1070 1080 CTGATTGCCG ACTATGCCTA CTCATTGCTG GCCGTGCCGT GGGAGCTGAC CTTGTTACCC 1090 1100 1110 1120 1130 1140 GTTATGGCCC AAGGCTCGCT CAACGCCCAT CAAGACCAGT TGCGCAACCA ATGGGCTGGC 1150 1160 1170 1180 1190 1200 GACGACGGTC AATGGCAAGC CATTGGCCAG TGGCGAACCC TGCTCGCCGG TGGCGGGCAA 1210 1220 1230 1240 1250 1260 CGCCTGGAAA TCGACAAGCA GACCACGGCC GTGAAGGCAG ATGGCAAAGG CTATAACCTC 1270 1280 1290 1300 1310 1320 AATATCGGCA CCAGCTACAG GCTGGATGAC AACTGGCGAT TTGGCATTGC CGGCGGGTTT 1330 1340 1350 1360 1370 1380 TACCGGCAAC GCCTGGAAAC CGGGGCCAAT AAATCGGACT ACAAGCTCAA CAGCTATCTG 1390 1400 1410 1420 1430 1440 GGTAGCGTGT TTGCCCAATA CCAGCACAAT CACTGGTGGG GGGATGCGGC ACTGACGTTG 1450 1460 1470 1480 1490 1500 GGCAGGCTGG ATTACGACAG CCTGAAACGA AAATTCGCGC TTGGGGTGGG TAGTGATATG 1510 1520 1530 1540 1550 1560 GAGCAAGGCC AGGCTGACGG CCATTTGCGA GCATTGGTAC ACGCCTGGGT TATGAAATCG 1570 1580 1590 1600 1610 1620 CACAGGCATC TGACCTGTGG CAGCTCTCCC CCTTTATCAG CGCCGTTACT CGCGGGTGGA AGTTAA 3' (2)シュ−ドモナス属細菌がシュ−ドモナス フラジ
(Pseudomonas fragi)IFO12049株である前記第
1項記載の遺伝子。 (3)前記第1項、2項で確認されたリパ−ゼ活性を有
すタンパク質をコ−ドする遺伝子をグラム陰性菌広域宿
主ベクタ−に組み込んでなるシュ−ドモナス属細菌で複
製可能な組換え体DNA。 (4)前記第3項記載の組換え体DNAによって形質転
換されたシュ−ドモナス属細菌。 (5)前記第3項記載の組換え体DNAを用いることを
特徴とするリパ−ゼ活性を有すタンパク質の製造法。 (6)前記第4項記載のシュ−ドモナス属細菌を培養し
リパ−ゼ活性を有するタンパク質を培養液中に産生せし
め、該培養液中より回収することを特徴とするリパ−ゼ
活性を有すタンパク質の製造法。
【0005】以下、本発明を詳細に説明する。 リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子の
クロ−ニング シュ−ドモナス フラジ(Pseudomonas fragi) IFO1
2049株の染色体DNAは、例えばSmith らの方法(S
mith,M.G.,Methods in Enzymology,Academic press,New
York,12,partA,p545,(1967)) などを用いて調製するこ
とができる。染色体DNAのベクタ−DNAへの組み込
みは、染色体DNA及びベクタ−DNAを制限酵素で切
断した後、両者を混合し、DNAリガ−ゼで処理するこ
とによっておこなうことができる。制限酵素としてはEc
oRI,BamHI,Sau3AIなどがあげられる。ベクタ−DNAに
はpUC9, λgt10,Charomid DNA など公知のものを利用で
きる。こうして得た組換え体DNAは塩化カルシウム
法、in vitroパッケ−ジング法などベクタ−の特徴にし
たがった公知の方法を用いて大腸菌を形質転換すること
ができる。リパ−ゼ活性を有する形質転換株の選択は、
トリブチリン寒天培地上でトリブチリンの加水分解にと
もなうクリア−ゾ−ンを形成する菌株を分離することに
よっておこなわれる。このようにして得られた形質転換
株より、アルカリ法など公知の手法を用いてリパ−ゼ活
性を有すタンパク質をコ−ドする遺伝子を含む組換え体
DNAを得ることができる。次に形質転換菌において、
リパ−ゼ活性を有すタンパク質の発現に必要な領域は上
記組換え体DNAを各種制限酵素を用いてサブクロ−ニ
ングし、かかる形質転換株のトリブチリン寒天培地上で
のクリア−ゾ−ン形成能を調べることによって決定でき
る。さらにはリパ−ゼ活性を有すタンパク質をコ−ドす
る遺伝子及びその発現に必要な領域の塩基配列は、ジデ
オキシ(dideoxy) 法(Sanger.F.,et al.Proc.Natl.Acad.
Sci.U.S.A.,74,5463(1977)) など公知の手法を用いて決
定することができる。
【0006】リパ−ゼ活性を有すタンパク質の生産 上記のようにして得られたリパ−ゼ活性を有すタンパク
質をコ−ドする遺伝子を含むDNA断片をシュ−ドモナ
ス属細菌内で複製可能なプラスミドベクタ−に公知の接
合伝達法などを用いて導入することにより、リパ−ゼ発
現用組換え体DNAを構築することができる。このプラ
スミドベクタ−として例えば広域宿主ベクタ−RSF1
010やRSF1010にカナマイシン耐性遺伝子など
の適当な選択マ−カ−を導入したものなどが利用でき
る。さらにこのようにして得られた組換え体DNAによ
って形質転換させられたシュ−ドモナス属細菌を酵素生
産に最適の条件下で培養し、リパ−ゼ活性を有すタンパ
ク質を生産させる。そして培養液中のリパ−ゼ活性を測
定することによって、リパ−ゼ活性を有すタンパク質を
分泌発現させるのに最適な宿主シュ−ドモナス属細菌を
得ることができる。このようにして得られるシュ−ドモ
ナス属細菌として、例えばシュ−ドモナス プチダ(Pse
udomonas putida)AC10株などが利用できる。またリ
パ−ゼ活性の測定は、市販のリパ−ゼ活性測定キットな
どを用いておこなうことができる。本発明で得られた組
換え体DNAを導入されたシュ−ドモナスプチダAC1
0株を酵素生産に最適な条件下で培養し、培養液よりリ
パ−ゼ活性を有すタンパク質を分離、精製して得ること
ができる。
【0007】以下実施例にて本発明を具体的に説明す
る。 実施例 (1)染色体DNAの調製 シュ−ドモナス フラジ(Pseudomonas fragi) IFO1
2049株を200mlのLB培地(1%バクトトリプ
トン、0.5%酵母エキス、0.5%塩化ナトリウム)
で30℃にて一晩培養した。菌体を集菌し、洗浄した
後、12mlの50mMトリス−塩酸緩衝液(pH8.0)、1
0mMEDTA溶液に懸濁した。この懸濁液に1mgの
リゾチ−ムを加え、1時間室温に放置した。この溶液に
0.5%SDS存在下、100μg/mlの濃度となる
ようにプロテナ−ゼK(メルク製)を加え、3時間55
℃でゆるやかに振とうさせ菌体を溶菌させた。この試料
をフェノ−ル抽出し、エタノ−ル沈澱することによって
染色体DNAを調製した。
【0008】(2)リパ−ゼ活性を有すタンパク質をコ
−ドする遺伝子のクロ−ニングと解析 調製した染色体DNAを制限酵素EcoRI切断し、ア
ガロ−スゲル中で電気泳動し、その2〜4Kb断片を回
収した。この回収DNA断片をCharomid9−42(日本
ジ−ン製)のEcoRI部位にDNAリガ−ゼを用いて
連結した。連結したDNAはλDNA インビトロパッケ−
ジングキットGigapack IIPLUS(STRATAGENE製 )を用いて
ファ−ジ粒子として大腸菌VCS257を感染させ、形
質導入した。この形式転換株を50μg/mlアンピシ
リン、1%トリブチリンを含むLB培地にプレ−ティン
グした。37℃で24時間培養した後、約1100個の
形質転換体より2個のクリア−ゾ−ン形成株を得た。こ
のクリア−ゾ−ン形成株2株よりプラスミドを抽出し、
EcoRI消化しアガロ−スゲル電気泳動で挿入された
DNA断片を解析したところ、2株共に約3.7Kbの
EcoRI断片が確認された。この3.7Kb Eco
RI DNA断片をpTV119N(宝酒造製)のEc
oRI部位にサブクロ−ニングしプラスミドpCCBと
した。図1にpCCBにおけるEcoRI挿入3.7K
b DNA断片の制限酵素地図を示す。次に、プラスミ
ドpCCBの3.7Kb EcoRI断片を各種制限酵
素で切断し、各DNA断片をpTV119Nにサブクロ
ーニングして、大腸菌MV1184株を形質転換させ、
前記と同様にしてトリブチリン含有LB培地でのクリア
ーゾーン形成の有無を調べた。その結果、図1に示した
ようなEcoRI−XhoI2.1Kb断片を有するプ
ラスミドpCCB−XSを有する大腸菌にクリアーゾー
ン形成が認められた。この結果、リパーゼ活性を有する
タンパク質をコードする遺伝子とその発現に必要な領域
が、EcoRI−XhoI2.1Kb断片中に存在する
ことが示唆された。
【0009】(3)塩基配列の決定 dideoxy法(F.Sangerら、Proc.Natl.Acad.Sci.
U.S.A.,74,5463,(1977))により、プラスミドpCCB
の挿入EcoRI3.7KbDNA断片の塩基配列を決
定した。その結果図1の→で示した領域にオ−プンリ−
ディングフレームが存在した。この遺伝子の塩基配列と
対応するアミノ酸配列表を発明の詳細な説明の最後に示
す。
【0010】(4)リパーゼ活性を有するタンパク質の
生産 図2の工程にしたがって発現プラスミドpUC−RSF
KmCCBを構築した。広域宿主ベクターRSF101
0をPstI,PvuII消化5.9Kb断片にpUC
19のPstI,SmaI消化2.7Kb断片を連結し
たプラスミドpUC−RSFのPstI部位に、pUC
4Kよりカナマイシン耐性遺伝子を含むPstI1.3
Kb断片を導入した。このプラスミドをpUC−RSF
Kmとし、このEcoRI部位にpCCBのEcoRI
3.7Kb断片を導入し発現プラスミドpUC−RSF
KmCCBを構築した。このプラスミドpUC−RSF
KmCCBをSimonらの接合伝達法(R.Simon ら、
Biotechnology,1.784.(1983))を用いPseudomo
nas putidaAC10株に導入した。このPs
eudomonas putidaAC10(pUC−
RSFKmCCB)株を、それぞれ50μg/mlのア
ンピシリンとカナマイシンを含むLB培地で30℃一晩
培養した。この培養濾液のリパーゼ活性をリパーゼキッ
トS(大日本製薬社)を用いて測定した結果、培養濾液
100μlあたり268BALB単位であった。同様な
条件測定したPseudomonas fragi I
FO12049株及びPseudomonas put
ida AC株の結果は、培養濾液100μlあたりと
もに測定感度下限(50BALB単位)以下の値であっ
た。なお測定法及び測定単位の計算法はリパーゼキット
Sの方法に従った。
【0011】以上の実施例における菌体からのプラスミ
ド調製や制限酵素などを用いた反応及びDNA断片の処
理は、特に指定されている以外は通常用いられる方法に
よって行った。また制限酵素類、DNAリガーゼなどは
宝酒造社と日本ジーンのものを使用した。なお本発明に
おける配列表は以下の通りである。 配列表 配列番号:1 配列の長さ:1626 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA HYPOTHETICAL:YES 起源 生物名:Pseudomonas fragi 株名:IFO12049 ATG AAA CAT TTA ATA CAG TTT GTT TTG CTA ATG TCT GCG CCC CAA ACA Met Lys His Leu Ile Gln Phe Val Leu Leu Met Ser Ala Pro Gln Thr ACA AAA ACA GGT CAT CAC ATG CGC AGG CTC TCC CTA CTC ATC CCT TGG Thr Lys Thr Gly His His Met Arg Arg Leu Ser Leu Leu Ile Pro Trp CGG GGA TGC ATC CTG TCC ATC GTC AGT GAA CGT GCC ATA GCA GCA CCC Arg Gly Cys Ile Leu Ser Ile Val Ser Glu Arg Ala Ile Ala Ala Pro TCG CCG TAT TCC ACC ATG ATC GTG TTC GGC GAC AGC CTG AGC GAC TCG Ser Pro Tyr Ser Thr Met Ile Val Phe Gly Asp Ser Leu Ser Asp Ser GGG CAT TTT CCA GGG GTC GGC ACA GGC ATG CGC TTC ACC AAC CGC ACC Gly His Phe Pro Gly Val Gly Thr Gly Met Arg Phe Thr Asn Arg Thr GGG CCG ACG TAC AGG GAT TAC CGG GGG GAG GAA TAT GCT GCA GTA ACG Gly Pro Thr Tyr Arg Asp Tyr Arg Gly Glu Glu Tyr Ala Ala Val Thr CCC ACG CGG CTG GGC ACC CAA CTG GGG ATC GCC CCC GCA GAC CTG CGC Pro Thr Arg Leu Gly Thr Gln Leu Gly Ile Ala Pro Ala Asp Leu Arg CCG TCC ACT TCG CCG GGC AAC TCT CTT GCA GGG GAG CCC GAC GGC AAC Pro Ser Thr Ser Pro Gly Asn Ser Leu Ala Gly Glu Pro Asp Gly Asn AAC TGG GCG GTC GGC GGC TAT CGC ACA GAC CAG ATC CTC AAT TCC ATC Asn Trp Ala Val Gly Gly Tyr Arg Thr Asp Gln Ile Leu Asn Ser Ile AAG ACC GAG TCA AAG GTC GCC ATC CCG GAT GAC TGG TCC TTC GTC GGC Lys Thr Glu Ser Lys Val Ala Ile Pro Asp Asp Trp Ser Phe Val Gly GGC TAC GTC CTG CGC AGC AAG CCT GGC TAC CTT GTG CAG AAC AGC TTC Gly Tyr Val Leu Arg Ser Lys Pro Gly Tyr Leu Val Gln Asn Ser Phe ACG GCT GAC CCC AAG GCG TTG TAT TTC ATT TCA GGC GGC GGT AAT GAC Thr Ala Asp Pro Lys Ala Leu Tyr Phe Ile Ser Gly Gly Gly Asn Asp TTT CTC CAA GGC AAG GTC ACC AAC CCC GCC GAG GCA GGC CAA GCC GCA Phe Leu Gln Gly Lys Val Thr Asn Pro Ala Glu Ala Gly Gln Ala Ala CAA AGG CTG GCG GCA AGC GCC CAC ACC CTG CAA CAG GCA GGG GCA CGC Gln Arg Leu Ala Ala Ser Ala His Thr Leu Gln Gln Ala Gly Ala Arg TAC ATC ATG GTC TGG CTG CTG CCC GAT CTG GGC CTG ACG CCA GCC GTT Tyr Ile Met Val Trp Leu Leu Pro Asp Leu Gly Leu Thr Pro Ala Val TAC GGT ACA CCC ACC CAG GCT GGC ACC AGC GCC CTG AGC GCC CTG TTC Tyr Gly Thr Pro Thr Gln Ala Gly Thr Ser Ala Leu Ser Ala Leu Phe AAT CAT GAG CTA ACC CAG CAA CTG GCG CAG ATA GAC GCC GAA GTG ATT Asn His Glu Leu Thr Gln Gln Leu Ala Gln Ile Asp Ala Glu Val Ile CCC CTC AAT ATC CCG CTG CTG CTG CGT GAA GCC ATC GCC GAC CCC GCC Pro Leu Asn Ile Pro Leu Leu Leu Arg Glu Ala Ile Ala Asp Pro Ala CGT TAT GGC CTG GCA CTG GGG CAG GAC CTT GTC GCG ACC TGT TTC AAT Arg Tyr Gly Leu Ala Leu Gly Gln Asp Leu Val Ala Thr Cys Phe Asn GGC GAA GAG TGT ACG GAA AAC CCG CAG TAC GGA CTC AAC AGC GCA ACC Gly Glu Glu Cys Thr Glu Asn Pro Gln Tyr Gly Leu Asn Ser Ala Thr CCC AAC CCG GCC AAA CTG CTA TTC AAC GAC TCG GTA CAC CCC ACC GAG Pro Asn Pro Ala Lys Leu Leu Phe Asn Asp Ser Val His Pro Thr Glu ACA GGG CAA CAG CTG ATT GCC GAC TAT GCC TAC TCA TTG CTG GCC GTG Thr Gly Gln Gln Leu Ile Ala Asp Tyr Ala Tyr Ser Leu Leu Ala Val CCG TGG GAG CTG ACC TTG TTA CCC GTT ATG GCC CAA GGC TCG CTC AAC Pro Trp Glu Leu Thr Leu Leu Pro Val Met Ala Gln Gly Ser Leu Asn GCC CAT CAA GAC CAG TTG CGC AAC CAA TGG GCT GGC GAC GAC GGT CAA Ala His Gln Asp Gln Leu Arg Asn Gln Trp Ala Gly Asp Asp Gly Gln TGG CAA GCC ATT GGC CAG TGG CGA ACC CTG CTC GCC GGT GGC GGG CAA Trp Gln Ala Ile Gly Gln Trp Arg Thr Leu Leu Ala Gly Gly Gly Gln CGC CTG GAA ATC GAC AAG CAG ACC ACG GCC GTG AAG GCA GAT GGC AAA Arg Leu Glu Ile Asp Lys Gln Thr Thr Ala Val Lys Ala Asp Gly Lys GGC TAT AAC CTC AAT ATC GGC ACC AGC TAC AGG CTG GAT GAC AAC TGG Gly Tyr Asn Leu Asn Ile Gly Thr Ser Tyr Arg Leu Asp Asp Asn Trp CGA TTT GGC ATT GCC GGC GGG TTT TAC CGG CAA CGC CTG GAA ACC GGG Arg Phe Gly Ile Ala Gly Gly Phe Tyr Arg Gln Arg Leu Glu Thr Gly GCC AAT AAA TCG GAC TAC AAG CTC AAC AGC TAT CTG GGT AGC GTG TTT Ala Asn Lys Ser Asp Tyr Lys Leu Asn Ser Tyr Leu Gly Ser Val Phe GCC CAA TAC CAG CAC AAT CAC TGG TGG GGG GAT GCG GCA CTG ACG TTG Ala Gln Tyr Gln His Asn His Trp Trp Gly Asp Ala Ala Leu Thr Leu GGC AGG CTG GAT TAC GAC AGC CTG AAA CGA AAA TTC GCG CTT GGG GTG Gly Arg Leu Asp Tyr Asp Ser Leu Lys Arg Lys Phe Ala Leu Gly Val GGT AGT GAT ATG GAG CAA GGC CAG GCT GAC GGC CAT TTG CGA GCA TTG Gly Ser Asp Met Glu Gln Gly Gln Ala Asp Gly His Leu Arg Ala Leu GTA CAC GCC TGG GTT ATG AAA TCG CAC AGG CAT CTG ACC TGT GGC AGC Val His Ala Trp Val Met Lys Ser His Arg His Leu Thr Cys Gly Ser TCT CCC CCT TTA TCA GCG CCG TTA CTC GCG GGT GGA AGT TAA Ser Pro Pro Leu Ser Ala Pro Leu Leu Ala Gly Gly Ser ***
【図面の簡単な説明】
【図1】プラスミドpCCB挿入EcoRI3.7Kb
断片の制限酵素地図の一例とクリアーゾーン形成の有無
を指標とした欠失実験の結果を示した説明図である。+
はクリアーゾーン形成を示す。
【図2】リパーゼ活性を有すタンパク質の発現プラスミ
ドpUC−RSFKmCCBの構築図を示した説明図で
ある。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 下記の塩基配列を有することを特徴とす
    るシュ−ドモナス(Pseudomonas) 属細菌由来のリパ−ゼ
    活性を有すタンパク質をコ−ドする遺伝子。 10 20 30 40 50 60 5'ATGAAACATT TAATACAGTT TGTTTTGCTA ATGTCTGCGC CCCAAACAAC AAAAACAGGT 70 80 90 100 110 120 CATCACATGC GCAGGCTCTC CCTACTCATC CCTTGGCGGG GATGCATCCT GTCCATCGTC 130 140 150 160 170 180 AGTGAACGTG CCATAGCAGC ACCCTCGCCG TATTCCACCA TGATCGTGTT CGGCGACAGC 190 200 210 220 230 240 CTGAGCGACT CGGGGCATTT TCCAGGGGTC GGCACAGGCA TGCGCTTCAC CAACCGCACC 250 260 270 280 290 300 GGGCCGACGT ACAGGGATTA CCGGGGGGAG GAATATGCTG CAGTAACGCC CACGCGGCTG 310 320 330 340 350 360 GGCACCCAAC TGGGGATCGC CCCCGCAGAC CTGCGCCCGT CCACTTCGCC GGGCAACTCT 370 380 390 400 410 420 CTTGCAGGGG AGCCCGACGG CAACAACTGG GCGGTCGGCG GCTATCGCAC AGACCAGATC 430 440 450 460 470 480 CTCAATTCCA TCAAGACCGA GTCAAAGGTC GCCATCCCGG ATGACTGGTC CTTCGTCGGC 490 500 510 520 530 540 GGCTACGTCC TGCGCAGCAA GCCTGGCTAC CTTGTGCAGA ACAGCTTCAC GGCTGACCCC 550 560 570 580 590 600 AAGGCGTTGT ATTTCATTTC AGGCGGCGGT AATGACTTTC TCCAAGGCAA GGTCACCAAC 610 620 630 640 650 660 CCCGCCGAGG CAGGCCAAGC CGCACAAAGG CTGGCGGCAA GCGCCCACAC CCTGCAACAG 670 680 690 700 710 720 GCAGGGGCAC GCTACATCAT GGTCTGGCTG CTGCCCGATC TGGGCCTGAC GCCAGCCGTT 730 740 750 760 770 780 TACGGTACAC CCACCCAGGC TGGCACCAGC GCCCTGAGCG CCCTGTTCAA TCATGAGCTA 790 800 810 820 830 840 ACCCAGCAAC TGGCGCAGAT AGACGCCGAA GTGATTCCCC TCAATATCCC GCTGCTGCTG 850 860 870 880 890 900 CGTGAAGCCA TCGCCGACCC CGCCCGTTAT GGCCTGGCAC TGGGGCAGGA CCTTGTCGCG 910 920 930 940 950 960 ACCTGTTTCA ATGGCGAAGA GTGTACGGAA AACCCGCAGT ACGGACTCAA CAGCGCAACC 970 980 990 1000 1010 1020 CCCAACCCGG CCAAACTGCT ATTCAACGAC TCGGTACACC CCACCGAGAC AGGGCAACAG 1030 1040 1050 1060 1070 1080 CTGATTGCCG ACTATGCCTA CTCATTGCTG GCCGTGCCGT GGGAGCTGAC CTTGTTACCC 1090 1100 1110 1120 1130 1140 GTTATGGCCC AAGGCTCGCT CAACGCCCAT CAAGACCAGT TGCGCAACCA ATGGGCTGGC 1150 1160 1170 1180 1190 1200 GACGACGGTC AATGGCAAGC CATTGGCCAG TGGCGAACCC TGCTCGCCGG TGGCGGGCAA 1210 1220 1230 1240 1250 1260 CGCCTGGAAA TCGACAAGCA GACCACGGCC GTGAAGGCAG ATGGCAAAGG CTATAACCTC 1270 1280 1290 1300 1310 1320 AATATCGGCA CCAGCTACAG GCTGGATGAC AACTGGCGAT TTGGCATTGC CGGCGGGTTT 1330 1340 1350 1360 1370 1380 TACCGGCAAC GCCTGGAAAC CGGGGCCAAT AAATCGGACT ACAAGCTCAA CAGCTATCTG 1390 1400 1410 1420 1430 1440 GGTAGCGTGT TTGCCCAATA CCAGCACAAT CACTGGTGGG GGGATGCGGC ACTGACGTTG 1450 1460 1470 1480 1490 1500 GGCAGGCTGG ATTACGACAG CCTGAAACGA AAATTCGCGC TTGGGGTGGG TAGTGATATG 1510 1520 1530 1540 1550 1560 GAGCAAGGCC AGGCTGACGG CCATTTGCGA GCATTGGTAC ACGCCTGGGT TATGAAATCG 1570 1580 1590 1600 1610 1620 CACAGGCATC TGACCTGTGG CAGCTCTCCC CCTTTATCAG CGCCGTTACT CGCGGGTGGA AGTTAA 3'
  2. 【請求項2】 シュ−ドモナス属細菌がシュ−ドモナス
    フラジ(Pseudomonas fragi) IFO12049株であ
    る請求項第1項記載の遺伝子。
  3. 【請求項3】 請求項第1項、2項で確認されたリパ−
    ゼ活性を有すタンパク質をコ−ドする遺伝子をグラム陰
    性菌広域宿主ベクタ−に組み込んでなるシュ−ドモナス
    属細菌で複製可能な組換え体DNA。
  4. 【請求項4】 請求項第3項記載の組換え体DNAによ
    って形質転換されたシュ−ドモナス属細菌。
  5. 【請求項5】 請求項第3項記載の組換え体DNAを用
    いることを特徴とするリパ−ゼ活性を有すタンパク質の
    製造法。
  6. 【請求項6】 請求項第4項記載のシュ−ドモナス属細
    菌を培養しリパ−ゼ活性を有すタンパク質を培養液中に
    産生せしめ、該培養液中より回収することを特徴とする
    リパ−ゼ活性を有すタンパク質の製造法。
JP18309392A 1992-06-17 1992-06-17 リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法 Pending JPH0687A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18309392A JPH0687A (ja) 1992-06-17 1992-06-17 リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法
DK93109539T DK0576899T3 (da) 1992-06-17 1993-06-15 Gen, som koder for et protein med lipaseaktivitet, og fremgangsmåde til fremstilling deraf
SG1996002647A SG47524A1 (en) 1992-06-17 1993-06-15 A gene coding a protein having a lipase activity and a process for producing the same
DE69320555T DE69320555D1 (de) 1992-06-17 1993-06-15 Gen, das für ein Protein mit Lipase-Aktivität kodiert und Verfahren zur Herstellung
EP19930109539 EP0576899B1 (en) 1992-06-17 1993-06-15 A gene coding a protein having a lipase activity and a process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18309392A JPH0687A (ja) 1992-06-17 1992-06-17 リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法

Publications (1)

Publication Number Publication Date
JPH0687A true JPH0687A (ja) 1994-01-11

Family

ID=16129645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18309392A Pending JPH0687A (ja) 1992-06-17 1992-06-17 リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法

Country Status (5)

Country Link
EP (1) EP0576899B1 (ja)
JP (1) JPH0687A (ja)
DE (1) DE69320555D1 (ja)
DK (1) DK0576899T3 (ja)
SG (1) SG47524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103663A1 (de) 2021-02-26 2022-09-01 Kel Corporation Schwimmender steckverbinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318775B1 (en) * 1987-12-03 1994-02-02 Chisso Corporation A lipase gene
JP3079276B2 (ja) * 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
JP2587305B2 (ja) * 1990-03-07 1997-03-05 チッソ株式会社 リパーゼ発現用組換え体プラスミド及びリパーゼの製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103663A1 (de) 2021-02-26 2022-09-01 Kel Corporation Schwimmender steckverbinder

Also Published As

Publication number Publication date
EP0576899A1 (en) 1994-01-05
EP0576899B1 (en) 1998-08-26
SG47524A1 (en) 1998-04-17
DE69320555D1 (de) 1998-10-01
DK0576899T3 (da) 1999-02-22

Similar Documents

Publication Publication Date Title
KR100200166B1 (ko) 알칼리성 단백질 가수분해효소 및 그것의 제조방법
KR960014703B1 (ko) 세팔로스포린 아세틸히드롤라아제 유전자 및 이 유전자에 의해 코딩된 단백질
Recsei et al. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans.
Kuroda et al. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene
HU205386B (en) Process for expressing cloned lysostaphin gene and for producing dna fragment containing the gene, expression vector and transformed host cell
JPH04166085A (ja) 新規プロテアーゼ
JP2657383B2 (ja) 新規な加水分解酵素とその製造方法
US4935351A (en) Process for preparing oligopeptide
WO1992003557A1 (en) RECOMBINANT DNA PRODUCTION OF β-1,3-GLUCANASE
JPH0687A (ja) リパ−ゼ活性を有すタンパク質をコ−ドする遺伝子及びその製造法
HENNINGSEN et al. Cloning, sequencing and expression of the sialidase gene from Actinomyces viscosus DSM 43798
JP3512237B2 (ja) 耐熱性メチオニンアミノペプチダーゼ及びその遺伝子
JPH0829083B2 (ja) 中性プロテア−ゼの産生法
JP2501779B2 (ja) アルカリプロテア―ゼの製造方法
JPH11276172A (ja) Abcトランスポーター遺伝子
JPH0824573B2 (ja) キチナーゼ、キチナーゼ遺伝子及びキチナーゼの製法
JP2671008B2 (ja) シクロマルトデキストリングルセノトランスフェラーゼをコードするdna,それを含む組換えプラスミド及びそのプラスミドを含む形質転換微生物
JP2674796B2 (ja) エラスターゼをコードする遺伝子
KR920000117B1 (ko) 새로운 세라티오펩티다제와 그 제조방법
JP3226289B2 (ja) 分泌ベクター、該ベクターで形質転換した微生物及び該微生物から産生される産物の製造法
JPS63214187A (ja) 新規な遺伝子dnaおよびアルカリ性プロテア−ゼの製造法
JPH08256771A (ja) アミダーゼ活性を有する新規タンパク質およびそれをコードする遺伝子
Kato et al. Gene expression and production of Bacillus No. 170 penicillinase in Escherichia coli and Bacillus subtilis
FR2786500A1 (fr) Gene codant pour une alpha-agarase et son utilisation pour la production d'enzymes de biodegradation des agars
JPH1189574A (ja) β−N−アセチルガラクトサミニダーゼ遺伝子