JP7478476B2 - 長方形導波路を使用する開口乗算器 - Google Patents

長方形導波路を使用する開口乗算器 Download PDF

Info

Publication number
JP7478476B2
JP7478476B2 JP2022186061A JP2022186061A JP7478476B2 JP 7478476 B2 JP7478476 B2 JP 7478476B2 JP 2022186061 A JP2022186061 A JP 2022186061A JP 2022186061 A JP2022186061 A JP 2022186061A JP 7478476 B2 JP7478476 B2 JP 7478476B2
Authority
JP
Japan
Prior art keywords
waveguide
image
parallel
pair
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022186061A
Other languages
English (en)
Other versions
JP2023051899A (ja
Inventor
ダンジガー,ヨチャイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumus Ltd
Original Assignee
Lumus Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumus Ltd filed Critical Lumus Ltd
Publication of JP2023051899A publication Critical patent/JP2023051899A/ja
Application granted granted Critical
Publication of JP7478476B2 publication Critical patent/JP7478476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2786Reducing the polarisation degree, i.e. depolarisers, scramblers, unpolarised output
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Complex Calculations (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、光学的開口乗算器(optical aperture multiplier)、具体的には、そのような開口乗算器を利用する、長方形導波路、ニアアイディスプレイ、及びヘッドアップディスプレイに関するものである。
ニアアイディスプレイ又はヘッドアップディスプレイのための光学配置は、視点が位置する領域を覆うための大きな開口を必要とする(アイモーションボックス)。コンパクトな装置を実施するために、大きな開口を生成するために掛け合わされる小さな開口を持つ小さな光画像生成装置により、画像が生成される。
一次元での開口の乗算のための方法が、内反射により画像が中で伝播する透明材料の平行面スラブ(parallel-faced slab)に基づいて開発された。画像波面の一部は、斜めに角度を付けた部分反射器の使用により、又は、スラブの1つの表面上での回折光学素子の使用により、スラブから連結される。そのようなスラブは、一次元での内反射により画像波面を含むという点で、本明細書では一次元導光路と称されている。スラブの面(即ち、スラブ表面)において、画像は、導波路にわたって画質を維持するようにコリメートされねばならない。
スラブ伝播方法は、開口の乗算の第2段階に非常に適しており、スラブは観察者の目(ニアアイディスプレイのためのガラスレンズ、又はより大きなヘッドアップディスプレイのためのウィンドウのようなもの)とは反対に配置され、最終出力表面を形成して、そこから画像が目に到達する。しかし、この方法は乗算の第1段階には最適ではなく、画像波面の幅と比較されたスラブの幅が装置にかさ及び重量を加えることが必要とされる。
本発明は、長方形導波路を含む光学的開口乗算器である。
本発明の特定の実施形態の教示に従い、光学的開口乗算器が提供され、該光学的開口乗算器は、
(a)伸長方向を持つ第1の光導波路であって、第1の光導波路は長方形断面を形成する第1の対の平行面及び第2の対の平行面を有しており、複数の部分反射面が第1の光導波路を少なくとも部分的に横断し、部分反射面が伸長方向に対して斜角である、第1の光導波路;及び
(b)第1の光導波路と光学的に連結される第2の光導波路であって、第2の光導波路はスラブ型の導波路を形成する第3の対の平行面を有しており、複数の部分反射面が第2の光導波路を少なくとも部分的に横断し、部分反射面が第3の対の平行面に対して斜角である、第2の光導波路
を含み;
ここで、第1の光導波路及び第2の光導波路の光連結面と部分反射面は、第1の光導波路の平行面及び第2の光導波路の平行面の両方に対して斜めの連結角度で最初の伝播方向で画像が第1の光導波路に連結される時に、画像が第1の光導波路に沿った4回の内反射により進み、第2の光導波路に連結するように画像の強度の一部が部分反射面にて反射し、及び、第2の光導波路内で2回の反射を伝播し、目に見える画像として前記平行面の1つから外側に向けられるように画像の強度の一部が前記部分反射面にて反射するように、構成される。
本発明の実施形態の更なる特徴に従い、第1の対の平行面は、第1の面と第2の面を含み、第2の対の平行面は、第3の面と第4の面を含み、第1の面の端部は第1の近位縁部にて終端となり、第3の面の端部は第2の近位縁部にて終端となり、
光学的開口乗算器は更に、光導波路に一体形成され又は光学的に連結される連結反射構造を含み、連結反射構造は:
(a)第3の面の近位拡張部として、又は第3の面に平行であり且つその外部に反射器として配置される第1の反射器であって、第3の面の幅よりも広い、伸長方向に垂直な幅を持つ、第1の反射器、及び
(b)第4の面の近位拡張部として、又は第4の面に平行であり且つその外部に反射器として配置される第2の反射器であって、第4の面の幅よりも広い、伸長方向に垂直な幅を持つ、第2の反射器
を含み、
それにより、光入力軸に沿って見ると、第1の近位縁部と第2の近位縁部は、第1の近位縁部と第2の近位縁部により連結される目に見える導波路開口を提示し、第1の近位縁部と第2の近位縁部の画像は、連結反射構造において反射される。
本発明の実施形態の更なる特徴に従い、光入力軸は第1の反射器及び第2の反射器の両方に対して傾斜している。
本発明の実施形態の更なる特徴に従い、連結反射構造は、光導波路に一体形成される又は光学的に連結される連結プリズムとして実装され、連結プリズムは、光入力軸に全体的に垂直な連結面を提示する。
本発明の実施形態の更なる特徴に従い、連結反射構造は、光導波路に一体形成される又は光学的に連結される連結プリズムとして実装され、連結プリズムは、画像投影構造の少なくとも1つの光学素子に統合される。
本発明の実施形態の更なる特徴に従い、少なくとも1つの光学素子は、入力面、反射器面、内部傾斜光束分割素子、及び出力画像伝播の主要な方向にほぼ直交する出力面を持つ、ビームスプリッタープリズムを含み、連結反射器の前記第1の反射器及び第2の反射器の少なくとも一部は、出力面の平面にわたって広がる。
本発明の実施形態の更なる特徴に従い、連結反射構造は、前記光導波路に一体形成される又は光学的に連結される連結プリズムとして実装され、連結プリズムは、目に見える導波路開口に当たるように第1の反射器及び第の反射器の1つに垂直な光学軸に沿って光入力を反射するために傾斜反射面を提示する。
本発明の実施形態の更なる特徴に従い、目に見える導波路開口と完全に重なるように光入力軸に沿って無限にコリメートされる画像を投影するために配置される、画像プロジェクターも提供される。
本発明の実施形態の更なる特徴に従い、画像プロジェクターと連結反射構造との間の光路に挿入されるデポラライザ要素も提供される。
本発明の実施形態の更なる特徴に従い、第1の光導波路は、第2の光導波路の端面に光学的に連結され、前記端面は第3の対の平行面の間を伸びる。
本発明の実施形態の更なる特徴に従い、端面は第3の対の平行面に直交している。
本発明の実施形態の代替的な特徴に従い、端面は、第3の対の平行面に傾斜して角度を付けられている。
本発明の実施形態の更なる特徴に従い、第2の光導波路の部分反射面は、一連の平行線において第3の対の平行面の第1と交差し、端面は、縁部に沿って第3の対の平行面の第1に接触し、縁部は一連の平行線とは平行でない。
本発明の実施形態の更なる特徴に従い、第1の光導波路は第3の対の平行面の1つに光学的に連結される。
本発明の実施形態の更なる特徴に従い、第1の光導波路の部分反射面は、第1の対の平行面及び第2の対の平行面の両方に対して斜角である。
本発明の実施形態の更なる特徴に従い、第1の対の平行面及び第2の対の平行面からの少なくとも1つの面は、誘電体ミラーを形成するために誘電材料の層で覆われる。
本発明の実施形態の更なる特徴に従い、第1の光導波路の面のうち1つは連結面であり、これを介して第1の光導波路は第2の光導波路と光学的に連結され、第1の光導波路の複数の部分反射面は重なり合った関係であり、その結果、連結面への一次画像伝播方向に沿った部分反射面の幾何学的投影において、投影の内部にある領域の大半が、部分反射面の少なくとも2つの投影の内部に含まれる。
本発明の実施形態の更なる特徴に従い、第1の光導波路に連結され、且つ、角度方向の第1の広がりを持つ第1の画像を第1の光導波路に導入するように配置される、画像投影構造も提供され、ここで、4回の内反射は、角度方向の第2、第3、及び第4の広がりをそれぞれ持つ、第2、第3、及び第4の共役像を生成し、
第1の光導波路の複数の部分反射面は、部分反射面に対して第1の範囲の角度内で画像の光線にほぼ透過性となるように覆われ、且つ、第2の範囲の角度内で入射する画像の光線に部分的に反射し、
ここで、角度方向の第1の広がり、及び複数の部分反射面の斜角は、4つの共役像のうち3つに対する角度方向の広がりが全て第1の範囲の角度内の複数の部分反射面上で入射し、且つ4つの共役像のうちわずか1つに対する角度方向の広がりが第2の範囲の角度内の前記複数の部分反射面上で入射するように選択される。
本発明の特定の実施形態の教示に従い、光学的開口乗算器がされ、該光学的開口乗算器は、
(a)伸長方向を持つ光導波路であって、光導波路は、第1の面と第2の面を含む第1の対の平行面、及び第3の面と第4の面を含む第2の対の平行面を有しており、対の平行面は一体となって長方形断面を形成し、第1の面の端部は第1の近位縁部にて終端となり、第3の面の端部は第2の近位縁部にて終端となる、光導波路;及び
(b)光導波路に一体形成され又は光学的に連結される連結反射構造
を含み、前記連結反射構造は:
(i)第3の面の近位拡張部として、又は第3の面に平行であり且つその外部に反射器として配置される第1の反射器であって、第3の面の幅よりも広い、伸長方向に垂直な幅を持つ、第1の反射器、及び
(ii)第4の面の近位拡張部として、又は第4の面に平行であり且つその外部に反射器として配置される第2の反射器であって、第4の面の幅よりも広い、伸長方向に垂直な幅を持つ、第2の反射器
を含み、
それにより、光入力軸に沿って見ると、第1の近位縁部と第2の近位縁部は、第1の近位縁部と第2の近位縁部により連結される目に見える導波路開口を提示し、第1の近位縁部と第2の近位縁部の画像は、連結反射構造において反射される。
本発明の実施形態の更なる特徴に従い、光入力軸は第1の反射器及び第2の反射器の両方に対して傾斜している。
本発明の実施形態の更なる特徴に従い、連結反射構造は、光導波路に一体形成される又は光学的に連結される連結プリズムとして実装され、連結プリズムは、光入力軸に全体的に垂直な連結面を提示する。
本発明の実施形態の更なる特徴に従い、目に見える導波路開口と完全に重なるように光入力軸に沿って無限にコリメートされる画像を投影するために配置される、画像プロジェクターも提供される。
本発明の実施形態の更なる特徴に従い、画像プロジェクターと連結反射構造との間の光路に挿入されるデポラライザ要素が更に含まれる。
本発明の特定の実施形態の教示に従い、光学的開口乗算器がされ、該光学的開口乗算器は、
(a)伸長方向を持つ第1の光導波路であって、第1の光導波路は長方形断面を形成する第1の対の平行面及び第2の対の平行面を有しており、ここで、複数の部分反射面が第1の光導波路を少なくとも部分的に横断し、部分反射面は伸長方向に対して斜角であり、第1の光導波路の複数の部分反射面は、部分反射面に対して第1の範囲の角度内で入射する光線にほぼ透過性となるように覆われ、且つ、第2の範囲の角度内で入射する光線に部分的に反射する、第1の光導波路;及び
(b)第1の光導波路に連結され、且つ、角度方向の第1の広がりを持つ第1の画像を第1の光導波路に導入するために配置される、画像投影構造
を含み、
ここで、第1の画像は、第1の光導波路に沿った4回の内反射により進み、それによって、角度方向の第2、第3、及び第4の広がりをそれぞれ持つ、第2、第3、及び第4の共役像を生成し、及び
ここで、角度方向の第1の広がり、及び複数の部分反射面の斜角は、4つの共役像のうち3つに対する角度方向の広がりが全て第1の範囲の角度内の複数の部分反射面上で入射し、且つ4つの共役像のうちわずか1つに対する角度方向の広がりが第2の範囲の角度内の前記複数の部分反射面上で入射するように選択される。
本発明は、ほんの一例ではあるが添付図面を参照するとともに、本明細書に記載される。
A及びBは、本発明の実施形態に従って構築且つ操作される光学的開口乗算器の、概略的な側面視と正面視をそれぞれ表す。 A及びBは、図1のA及びBの光学的開口乗算器からの導波路の内部ファセットの部分的な反射に関連して伝播する画像光線の2つの可能な幾何学的配置を示す概略図である。 様々な反射画像と図1のA及びBの光学的開口乗算器の内部ファセットとの角度関係の、概略的な二次元投影図である。 A-Dは、様々な共役像と図1のA及びBの光学的開口乗算器の内部ファセットにおける反射との相互関係を示す、概略的な等角図である。 A-Dは、様々な最初の光線方向に対する図1のA及びBの光学的開口乗算器からの2D導波路に沿って伝播する共役像における様々な光線と導波路の様々な幾何学的形状との関係の概略図である。 本発明の更なる態様に従った、図1のA及びBの光学的開口乗算器からの2D導波路に画像を内連結させるための連結反射構造の、概略的な等角図である。 図6の連結反射構造の異なる実装である。 A及びBは、連結反射構造が連結プリズムの一部として中に実装される、図6と同等の導波路と連結反射構造の、異なる視点からの等角図である。 A及びBは、連結プリズムの異なる実装をそれぞれ示す、図8のA及びBと同様の図である。 A-Cは、連結プリズム及び2D導波路の代替的な実装の、等角図、平面図、及び側面視をそれぞれ示す。 図10のAの連結プリズム及び2D導波路の実装の等角図である。 図10のAの連結プリズム及び2D導波路の実装の等角図である。 Aは、図10のAの連結プリズム及び2D導波路の実装の等角図である。Bは、図13Aの連結プリズム及び2D導波路の平面図である。 A-Cは、本発明の更なる態様に従った、図10のAの連結プリズム及び2D導波路の産生中の3つの段階の、概略的な等角図である。 本発明の更なる態様に従った、2D導波路を備えた画像投影構造の統合を示す概略的な側面視である。 図15の画像投影構造及び2D導波路の実装を示す概略的な側面視である。 図15の画像投影構造及び2D導波路の実装を示す概略的な側面視である。 三次元での図15-17の原理の典型的な実装の等角図である。 A-Cは、本発明の更なる実装に従った、2D導波路と1D導波路との間の異なる連結の幾何学的配置を示す、概略的な等角図、側面視、及び平面図をそれぞれ示す。 様々な共役像と図19のA-Cの光学的開口乗算器の内部ファセットにおける反射との相互関係を示す、概略的な等角図である。 A-Cは、本発明の教示に従った、2D導波路と1D導波路との間の連結の幾何学的配置の、3つの異なる実装を示す概略的な側面視である。 A及びBは、本発明の実装に従った、斜角での2D導波路と1D導波路との間の異なる実装連結の幾何学的配置を示す、概略的な等角図と側面視をそれぞれ示す。C-Eは、様々な異なる実装を示す、図22のBと同様の概略的な側面視である。 図1のAと同様であるが、2つの導波路間に挿入される屈折層を利用する、光学的開口乗算器の概略的な側面視である。 図23の装置に対する相関的な角度関係を示す、図3と同様の図である。 A-Cは、2つの導波路の機械的な相互接続に対する様々な実装の選択肢を示す、図1のAと同様の装置の側面視である。Dは、2つの導波路の機械的な相互接続に対する実装の選択肢を示す、図22のEと同様の装置の側面視である。 第1の導波路と、第2の導波路における画像伝播の方向との間の、相対的な傾斜を示す、図1のBと同様の装置の正面視である。 長方形の平行な外面のセットの両方に対して斜めに傾斜した内部部分反射ファセットを備えた2D導波路の実装を示す、概略的な等角図である。 第1の内部ファセット配向と第2のファセット配向をそれぞれ備えた、図27の2D導波路を利用する装置の2つの典型的な実装に対する幾何学的な角度関係を示す、図3と同様の図である。 第1の内部ファセット配向と第2のファセット配向をそれぞれ備えた、図27の2D導波路を利用する装置の2つの典型的な実装に対する幾何学的な角度関係を示す、図3と同様の図である。 図29Aの実装に従った2D導光路内の画像伝播の角度の、概略的な等角図である。 均一性の増大をもたらすために、隣接した導波路で並置された本発明の更なる態様に従った導波路の概略的な正面視である。 A及びBは、本発明の更なる態様に従った、画像の均一性に対する内部ファセット間隔の変異の効果を示す、導波路の概略図である。Cは、画像の均一性を増大させるための多重経路実装を示す、図1のBと同様のシステムの正面視である。 A及びBは、図1のBと同様のシステムの更に2つの異なる多重経路実装である。 Aは、浅い入射角光線を選択的に反射するように覆われた内部ファセットを利用する、図1のBと同様の装置の更に代替的な実装の概略的な正面視である。Bは、様々な反射画像と図33のAの光学的開口乗算器の内部ファセットとの角度関係を示す、図3と同様の図である。Cは、図33のAの装置に使用される覆われたファセットのためのS及びPの偏光に対する反射率の角度依存性を示すグラフである。 A-Eは、本発明の態様に従った、2D導波路及び連結プリズムの産生における一連の工程を示す、概略的な等角図である。 A及びBは、直接確認された場面の伝達された視野の強度に対する本発明の実施形態の起こり得る影響を示す、概略的な正面視と側面視をそれぞれ示す。C及びDは、本発明の更なる態様に従った、伝達された視野の強度矯正を示す、図35のA及びBと同様の図である。
本発明は、長方形導波路を含む光学的開口乗算器である。
本発明に係る光学的開口乗算器の原理及び操作は、図面及び付随の記載を参照することでより良く理解され得る。
ここで図面を参照すると、図1のA-35は、本発明の特定の実施形態に従って構築され及び動作する、光学的開口乗算器の様々な態様を示している。一般用語において、本発明の実施形態に従った光学的開口乗算器は、「X軸」に対応するものとして本明細書で恣意的に示される伸長方向を持つ第1の光導波路(10)を含んでいる。第1の光導波路(10)は、長方形断面を形成する、第1の対の平行面及び第2の対の平行面(12a)、(12b)、(14a)、(14b)を有している。本発明の特定の特に好ましい実施形態に従い、本明細書では「ファセット」と称される、複数の内部部分反射面(40)は、伸長方向に対して斜角(即ち、平行でも垂直でもない)で第1の光導波路(10)を少なくとも部分的に横断する。
光学的開口乗算器はまた、好ましくは、第1の光導波路と光学的に連結され、且つスラブ型導波路を形成する第3の対の平行面(22a)、(22b)を有している、第2の光導波路(20)を含んでおり、即ち、導波路(20)の他の二次元の距離は、第3の対の平行面(22a)、(22b)の間の距離よりも少なくとも桁違いに大きい。ここでも、複数の部分反射面(45)は、好ましくは、第3の対の平行面に対して斜角で第2の光導波路を少なくとも部分的に横断する。
導波路と部分反射面(40)(45)の配置及び構成との間の光学的連結は、第1の光導波路の平行面及び第2の光導波路の平行面(12a)(12b)(14a)(14b)の両方に対して斜めの連結角度で最初の伝播方向(30)により画像が第1の光導波路(10)に連結される時に、画像が第1の光導波路(10)に沿って4回の内反射(画像(a1)、(a2)、(a3)、及び(a4))により進み、第2の光導波路(20)に連結するように画像の強度の一部が部分反射面(40)にて反射し、その後、第2の光導波路(20)内で2回の反射(画像(b1)、(b2))を通じて伝播し、ユーザー(47)の目で確認される目に見える画像(c)として平行面の1つから外側に向けられるように画像の強度の一部が部分反射面(45)にて反射するような、連結である。
ここで図1のA及びBをより明確に参照すると、これらは上の記載の実装の第1の実例を示している。第1の導波路(10)は、2つのセットの平面間の反射により二次元で注入画像をガイドする場面では2D導波路として本明細書で称されており、一方で第2の導波路(20)は、1つの対の平行面間において一次元だけで注入画像をガイドする1D導波路と称されている。光画像発生装置(図示せず)からの光線(30)は、ある角度で第1の導波路(10)に注入される。結果的に、光は導波路(10)に沿って伝播しつつ、図1のAの側面視に示されるように導波路の4つの外面全てから反射されている。このプロセスにおいて、4つの共役光線ベクトルは、面により内部に反射されると、同じ画像を表わす(a1)、(a2)、(a3)、及び(a4)として生成される。
導波路(10)に注入される光線(30)の角度は、この導光路の4つの外面全てから反射されるように設定される。光線は、浅い(グレージング)角度で第1の導波路(10)の底面(12b)、即ち第2の導波路(20)に隣接している面から反射し、急角度で(10)から(20)へと伝達されねばならない。この特性は、全内反射(TIR)又は光学コーティングにより達成され得る。回折パターンはまた、同じ表面上で送信と回折を組み合わせることにより、この光学特性を実行することができる。第1の導波路(10)の他の3つの面(12a)、(14a)、及び(14b)からの反射は、同じように、或いは反射コーティングの使用により生成され得る。
第1の導波路(10)内のガイドされた光線の一部(例えば(a1)と(a2))は、第2の導波路(20)の入力連結面へ下向きに、内部平行部分反射器(ファセット)(40)により反射される。第2の導波路(20)において、これら光線は(b1)及び(b2)と定義される。
光線(b1)及び(b2)は外面により反射され、共役し、即ち光線(b1)は(b2)となるように反射され、その逆も然りである(図1のAに表される)。第1の導波路(10)外部前面(14a)及び外部後面(14b)は、互いに、及びこの実装においては、第2の導波路(20)の対応する外面(22a)(22b)に平行でなければならない。平行性から生じる任意の偏差は、連結画像(b1)及び(b2)を正確な共役像でなくし、画質が劣化してしまう。
第2の導波路(20)内の内部ファセット(45)は、導波路の外側に、及び観察者(47)の目に光線(b2)を反射させる。
導波路(10)及び(20)の内部ファセットによる反射プロセスを、図2のA及びBで更に説明する。2つの基本構成が表されており、光線及びファセットの相対的角度によって異なる。この概略図において、対応する導波路の側面視から観察されるように同じ幾何学的な考慮が各々に適用されるため、光線(a1)、(a2)、及び(b1)は、同じベクトルとして表される(参照ではb1のみである)。光線(a3)、(a4)、及び(b2)も同じベクトルとして表される(参照ではb2のみである)。
光線(b2)は実際に、図2のAにおいて2つのベクトルにより表されるのと同じ方向で伝播する光線束である。この場合、1つのベクトルは、光線(become)(b1)に及び内部ファセット(40)(又は(45))上へと外面により反射され、その一部は(c1)として反射される。他の(b2)ベクトルは、ベクトル(c2)としてファセットにより直接反射される。ベクトル(c1)及び(c2)は、この順序で必ずしも通常の画像及びゴースト画像を表わすものではない。この構成において、(b1)と(b2)は、同じ側からファセット(45)に影響する。
ちなみに、画像が光線により本明細書において表わされる場所ではどこでも、光線は、画像の点又は画素に各々が対応するわずかに異なる角度で多数の光線により典型的に形成される、画像のサンプル光線であることに、注意されたい。特に画像の端と称される場合を除いて、示される光線は典型的に画像の重心である。
図2のBは、実質的に同じプロセスを説明しているが、幾何学的配置は、(b1)と(b2)が両側からファセット(40)(又は(45))に影響するようなものである。
両方の場合、SとPの偏光における、画像(c1)及び(c2)に対する反射の大きさは、これらファセット上でのコーティングにより決定される。好ましくは、1つの反射は画像であり、他の反射は、望まれない「ゴースト」像に対応するため、抑えられる。入射光線角度のどの範囲が反射されるか、及び、入射光線角度のどの範囲が伝達されるかを制御するのに適切なコーティングは、当該技術分野で既知であり、本発明と共に同時譲渡される(coassigned)米国特許第7391573号及び第7457040号にて詳細に見出すことができる。
「ゴースト」像が、主要な画像又は共役像に重ならない((c1)が(c2)に重なる)ように、システムを設計することが特に好ましい。適切な光線角度を設計しつつ、導波路内での画像の伝播のためのTIR条件を維持し、且つ同時にゴーストの重複を回避するプロセスが、図3に記載される。この図は、本発明の更なる実施形態を以下に詳しく提示するために使用される概略図を導入している。
したがって、図3は、回転が直線の軸に沿った距離(「角度間隔(angular space)」)として描かれる導波路(10)と(20)の幾何学的配置の投影を示している。ゆえに、図はデカルト座標中の球座標を表す。この表示は様々な歪みを導入し、様々な軸に沿った変位は(様々な軸の回りの回転の性質がそうであるように)交換不可能である。しかしながら、図のこの形態は記載を単純化し、システム設計のための有用なツールを提供することが分かっている。明確化について、X軸、Y軸、およびZ軸に沿った方向は回転の1つのシーケンスに従って示されている。
大きな円は、導波路の様々な外面の臨界角(内部全反射の境界-TIR)を表す。したがって、円の外側の点は、TIRによって反射されるビームの角方向を表し、その一方で、円の内部の点は、外面を通って導波路から送信されるビームを表している。円(57)と(59)は、導波路(10)の前後の外面(14a)と(14b)、および導波路(20)の前後の外面(22a)と(22b)の臨界角を表す。反対のファセットの円の間の「距離」は180度である。円(61)と(63)は、導波路(10)の上下の外面(12a)と(12b)の臨界角を表す。点線入りの破線(65)と(67)は、導波路のこれらの外面の方向を表す。
以前に記載されたように、画像は2Dの導波路(10)に導入され、その間に、内反射を経験する。以下の例において、反射はすべてTIRベースであり、したがって、導入された画像(a1)は、任意の円の外部にあるように図3では示されている。角度空間内の正方形画像は四角形状を有する。
画像(a1)が導波路(10)の外面(12a)、(12b)、(14a)、および(14b)から反射される(方向65と67によって表される)ため、それは(a2)、(a3)、(a4)、および戻って(a1)に乗算される(4本の湾曲した実線矢印によって概略的に表される)。あらゆる画像の反射は、反射角が入射角と等しいという光学的原理に従って、面の各々からであるが、他の側において、画像それ自体と同じ角度の「距離」を有する(線65と67)。
(図1のBにおける)内部ファセット(40)の方向は、ファセットの角のある傾斜に従って位置付けられる線(70)としてここでは描かれている。画像(a1)あるいは(a2)がファセット(70)(40)にぶつかると、画像は、破線の矢印線によってそれぞれ画像(b1)と(b2)に対して描かれるように、70からの等しい反対側の角距離に反射される。
(b1)と(b2)は、第1の導波路(10)の底部外面の臨界角境界(61)内にあるので、この導波路から第2の導波路(20)へと連結されるであろう。
画像(b1)と(b2)は導波路(20)内に伝播するため、角度方向(67)を有する前後の外面(22a)と(22b)からの反射により相互に交換される(反射は湾曲した実線の両矢印として描かれている)。
最終的に、画像(b1)は方向(72)で内部ファセット(45)(図1のA)にぶつかり、画像(c)へ反射される。画像(c)は臨界角の円(57)の内部にあるため、第2の導光路(20)から目(図1のAの47)に結合される。
このすべての構成において、内部ファセット(70と72)の角度は画像のいずれかの角度形状(正方形)とも交差してはならない。なぜなら、そのように交差すると、「ゴースト」画像が正常画像に重なるからである。
画像(c)は、(c)が方向Zに集中していない図3で例証されるように、導波路(20)に対して任意の角度(必ずしも垂直であるとは限らない)で出現するように設計可能である。
上に言及されるように、ファセット(40)と(45)には、好ましくはコーティングが施されており、これがそれぞれ低角度画像(a3)、(a4)、および(b2)の反射を減らすか、実質的に取り除く。
図3に記載された計算プロセスは、表示のしやすさと明快さのために2Dデカルト座標中で概略的に示されている。図4のA-Dで例証されるように、システムの最終的な正確な設計は、球座標で行われる。図4のAは、画像(a1)-(a4)の間の連結を表す。図4のBは、ファセット(40)での反射による、(a1)から(b1)、および(a2)から(b2)への連結を示す。図4のCは、第2の導波路(20)における(b1)と(b2)との間の連結を表す。図4のDは、ファセット(45)での反射による、(b1)から(c)への連結を表す。
導波路(10)内での内反射のあいだ、図5のA-Dで示されるような一往復当たりのあらゆる寸法(yまたはz)における任意の数の反射が生じ得る。図5のAは、外面当たりの1つの反射を描く。この条件で、(b1)は(a1)に由来する。しかしながら、様々な画像フィールドの様々な光線は様々な角度を有するため、光線が導波路(10)のx軸に沿って伝播するにつれて、最終的に、反射の方向は変わることがある。図5のBは、(a2)によって生成される(b2)を結果として生させることができる、ある異なる方向を描く。したがって、あらゆる設計において、(b1)と(b2)の両方の生成を仮定しなければならない。導波路(10)のアスペクト比は、図5のCで描かれるような外部ファセット当たり1つを超える反射を有するように設計され得る。様々なフィールド角度について、反射の方向は図5のDで示されるように変わる場合がある。実際に、本発明の特定のとりわけ好ましい実装は、導波路(10)が、4つのすべての共役像(a1)-(a4)で容積測定的に充填され、それによって、以下にさらに議論されるように、経路の1つを抑えるために特別な予防策を講じることを除いて、画像(a1)と(a2)の両方が(b1)と(b2)を生成するために常に外連結(out-coupled)されることを保証する。
導波路(10)と(20)の外面と内部ファセットによる連結された反射は、xとyの寸法の両方で元々の導入された開口を拡張する。導波路(10)は、x寸法の開口とy寸法の導波路(20)とを拡張する(軸は図1のBのように標識される)。以下に詳述されるように、第1の導波路(10)の開口拡張は好ましくは、画像によって導波路を充填し、その後、導波路の長さに沿って連続的なやり方でファセットを介して導波路から画像を連結することにより達成される。
内連結(coupling-in)構造
拡張した開口全体で均一の強度を得るために、ビームの導入された最初の開口は均一でなければならず、導波路を「満た」さなければならない。画像中の各点(ピクセル)に対応する光線が導波路の断面全体に存在することを示すために、「充填する」という用語を本文脈で使用する。概念的に、この特性は、万一、導波路(10)が任意の点で横に切断される場合、および、その後、ピンホールを備える不透明なシートが切断された端部の上に置かれる場合、ピンホールを断面のいかなる場所にも置くことができ、結果として完全な投影画像が得られることになるということを暗に示している。実際に、2Dの導波路(10)に関して、これは、4つの完全な画像(a1)、(a2)、(a3)、および(a4)の投影をもたらすことになり、そのうち、(a2)と(a4)は倒像である。
入力画像で導波路を確実に充填するために、少しだけ大きすぎる入力画像を、導波路への入力時のサイズにトリミングしなければならない。これにより、乗算された隣接する開口は一方では重ならずに、他方では間隙がないようになる。トリミングは、光線が導波路に導入される際に行われる。
第1の導波路(10)への画像の効果的な内連結を達成するための多くの構成は、図6-図13のBで例証される。まず図6と図7に目を向けると、これらの図は、第1の導波路(10)を均一に充填するために入力画像をトリミングする内連結構造の自由空間のミラー実装(mirror-implementation)を概略的に例証する。この場合、面(12a)は第1の近位縁部(16a)で終わり、面(14a)は第2の近位縁部(16b)で終わる。導波路を十分に充填するために、光学的開口乗算器が、第1の導波路(10)と一体的に形成されているか、あるいは第1の導波路(10)に光学的に連結されている、連結反射器構造を含むことが、本発明の特定の実施形態の特に好ましい特徴である。連結反射器構造は、面(12b)の近位拡張部として(図6)、あるいは、面(12b)に平行かつ面(12b)の外部にある反射器として(図7)配置され、および、表面(12b)の幅よりも大きな、伸長方向に垂直な幅を有する、第1の反射器(18a)を含む。連結反射器構造はさらに、面(14b)の近位拡張部として(図6)、あるいは面(14b)に平行かつ面(14b)の外部にある反射器として配置され、および、表面(14b)の幅よりも大きな、伸長方向に垂直な幅を有する、第2の反射器(18b)を含む。この連結反射器構造の結果として、画像が導入される光入力軸(図6と7の観点)に沿って見ると、第1と第2の近位縁部(16a)と(16b)は、第1と第2の近位縁部によって境界を定められた目に見える導波路開口を呈し、第1と第2の近位縁部の画像は、物理的な開口の4倍(2x2)である目に見える開口に全体として対応して、連結反射器構造に反射される。連結反射器が導波路の面の外部に位置する場合、目に見える開口は、物理的な開口自体からわずかに間隔を置いた物理的な開口の3つの画像から構成され、各開口は物理的な開口の4つの縁部すべてにより縁どられている。これは、開口間の「空間」に当てはまる画像強度が失われていくため、結果的にわずかに非効率的であるが、開口の充填は依然として達成される。
本明細書に例証されるような1つの好ましい幾何学的配置では、光入力軸は第1と第2の反射器(18a)と(18b)の両方に傾斜している。こうした図面ではっきりと分かるように、反射器が導波路の寸法よりも大きな寸法を持つための要件は、画像の切り抜きと導波路の不完全な充填が確実に生じないようにするために必要とされる。このようにして、導波路はその断面全体にわたって4つの画像すべてにより確実に満たされる。
自由空間ミラーの使用は場合によっては実行可能なこともあるが、導波路(10)と一体的に形成された、あるいは、導波路(10)に光学的に連結された連結プリズムとして連結反射器構造を実装することは一般的に有利であり、第1と第2の反射器(18a)と(18b)は連結プリズム(91)の面によって提供される。連結プリズムのさらなる面は好ましくは、画像を導入する際に介する光入力軸に一般に垂直な連結表面を提示する。こうした構造の例は図8のA-Bと図9のA-Bで例証され、図8のA-Bは図6と幾何学的に同等であり、図9のA-Bは図7と幾何学的に同等である。このような場合では、導波路(10)の近位「縁部」は、導波路表面にプリズム表面を連結する交差によって定義される縁部である。この場合、こうした近位縁部の外部に落ちる光が導波路に入らない方向に反射される(あるいは伝送される)ように、他の隣接する表面は好ましくは外側に角度が付けられる。随意に、さらに迷放射線が望ましくない場所に到着するのを防ぐために、吸収材料を上記表面に適用することもある。
内連結幾何学的配置のさらなる例は図10のA-Cに例証され、画像を導波路に内連結する間のサンプル波頭の進行についてより詳細に説明する。この場合、図10のBで示されるように、X軸に沿って測定されるような任意の当初の開口の横寸法(81)を有するビーム(30)が導入される。ビームが導波路に入ると、この開口の前方端部は第1の近位縁部(16a)によってトリミングされる。侵入する間に一方の側でトリミングされたビーム開口は、反対側の連結反射器(18a)および/またはその連続面(12b)により反射されて正面(12a)へ戻り、その背面は第1の近位縁部(16a)によってもう一度トリミングされる。ビームが導波路に沿って伝播するにつれ、その開口(84と88)は重なったり間隙を開けたりすることなく隣接して、それによって導波路を充填する。
本発明の特に好ましい実装に従って、ビームの開口の第2の寸法は、第2の近位縁部(16b)によって同時にトリミングされる。近位縁部(16a)と(16b)の相対的な方向は決定的ではない。例えば、図10のA-Cでは、縁部(16a)は長手方向のX軸に傾斜して示されているが、近位縁部(16a)と(16b)が両方とも長手方向のX軸に対して垂直である図11に示される代替的な幾何学的配置は、場合によっては、製造を単純化することもある。2つの近位縁部(16a)と(16b)は好ましくは1つの隅で交差するが、光学系が十分に広く、トリミングが近位縁部(16a)と(16b)とそれらの反射によってのみ行われる限り、これは必要ではない。交差しない例が図12で示される。
第2の寸法のトリミングは、図10のBに関して第1の寸法について記載された手法と同等の手法で生じる。したがって、図10のCでは、最初のトリミングされていない投影画像開口は、X軸に沿って測定されるような最初の開口垂直寸法(92)を有する。それがセクション(91)から導波路(10)へ斜めに入ると、その正面は第2の近位縁部(16b)によってトリミングされる。ビーム(92)が反対側の外面(14a)および/または連続面から反射された後、その背面も適切なサイズ(94)になるように第2の近位縁部(16b)によってトリミングされる。結果的に、この寸法に沿って反射された開口はすべて同様に隣接している。二次元でのこのトリミングの全体的な結果は、導波路(10)が4つのすべての画像/共役像(a1)-(a4)で本質的に満たされ、それにより、その後、開口が二次元に沿って途切れることなく拡張される。
停止部(16a)と(16b)は、吸収材料あるいは屈折性材料(プリズムまたはコーティングなど)を用いて作られ得る。例えば、図10-13では、停止部は、アクセス光を分散させるように作用する、導波路の入口にある段差形状として描かれた。
連結プリズム(91)は、導波路(10)と一体的に、あるいは既知技術で2つのコンポーネントを取り付けることによって製造され得る。こうしたコンポーネントの取り付けに対するある特に有利な手法がさらに以下に記載される。
上で指摘されるように、導波路(10)へ連結された画像の光学軸は、平行面の両方のセットに傾斜して向けられる。しかしながら、このことは必ずしも画像プロジェクターの傾斜した配向を必要とするわけではない。なぜなら、画像伝播の要求される角度は、目に見える導波路開口に当たるためにX軸に垂直な光学軸に沿って光入力を反射するように配置された連結プリズム(91)の傾斜した反射表面(91a)のさらなる反射といった他の光学コンポーネントによって達成されることもあるからである。
こうしたオプションは図13のAとBで例証されており、そこでは、傾斜した反射表面(91a)は背面ミラーを提供する。図13のBで描かれるように、任意の(大きすぎる)開口(81)は導波路に入り、(16a)によってトリミングされる間に反射表面(91a)によって反射される。1つの反射(82)の後、開口の裏面(84)は同じ縁部(16a)によりトリミングされる。
(81)の余分な光は2つのメカニズムを使用して、縁部(16a)によりトリミングされる:入口では、余分な光は伝播を継続し、縁部を超えて外側に縁部(16a)(の左へ)伝送され、一方で、(82~84)へ反射後、波頭の裏面は縁部(16a)の右側にきて、ゆえに、(91a)によってTIRの外側の角度に、あるいは関連画像の外側の角度へ、もう一度反射される。
縁部(16b)は、他の次元で、以前のように垂直な軸をトリミングし続ける。随意に、ミラー(91a)は、入力画像(30)が導波路の1つの面に垂直な場合に、望ましい方向の画像の伝播をもたらすように、2つの軸の回りに傾けられることもある。
したがって、要約すると、所望の角度での導波路(10)への画像/ビームの連結は、プリズム、導波路の前、後、または内部に置かれたミラー、あるいは他の既知の方法を使用して、達成可能である。記載された二重停止部(double stop)構造が存在する限り、これらの方法はすべて実用的である。
拡張された開口全体で均一の強度を達成するために、トリミング縁部(16a)と(16b)は最小限の偏差と分散を備えた滑らかな縁部であることが望ましい。のりの残留物あるいは他の摂動誘起(perturbing )要素は、均一の低下を引き起こす場合がある。図14のA-Cは、他の文脈でも適用可能な、本発明のさらなる態様を例証しており、ここでは、光学要素が連結されることになっており、これにより、滑らかなトリミング縁部(あるいは、他の適用では、連続的な外部表面)の形成が促される。導波路(10)の関連する外面((12a)と(14b))は、反射または保護コーティング1610によって最初に覆われる。その後、導波路(10)の縁部は必要なトリミング縁部(1630)((16a)と(16b))によって磨かれ、最終的に、プリズム(1640)が取り付けられる。この取り付けでは、(例証されるような図の後側の)他の2つの面は、こうした面の連続部として連結反射器を提供するために、導波路(10)の外部表面の正確な連続部でなければならない。こういた面が連続的ではない場合(図9のBのように)、反射コーティング(1610)は好ましくは対向面((12b)と(14a))を同様に覆わなければならない。この手法はさらに1Dの導波路を備えるシステムに関連する。連結表面の角度は任意の方向であってもよい。
上記の手法、すなわち、2つの光学コンポーネントを連結するための表面の仕上げ処理の前に保護誘電体または反射コーティングを提供することで、本明細書に記載される特定の適用の及ばない広範囲の問題に対処することに留意されたい。とりわけ、2つのコンポーネントが一方から他方への光路を供給するように連結される場合はいつでも、これらのコンポーネントは適切な光学接着剤によって連結されるか、あるいは、典型的にはコンポーネントに対して屈折率を一致させなければならない。最適な光連結を保証するために、インターフェース表面全体は接着剤で完全に覆われなければならない。他方で、正確には接着剤の望ましい光学的性質ゆえに、インターフェースからコンポーネントの外部表面まで接着剤があふれ出ると、典型的にはコンポーネントの光学的性質が損なわれる。好ましくはインターフェース表面を磨く前に、保護コーティングで隣接する面を事前に覆うことによって、外部表面上へ接着剤があふれ出た影響を低下させるか、取り除くことができる。2つのコンポーネントが連結し、特定の表面が連結の後に水平になる場合、こうしたコーティングは連結の前に両方のコンポーネント上で好適に提供されることもある。特定の適用では、一方の側だけへの、または面のサブセットへのコーティングで十分なこともあり、例えば、特定の表面上の余分なのりは、さらなる研磨のステップによる連結の後に容易に取り除かれ得る。
内連結構造の上記の実装は、目に見える導波路開口に十分に重なるように、光入力軸に沿ってコリメートされた画像を無限に投影するために配置された画像プロジェクターと一緒に使用されるのが好ましい。様々な自由空間画像プロジェクターを含む、任意の適切なタイプと技術の画像プロジェクターが使用されてもよい。特定の場合には、特にコンパクトで頑丈な実装を提供するために、画像プロジェクターは、連結プリズムに機械的に一体化(つまり、一体的に形成されるか、あるいは強固に相互接続される)されてもよい。このタイプの様々な実装は図15-図18を参照して記載される。
まず図15を参照すると、これは、(503)の番号を付けられた2Dの導波路の文脈で使用される、PCT特許出願公開WO2015/162611のコンパクトな画像プロジェクターの改造物を例証する。それは照射偏光ビームスプリッター(PBS)(500)、コリメーティングPBS(501)、導波路(503)へ連結する連結プリズム(502)(図10のA-Cの91と同等)を含んでいる。
明確にするために、以下の記載では、偏光管理コンポーネント(波長板と偏光子を含む)を省略する。照射光(505)は照射プリズム(500)に入り、反射型液晶(LCOS)ディスプレイなどの画像生成装置(509)上に内部表面(507)によって反射される。ディスプレイから反射された光(511)はコリメーティングプリズム(501)に入り、ここでは、表面(513)が無限遠において投影画像を形成する光のコリメーションを達成するために、光学パワーを備えた表面(515)上に光を反射する。コリメートされた光は連結プリズム(502)を通って導波路(503)へ入る。
表面(515)は幅(517)を有し、この幅は、最も高い画像角度(518a)から最も低い画像角度(518b)まで、導波路(10)を画像の視野(FOV)全体で「充填する」のに必要な入力画像角度のすべてを提供するのに十分なように選択され、(519)で示されるFOV中の最も低い光線を含んでいる。表面(515)の必要とされるサイズは、順に、プリズム(501)と(500)の必要なサイズを決定する。より具体的には、図6-図10のCを参照して上に記載されるように、導波路(10)を画像とその共役像で充填することが望ましく、このことは、画像によって包含されるビーム角度の全範囲が、導波路の物理的な開口の全幅に、連結反射器中のその開口の画像と同様に入射しなければならないことを意味している。導波路開口からコリメーティングPBS(501)までこれらの光線を後方にトレースすることによって、コリメーティングPBSの最小限の必要とされる幅(517)を、ゆえに、照射/画像-生成PBS(500)の幅を決定することが可能である。近位縁部(523)(上の縁部(16a)に対応する)は、上記のような画像波面のトリミングを行う。
図15は1つの寸法だけを例証しているが、導波路の軸はPBSの軸に対して傾いており、この同じ画像のトリミングは上記のように両方の寸法で生じる。
画像内での他の従来の1Dの導波路への連結についても利益を得るために使用され得る本発明のさらなる態様によれば、コリメーティングプリズム(501)に連結プリズム(502)の一部あるいはすべてを組み入れ、それによって、システムのサイズを抑えることが可能である。別の用語で言えば、表面(513)よりも下/上に位置するコリメーティングPBS(501)の一部は、必要とされる連結反射器表面を提供するために切り取られることもある。
この手法の1つの例は、図16においてここで例証される。この図では、光は図15のように伝播し、同じ番号付けが使用されている。ここで、コリメーティングプリズム(526)は、近位縁部(523)に当接し、連結反射器を提供するために導波路(503)の底面の連続部を形成する改良された底面(528)を有しているという点でプリズム(501)とは異なる。この構造では、光学面(515)とトリミング縁部(523)との間の距離は、図15の実装でよりも実質的に短い。所望の画角全体で光学アパーチャと目に見える光学アパーチャから後方に光線をトレースすることによって、面(515)の(結果的にプリズム(526)の)の必要な寸法は減少することを理解されたい。これは、順に、画像生成PBS(500)の寸法の減少を可能にする。
図15-17の例は1D導波路あるいは2D導波路のいずれかを備えた実装に適した断面の幾何学的配置を示す。2D導波路へ連結する際、プリズム(526)(および、それに隣接する(500))は、(図10のA-Cにおける連結プリズム(91)の内連結面について示されるように)導波路(503)に対して2次元で傾斜した角度である。したがって、図16に示される幾何学的配置は、(様々な角度の)別の軸で再生される。面(528)に垂直なプリズム(526)の第2の面は導波路(503)(前の図の導波路(10))の第2の表面の連続部にもなる。こうしたアセンブリの三次元表現が図18で示される。この場合、画像生成要素、プリズム、および導波路の方向は、それぞれの特定の設計の要件すべてに従って、互いに対する任意の回転である。
このコンパクトな実装によるプリズム(526)の構造は好ましくは以下の条件を充填する:
1)光学面(515)からの光は導波路上に直接反射され、(図15の上記の記載と同等の)表面(513)によっては反射されない。
2)トリミング縁部(523)の画像(ビーム521によって画像の最も浅い角度部分について表されている)は、反射表面(513)によってではなく、プリズム(526)の外面によってでもなく、先端を切断されてはならない。
3)表面(528)は導波路表面の連続部でなければならない。
4)二次元の導波路については、上記の条件は導波路の両方の寸法で満たされなければならない。
図17は、これらの限定がコリメーティングプリズム(531)に連結プリズム(502)を組み入れることが可能な程度をどのようにして決定され得るかを例証する。この例において、導波路への連結角度は非常に浅い。その結果、連結プリズム(組み込まれる前)は非常に大きくなったであろうし、コリメーティングプリズムと照射プリズムもそうであるだろう。この実施形態では、連結プリズムは、画像(521で表される)の最も浅い角度部分向けのトリミング縁部の画像が、プリズム(531)の外面によって損なわれない点にだけ、コリメーティングプリズム(531)に組み入れられた。この点(533)は連結プリズムの縁部になる。その後、光学要素(515)の寸法(517)はその後、縁部(523)に妨げられずに到達しなければならない画像の最も急勾配な角度部分によって決定される。この寸法のコリメーティングプリズム(531)が縁部(523)に直接当接するには及ばないことになるため、導波路(503)の入口で小さな連結プリズム(535)が提供される。
導波路(10)への画像の内連結に対する上記のオプションの各々において、提示された解決策は、上で議論された部分的に反射するファセット・カップリングアウト手法などの任意のアウトカップリング用途、傾斜した面のカップリングアウト(PCT特許出願公開WO2017/141242A2で開示されるなど)、あるいは、カップリングアウトのために回折要素を使用する用途について、遊離手であると考えられている。導波路の表面上で内部に当たる一部の放射線をカップリングアウトするために使用される傾斜した面と回折要素は、当該技術分野で知られており、ここでは詳細に記載されない。
第1の導波路と第2の導波路の間の連結
図1のAとBの構造に係る第1の導波路(10)からの第2の導波路(20)への連結は、2重画像を作成することなく、画質を維持するために導波路の正確な位置合わせを必要とする。特に、図1のA、図3、および図5のDで最も良く例証されているように、第1の導波路(10)の画像の2つの出力画像(a1)と(a2)は第2の導波路(20)へ連結され、導波路(20)に沿って伝播する共役像(b1)と(b2)として互いに入れ替わり始める。優れた質を達成するために、導波路(10)と(20)の外面は、互いに正確に垂直または平行でなければならない。図1のAとBの実施形態によれば、導波路(10)は導波路(20)の上に置かれる。ちなみに、上、下、上部、下部など方向に対して言及がなされるときはいつでも、このような用語は表示のしやすさのためだけに用いられるにすぎず、図面で例証されるような任意の方向を指す。最終的な装置は任意の要求される方向に配置されることもある。さらに、第1の導波路へ画像を導入するための内連結構造と、第1の導波路から第2の導波路に画像を連結するためのカップリングアウト構造の相対的な方向に関する制限はない。
図19のA-Cは、図19のAで見られるように、第1の導波路(10)を第2の導波路(20)の平行面の1つに隣接している置くことによって導波路と連結するための本発明の実施形態に係る異なる構造を例証している。光は示されるように右から左へと第1の導波路(10)に伝播し、図1のAに関して上に記載されるように、導波路(10)の内部ファセットにぶつかり(図19の平面図で目に見える)、これは、中間の屈折層(99)(以下でさらに議論される)によって第2の導波路(20)の面へ画像を連結させるために、偏向画像を偏向させるように本明細書では配向される。連結は、光線が好ましくはTIRTIR(図19のBの実線の矢印)によって第2の導波路(20)内で反射し続けるように選択された角度である。共役ビームは、連結した方向(図19のBの破線の矢印)に第2の導波路(20)と連結し、第2の導波路(20)の隣接する端部へ伝播し、外部の分散によって失われる。
この実装では、第1の導波路(10)から連結された画像で第2の導波路(20)を充填することは、画像の最も浅い角度部分に関して導波路(10)の最遠端部(図19のBで示される上部)からある角度で出現する光線(101)が、第1の導波路(10)の他の末端(102)を超えないように十分な第1の導波路(10)の幅を選択することにより達成されるのが好ましい。
図19のA-Cの構造を実施するために、多くの条件を満たさなければならない。最初に、第1の導波路(10)に沿った伝播を支持するために、導波路(10)へ導入された光線は、屈折層(99)とのインターフェースによって反射されなければならない。導波路(10)の内部ファセットによる反射後、光線は屈折層(99)によって第2の導波路(20)へ連結されなければならないが、導波路(20)の反対の外面から漏れてはならない。図20は、上記の条件を充填するためにこの構造を実施するための手法を球座標で描いている。
したがって、図20では、画像(106LU)、(106RU)、(106LD)、および(106RD)は、図1のAの(a1)、(a2)、(a3)、および(a4)と同等である。導波路と空気との間の臨界角は、それぞれ(61)と(63)と同等である円(107)と(108)によって表される。円(109)は、図19のBとCの導波路(10)と中間の屈折層(99)との間の臨界角を表す。導波路と屈折層(99)の屈折率の比が空気に対するよりも小さいので、TIR円は空気境界の場合よりも大きい。第1の導波路(10)に沿って伝播する4つの共役像はすべて、両方の円(107)と(109)の外部にあり、その結果、画像は導波路に沿ってTIRを介して伝播する。(106LU)が導波路(10)の内部ファセットにぶつかる(図2のAの画像(c2)として記載されるプロセス)と、それは(110LU)(図1のAの(b1)と同等)に連結し、一方で、(106RU)は(110RU)に連結する。ビーム(110LU)と((110RU))は臨界角(109)の内部にあるが、臨界角107の外部にある。その結果、このようなビームは、導波路(10)から層(99)を介して導波路(20)へと有効に連結するが、導波路(20)の外面からの空気とは連結しない。
(110LU)と(110RU)が第2の導波路(20)内で反射されると、それらは対応する共役像(110LD)と(110RD)をそれぞれ生成する。このような反射は図1のAの(b2)と同等である。
上で言及されるように、この実装では、(110RU)と(110RD)は、図19のBの破線の矢印によって記載されるように分散する。画像(110LD)は、(図1のAの45で上に例証されるように)第2の導波路(20)の内部ファセットによって目に結合される。
この実施形態の異なる実装は図21のAとBで例証される。図21のAでは、ビーム(110RU)と(110RD)(破線の矢印として描かれる)は反射されることで、(110LU)と(110LD)(実線の矢印)を重ねて強化する。この組み合わせは、図21のAで示されるように、反射器(112)を垂直に、かつ第2の導波路(20)の端部に導入することにより達成される。この反射器は、画像(110RU)と(110RD)の一部を後方に反射させ、正反対方向の第1の導波路(10)に再度入ることもある。内部ファセットによって反射された後にこれらのビームを含めるために第1の導波路(10)の2つの相対する外部ファセット(114R)と(114L)上に反射するコーティングを提供することが望ましいこともある。
図21のBは、図21のAの構造と同じ機能性を維持しつつ、単一の反射器(116)として第2の導波路反射器(112)に第1の導波路反射器(114R)を組み合わせる構造を例証している。
図21のCでは、導波路(10)は、中間の誘電体または空隙によって間隔をおいて配置された導波路(20)に隣接している。導波路(10)からの連結された光(実線の矢印)は、図13のAとBに関して上に記載されるプロセスに似たプロセスで導波路(20)の背面ミラー(117)によって反射される。ミラー(117)の角度は、導波路(20)内の要求されるガイドされた光角度(点線)に、導波路(10)から伝達された光を一致させるように選択される。場合によっては、ミラー(117)は、導波路(10)の実装によって生成されるカップリングアウト角度と使用される画像伝播角度に依存して、(図21のCで示されるように)導波路(10)の縁部を越えて伸びる。
例えば、図2のAおよびBに関連して上に記載された様々な幾何学的配置および適切なコーティングなどの、内部ファセット(または回折光学素子)によって外連結する画像の異なる幾何学的配置が、図19のA-図21のCの実装に適用され得る。
(図21のCではなく)図19のA-図21のBの実装は、図20に関連して記載される幾何学的要件によって利用可能な視野において多少限定される。しかしながら、適用の範囲に関して、このオプションは、製造の簡潔性および設計の容易さの考察により特に利点があり得る。
第1の導波路(10)と第2の導波路(20)との間の連結の実装のさらなるセットが、図22のA-図22のEに例証される。これらの実装では、2D導波路(10)は、図22のBにおいて示されるように、第2の導波路(20)に対して傾斜され、その結果、導波路(10)から外連結された画像の1つのみが、導波路(20)内に含まれ、ガイドされる。第1の導波路(10)は、中間の透明ウェッジ(intermediate transparent wedge)(730)の使用によって1D導波路(20)に対する必要とされる傾斜で取り付けられ得る。この傾斜は、導波路(10)から1つの画像を連結する(図19のBの実線の矢印に類似した、実線の矢印)、および導波路(10)から他の画像を連結しない(図19のBの破線の矢印に類似した、破線の矢印)ように選択される。切り離された画像は、外部吸収体(external absorber)(例えば(736))に吸収されるか、または観察者に見えなくなる方向に配向される。代替的に、(736)は、図21のA-図21のBにおける破線の矢印に相当する、光(鎖線の矢印)を反対方向に導波路(10)へと後ろに反射する及び導波路(20)へと連結する1D再帰反射器であり得る。このオプションに従って、図22のBにおいて示されるように、2D導波路(10)の外部ファセットの少なくとも1つの上に、反射コーティング(737)が提供されてもよい。表示の明瞭さのために、導波路の内部ファセットは、これらの図面から省略されている。
導波路(20)に対する導波路(10)の傾斜は、導波路の必要とされる角度およびそれらの間で伝搬する画像に従って選ぶことができ、図22のCに示されるように、第2の導波路(20)の傾斜された連結表面に対する傾斜を低減するか、または図22のDに示されるように、角度を広げるために、透明ウェッジの連結プリズム(730)を利用してもよい。図22のEに例証されるような1つの特に好ましい実装において、第2の導波路(20)に対する第1の導波路(10)の必要とされる傾斜角度は、第2の導波路の連結表面の角度と一致し、その結果、中間の連結プリズムは必要とされない。このオプションを実装するために、第2の導波路(20)へと連結された画像の出力角度は、導波路(20)内の必要とされる伝搬角度と一致されなければならず、傾斜された端面(734)によって形成されたウェッジの範囲および導波路(10)の寸法は、画像との第2の導波路(20)の充填およびその共役が、上記の図6-12に関連して上に記載された方法と類似した方法で達成されるようなものでなければならない。
各場合において、導波路特性が損なわれないことを確かなものとするために、第1の導波路(10)の出力面にインターフェースの不連続性が必要とされる。図22のA-図22のEに例証される実装において、導波路(10)と導波路(20)との間の光学的不連続性をもたら中間媒体は、空気であるが、他の屈折性材料またはコーティングが使用されてもよい。オプションは、上に記載された内部の部分的に反射するファセットに代わるものとして、出力連結も実行する回折格子を含む。
したがって、図22のA-図22のEは、第1の導波路(10)が、第3の対の平行面(22a)、(22b)の間に伸長する及びそれらに対して斜めに角度がつけられた第2の光導波路(20)の端面(734)に光学的に連結されることに従った、導波路(10)の傾斜を例証する。このタイプの傾斜は、例えば、図26-図29に関連して以下に記載される様々な異なるタイプの内部ファセット傾斜などの、本明細書に提示される他のすべての変形構成と組み合わされてもよい。
ここで図23および図24を参照すると、これらは、上に記載された図1のA-Bの実装に本質的に類似しているが、多くの可変的な特徴を例証している実装に関する。したがって、図23は、導波路(10)と(20)との間に中間の屈折層(120)が挿入された実装を示す。この層は、好ましくは、薄くなるべきであるが、様々な材料または多層コーティングで作られ得る。層(120)の存在は、図24の角度間隔のダイアグラムにおける臨界角の円(121)として本明細書に例証される、図3の臨界角の円(61)を拡大させるように働く。屈折率の適切な選択によって、この臨界角の円のサイズを選択することが可能であり、それによって、光学設計の追加の自由度が提供され、幾つかの場合には、空隙で達成され得るよりも大きなFOVでの実装が促進される。
独立した態様において、図24はまた、(a3)および(a4)が、(a1)および(a2)に対する導波路(10)におけるファセットの角度(122)の同じ側面上にある実装を示す。これは、図2のAにおけるC1のシナリオと同等である。
さらに独立した態様において、図24はまた、導波路(10)および(20)が、異なる屈折率で材料から形成される構成を示す。結果として生じる異なる特性を表わすために、第2の導波路(20)の幾何学的特性は、図24において図面の左側に別々にプロットされ、画像および臨界角の円の角サイズは、2つのプロットにおいて異なる。
上記の変形はすべて、当業者に明らかとなるように、システム設計における追加の自由度を提供するために、本明細書に記載される実施形態のいずれかと組み合わせても使用されてもよい。
本発明の様々な実施形態において、構成要素および特に2つの導波路の相対的な位置付けにおける正確な位置合わせ及び構造安定性が、高度な画質を確かなものとするために重要であり得る。図25のA-Dは、本発明による装置のアセンブリに対する多くの異なるオプションを示し、これは様々な追加の利点を提供する。
図25のAは、画質を保護するように外面の表面品質、平行性および垂直性を維持しながら、導波路(20)の上に導波路(10)を実装するための第1のオプションを例証する。このオプションによって、連続的な共通の外部カバー(132)が、導波路(10)および(20)のために提供される。1つの好ましいオプションに従って、実際の導波路が、実際にカバー(132)の外面によって画定され、一方で内部ファセットが、カバーの内向きのインターフェース(134)間にのみ提供されるように、外部カバー(132)は導波路の材料と光学的に一致させられる。この場合、外部カバー(132)は、光の漏れ(136)を最小限にするようにできるだけ薄くされるべきである。導波路(10)と(20)との間に示される間隙は、臨界角の管理のための空隙または屈折の間隙であり得る。
図25のBは、図25のAの実装に類似した実装を示すが、導波路(10)の上部および底部にも沿った光学カバー(142)が追加されている。そのようなカバーの使用によって、これらの面に沿って高い光学品質(平滑度)を得ることが促進され得る。
図25のCは、導波路間の取り付けにおけるあらゆる間隙または偏差にもかかわらず、導波路(20)に対する入射の完全な適用範囲(充填)を確かなものとするために、導波路(10)が導波路(20)よりもわずかに広い実装を示す。この場合、中間の屈折性材料(149)の層は、好ましくは、導波路(10)の底面全体を覆う。
図25のDは、2つの導波路間に空隙を実装された、図22のA-Eに類似した幾何学的配置を有する実装に関する。導波路の相対位置を固定し、導波路における内反射の摂動が最小である状態でそれらの間の空隙を密封するために、好ましくは、少なくとも接合が実施される領域において、導波路の外面上に反射コーティング(1149)が適用される。その後、機械的に導波路を相互に接続する及びシールも生成するために、接合取り付け部(1150)が、これらのコーティングの各々に付けられる。コーティングは、間隙に接近して局所化され得るか、または2D導波路の側面全体を覆うように伸長され得る。
コーティング(1149)は、金属の反射コーティングであり得るか、あるいは散乱からのより急な光線またはあらゆる望ましくない画像が送信されるが、画像光のグレージング角が反映されるように選択される、誘電体コーティングであり得る。
ここで図26を参照すると、この実装において、導波路(10)の伸長方向は、第2の導波路(20)内のファセットの伸長方向に対して傾斜される(平行ではない)。言いかえれば、第2の導波路(20)の部分反射面(ファセット(45))は、1セットの平行線(150)で面(22a)と交差し、第2の導波路(20)の内連結の端面は、縁部(151)で面(22a)に接し、縁部は1セットの平行線とは平行ではない。この傾斜は、画像の外連結角度を変化させ、特定の適用におけるエルゴノミックデザインに対する要件を満たすために使用され得るか、または特定の角度設計の制限を単純化し得る。これらの角度の制限は、臨界角を超えないための制限(円と交差しない画像矩形)または正常画像に重複するゴースト像を有さないための要件(図24中の(122)などのファセットラインを交差しない画像矩形)を含む。
図26の実装では、第1の導波路(10)内のファセットの角度は、第2の導波路(20)に供給されたリンクアウトした(linked-out)画像が、第2の導波路のファセットに対して垂直に伝搬するように選択される。
導波路(20)に対する導波路(10)の傾斜は、代替的に、ファセット構成(図2のAおよび図2のBのオプション)、連結方法(図19のA-図23)、必要とされる画像FOV、及び/又は空気に対する及び導波路間の臨界角(図24)に依存して、ここで例証される傾斜とは反対方向であり得る。
図27は、本発明のさらに異なる実装を例証し、ここで、本明細書で(155)と指定される、第1の導波路(10)の部分反射表面は、面(12a)および(14a)の両方に対して斜角にある。(破線は、両方の外面に垂直な一平面および1つの面のみに対して傾斜した別の平面を示すことによって、ファセットの傾斜の可視化を促進するように意図されている。)角度間隔におけるこの実装の記載は、図28に示される。導波路(10)における最初の画像は、「ランドスケープ(landscape)」(広い)縦横比を有する(a1)-(a4)として提示される。画像は、最終的な水平画像を得るために、捻れ角で画像(a1)として導波路に注入される。2Dの傾けられた内部ファセット(155)の平面は、(157)として提示される。このファセットは、(a1)を、導波路(10)から導波路(20)へと外連結される(b1)へと連結する。一方、(a2)は、失われる代わりに、臨界角のマージン(margin)(159)にはなく、それ故、導波路(20)に連結されない(b2)に連結される。画像(b1)は、導波路(20)内にそれ自体の共役像(b3)を生成し、最終的に、(上に記載されたように)画像cとして眼に外連結される。この構成では、導波路(10)と(20)との間の位置合わせの精度に対する要件は緩和される。
図29Aおよび図29Bにおいて角度間隔に表わされた図27の実装のさらなる変形によると、ファセット(40)の配向は、第1の導波路(10)内に伝搬する4つの画像の1つのみの有意な割合を選択的に反映するように、(110)として表わされる2D傾斜、および適切なコーティングとともに選択され得る。したがって、図29Aにおいて例証される幾何学的配置では、画像(a2)は、導波路(20)における伝搬および拡大のために外連結される(b1)へと選択的に連結される。残存画像(a1)、(a3)および(a4)は、コーティングの適切な選択によって、ファセット(40)においてこれらの画像の反射を実質的に除去することが可能である、十分に小さな角度にある。画像の角度微分((a1)、(a3)および(a4)は、(a2)よりファセット平面に接近している)は、図29Bの3D表示において最適に見られる。したがって、1つの特に好ましい例では、ファセット(40)は、表面の法線に対して55°と85°の間で入射する光線に対して実質的に透明になるそれらを射線の出来事には(即ち、波長の関連範囲で5%未満の入射放射線の反射を生成する)、および法線に対して45°未満の傾斜で入射する光線に対して部分的に反射する(典型的には、少なくとも10%の入射放射強度で、および「実質的に透明な」角度範囲より有意に、典型的に反射の強度の少なくとも2倍で反射する)ようにコーティングされる。その後、画像の角方向の広がりの入射角およびファセット傾斜角度は、3つの画像(ここでは(a1)、(a3)および(a4))に対する角度の全体の広がりが、角度の実質的に透明な範囲内にあり、一方で1つの画像(ここでは(a2))に対するすべての画像角度が、部分反射範囲内にあるように選択され得る。これは結果として1つの画像のみの選択的な外連結をもたらし、それによって、システム設計の様々な態様を単純化する。外連結された画像が、元々生成された画像と同じ画像である必要がなく、その代わりに、その反転した共役像であり得ることが留意される。必要な場合に、原画像を生成する要素は、右画像が導波路から外連結されるように、注入のための反転した共役像を生成し得る。
<均一性の向上>
最終的な拡大された開口照射における非均一性は、時に、元の投影画像の開口の不均一な光、またはこの開口の非最適なトリミングに起因する場合がある。本発明のさらなる態様によると、そのような非均一性は、導波路の多重通路構成を実装することよってスムースアウトされ(smoothed-out)得る。
図30を具体的に参照すると、図30は、隣接した平行導波路(172)が並置された導波路(170)を示す(これは、導波路(10)または(20)の側面図であり得る)。これらの導波路間の中間のインターフェースは、光の連結を生成し、その結果、光の一部は導波路間に伝達され、残りは内側に反射される。中間面(導波路(170)と(172)との間)および外面(示されるように上部および底部)は、平行である。中間のインターフェースでの部分反射は、コーティングまたは導波路間の屈折率の不連続性に基づき得る。導波路(170)内に伝搬する反射された開口(174)は、(破線でマークされた)(176)として導波路(172)へと連結される。開口のこの画像はまた、導波路(170)へと戻って、および内部ファセット(40)または(45)(この図においては示されず)によって「元の」開口(179)に沿って開口(178)に出て連結される。出力開口(178)および(179)は平行であるが、ポジションにおいてオフセットされ(offset)、結果として開口にわたる非均一性の平均化がもたらされる。
知覚された非均一性の別のソースは、図31のAに例証されるような異なる視野における内部ファセットの角度の重なりに関する。本明細書に例証される導波路(10)または(20)の領域において、導波路は、内部ファセットを含む(それら2つは、(40)または(45)に相当する(2515)および(2517)として示される)。外連結された光のほとんどは、単一の内部ファセットから反射される。しかしながら、ファセットの縁部において、オフ角(off-axis angle)で非均一性がある。(実線の矢印としてマークされた)左を指し示すFOVの領域に関して、この角度では、ファセット(2515)とファセット(2517)によって反射された光間に有効な間隙があるため、(2520)としてマークされた領域は、光を反射せず、結果として知覚されたもの(the perceived)に暗いストリップがもたらされる。一方、(破線の矢印としてマークされた)右に外連結された光は、領域(2525)を有し、その中に(2515)および(2517)から反射された光の重なりがあり、それは光量のほぼ2倍を反射する。それ故、図31のAにおける非均一性は、FOVおよび眼位の異なる領域における拡張された開口にわたって中間の画像強度がおよそ200%と0%の間で変化する。
本発明のさらなる態様によると、図31のBに例証されるように、有意な重なりはファセット間に導入される。この場合、隣接したファセット間の間隔は半分にされ、結果として、ほとんどの眼位でのFOVの大部分が、2つのファセットからの重ねられた反射を介して画像から照射を受ける。画像の角度端点(angular extremities)およびファセットの角度端点の近くに、1つのファセットのみから生じるビーム(2540)および3つの隣接したファセットによって寄与されるビーム(2545)によって例証されるように、画像の特定の領域に寄与する重なるファセットの数の変化がまだあるだろう。しかしながら、非均一性は、典型的におよそ±50%に応じて、大幅に低下される。さらに、その変化は、開口にわたってより密に間隔を置かれた位置で生じ、それによって、観察者の瞳において平均される傾向があり、変化の視認性(noticeability)が低下する。
図31のCに示されるように、非均一性の低下に対するさらなる改善は、重なる内部ファセットによって生成される「多重通路」画像の導入から結果として生じ得る。(実線の矢印としてマークされ、「a」と指定された)導波路(10)内で伝搬する光は、外連結される(「b」と指定される)が、bからの光のいくらかは、「b」として外連結される前に(破線の矢印としてマークされた)「a」に後方に連結される(back-coupled)。この「a」と「b」との間の前後の連結は、光の平行性を維持しながら開口にわたる強度の平均化を引き起こし、それによって光の均一性を改善する。
本発明の特定の実装による交差連結(cross-coupling)の別の方法は、図32のAおよび図32のBにおいて例証される。図32のAでは、内部ファセット(2670)((40)に相当)は、上部外面(2675)上へと上向きに内部ファセットで(実線の矢印として示された)右から左にTIRを通って伝搬する画像照射の部分を反射するように「逆」配向にある。この面は、全体的な反射器になるようにコーティングされ、それによって、光を導波路(20)へと下方へ反射する(光線(2672))。
上部外面(2675)から反射された光のいくらかは、内部ファセットによって再び反映され(破線の矢印として示される)、光線(2680)として下方へ別の内部ファセットによって反映されるまで導波路(10)に沿って後方に伝搬する。光線(2672)および(2680)が平行であり、互いにオフセットされることは明白であり、したがって、交差連結および画像強度の非均一性の平滑化が達成する。
図32のBでは、内部ファセットは、光を下方に連結するように示され(上方の連結も本実施形態に含まれる)、底部外面(2705)は、部分的な反射器として実装され、および上部外面(2710)は、全体的な(例えば、金属化された)反射器として実装される。この構成の結として果、内部ファセット(40)によって下方に反射される及び通常外連結される光の一部は、その代りに、第1の導波路(10)へと後ろに反射される。その後、(破線として示される)上方の光線は、複数の通路へと分割し、その一部は、内部ファセットを通り抜けて上面(2710)から反射し、さらに入射光線通路に沿って逆に後ろに反射されて、続く内部ファセットで上方に反射される。上面(2710)から反射された光線は同様に、外連結のために内部ファセットをまっすぐに通り抜け得るか、または内部ファセット上でさらなる対の反射を受けて、異なる位置で外連結され得る。この多重通路の混合および画像間の交差連結はさらに、非均一性を低下させる役割を果たす。
外連結面に対する高角度で生じる前述の複数の内反射も、導波路(10)の表裏面に当たることが留意される。ビームの角度に依存して、反射コーティングで導波路(10)の表裏面をさらにコーティングすることが好ましいかもしれない。
ここで図33のA-Cを参照すると、図3、24、28および29に関連して上に記載されたスキームでは、内部ファセットでの選択的な部分反射は、ファセットに対して比較的高い傾斜にある入射画像(a1)および(a2)のために生じるように設計され、一方で低い傾斜角度の画像(a3)および(a4)が伝達されることが留意される。上に言及されたように、これらの選択的な特性を達成するのに適したファセットコーティングは、当該技術分野で公知であり、譲受人の先の米国特許第7,391,573号および第7、457、040号において記載されていることがわかる。
この手法に対する代替策として、図33のA-Cは、低傾斜の画像が外連結される画像であり、一方で高傾斜の画像がファセットを通して伝達される、実装を例証している。したがって、図33のBの角プロットでは、外連結されて(b1)および(b2)を提供するのは画像(a3)および(a4)であり、一方で画像(a1)および(a2)は最小の反射で内部ファセット(40)を通り抜ける。この光線の幾何学的配置は、図33のAにおいて例証され、図2のAにおける光線(c2)からの外連結と幾何学的に同等である。
図33のCは、この選択性を達成するために使用され得る内部ファセットの角度の反射率の一例を例証している。このグラフにおいて、ファセットの法線に対する角度は、X軸に沿って表示され、一方で各偏光の反射率がY軸上に表示されている。実線の四角は、(a3)または(a4)の角度範囲を表わす。(前の実施形態において記載されたように)S偏光が部分的に反射され、一方でP偏光がほとんど伝達されることは明白である。破線の四角は、共役像(a1)または(a2)を表わす。両方の偏光における反射率は最小であり、それ故、それらは導波路(10)から反射されない。
これらの反射率プロファイルの達成のために必要とされるコーティングは、前述の米国特許第7,391,573号および第7、457、040号などにおける1D導波路に関連して開示されたコーティングを使用して実施され得る。
<偏光スキーム>
ファセットコーティングの反射特性は、偏光に依存する。この強い依存性は、偏光が一定したままでない場合に、観察者に投影された画像の非均一の強度出力を発生させることができる。それ故、1D導波路で作用させるときの従来の慣例は、導波路表面に垂直な配向で単一の偏光(好ましくはS)を使用して、それらを照射することである。その後、光が1D導波路に沿って伝搬しても、この偏光の配向は変わらない。
本発明の態様の教示による2D導波路(10)に関連して、光が様々な角度で面に当たり、これらの反射を介して偏光の配向の変更が引き起こされるため、入力画像に対する単一の偏光の使用は最適解を提供しない。結果的に、単一の偏光が導波路上に注入される場合、その配向は導波路に沿って変化し、画像均一性が損なわれる。
代わりに、本発明の特定の特に好ましい実施によると、第1の導波路(10)へと導入された画像は、2D導波路へと非偏光(または以下に記載されるような擬似の非偏光)で連結される。非偏光の入力の使用によって、偏光の回転は画像均一性に影響を及ぼさない。さらに、内部ファセット(40)から外連結する反射は、大部分が偏光された出力を生成するが、部分的に偏光された伝達された画像は、それらの偏を導波路面で続く反射を介して断続的にスクランブルさせ(scrambled)、それによって続く内部ファセットで外連結された画像の均一性に寄与する。
光学画像は、光を放射する走査レーザー、LCD、LCOS、DLP、OLEDまたは他の装置によって生成することができる。投影光が偏向させられる場合、または偏光が偏光ビームスプリッターにいって導入される場合、光は、好ましくは、第1の導波路(10)の開口に入る前にデポラライザを介して伝達される。デポラライザは、光の異なるスペクトル成分の偏光の変更に基づいてパッシブ・デポラライザ(passive depolarizer)(「リオ(Lyot)」デポラライザ、「コルニュ(Cornu)」デポラライザ、または「ウェッジ(Wedge)」デポラライザなど)になり得る。例えば、赤色、緑色、または青色のLEDのスペクトル幅は、およそ50ナノメートルであり得、1mmの厚さの結晶石英は、優れた偏光解消を達成することができる。そのようなデポラライザは、画像投影配置における最後の偏光素子の後にある画像伝搬路に沿ったあらゆる光インターフェースで導入され得る。例えば、それは、図16の偏光ビームスプリッター(513)の直下に、または導波路の製造中に接合される要素間の中間のインターフェースに導入され得る。
代替的に、単一セルのLCDが、ヒトによる視覚認知の時間平均効果によって知覚されるような擬似の偏光解消を達成するために、偏光の急速な切替に使用され得る。LCDが、投影画像の単一フレームの時間内に2つの直交状態間で注入された光の偏光を変更する場合、光はこの適用に対して非偏光であると考えられ得る。幾つかの場合、より多くの状態が好ましいかもしれないが(例えば、中間状態を発生させるために低減された電圧でLCDセルを始動させることによって作られる)、2つの直交状態は典型的に満足な結果をもたらす。例えば、投影画像のフレームレートが100FPSである場合、LCDは、200Hzのレートで偏光を変更するはずであり、わずか数ミリ秒の間各偏光において留まる。
非偏光の光は、導波路(10)に注入された後、第1の内部ファセット(40)にぶつかる。光の一部はこのファセットによって反射される。反射が部分的に偏光されるため、伝搬し続ける光の残りの部分も部分的に偏光される。したがって、例えば、第2の導波路(20)への外連結のための部分的に反射されるのがS偏光である場合、伝達された光は部分的にP偏光される。
この伝達された光は、続く内部ファセット(40)に当たる前にTIRまたは反射を受け続ける。このTIRは、光の偏光を無作為に回転させ、ある程度までその偏光を解消する。この偏光スクランブリング(回転および偏光解消)は有益であり、導波路(10)に沿った出力連結の均一性に寄与する。偏光スクランブリングは、導波路(10)と、例えば、導波路(10)の上部の外部ファセット上の媒体が空気であるその環境との間の高屈折率差を利用することによって(フレネル方程式によって発現されるように)増強される。1つの好ましいオプションによると、複屈折の材料またはコーティングが、偏光スクランブリングを増強するために導波路(10)内に導入される。別の好ましいオプションによると、コーティングは、偏光スクランブリングを増強するために導波路(10)の外面の外側に導入される。内部ファセットでの部分的な偏光の上記のプロセスと、続く偏光スクランブリングは、各々の連続する内部ファセットで繰り返される。
導波路(10)から出て導波路(20)へと連結するための内部ファセット(40)で反射された光に関して、この光は、典型的にS偏光で典型的に部分的に偏光されるが、第1導波路を出る前に、および導波路(10)を出て導波路間の間隙へと進むと、導波路(10)の側面に生じる更なる反射で更なる偏光の変更を受け得る。結果として生じる外連結された光の偏光特性および第2の導波路に対する偏光の配向は、それ故、利用される具体的な連結の幾何学的配置の様々な特徴に依存する。第2の導波路(20)における偏光の管理に関して、多くのオプションが採用され得る。
随意に、S偏光からの累積偏差は、波長板を導波路(10)と(20)との間の間隙に入れることによって低下され得る。波長板(複数可)の実パラメーターは、導波路(20)において必要とされる偏光に対する導波路(10)からの比出力された光の偏光に従って判定されるべきである。随意に、望ましくない偏光、散乱およびゴースト像を低減するために、導波路(10)と(20)との間にポラライザが配置されてもよい。
ファセット(45)の伸長方向が、ファセット(40)に対して垂直である場合、ファセット(40)によって反射されたS偏光は、ファセット(45)に対するP偏光として配向される。S偏光がファセット(45)に最適である場合、偏光をファセット(45)に望ましいものに一致させるために、導波路間にλ/2波長板が配置されてもよい。このλ/2は、前に記載されたポラライザの前または後に置かれ得る。
代替的な実装では、システムは、幾つかの場合に、導波路(10)と(20)との間の偏光の管理を実施することなく許容可能な結果を提供することがわかった。この場合、ファセット((b1)および(b2))からの反射光の偏光は、導波路(20)へと下に伝搬するにつれ回転し、導波路(20)のファセット(45)にわたる偏光の平均化をもたらす。この構成のさらなる最適化は、50°-75°の範囲で図33のCにおいて示されるなど、両方の偏光を反射するコーティングを有していることによって達成される。(本例では、2つの偏光の反射は等しくないが、両方とも有意に反射される。)
2つの導波路(第1導波路への画像注入の減極剤に加えての)間の間隙にデポラライザを導入することも可能である。さらに、または代替的に、複屈折材料(例えば、特定のプラスチック)が導波路に使用されてもよく、これにより、システムの偏光スクランブリングの特性がさらに増強される。
<製造プロセス>
第2の導波路(20)の製造に適した技術は一般に知られており、それは、例えば、図32-図36に関連して記載されるように、譲受人の先行特許である米国第6,829,095号に見られ得る。
図34のAは、限定しないが、第1の導波路(10)を作り出すために使用され得る好ましいプロセスを例証している。明瞭さのために、図面では、スケールまたは密度は合わせられていないが、内部ファセットが示されている。
1セットのコーティングされた透明な平行板が、積み重ね(stack)として一緒に貼り付けられる(400)。積み重ねは、スライス(slice)(404)を作り出すために、対角線に切られる(402)。必要とされる場合、カバーの透明板(405)は、スライス(404)の上部及び/又は底部(図示されず)上に付けられ得る。1Dのファセット傾斜が必要とされる場合、スライスは、ファセットの縁部に対して垂直に切断され(破線)、または2D導波路(406)を作り出すために、2Dのファセット傾斜が必要とされる場合、対角線に切断される(鎖線)。
上記実施形態の多くに関して、その後、連結プリズムが導波路(10)に付けられる。連結プリズムの取り付けのための典型的な手順は、図34のB-Eに例証されている。スライスされた2D導波路(406)は、重なるファセット(2つのファセットは1視線ごとに反射する)とともに図34のBに示されている。これは単に限定しない例であり、重ならないファセットも可能である。
図34のBに例証されるように、2D導波路(406)(明瞭さのために非透明に示される)は、例えば、例証されるように点線に沿って切断される。この切断は、あらゆる配向でもよいが、垂直の切断は厳しい屈折率整合要件を緩和する。好ましくは、図34のCに見られるように、照射の均一性を維持するために、重なるファセットが存在する(図34のCにおける切り口を参照)場合に、その切断が実行される。そうでなければ、第1のファセットは、重なることなく反射し、結果として照射は低減される。必要な場合、透明な拡張部(413)を加えることができ、プリズム(414)(透明で示される、上記の(91)に相当する)が(406)に付けられ、拡張部および連結プリズムを備える2D導波路(416)が作られる。拡張部が必要でない場合に、連結プリズム(414)は、組み立てられた導波路(417)を作り出すために導波路に直接付けられてもよい。導波路の遠位端は、残されてもよく、それによって、残光がそこから散乱されることが可能になり、また迷反射(stray reflections)を最小限にするために光吸収材料(例えば黒色ペイント)を随意に塗られてもよい。
ここで図35のA-Dを参照すると、観察者は1D導波路(20)を通して世界(world)を見る。それ故、(図1における)内部ファセット(45)の透明度の変化が観察可能であり、不都合であり得る。しかしながら、導波路(虚像)からの均一な照射を維持するために、内部ファセットの反射率は、導波路の照射点からさらに離れて、より高くなければならない。
図35のA-Dでは、1D導波路の照射は太い矢印として示され、ファセットのより高い反射率は、図35のAおよびCの正面視でのより暗い透明度として、および図35のBおよびDの側面視でのより太い線として描写される。
図35のAおよびBの断面(450)は、導波路の端部の透明ガラスを示す。この断面は、内部に光をガイドせず、投影画像の領域を越えて、観察者に対する導波路窓の連続性のためにのみ使用される。これは、典型的に、断面(450)と最後のファセットとの間の明白な不連続性をもたらす。従来のシステムでも適用可能である、図35のCおよびDに例証される本発明のさらなる態様によると、最後の断面(454)は故意にあまり透明でないように作られ、それによって、最後のファセットと断面(454)との間の実世界の視野の伝達の明白な不連続性が低減される。これによって、画像のこの部分は観察者に対してそれほど妨害するものではなくなる。セクション(454)に望ましい伝達の低減も、断面(450)の上のコーティングを使用して達成することができる。
本発明のまたさらなる態様によると、追加の等級分けされた透明窓(457)が、導波路に隣接して(その前または後ろに)導入され得る。等級分けされた透明度は、連続的により厚い内部ファセットの配置に起因する類別された透明度まで反対方向に異なり、それによって、ディスプレイを通して見られた実世界の外観の変化を補い、ほぼ均一な全体的な組み合わせた透明度がもたらされる。
添付の請求項がマルチの従属なしで作成される程度まで、これは、そのようなマルチの従属を可能にしない管轄における方式要件に適応させるためだけに行われた。請求項をマルチに従属させるようにすることによって含蓄される特徴のあらゆる可能な組み合わせが、明確に考察され、本発明の一部と考えられるべきであることが留意されるべきである。
上記の記載が例として機能するようにのみ意図され、他の多くの実施形態が、添付の請求項において定義されるように本発明の範囲内で可能であることが認識されるだろう。

Claims (9)

  1. 光学的開口乗算器であって、
    (a)透明材料のブロックとして形成された第1の導波路であって、前記第1の導波路は、長方形断面を形成する第1の対の平行面および第2の対の平行面を有し、前記第1の導波路を少なくとも部分的に横断する第1のセットの相互に平行な部分反射内面を含み、前記部分反射面が少なくとも前記第1の対の平行面に対して斜角である、第1の導波路と、
    (b)前記第1の導波路に光学的に連結される、透明材料のブロックとして形成された第2の導波路であって、前記第2の導波路は、スラブ型の導波路を形成する第3の対の平行面を有しており、第2のセットの部分反射面は前記第2の導波路を少なくとも部分的に横断し、前記第2のセットの部分反射面が、前記第3の対の平行面に対して斜角である、第2の導波路と、
    (c)無限にコリメートされる画像を投影するように構成された画像プロジェクターであって、前記画像を前記第1の導波路へ導入し、前記第1の対の平行面および前記第2の対の平行面における4回の内反射によって前記第1の導波路内で伝播することにより、4つの内反射画像セットを生成するように、前記第1の導波路に光学的に連結された画像プロジェクターとを含み、
    前記第1の導波路への光学的連結ならびに前記第1および第2の導波路の前記第1および第2のセットの部分反射面は、前記4つの内反射画像セットの少なくとも1つの強度の一部が、前記部分反射面における反射によって漸進的に偏向され、前記第2の導波路に連結され、前記第2の導波路内で2回の反射によって伝播され、前記画像の強度の一部が前記部分反射面で反射され、可視画像として前記平行面の1つから外側へ向けられるように構成され、
    前記第1の導波路内を伝播する前記画像は視野角に広がっており、前記4つの内反射画像のいずれの光も前記第1の対の平行面および前記第2の対の平行面のいずれかまたは前記第1のセットの前記部分反射面に平行ではなく、
    前記漸進的に偏向される画像または前記第2の導波路内を伝播するその反射の光は、前記第3の対の平行面または前記第2のセットの部分反射面に平行ではな
    前記第1のセットの部分反射面は、前記第2の対の平行面に垂直であり、前記第1のセットの部分反射面は、多層誘電体コーティングであって、前記4つの内反射画像の第1の2つの画像の視野角を含む第1の角度範囲内に入射する光に対して実質的に透明であり、前記4つの内反射画像の第2の2つの画像の視野角を含む第2の角度範囲内に入射する光を部分的に反射し、それによって前記第2の2つの画像を漸進的に偏向させて前記第2の導波路に連結させる多層誘電体コーティングを用いて実装される、
    ことを特徴とする光学的開口乗算器。
  2. 前記第2の対の平行面は、前記第3のの平行面に平行である、ことを特徴とする請求項に記載の光学的開口乗算器。
  3. 前記第1のセットの部分反射面の反射率は、前記反射画像の伝播方向に沿って増大する、ことを特徴とする請求項1に記載の光学的開口乗算器。
  4. 前記第1のセットの部分反射面は、前記第1の対の平行面および前記第2の対の平行面の少なくとも1つの面に隣接した周囲媒体において、前記第1の導波路の材料の臨界角よりも小さい角度で、前記第1の対の平行面の法線に対して傾斜している、ことを特徴とする請求項1に記載の光学的開口乗算器。
  5. 前記第1の導波路は、前記第1の対の平行面または前記第2の対の平行面の間に、それに平行に配置された部分反射内面を更に含む、ことを特徴とする請求項1に記載の光学的開口乗算器。
  6. 前記画像プロジェクターと前記第1の導波路との間の光学的連結は、前記第1の導波路に一体形成されている、または光学的に連結されている連結プリズムを通して行われ、前記連結プリズムは、前記画像プロジェクターからの射影画像の光軸に垂直な連結面を提示し、前記第1の対の平行面の第1の面と同一平面上の、またはそれに平行な第1の拡張面と、前記第2の対の平行面の第1の面と同一平面上の、またはそれに平行な第2の拡張面とを提供する、ことを特徴とする請求項1に記載の光学的開口乗算器。
  7. 前記第1の拡張面は、前記第1の対の平行面の幅よりも大きい、前記第の一導波路の伸長方向に垂直な幅を有し、前記第2の拡張面は、前記第2の対の平行面の幅よりも大きい、前記第1の導波路の伸長方向に垂直な幅を有する、ことを特徴とする請求項に記載の光学的開口乗算器。
  8. 前記連結プリズムは、前記第1の導波路の入口開口部の第1の寸法を画定する第1の遮断縁部と、前記第1の導波路の入口開口部の第2の寸法を画定する第2の遮断縁部とを画定し、前記第1の遮断縁部および前記第2の遮断縁部は同一平面上にはない、ことを特徴とする請求項に記載の光学的開口乗算器。
  9. 前記連結プリズムは、前記第1の導波路の入口開口部の第1の寸法を画定する第1の遮断縁部と、前記第1の導波路の入口開口部の第2の寸法を画定する第2の遮断縁部とを画定し、前記第1および第2の遮断縁部の少なくとも1つは、前記第1の導波路の伸長方向に斜めに傾斜している、ことを特徴とする請求項に記載の光学的開口乗算器。
JP2022186061A 2016-10-09 2022-11-21 長方形導波路を使用する開口乗算器 Active JP7478476B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662405936P 2016-10-09 2016-10-09
US62/405,936 2016-10-09
US201662418919P 2016-11-08 2016-11-08
US62/418,919 2016-11-08
US201762509369P 2017-05-22 2017-05-22
US62/509,369 2017-05-22
JP2018502762A JP7187022B2 (ja) 2016-10-09 2017-09-12 長方形導波路を使用する開口乗算器
PCT/IL2017/051028 WO2018065975A1 (en) 2016-10-09 2017-09-12 Aperture multiplier using a rectangular waveguide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018502762A Division JP7187022B2 (ja) 2016-10-09 2017-09-12 長方形導波路を使用する開口乗算器

Publications (2)

Publication Number Publication Date
JP2023051899A JP2023051899A (ja) 2023-04-11
JP7478476B2 true JP7478476B2 (ja) 2024-05-07

Family

ID=61831707

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018502762A Active JP7187022B2 (ja) 2016-10-09 2017-09-12 長方形導波路を使用する開口乗算器
JP2022186061A Active JP7478476B2 (ja) 2016-10-09 2022-11-21 長方形導波路を使用する開口乗算器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018502762A Active JP7187022B2 (ja) 2016-10-09 2017-09-12 長方形導波路を使用する開口乗算器

Country Status (13)

Country Link
US (5) US10133070B2 (ja)
EP (3) EP3365712B1 (ja)
JP (2) JP7187022B2 (ja)
KR (3) KR102528646B1 (ja)
CN (3) CN108235739B (ja)
AU (3) AU2017301074B2 (ja)
BR (1) BR112018006747A2 (ja)
CA (1) CA2992213C (ja)
IL (2) IL258941B (ja)
MX (1) MX2018003097A (ja)
RU (1) RU2746980C1 (ja)
TW (1) TWI653478B (ja)
WO (1) WO2018065975A1 (ja)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov A compact head-up display system with a uniform image
US10317679B2 (en) 2016-04-04 2019-06-11 Akonia Holographics, Llc Light homogenization
US10353202B2 (en) * 2016-06-09 2019-07-16 Microsoft Technology Licensing, Llc Wrapped waveguide with large field of view
CN108235739B (zh) 2016-10-09 2021-03-16 鲁姆斯有限公司 使用矩形波导的孔径倍增器
KR102541662B1 (ko) 2016-11-08 2023-06-13 루머스 리미티드 광학 컷오프 에지를 구비한 도광 장치 및 그 제조 방법
CN108254918B (zh) * 2016-12-28 2021-10-26 精工爱普生株式会社 光学元件和显示装置
WO2018138714A1 (en) 2017-01-28 2018-08-02 Lumus Ltd. Augmented reality imaging system
KR102655450B1 (ko) 2017-02-22 2024-04-05 루머스 리미티드 광 가이드 광학 어셈블리
CN113341566B (zh) 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
WO2019016813A1 (en) 2017-07-19 2019-01-24 Lumus Ltd. LIQUID CRYSTAL LIGHTING ON SILICON VIA OPTICAL ELEMENT GUIDE OF LIGHT
US11513352B2 (en) 2017-09-29 2022-11-29 Lumus Ltd. Augmented reality display
WO2019077614A1 (en) 2017-10-22 2019-04-25 Lumus Ltd. ENHANCED REALITY DEVICE MOUNTED ON THE HEAD AND USING AN OPTICAL BENCH
KR102570722B1 (ko) 2017-11-21 2023-08-24 루머스 리미티드 근안 디스플레이용 광학 조리개 확장 배열
IL275013B (en) 2017-12-03 2022-08-01 Lumus Ltd Method and device for testing an optics device
KR20200096274A (ko) 2017-12-03 2020-08-11 루머스 리미티드 광학 장치 정렬 방법
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
TWI791728B (zh) 2018-01-02 2023-02-11 以色列商魯姆斯有限公司 具有主動對準的增強現實顯示裝置及其對準方法
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
EP3775827B1 (en) 2018-04-08 2023-07-05 Lumus Ltd. Apparatus for optical testing of plate-shaped optical elements
FI129306B (en) * 2018-04-19 2021-11-30 Dispelix Oy Diffractive outlet pupil dilator for display applications
US10830938B2 (en) 2018-05-14 2020-11-10 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
US11442273B2 (en) 2018-05-17 2022-09-13 Lumus Ltd. Near-eye display having overlapping projector assemblies
CN110515202B (zh) * 2018-05-21 2022-01-28 北京亮亮视野科技有限公司 光导显示系统
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improving light field uniformity
KR20210013173A (ko) 2018-05-23 2021-02-03 루머스 리미티드 부분 반사 내부면이 있는 도광 광학 요소를 포함한 광학 시스템
US11275240B2 (en) * 2018-06-11 2022-03-15 Shimadzu Corporation Image display device
KR20210022708A (ko) 2018-06-21 2021-03-03 루머스 리미티드 도광체 광학소자의 플레이트들 사이의 굴절률 불균일성에 대한 측정 기술
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
WO2020005320A1 (en) * 2018-06-30 2020-01-02 Fusao Ishii An augmented reality (ar) display
US11698532B2 (en) 2018-07-10 2023-07-11 Shimadzu Corporation Image display device
US11409103B2 (en) 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors
US11543583B2 (en) * 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11803056B2 (en) * 2018-09-14 2023-10-31 Apple Inc. Waveguided display systems
TWM642752U (zh) 2018-11-08 2023-06-21 以色列商魯姆斯有限公司 用於將圖像顯示到觀察者的眼睛中的顯示器
US11947130B2 (en) 2018-11-08 2024-04-02 Lumus Ltd. Optical devices and systems with dichroic beamsplitter color combiner
TWM598414U (zh) 2018-11-11 2020-07-11 以色列商魯姆斯有限公司 具有中間視窗的近眼顯示器
EP3663833A3 (en) * 2018-12-05 2020-07-29 HTC Corporation Waveguide device and optical engine
US11221486B2 (en) * 2018-12-10 2022-01-11 Auroratech Company AR headsets with improved pinhole mirror arrays
JP7161934B2 (ja) * 2018-12-21 2022-10-27 株式会社日立エルジーデータストレージ 映像表示装置及び映像表示システム
KR20210113594A (ko) 2019-01-15 2021-09-16 루머스 리미티드 대칭 광 가이드 광학 요소를 제작하는 방법
EP3903138B1 (en) 2019-01-24 2023-03-08 Lumus Ltd. Optical systems including loe with three stage expansion
WO2020183229A1 (en) 2019-03-12 2020-09-17 Lumus Ltd. Image projector
DE202019102696U1 (de) 2019-05-14 2019-07-10 Lumus Ltd. Substratführungsbasiertes optisches System mit Bildfeldwölbungseffekt-Verringerung
EP3987340B1 (en) 2019-06-23 2024-03-13 Lumus Ltd. Display with foveated optical correction
EP3990967A4 (en) 2019-06-27 2022-08-03 Lumus Ltd. APPARATUS AND METHODS FOR TRACKING THE EYE BASED ON IMAGING THE EYE THROUGH A LIGHT GUIDE OPTICAL ELEMENT
BR112021025737A2 (pt) 2019-07-04 2022-02-15 Lumus Ltd Sistema óptico e sistema óptico para exibir uma imagem a um olho de um usuário
US11686942B2 (en) * 2019-09-12 2023-06-27 Meta Platforms Technologies, Llc Polarization-based processing of unpolarized image light
WO2021053665A1 (en) * 2019-09-16 2021-03-25 Lumus Ltd. Image display system with beam multiplication
CN212873079U (zh) * 2019-11-07 2021-04-02 中强光电股份有限公司 近眼光学系统
EP4041491B1 (en) * 2019-11-25 2023-07-26 Lumus Ltd. Method of polishing a surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd A light guide with an optical element to perform polarization mixing
JP7396738B2 (ja) 2019-12-05 2023-12-12 ルーマス リミテッド 相補的コーティング部分的反射器を用いた導光光学素子および低減された光散乱を有する導光光学素子
CN114746797A (zh) * 2019-12-08 2022-07-12 鲁姆斯有限公司 具有紧凑型图像投影仪的光学系统
MX2022006341A (es) * 2019-12-09 2022-06-23 Claudio Oliveira Egalon Sistemas y metodos de iluminacion lateral de guias de ondas.
CA3164587A1 (en) 2019-12-30 2021-07-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
EP4022218A4 (en) * 2020-02-02 2022-11-23 Lumus Ltd. PROCESS FOR MANUFACTURING LIGHT-TRANSDUCING OPTICAL ELEMENTS
GB2588470B (en) * 2020-02-19 2022-01-12 Envisics Ltd Pupil expansion
CN115244449A (zh) * 2020-03-13 2022-10-25 三菱化学株式会社 导光板以及ar显示器
JP2023521710A (ja) 2020-04-20 2023-05-25 ルーマス リミテッド レーザ効率および眼の安全性を向上させたニアアイディスプレイ
EP4085287A4 (en) * 2020-05-24 2023-07-12 Lumus Ltd. COMPOSITE LIGHT-TRANSDUCING OPTICAL ELEMENTS
KR102623956B1 (ko) 2020-05-24 2024-01-10 루머스 리미티드 복합 도광 광학 요소의 제조 방법
TW202206891A (zh) * 2020-06-01 2022-02-16 以色列商魯姆斯有限公司 用於近眼顯示器的虛擬影像遞送系統
EP4022382B1 (en) * 2020-08-23 2023-10-25 Lumus Ltd. Optical system for two-dimensional expansion of an image reducing glints and ghosts from the waveduide
DE202021104723U1 (de) 2020-09-11 2021-10-18 Lumus Ltd. An ein optisches Lichtleiterelement gekoppelter Bildprojektor
GB2599144B (en) * 2020-09-28 2023-05-24 Snap Inc Waveguide assembly
EP4222416A4 (en) * 2020-10-01 2024-03-27 Lumus Ltd COMPOSITE OPTICAL LIGHT GUIDE ELEMENTS
WO2022097153A1 (en) 2020-11-09 2022-05-12 Lumus Ltd. Color corrected back reflection in ar systems
US20230314689A1 (en) * 2021-02-16 2023-10-05 Lumus Ltd. Optical systems including light-guide optical elements for two-dimensional expansion with retarder element
JP7465830B2 (ja) 2021-02-18 2024-04-11 株式会社日立エルジーデータストレージ ヘッドマウントディスプレイ
JP7490286B2 (ja) * 2021-02-25 2024-05-27 ルーマス リミテッド 矩形導波路を有する光学アパーチャ増倍器
CN116724268A (zh) * 2021-02-25 2023-09-08 鲁姆斯有限公司 具有矩形波导的光学孔径倍增器
EP4237903A4 (en) * 2021-03-01 2024-04-24 Lumus Ltd COMPACT COUPLING OPTICAL SYSTEM FROM A PROJECTOR IN A WAVEGUIDE
IL308019B1 (en) * 2021-05-19 2024-02-01 Lumus Ltd Active optical engine
WO2022259234A1 (en) * 2021-06-07 2022-12-15 Lumus Ltd. Methods of fabrication of optical aperture multipliers having rectangular waveguide
EP4295182A1 (en) * 2021-06-15 2023-12-27 Lumus Ltd. Encapsulated light-guide optical elements for near eye display
WO2023281369A1 (en) 2021-07-04 2023-01-12 Lumus Ltd. Color shifted optical system for near-eye displays
CN113671707B (zh) * 2021-08-04 2023-04-25 歌尔光学科技有限公司 光学系统和头戴显示设备
KR20240046489A (ko) 2021-08-23 2024-04-09 루머스 리미티드 내장된 커플링-인 반사기를 갖는 복합 도광 광학 요소의 제조 방법
KR20240051132A (ko) * 2021-09-05 2024-04-19 루머스 리미티드 독립적인 공액 이미지 생성
WO2023067594A1 (en) * 2021-10-18 2023-04-27 Lumus Ltd. Optical system for near-eye displays
US20230176377A1 (en) 2021-12-06 2023-06-08 Facebook Technologies, Llc Directional illuminator and display apparatus with switchable diffuser
CN114236682B (zh) * 2022-01-20 2022-12-09 上海理湃光晶技术有限公司 一种光学扩展波导
TW202346937A (zh) * 2022-04-03 2023-12-01 以色列商魯姆斯有限公司 採用與光導集成的二向色組合器的顯示器
WO2023219860A1 (en) * 2022-05-10 2023-11-16 Google Llc Lateral offset reflector for reflective waveguides
WO2023220353A1 (en) * 2022-05-12 2023-11-16 Meta Platforms Technologies, Llc Field of view expansion by image light redirection
WO2024081699A1 (en) * 2022-10-14 2024-04-18 Google Llc Reflective facet waveguide with laminated facet layers
CN117075252B (zh) * 2023-10-12 2024-01-12 北京极溯光学科技有限公司 一种几何光波导以及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003872A (ja) 2004-05-17 2006-01-05 Nikon Corp 光学素子、コンバイナ光学系、及び情報表示装置
WO2006061927A1 (ja) 2004-12-06 2006-06-15 Nikon Corporation 画像表示光学系、画像表示装置、照明光学系、及び液晶表示装置
JP2007505353A (ja) 2003-09-10 2007-03-08 ラマス リミテッド 基板導光の光学装置
JP2012198263A (ja) 2011-03-18 2012-10-18 Seiko Epson Corp 導光板及びこれを備える虚像表示装置並びに導光板の製造方法
WO2015076335A1 (ja) 2013-11-25 2015-05-28 シャープ株式会社 ライトガイドおよびヘッドマウントディスプレイ

Family Cites Families (472)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE357371A (ja) 1929-01-15 1929-02-28
US2748659A (en) 1951-02-26 1956-06-05 Jenaer Glaswerk Schott & Gen Light source, searchlight or the like for polarized light
US2886911A (en) 1953-07-23 1959-05-19 George K C Hardesty Duo-panel edge illumination system
US2958258A (en) 1953-09-21 1960-11-01 Technicolor Corp Optical projection of beam controlled object fields
US2795069A (en) 1956-02-07 1957-06-11 George K C Hardesty Laminated metal-plastic illuminable panel
DE1422172B1 (de) 1961-12-07 1970-11-12 Kopperschmidt & Co Carl W Periskop
US3491245A (en) 1967-04-10 1970-01-20 George K C Hardesty Guided light display panel
PL68411A6 (ja) 1969-05-26 1973-02-28
US3677621A (en) 1969-11-24 1972-07-18 Vickers Ltd Optical field flattening devices
GB1321303A (en) 1970-03-31 1973-06-27 Pilkington Perkin Elmer Ltd Optical systems
US3626394A (en) 1970-04-09 1971-12-07 Magnavox Co Magneto-optical system
US3667621A (en) 1970-10-20 1972-06-06 Wisconsin Foundry And Machine Fluid power system for a self-contained unloading unit
US3737212A (en) 1970-12-14 1973-06-05 Gen Electric Diffraction optics head up display
GB1377627A (en) 1971-09-01 1974-12-18 Rank Organisation Ltd Beam splitting prisms
US3857109A (en) 1973-11-21 1974-12-24 Us Navy Longitudinally-pumped two-wavelength lasers
US3873209A (en) 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
FR2295436A1 (fr) 1974-12-16 1976-07-16 Radiotechnique Compelec Dispositif coupleur directif pour fibres optiques multimodes
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US3969023A (en) 1975-03-06 1976-07-13 American Optical Corporation Method and apparatus for detecting layers of stress in lenses
GB1514977A (en) 1975-12-02 1978-06-21 Standard Telephones Cables Ltd Detecting oil in water
US4084883A (en) 1977-02-28 1978-04-18 The University Of Rochester Reflective polarization retarder and laser apparatus utilizing same
US4233526A (en) 1977-04-08 1980-11-11 Nippon Electric Co., Ltd. Semiconductor memory device having multi-gate transistors
DE3000402A1 (de) 1979-01-19 1980-07-31 Smiths Industries Ltd Anzeigevorrichtung
US4240738A (en) 1979-06-14 1980-12-23 Vivitar Corporation Light mixing system for a photographic enlarger
US4355864A (en) 1980-03-26 1982-10-26 Sperry Corporation Magnetooptic switching devices
US4331387A (en) 1980-07-03 1982-05-25 Westinghouse Electric Corp. Electro-optical modulator for randomly polarized light
US4383740A (en) 1980-10-31 1983-05-17 Rediffusion Simulation Incorporated Infinity image visual display system
FR2496905A1 (fr) 1980-12-24 1982-06-25 France Etat Episcope a reflexions multimodes
US4372639A (en) 1981-06-03 1983-02-08 Hughes Aircraft Company Directional diffusing screen
DE3266408D1 (en) 1981-10-14 1985-10-24 Gec Avionics Optical arrangements for head-up displays and night vision goggles
US4516828A (en) 1982-05-03 1985-05-14 General Motors Corporation Duplex communication on a single optical fiber
FR2562273B1 (fr) 1984-03-27 1986-08-08 France Etat Armement Dispositif d'observation a travers une paroi dans deux directions opposees
US4715684A (en) 1984-06-20 1987-12-29 Hughes Aircraft Company Optical system for three color liquid crystal light valve image projection system
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
US4720189A (en) 1986-01-07 1988-01-19 Northern Telecom Limited Eye-position sensor
US4799765A (en) 1986-03-31 1989-01-24 Hughes Aircraft Company Integrated head-up and panel display unit
AT390677B (de) 1986-10-10 1990-06-11 Avl Verbrennungskraft Messtech Sensorelement zur bestimmung von stoffkonzentrationen
US4805988A (en) 1987-07-24 1989-02-21 Nelson Dones Personal video viewing device
US5278532A (en) 1987-09-14 1994-01-11 Hughes Aircraft Company Automotive instrument virtual image display
US4798448A (en) 1988-02-16 1989-01-17 General Electric Company High efficiency illumination system for display devices
US4932743A (en) 1988-04-18 1990-06-12 Ricoh Company, Ltd. Optical waveguide device
GB2220081A (en) 1988-06-21 1989-12-28 Hall & Watts Defence Optics Lt Periscope apparatus
FR2638242B1 (fr) 1988-10-21 1991-09-20 Thomson Csf Systeme optique de collimation, notamment pour visuel de casque
DE68909553T2 (de) 1988-10-21 1994-01-27 Thomson Csf Optisches Kollimationssystem für eine Helmsichtanzeige.
CN1043203A (zh) 1988-12-02 1990-06-20 三井石油化学工业株式会社 光输出控制方法及其装置
JPH02182447A (ja) 1989-01-09 1990-07-17 Mitsubishi Electric Corp 誘電体多層反射膜
US5880888A (en) 1989-01-23 1999-03-09 Hughes Aircraft Company Helmet mounted display system
US4978952A (en) 1989-02-24 1990-12-18 Collimated Displays Incorporated Flat screen color video display
FR2647556B1 (fr) 1989-05-23 1993-10-29 Thomson Csf Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif
JPH04219657A (ja) 1990-04-13 1992-08-10 Ricoh Co Ltd 光磁気情報記録再生装置及びモードスプリッタ
JPH04289531A (ja) 1990-05-21 1992-10-14 Ricoh Co Ltd 光情報記録再生装置及びプリズム結合器
US5157526A (en) 1990-07-06 1992-10-20 Hitachi, Ltd. Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
JPH04159503A (ja) 1990-10-24 1992-06-02 Ricoh Co Ltd プリズムカプラー
US5751480A (en) 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
FR2683918B1 (fr) 1991-11-19 1994-09-09 Thomson Csf Materiau constitutif d'une lunette de visee et arme utilisant cette lunette.
GB9200563D0 (en) 1992-01-11 1992-03-11 Fisons Plc Analytical device with light scattering
US5367399A (en) 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
US5528720A (en) 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
US5383053A (en) 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
US5301067A (en) 1992-05-06 1994-04-05 Plx Inc. High accuracy periscope assembly
US5231642A (en) 1992-05-08 1993-07-27 Spectra Diode Laboratories, Inc. Semiconductor ring and folded cavity lasers
US5499138A (en) 1992-05-26 1996-03-12 Olympus Optical Co., Ltd. Image display apparatus
US5369415A (en) 1992-06-29 1994-11-29 Motorola, Inc. Direct retinal scan display with planar imager
TW218914B (en) 1992-07-31 1994-01-11 Hoshizaki Electric Co Ltd Ice making machine
US5680209A (en) 1992-08-13 1997-10-21 Maechler; Meinrad Spectroscopic systems for the analysis of small and very small quantities of substances
US6144347A (en) 1992-10-09 2000-11-07 Sony Corporation Head-mounted image display apparatus
US5537173A (en) 1992-10-23 1996-07-16 Olympus Optical Co., Ltd. Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film
IL103900A (en) 1992-11-26 1998-06-15 Electro Optics Ind Ltd Optical system
GB9226129D0 (en) 1992-12-15 1993-02-10 Baker Salah A A process vessel
US5537260A (en) 1993-01-26 1996-07-16 Svg Lithography Systems, Inc. Catadioptric optical reduction system with high numerical aperture
JP2777041B2 (ja) 1993-02-12 1998-07-16 京セラ株式会社 時計用カバーガラス
DE69434719T2 (de) 1993-02-26 2007-02-08 Yeda Research And Development Co., Ltd. Optische holographische Vorrichtungen
US5539578A (en) 1993-03-02 1996-07-23 Olympus Optical Co., Ltd. Image display apparatus
GB2278222A (en) 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
US5284417A (en) 1993-06-07 1994-02-08 Ford Motor Company Automotive fuel pump with regenerative turbine and long curved vapor channel
US5481385A (en) 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
JPH09503594A (ja) 1993-10-07 1997-04-08 バーチャル ビジョン,インコーポレイティド 双眼鏡用ヘッド装着ディスプレーシステム
US5555329A (en) 1993-11-05 1996-09-10 Alliesignal Inc. Light directing optical structure
JPH07199236A (ja) 1993-12-28 1995-08-04 Fujitsu Ltd 光スイッチ及び光分配器
US7262919B1 (en) 1994-06-13 2007-08-28 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
FR2721872B1 (fr) 1994-07-01 1996-08-02 Renault Dispositif d'amelioration de la vision d'une scene routiere
JPH0870782A (ja) 1994-09-08 1996-03-19 Kanebo Foods Ltd 冷菓及びその製法
JP3219943B2 (ja) 1994-09-16 2001-10-15 株式会社東芝 平面直視型表示装置
JPH08114765A (ja) 1994-10-15 1996-05-07 Fujitsu Ltd 偏光分離・変換素子並びにこれを用いた偏光照明装置及び投射型表示装置
US5808800A (en) 1994-12-22 1998-09-15 Displaytech, Inc. Optics arrangements including light source arrangements for an active matrix liquid crystal image generator
US5650873A (en) 1995-01-30 1997-07-22 Lockheed Missiles & Space Company, Inc. Micropolarization apparatus
JPH08242260A (ja) 1995-03-02 1996-09-17 Hitachi Ltd 周波数オフセットキャンセル回路
US6704065B1 (en) 1995-04-07 2004-03-09 Colorlink, Inc. Optical system for producing a modulated color image
US5909325A (en) 1995-06-26 1999-06-01 Olympus Optical Co., Ltd. Image display apparatus
GB9521210D0 (en) 1995-10-17 1996-08-28 Barr & Stroud Ltd Display system
GB2306741A (en) 1995-10-24 1997-05-07 Sharp Kk Illuminator
JP3200007B2 (ja) 1996-03-26 2001-08-20 シャープ株式会社 光結合器及びその製造方法
US6404550B1 (en) 1996-07-25 2002-06-11 Seiko Epson Corporation Optical element suitable for projection display apparatus
US5829854A (en) 1996-09-26 1998-11-03 Raychem Corporation Angled color dispersement and recombination prism
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
JPH10133055A (ja) 1996-10-31 1998-05-22 Sharp Corp 光結合器及びその製造方法
US5724163A (en) 1996-11-12 1998-03-03 Yariv Ben-Yehuda Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
US5919601A (en) 1996-11-12 1999-07-06 Kodak Polychrome Graphics, Llc Radiation-sensitive compositions and printing plates
IL129515A (en) 1996-11-12 2003-12-10 Planop Planar Optics Ltd Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
JPH10160961A (ja) 1996-12-03 1998-06-19 Mitsubishi Gas Chem Co Inc 光学素子
US6257726B1 (en) 1997-02-13 2001-07-10 Canon Kabushiki Kaisha Illuminating apparatus and projecting apparatus
EP0867747A3 (en) 1997-03-25 1999-03-03 Sony Corporation Reflective display device
US6310713B2 (en) 1997-04-07 2001-10-30 International Business Machines Corporation Optical system for miniature personal displays using reflective light valves
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
IL121067A0 (en) 1997-06-12 1997-11-20 Yeda Res & Dev Compact planar optical correlator
DE19725262C2 (de) 1997-06-13 1999-08-05 Vitaly Dr Lissotschenko Optische Strahltransformationsvorrichtung
DE69834539D1 (de) 1997-06-16 2006-06-22 Koninkl Philips Electronics Nv Projektionsgerät
US5883684A (en) 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US5896232A (en) 1997-08-07 1999-04-20 International Business Machines Corporation Highly efficient and compact frontlighting for polarization-based reflection light valves
RU2124746C1 (ru) 1997-08-11 1999-01-10 Закрытое акционерное общество "Кванта Инвест" Дихроичный поляризатор
GB2329901A (en) 1997-09-30 1999-04-07 Reckitt & Colman Inc Acidic hard surface cleaning and disinfecting compositions
US6091548A (en) 1997-10-01 2000-07-18 Raytheon Company Optical system with two-stage aberration correction
US6007225A (en) 1997-10-16 1999-12-28 Advanced Optical Technologies, L.L.C. Directed lighting system utilizing a conical light deflector
WO1999023524A1 (en) 1997-10-30 1999-05-14 The Microoptical Corporation Eyeglass interface system
JP3515355B2 (ja) 1998-02-10 2004-04-05 三洋電機株式会社 液晶表示装置
CA2326767C (en) 1998-04-02 2009-06-23 Yeda Research And Development Co., Ltd. Holographic optical devices
JP4198784B2 (ja) 1998-05-22 2008-12-17 オリンパス株式会社 光学プリズム、鏡枠及び光学アッセンブリ
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6992718B1 (en) 1998-08-31 2006-01-31 Matsushita Electric Industrial Co., Ltd. Illuminating apparatus, display panel, view finder, video display apparatus, and video camera mounting the elements
US6231992B1 (en) 1998-09-04 2001-05-15 Yazaki Corporation Partial reflector
US6785447B2 (en) 1998-10-09 2004-08-31 Fujitsu Limited Single and multilayer waveguides and fabrication process
JP2000155234A (ja) 1998-11-24 2000-06-06 Nippon Electric Glass Co Ltd 光ファイバ用毛細管
JP2000187177A (ja) 1998-12-22 2000-07-04 Olympus Optical Co Ltd 画像表示装置
US6005720A (en) 1998-12-22 1999-12-21 Virtual Vision, Inc. Reflective micro-display system
US20050024849A1 (en) 1999-02-23 2005-02-03 Parker Jeffery R. Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides
US6222677B1 (en) 1999-04-12 2001-04-24 International Business Machines Corporation Compact optical system for use in virtual display applications
WO2000063738A1 (en) 1999-04-21 2000-10-26 U.S. Precision Lens Incorporated Optical systems for reflective lcd's
US6798579B2 (en) 1999-04-27 2004-09-28 Optical Products Development Corp. Real imaging system with reduced ghost imaging
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
JP3913407B2 (ja) 1999-07-09 2007-05-09 株式会社リコー 屈折率分布の測定装置及び方法
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
JP2001102420A (ja) 1999-09-30 2001-04-13 Advantest Corp 表面状態測定方法及び装置
US6671100B1 (en) 1999-10-14 2003-12-30 Stratos Product Development Llc Virtual imaging system
US6264328B1 (en) 1999-10-21 2001-07-24 University Of Rochester Wavefront sensor with off-axis illumination
US6400493B1 (en) 1999-10-26 2002-06-04 Agilent Technologies, Inc. Folded optical system adapted for head-mounted displays
JP2001141924A (ja) 1999-11-16 2001-05-25 Matsushita Electric Ind Co Ltd 分波素子及び分波受光素子
JP3828328B2 (ja) 1999-12-28 2006-10-04 ローム株式会社 ヘッドマウントディスプレー
US6421148B2 (en) 2000-01-07 2002-07-16 Honeywell International Inc. Volume holographic diffusers
KR100441162B1 (ko) 2000-01-28 2004-07-21 세이코 엡슨 가부시키가이샤 광반사형 편광자 및 이를 이용한 프로젝터
US6789910B2 (en) * 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
JP2001311904A (ja) 2000-04-28 2001-11-09 Canon Inc 画像表示装置および画像表示システム
US6362861B1 (en) 2000-05-02 2002-03-26 Agilent Technologies, Inc. Microdisplay system
IL136248A (en) 2000-05-21 2004-08-31 Elop Electrooptics Ind Ltd System and method for changing light transmission through a substrate
JP2001343608A (ja) 2000-05-31 2001-12-14 Canon Inc 画像表示装置および画像表示システム
DE60142516D1 (de) 2000-06-05 2010-08-19 Lumus Ltd Optischer strahlaufweiter mit substratlichtwellenleitung
US6307612B1 (en) 2000-06-08 2001-10-23 Three-Five Systems, Inc. Liquid crystal display element having a precisely controlled cell gap and method of making same
IL136849A (en) 2000-06-18 2004-09-27 Beamus Ltd Optical dynamic devices particularly for beam steering and optical communication
US6710927B2 (en) 2000-06-26 2004-03-23 Angus Duncan Richards Multi-mode display device
US6256151B1 (en) 2000-06-28 2001-07-03 Agilent Technologies Inc. Compact microdisplay illumination system
US6324330B1 (en) 2000-07-10 2001-11-27 Ultratech Stepper, Inc. Folded light tunnel apparatus and method
WO2002008662A1 (fr) 2000-07-24 2002-01-31 Mitsubishi Rayon Co., Ltd. Dispositif d'eclairage de surface comprenant une feuille a prisme
KR100388819B1 (ko) 2000-07-31 2003-06-25 주식회사 대양이앤씨 헤드 마운트 디스플레이용 광학 시스템
US6606173B2 (en) 2000-08-01 2003-08-12 Riake Corporation Illumination device and method for laser projector
US6490104B1 (en) 2000-09-15 2002-12-03 Three-Five Systems, Inc. Illumination system for a micro display
IL138895A (en) 2000-10-05 2005-08-31 Elop Electrooptics Ind Ltd Optical switching devices
US6563648B2 (en) 2000-10-20 2003-05-13 Three-Five Systems, Inc. Compact wide field of view imaging system
US6542307B2 (en) 2000-10-20 2003-04-01 Three-Five Systems, Inc. Compact near-eye illumination system
US7554737B2 (en) 2000-12-20 2009-06-30 Riake Corporation Illumination device and method using adaptable source and output format
US6547416B2 (en) 2000-12-21 2003-04-15 Koninklijke Philips Electronics N.V. Faceted multi-chip package to provide a beam of uniform white light from multiple monochrome LEDs
US6547423B2 (en) 2000-12-22 2003-04-15 Koninklijke Phillips Electronics N.V. LED collimation optics with improved performance and reduced size
US6597504B2 (en) 2000-12-29 2003-07-22 Honeywell International Inc. Optical devices employing beam folding with polarizing splitters
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
JP4772204B2 (ja) 2001-04-13 2011-09-14 オリンパス株式会社 観察光学系
WO2002088825A2 (en) 2001-04-27 2002-11-07 Koninklijke Philips Electronics N.V. Compact display device
KR100813943B1 (ko) 2001-04-30 2008-03-14 삼성전자주식회사 복합 반사프리즘 및 이를 채용한 광픽업장치
GB2375188B (en) 2001-04-30 2004-07-21 Samsung Electronics Co Ltd Wearable Display Apparatus with Waveguide Having Diagonally Cut End Face
GB0112871D0 (en) 2001-05-26 2001-07-18 Thales Optics Ltd Improved optical device
US20020186179A1 (en) 2001-06-07 2002-12-12 Knowles Gary R. Optical display device
NL1018261C2 (nl) 2001-06-12 2002-12-13 Univ Erasmus Spectrometer voor het meten van inelastisch verstrooid licht.
US6690513B2 (en) 2001-07-03 2004-02-10 Jds Uniphase Corporation Rhomb interleaver
US20040218271A1 (en) 2001-07-18 2004-11-04 Carl Zeiss Smt Ag Retardation element made from cubic crystal and an optical system therewith
US6791760B2 (en) 2001-07-24 2004-09-14 Itt Manufacturing Enterprises, Inc. Planar diffractive relay
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
US6556282B2 (en) 2001-09-04 2003-04-29 Rosemount Aerospace, Inc. Combined LOAS and LIDAR system
WO2003023756A1 (en) 2001-09-07 2003-03-20 The Microoptical Corporation Light weight, compact, remountable face-supported electronic display
DE10150656C2 (de) 2001-10-13 2003-10-02 Schott Glas Reflektor für eine Hochdruck-Gasentladungslampe
US6775432B2 (en) 2001-10-19 2004-08-10 Santanu Basu Method and apparatus for optical wavelength demultiplexing, multiplexing and routing
JP2003140081A (ja) 2001-11-06 2003-05-14 Nikon Corp ホログラムコンバイナ光学系
US6894821B2 (en) 2001-11-09 2005-05-17 3M Innovative Properties Company Optical devices having reflective and transmissive modes for display
FR2834799B1 (fr) 2002-01-11 2004-04-16 Essilor Int Lentille ophtalmique presentant un insert de projection
HRP20020044B1 (en) 2002-01-16 2008-11-30 Mara-Institut D.O.O. Indirectly prestressed, concrete, roof-ceiling construction with flat soffit
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
DE10216169A1 (de) 2002-04-12 2003-10-30 Zeiss Carl Jena Gmbh Anordnung zur Polarisation von Licht
US7010212B2 (en) 2002-05-28 2006-03-07 3M Innovative Properties Company Multifunctional optical assembly
US20070165192A1 (en) 2006-01-13 2007-07-19 Silicon Optix Inc. Reduced field angle projection display system
ITTO20020625A1 (it) 2002-07-17 2004-01-19 Fiat Ricerche Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up"
JP4111074B2 (ja) 2002-08-20 2008-07-02 セイコーエプソン株式会社 プロジェクタ
EP1418459A1 (en) 2002-11-08 2004-05-12 3M Innovative Properties Company Optical device comprising cubo-octahedral polyhedron as light flux splitter or light diffusing element
US20050174641A1 (en) 2002-11-26 2005-08-11 Jds Uniphase Corporation Polarization conversion light integrator
FR2847988B1 (fr) 2002-12-03 2005-02-25 Essilor Int Separateur de polarisation, procede pour sa fabrication et lentille ophtalmique presentant des inserts de projection le contenant
US20090190890A1 (en) 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US7175304B2 (en) 2003-01-30 2007-02-13 Touchsensor Technologies, Llc Integrated low profile display
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
EP1465047A1 (en) 2003-04-03 2004-10-06 Deutsche Thomson-Brandt Gmbh Method for presenting menu buttons
US6879443B2 (en) 2003-04-25 2005-04-12 The Microoptical Corporation Binocular viewing system
DE10319274A1 (de) 2003-04-29 2004-12-02 Osram Opto Semiconductors Gmbh Lichtquelle
US7206133B2 (en) 2003-05-22 2007-04-17 Optical Research Associates Light distribution apparatus and methods for illuminating optical systems
WO2004109349A2 (en) 2003-06-10 2004-12-16 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
US6839181B1 (en) * 2003-06-25 2005-01-04 Eastman Kodak Company Display apparatus
JP4845336B2 (ja) 2003-07-16 2011-12-28 株式会社半導体エネルギー研究所 撮像機能付き表示装置、及び双方向コミュニケーションシステム
US7009213B2 (en) 2003-07-31 2006-03-07 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High-brightness optical device
JP2005084522A (ja) 2003-09-10 2005-03-31 Nikon Corp コンバイナ光学系
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
KR20050037085A (ko) 2003-10-17 2005-04-21 삼성전자주식회사 광터널, 균일광 조명장치 및 이를 채용한 프로젝터
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US7101063B2 (en) 2004-02-05 2006-09-05 Hewlett-Packard Development Company, L.P. Systems and methods for integrating light
JP2005227339A (ja) 2004-02-10 2005-08-25 Seiko Epson Corp 光源装置、光源装置製造方法、及びプロジェクタ
JP2005308717A (ja) 2004-03-23 2005-11-04 Shin Etsu Chem Co Ltd 光ファイバ母材のコア部非円率の測定方法及びその装置
EP1731943B1 (en) * 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device
US7025464B2 (en) 2004-03-30 2006-04-11 Goldeneye, Inc. Projection display systems utilizing light emitting diodes and light recycling
CN1957269A (zh) * 2004-05-17 2007-05-02 株式会社尼康 光学元件、合成器光学系统以及图像显示单元
WO2005111669A1 (ja) 2004-05-17 2005-11-24 Nikon Corporation 光学素子、コンバイナ光学系、及び画像表示装置
TWI282017B (en) 2004-05-28 2007-06-01 Epistar Corp Planar light device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Optical component in a large key conductive substrate
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
WO2006001254A1 (ja) 2004-06-29 2006-01-05 Nikon Corporation イメージコンバイナ及び画像表示装置
US7285903B2 (en) 2004-07-15 2007-10-23 Honeywell International, Inc. Display with bright backlight
US7576918B2 (en) 2004-07-20 2009-08-18 Pixalen, Llc Matrical imaging method and apparatus
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
CN101027580A (zh) 2004-09-24 2007-08-29 皇家飞利浦电子股份有限公司 照明系统
CN101080638A (zh) 2004-10-14 2007-11-28 健泰科生物技术公司 Cop1分子及其用途
US7329982B2 (en) 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
JP2006145644A (ja) 2004-11-17 2006-06-08 Hitachi Ltd 偏光分離装置及びそれを用いた投射型表示装置
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
JP2008533507A (ja) 2005-02-10 2008-08-21 ラマス リミテッド 特に視力強化光学系のための基板案内光学装置
WO2006085309A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
WO2006087709A1 (en) 2005-02-17 2006-08-24 Lumus Ltd. Personal navigation system
WO2006098097A1 (ja) 2005-03-14 2006-09-21 Nikon Corporation 画像表示光学系及び画像表示装置
US8187481B1 (en) 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
US20060263421A1 (en) 2005-05-18 2006-11-23 Abeille Pharmaceuticals Inc Transdermal Method and Patch for Nausea
US7405881B2 (en) 2005-05-30 2008-07-29 Konica Minolta Holdings, Inc. Image display apparatus and head mount display
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP4987708B2 (ja) 2005-06-20 2012-07-25 パナソニック株式会社 2次元画像表示装置、照明光源及び露光照明装置
JP2007025308A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd 投射型映像表示装置および色分離ユニット
JP5030134B2 (ja) 2005-08-18 2012-09-19 株式会社リコー 偏光変換素子、偏光変換光学系および画像投影装置
US9081178B2 (en) 2005-09-07 2015-07-14 Bae Systems Plc Projection display for displaying an image to a viewer
US7671946B2 (en) 2005-10-18 2010-03-02 Jds Uniphase Corporation Electronically compensated LCD assembly
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate
US7392917B2 (en) 2005-11-14 2008-07-01 Avraham Alalu Roll of disposable pieces of hygienic paper
JP5226528B2 (ja) 2005-11-21 2013-07-03 マイクロビジョン,インク. 像誘導基板を有するディスプレイ
TWI297817B (en) 2005-12-30 2008-06-11 Ind Tech Res Inst System and mehtod for recording and reproducing holographic storage which has tracking servo projection
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
JP2007219106A (ja) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
US7832878B2 (en) 2006-03-06 2010-11-16 Innovations In Optics, Inc. Light emitting diode projection system
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for two-eyed tuning
US20070284565A1 (en) 2006-06-12 2007-12-13 3M Innovative Properties Company Led device with re-emitting semiconductor construction and optical element
KR101678688B1 (ko) 2006-06-13 2016-11-23 웨이비엔, 인코포레이티드 광원의 휘도를 증가시키기 위해 광을 재활용하는 조명 시스템 및 방법
US20080013051A1 (en) 2006-07-14 2008-01-17 3M Innovative Properties Company Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
WO2008027692A2 (en) 2006-08-02 2008-03-06 Abu-Ageel Nayef M Led-based illumination system
CN200941530Y (zh) 2006-08-08 2007-08-29 牛建民 一种半导体激光散斑发生装置
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Optical component in conductive substrate
DE102006043402B4 (de) 2006-09-15 2019-05-09 Osram Gmbh Beleuchtungseinheit mit einem optischen Element
US20090275157A1 (en) 2006-10-02 2009-11-05 Illumitex, Inc. Optical device shaping
US20080151375A1 (en) 2006-12-26 2008-06-26 Ching-Bin Lin Light guide means as dually effected by light concentrating and light diffusing
US20080198604A1 (en) 2007-02-20 2008-08-21 Sekonix Co., Ltd. Lighting apparatus using filter and condenser for led illumination
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US8139944B2 (en) 2007-05-08 2012-03-20 The Boeing Company Method and apparatus for clearing an optical channel
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Head display system
US7750286B2 (en) 2007-06-19 2010-07-06 Alcatel-Lucent Usa Inc. Compact image projector having a mirror for reflecting a beam received from a polarization beam splitter back to the polarization beam splitter
WO2009006640A1 (en) 2007-07-05 2009-01-08 I2Ic Corporation Light source having transparent layers
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
JP2009128565A (ja) 2007-11-22 2009-06-11 Toshiba Corp 表示装置、表示方法及びヘッドアップディスプレイ
FR2925171B1 (fr) 2007-12-13 2010-04-16 Optinvent Guide optique et systeme optique de vision oculaire
US20090165017A1 (en) 2007-12-24 2009-06-25 Yahoo! Inc. Stateless proportionally consistent addressing
GB2456170B (en) 2008-01-07 2012-11-21 Light Blue Optics Ltd Holographic image display systems
WO2009092041A2 (en) 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
WO2009109965A2 (en) 2008-03-04 2009-09-11 Elbit Systems Electro Optics Elop Ltd. Head up display utilizing an lcd and a diffuser
WO2009127849A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
WO2009139798A1 (en) 2008-05-15 2009-11-19 3M Innovative Properties Company Optical element and color combiner
JP2010039086A (ja) 2008-08-01 2010-02-18 Sony Corp 照明光学装置及び虚像表示装置
JP2010044172A (ja) 2008-08-11 2010-02-25 Sony Corp 虚像表示装置
TW201014452A (en) 2008-08-19 2010-04-01 Plextronics Inc Organic light emitting diode lighting devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2010060770A (ja) 2008-09-03 2010-03-18 Epson Toyocom Corp 光学物品及び光学物品の製造方法
AU2009294384A1 (en) 2008-09-16 2010-03-25 Bae Systems Plc Improvements in or relating to waveguides
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
JP5662332B2 (ja) 2008-11-19 2015-01-28 スリーエム イノベイティブ プロパティズ カンパニー 極方向及び方位方向の両方における出力制限を有する多層光学フィルム並びに関連する構成
US8662687B2 (en) 2008-11-19 2014-03-04 3M Innovative Properties Company Brewster angle film for light management in luminaires and other lighting systems
US8317352B2 (en) 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
ES2721600T5 (es) 2008-12-12 2022-04-11 Bae Systems Plc Mejoras en o relacionadas con guías de onda
JP2010170606A (ja) 2009-01-21 2010-08-05 Fujinon Corp プリズムアセンブリの製造方法
US20100202129A1 (en) 2009-01-21 2010-08-12 Abu-Ageel Nayef M Illumination system utilizing wavelength conversion materials and light recycling
JP5133925B2 (ja) 2009-03-25 2013-01-30 オリンパス株式会社 頭部装着型画像表示装置
CN102356338B (zh) 2009-04-08 2015-03-11 国际商业机器公司 具有埋设光反射特征的光波导及其制造方法
US9256007B2 (en) 2009-04-21 2016-02-09 Svv Technology Innovations, Inc. Light collection and illumination systems employing planar waveguide
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US20100291489A1 (en) 2009-05-15 2010-11-18 Api Nanofabrication And Research Corp. Exposure methods for forming patterned layers and apparatus for performing the same
RU2538100C2 (ru) 2009-05-28 2015-01-10 Конинклейке Филипс Электроникс Н.В. Осветительное устройство с корпусом, заключающим в себе источник света
JP5545076B2 (ja) 2009-07-22 2014-07-09 ソニー株式会社 画像表示装置及び光学装置
US10678061B2 (en) 2009-09-03 2020-06-09 Laser Light Engines, Inc. Low etendue illumination
TW201115231A (en) 2009-10-28 2011-05-01 Coretronic Corp Backlight module
US8854734B2 (en) 2009-11-12 2014-10-07 Vela Technologies, Inc. Integrating optical system and methods
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
EP2539759A1 (en) * 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
JP2011199672A (ja) 2010-03-19 2011-10-06 Seiko Instruments Inc ガラス基板の接合方法、ガラス接合体、パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計
JP5499854B2 (ja) 2010-04-08 2014-05-21 ソニー株式会社 頭部装着型ディスプレイにおける光学的位置調整方法
JP6132762B2 (ja) 2010-04-16 2017-05-24 フレックス ライティング 2,エルエルシー フィルムベースのライトガイドを備える前面照射デバイス
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
US9063261B2 (en) 2010-08-10 2015-06-23 Sharp Kabushiki Kaisha Light-controlling element, display device and illumination device
JP5471986B2 (ja) 2010-09-07 2014-04-16 株式会社島津製作所 光学部品及びそれを用いた表示装置
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
TWI480666B (zh) * 2010-09-16 2015-04-11 Hon Hai Prec Ind Co Ltd 投影機
CN103201555B (zh) 2010-09-30 2016-05-11 皇家飞利浦电子股份有限公司 照明装置及灯具
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
US8666208B1 (en) 2010-11-05 2014-03-04 Google Inc. Moldable waveguide with embedded micro structures
CN103201660B (zh) 2010-11-08 2016-01-20 3M创新有限公司 照明转换器
JP2012123936A (ja) 2010-12-06 2012-06-28 Omron Corp 面光源装置及び立体表示装置
JP5645631B2 (ja) 2010-12-13 2014-12-24 三菱電機株式会社 波長モニタ、光モジュールおよび波長モニタ方法
US9720228B2 (en) 2010-12-16 2017-08-01 Lockheed Martin Corporation Collimating display with pixel lenses
US8531773B2 (en) 2011-01-10 2013-09-10 Microvision, Inc. Substrate guided relay having a homogenizing layer
US8939579B2 (en) 2011-01-28 2015-01-27 Light Prescriptions Innovators, Llc Autofocusing eyewear, especially for presbyopia correction
JP5747538B2 (ja) 2011-02-04 2015-07-15 セイコーエプソン株式会社 虚像表示装置
JP5754154B2 (ja) * 2011-02-04 2015-07-29 セイコーエプソン株式会社 虚像表示装置
JP5742263B2 (ja) 2011-02-04 2015-07-01 セイコーエプソン株式会社 虚像表示装置
US8608328B2 (en) 2011-05-06 2013-12-17 Teledyne Technologies Incorporated Light source with secondary emitter conversion element
US8979316B2 (en) 2011-05-11 2015-03-17 Dicon Fiberoptics Inc. Zoom spotlight using LED array
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
US8639073B2 (en) 2011-07-19 2014-01-28 Teraxion Inc. Fiber coupling technique on a waveguide
US8472119B1 (en) * 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
US9096236B2 (en) 2011-08-18 2015-08-04 Wfk & Associates, Llc Transitional mode high speed rail systems
GB2494115A (en) * 2011-08-26 2013-03-06 Bae Systems Plc Projection display with grating arranged to avoid double images
WO2013048781A2 (en) 2011-09-28 2013-04-04 Rambus Inc. Laser micromachining optical elements in a substrate
JP6119091B2 (ja) 2011-09-30 2017-04-26 セイコーエプソン株式会社 虚像表示装置
US8903207B1 (en) * 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
JP5826597B2 (ja) 2011-10-31 2015-12-02 シャープ株式会社 擬似太陽光照射装置
US9046241B2 (en) 2011-11-12 2015-06-02 Jingqun Xi High efficiency directional light source using lens optics
JP5879973B2 (ja) 2011-11-30 2016-03-08 ソニー株式会社 光反射部材、光ビーム伸長装置、画像表示装置及び光学装置
US8873148B1 (en) 2011-12-12 2014-10-28 Google Inc. Eyepiece having total internal reflection based light folding
FR2983976B1 (fr) 2011-12-13 2017-10-20 Optinvent Guide optique a elements de guidage superposes et procede de fabrication
US8675706B2 (en) 2011-12-24 2014-03-18 Princeton Optronics Inc. Optical illuminator
US10030846B2 (en) * 2012-02-14 2018-07-24 Svv Technology Innovations, Inc. Face-lit waveguide illumination systems
US20130215361A1 (en) 2012-02-16 2013-08-22 Yewen Wang Light Guide Plate, Backlight Module and LCD Device
US8665178B1 (en) 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
KR20130104628A (ko) 2012-03-14 2013-09-25 서울반도체 주식회사 Led 조명 모듈
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
WO2013162939A2 (en) 2012-04-25 2013-10-31 3M Innovative Properties Company Two imager projection device
US9739448B2 (en) 2012-05-08 2017-08-22 The Hong Kong University Of Science And Technology Patterned polarization grating polarization converter
GB2501927B (en) * 2012-05-11 2016-06-08 Cymtec Ltd Waveguide assembly
CN103424804B (zh) * 2012-05-21 2017-08-08 赛恩倍吉科技顾问(深圳)有限公司 光传输系统
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Integrated head display system with eye tracking
EP2854715A1 (en) 2012-05-29 2015-04-08 NLT Spine Ltd. Laterally deflectable implant
US20130321432A1 (en) 2012-06-01 2013-12-05 QUALCOMM MEMES Technologies, Inc. Light guide with embedded fresnel reflectors
NZ702897A (en) * 2012-06-11 2017-03-31 Magic Leap Inc Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9671566B2 (en) * 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
TWI522690B (zh) 2012-07-26 2016-02-21 揚昇照明股份有限公司 複合式導光板與顯示裝置
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
TWI533028B (zh) * 2012-08-30 2016-05-11 中強光電股份有限公司 抬頭顯示器
FR2995089B1 (fr) * 2012-08-30 2015-08-21 Optinvent Dispositif optique et procede de fabrication d'un tel dispositif
US10151446B2 (en) 2012-09-13 2018-12-11 Quarkstar Llc Light-emitting device with total internal reflection (TIR) extractor
CN110274162A (zh) 2012-09-13 2019-09-24 夸克星有限责任公司 具有远程散射元件和全内反射提取器元件的发光设备
CA2891391A1 (en) 2012-11-16 2014-05-22 Koninklijke Philips N.V. Reflective or transflective autostereoscopic display with reduced banding effects
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
FR2999301B1 (fr) * 2012-12-12 2015-01-09 Thales Sa Guide optique d'images collimatees a dedoubleur de faisceaux optiques et dispositif optique associe
WO2014098744A1 (en) 2012-12-20 2014-06-26 Flatfrog Laboratories Ab Improvements in tir-based optical touch systems of projection-type
US8947783B2 (en) 2013-01-02 2015-02-03 Google Inc. Optical combiner for near-eye display
JP6065630B2 (ja) 2013-02-13 2017-01-25 セイコーエプソン株式会社 虚像表示装置
JP6244631B2 (ja) 2013-02-19 2017-12-13 セイコーエプソン株式会社 虚像表示装置
CN105121951A (zh) 2013-03-15 2015-12-02 英特曼帝克司公司 光致发光波长转换组件
US8770800B1 (en) 2013-03-15 2014-07-08 Xicato, Inc. LED-based light source reflector with shell elements
WO2014155096A1 (en) 2013-03-28 2014-10-02 Bae Systems Plc Improvements in and relating to displays
CN103293650B (zh) * 2013-05-24 2016-06-15 京东方科技集团股份有限公司 光线转换装置、背光模组及显示装置
DE102013106392B4 (de) 2013-06-19 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Entspiegelungsschicht
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
KR20160030202A (ko) 2013-07-02 2016-03-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 편평형 도광체
US20150009682A1 (en) 2013-07-03 2015-01-08 Christian James Clough Led light
TW201502607A (zh) 2013-07-04 2015-01-16 Era Optoelectronics Inc 使光線被導入導光板進行內全反射的結構
US10107475B2 (en) 2013-09-12 2018-10-23 Quarkstar Llc Light-emitting device and luminaire incorporating same
KR101470387B1 (ko) 2013-09-12 2014-12-08 한국광기술원 원뿔형 반사거울을 이용한 조명 장치
US20150081313A1 (en) 2013-09-16 2015-03-19 Sunedison Llc Methods and systems for photovoltaic site installation, commissioining, and provisioning
DE102013219626B4 (de) 2013-09-27 2015-05-21 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung und Anzeigevorrichtung mit einem solchen Brillenglas
DE102013219625B3 (de) 2013-09-27 2015-01-22 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas
CN103513424B (zh) * 2013-09-27 2015-06-17 上海理工大学 透视显示器件
US9541241B2 (en) 2013-10-03 2017-01-10 Cree, Inc. LED lamp
JP6225657B2 (ja) 2013-11-15 2017-11-08 セイコーエプソン株式会社 光学素子および画像表示装置並びにこれらの製造方法
KR102378457B1 (ko) 2013-11-27 2022-03-23 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
JP6287131B2 (ja) * 2013-12-02 2018-03-07 セイコーエプソン株式会社 虚像表示装置
JP6323743B2 (ja) 2013-12-13 2018-05-16 大日本印刷株式会社 光走査装置、照明装置、投射装置および光学素子
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
EP3105617A2 (en) 2014-02-12 2016-12-21 CGG Services SA Cableless seismic sensors and methods for recharging
US9423552B2 (en) 2014-02-24 2016-08-23 Google Inc. Lightguide device with outcoupling structures
CN203773160U (zh) * 2014-03-05 2014-08-13 杭州科汀光学技术有限公司 一种微型近眼显示光学系统
CN103837988B (zh) * 2014-03-05 2017-01-18 杭州科汀光学技术有限公司 一种微型近眼显示光学系统
EP3114521A1 (en) 2014-03-07 2017-01-11 3M Innovative Properties Company Light source incorporating multilayer optical film
TWI528098B (zh) * 2014-03-24 2016-04-01 台達電子工業股份有限公司 投影裝置
JP6442149B2 (ja) 2014-03-27 2018-12-19 オリンパス株式会社 画像表示装置
CN108572449B (zh) * 2014-03-31 2021-09-14 联想(北京)有限公司 显示装置和电子设备
DE102014207490B3 (de) 2014-04-17 2015-07-02 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung und Anzeigevorrichtung mit einem solchen Brillenglas
US9213178B1 (en) 2014-04-21 2015-12-15 Google Inc. Lens with lightguide insert for head wearable display
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
US9766459B2 (en) 2014-04-25 2017-09-19 Microsoft Technology Licensing, Llc Display devices with dimming panels
FR3020880B1 (fr) * 2014-05-09 2016-05-27 Thales Sa Visuel de tete comportant un melangeur optique a expansion de pupille pilotable
CN104062768B (zh) * 2014-06-30 2017-03-08 北京亮亮视野科技有限公司 一种显示系统
JP6746282B2 (ja) 2014-07-09 2020-08-26 恵和株式会社 光学シート、エッジライト型のバックライトユニット及び光学シートの製造方法
JP2016033867A (ja) 2014-07-31 2016-03-10 ソニー株式会社 光学部材、照明ユニット、ウェアラブルディスプレイ及び画像表示装置
RU2579804C1 (ru) * 2014-09-16 2016-04-10 Самсунг Электроникс Ко., Лтд. Оптическое устройство для формирования изображений дополненной реальности
JP6863896B2 (ja) 2014-09-29 2021-04-21 マジック リープ,インコーポレイティド 導波路から異なる波長の光を出力する構造および方法
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
IL236490B (en) 2014-12-25 2021-10-31 Lumus Ltd Optical component on a conductive substrate
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for manufacturing an optical component in a conductive substrate
CN104597602A (zh) * 2015-01-24 2015-05-06 上海理湃光晶技术有限公司 高效耦合、结构紧凑的齿形镶嵌平面波导光学器件
CN104503087B (zh) * 2015-01-25 2019-07-30 上海理湃光晶技术有限公司 偏振导光的平面波导光学显示器件
CN104656259B (zh) * 2015-02-05 2017-04-05 上海理湃光晶技术有限公司 共轭窄带三基色交错的体全息光栅波导近眼光学显示器件
CN104656258B (zh) * 2015-02-05 2017-06-16 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
US20160234485A1 (en) 2015-02-09 2016-08-11 Steven John Robbins Display System
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov A compact head-up display system with a uniform image
JP2016161797A (ja) * 2015-03-03 2016-09-05 セイコーエプソン株式会社 透過型表示装置
CN113050280B (zh) * 2015-05-04 2024-01-19 奇跃公司 用于虚拟和增强现实的分离光瞳光学系统以及用于使用其显示图像的方法
JPWO2016181459A1 (ja) 2015-05-11 2018-03-01 オリンパス株式会社 プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
TWI587004B (zh) * 2015-06-18 2017-06-11 中強光電股份有限公司 顯示裝置
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
CN205286293U (zh) * 2015-08-07 2016-06-08 北京理工大学 小体积牙科扫描探头以及牙齿表面三维形貌重建系统
US11035993B2 (en) 2015-08-14 2021-06-15 S.V.V. Technology Innovations, Inc Illumination systems employing thin and flexible waveguides with light coupling structures
US10007117B2 (en) 2015-09-10 2018-06-26 Vuzix Corporation Imaging light guide with reflective turning array
WO2017062483A1 (en) 2015-10-05 2017-04-13 Magic Leap, Inc. Microlens collimator for scanning optical fiber in virtual/augmented reality system
US10378882B2 (en) 2015-11-04 2019-08-13 Magic Leap, Inc. Light field display metrology
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
CN205450445U (zh) * 2015-12-18 2016-08-10 上海理鑫光学科技有限公司 基于自由曲面的增强现实眼镜用镜片
IL244181B (en) 2016-02-18 2020-06-30 Amitai Yaakov Compact head-up display system
US10473933B2 (en) 2016-02-19 2019-11-12 Microsoft Technology Licensing, Llc Waveguide pupil relay
AU2017224004B2 (en) 2016-02-24 2021-10-28 Magic Leap, Inc. Polarizing beam splitter with low light leakage
US20170255012A1 (en) * 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display using spatial light modulator to move the viewing zone
JP6677036B2 (ja) 2016-03-23 2020-04-08 セイコーエプソン株式会社 画像表示装置及び光学素子
US20170343810A1 (en) 2016-05-24 2017-11-30 Osterhout Group, Inc. Pre-assembled solid optical assembly for head worn computers
US9791703B1 (en) * 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
CN205539726U (zh) * 2016-04-14 2016-08-31 北京亮亮视野科技有限公司 头戴式可视设备
CN205539729U (zh) * 2016-04-26 2016-08-31 北京亮亮视野科技有限公司 一种微型显示系统
US10739598B2 (en) 2016-05-18 2020-08-11 Lumus Ltd. Head-mounted imaging device
US10663745B2 (en) 2016-06-09 2020-05-26 3M Innovative Properties Company Optical system
WO2018013307A1 (en) 2016-06-21 2018-01-18 Ntt Docomo, Inc. An illuminator for a wearable display
WO2017221993A1 (ja) * 2016-06-22 2017-12-28 富士フイルム株式会社 導光部材および液晶表示装置
US10649209B2 (en) * 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
TWI614527B (zh) 2016-08-18 2018-02-11 盧姆斯有限公司 具有一致影像之小型頭戴式顯示系統
US10466479B2 (en) * 2016-10-07 2019-11-05 Coretronic Corporation Head-mounted display apparatus and optical system
CN108235739B (zh) 2016-10-09 2021-03-16 鲁姆斯有限公司 使用矩形波导的孔径倍增器
KR102541662B1 (ko) 2016-11-08 2023-06-13 루머스 리미티드 광학 컷오프 에지를 구비한 도광 장치 및 그 제조 방법
KR20190000456U (ko) 2016-12-02 2019-02-19 루머스 리미티드 소형 시준 이미지 프로젝터를 구비한 광학 시스템
CN108882845B (zh) 2016-12-31 2022-05-03 鲁姆斯有限公司 基于经由光导光学元件的视网膜成像的眼动追踪器
WO2018127913A1 (en) 2017-01-04 2018-07-12 Lumus Ltd. Optical system for near-eye displays
WO2018138714A1 (en) 2017-01-28 2018-08-02 Lumus Ltd. Augmented reality imaging system
KR102655450B1 (ko) 2017-02-22 2024-04-05 루머스 리미티드 광 가이드 광학 어셈블리
CN113341566B (zh) 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
JP2018165740A (ja) 2017-03-28 2018-10-25 セイコーエプソン株式会社 表示装置
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
CN107238928B (zh) 2017-06-09 2020-03-06 京东方科技集团股份有限公司 一种阵列波导
CN109116556A (zh) 2017-06-23 2019-01-01 芋头科技(杭州)有限公司 一种成像显示系统
WO2019016813A1 (en) 2017-07-19 2019-01-24 Lumus Ltd. LIQUID CRYSTAL LIGHTING ON SILICON VIA OPTICAL ELEMENT GUIDE OF LIGHT
US11513352B2 (en) 2017-09-29 2022-11-29 Lumus Ltd. Augmented reality display
WO2019077614A1 (en) 2017-10-22 2019-04-25 Lumus Ltd. ENHANCED REALITY DEVICE MOUNTED ON THE HEAD AND USING AN OPTICAL BENCH
IL275013B (en) 2017-12-03 2022-08-01 Lumus Ltd Method and device for testing an optics device
US20190170327A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical illuminator device
US11112613B2 (en) 2017-12-18 2021-09-07 Facebook Technologies, Llc Integrated augmented reality head-mounted display for pupil steering
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10830938B2 (en) 2018-05-14 2020-11-10 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
CN210323582U (zh) 2018-05-27 2020-04-14 鲁姆斯有限公司 具有场曲率影响减轻的基于基板引导的光学系统
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
TWM598414U (zh) 2018-11-11 2020-07-11 以色列商魯姆斯有限公司 具有中間視窗的近眼顯示器
JP7255189B2 (ja) 2019-01-15 2023-04-11 セイコーエプソン株式会社 虚像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505353A (ja) 2003-09-10 2007-03-08 ラマス リミテッド 基板導光の光学装置
JP2006003872A (ja) 2004-05-17 2006-01-05 Nikon Corp 光学素子、コンバイナ光学系、及び情報表示装置
WO2006061927A1 (ja) 2004-12-06 2006-06-15 Nikon Corporation 画像表示光学系、画像表示装置、照明光学系、及び液晶表示装置
JP2012198263A (ja) 2011-03-18 2012-10-18 Seiko Epson Corp 導光板及びこれを備える虚像表示装置並びに導光板の製造方法
WO2015076335A1 (ja) 2013-11-25 2015-05-28 シャープ株式会社 ライトガイドおよびヘッドマウントディスプレイ

Also Published As

Publication number Publication date
CN113156647A (zh) 2021-07-23
US10133070B2 (en) 2018-11-20
TW201819970A (zh) 2018-06-01
JP7187022B2 (ja) 2022-12-12
EP3365712A4 (en) 2019-05-01
CA2992213A1 (en) 2018-04-09
IL262558B (en) 2020-11-30
US11567316B2 (en) 2023-01-31
AU2023216730A1 (en) 2023-08-31
EP3540484A1 (en) 2019-09-18
TWI653478B (zh) 2019-03-11
AU2023216730B2 (en) 2023-09-21
US20180210202A1 (en) 2018-07-26
KR102528646B1 (ko) 2023-05-03
CN109828376B (zh) 2021-05-18
CN108235739A (zh) 2018-06-29
US20220334391A1 (en) 2022-10-20
EP3365712A1 (en) 2018-08-29
AU2022202969A1 (en) 2022-05-26
EP3540484B1 (en) 2020-11-04
US11686939B2 (en) 2023-06-27
CN113156647B (zh) 2023-05-23
EP4080269A1 (en) 2022-10-26
IL258941B (en) 2018-11-29
KR20190054081A (ko) 2019-05-21
WO2018065975A1 (en) 2018-04-12
CA2992213C (en) 2023-08-29
AU2017301074A1 (en) 2018-04-26
MX2018003097A (es) 2018-08-01
JP2019535024A (ja) 2019-12-05
RU2746980C1 (ru) 2021-04-22
CN108235739B (zh) 2021-03-16
JP2023051899A (ja) 2023-04-11
US10564417B2 (en) 2020-02-18
IL262558A (en) 2018-12-31
BR112018006747A2 (pt) 2018-10-16
EP3365712B1 (en) 2022-06-01
KR20190059870A (ko) 2019-05-31
AU2022202969B2 (en) 2023-05-18
CN109828376A (zh) 2019-05-31
US20190064518A1 (en) 2019-02-28
US20200183159A1 (en) 2020-06-11
KR102482528B1 (ko) 2022-12-28
IL258941A (en) 2018-05-31
US11953682B2 (en) 2024-04-09
KR20230066124A (ko) 2023-05-12
US20230280589A1 (en) 2023-09-07
AU2017301074B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP7478476B2 (ja) 長方形導波路を使用する開口乗算器
CN113330348B (zh) 包括具有三阶段扩展的loe的光学系统
US20220390748A1 (en) Optical Systems including Light-Guide Optical Elements with Two-Dimensional Expansion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230320

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415