JP7462701B2 - 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス - Google Patents

蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス Download PDF

Info

Publication number
JP7462701B2
JP7462701B2 JP2022088092A JP2022088092A JP7462701B2 JP 7462701 B2 JP7462701 B2 JP 7462701B2 JP 2022088092 A JP2022088092 A JP 2022088092A JP 2022088092 A JP2022088092 A JP 2022088092A JP 7462701 B2 JP7462701 B2 JP 7462701B2
Authority
JP
Japan
Prior art keywords
storage device
separator
group
polyolefin
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022088092A
Other languages
English (en)
Other versions
JP2022119924A (ja
Inventor
シュン 張
祐甫 秋田
博実 小林
悠希 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2022119924A publication Critical patent/JP2022119924A/ja
Priority to JP2023020940A priority Critical patent/JP2023071736A/ja
Priority to JP2023183554A priority patent/JP2024012377A/ja
Application granted granted Critical
Publication of JP7462701B2 publication Critical patent/JP7462701B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、ポリオレフィン微多孔膜、並びにこれを用いた蓄電デバイス用セパレータ及び蓄電デバイスなどに関する。
ポリオレフィン微多孔膜は、優れた電気絶縁性及びイオン透過性を示すことから、蓄電デバイス用セパレータ、例えば、電池用セパレータ、及びコンデンサー用セパレータ等として使用されている。特に、ポリオレフィン微多孔膜は、リチウムイオン二次電池のセパレータとして使用されており、リチウムイオン二次電池は、例えば、携帯電話、ノート型パソコン等の小型電子機器だけでなく、電気自動車、電動バイク等の電動車両など様々な製品に搭載されている。
近年、小型電子機器や電気自動車を中心として、蓄電デバイスの更なる高出力化、高エネルギー密度化、及びサイクル特性の向上等が求められている。それに伴い、蓄電デバイスの安全性の水準も厳格になってきており、例えば局所短絡が発生したとしても熱暴走に至らない、より安全性の高い蓄電デバイスが求められている。
特許文献1は、セパレータと電極との分離を抑制し、かつ、セパレータの耐熱性を向上することを目的として、多孔質膜と、多孔質膜の少なくとも一方の表面に形成され、無機粒子が層全体の80体積%以上を占める無機粒子層と、無機粒子層の表面に形成され、無機粒子層と一体化された多孔質の樹脂層と、を備えるリチウムイオン二次電池用セパレータを記載している。
特許文献2は、シャットダウン特性とメルトダウン特性の向上等を目的として、多孔質の架橋ポリオレフィン基材と、その表面の一部または全部に積層された無機多孔質層とを備えるセパレータを記載している。
特許文献3は、機械的及び熱的安定性を維持しつつ、厚さ、重み、体積を減らすこと等を目的として、シロキサン架橋結合を有する多孔質ポリオレフィン基材と、その少なくとも一面上に位置する高分子バインダ層を含む、架橋ポリオレフィンセパレータを記載している。
特許文献4は、シャットダウン機能と高温耐破性を両立させ、蓄電デバイスの安全性、出力及び/又はサイクル安定性を確保することを目的として、シラン変性ポリオレフィンを含む蓄電デバイス用セパレータであって、電解液と接触するとシラン変性ポリオレフィンのシラン架橋反応が開始されることを特徴とする、蓄電デバイス用セパレータを記載している。
特許文献5及び6は、電極接着性、耐熱性、機械的物性、電池の高出力化、及び高寿命化の特性を兼ね備えたセパレータを提供することを目的として、架橋されたシラン変性ポリオレフィンを含む多孔質基材と、上記基材上に位置する無機コーティング層を含むセパレータを記載している。
他方、電池安全性を確保するために、セパレータ内に架橋構造を形成することによって、シャットダウン機能の発動と破膜温度の向上の両立を図ることが提案されている(特許文献7~14)。例えば、特許文献7~12には、シラン変性ポリオレフィン含有セパレータと水との接触などにより形成されるシラン架橋構造が記述されている。特許文献13には、紫外線、電子線などの照射によるノルボルネンの開環から形成される架橋構造が記述されている。特許文献14には、セパレータの絶縁層が、架橋構造を有する(メタ)アクリル酸共重合体、スチレン-ブタジエンゴムバインダなどを有することが記述されている。
リチウムイオン電池用の部材については正極、負極材料、電解液及びセパレータが用いられている。これらの部材のうち、セパレータについては、その絶縁材料としての性格から電気化学反応又は周辺部材に対して不活性であることが求められてきた。一方で、リチウムイオン電池の負極材料は、その開発当初から初充電時の化学反応による固体電解質界面(SEI)形成によって負極表面の電解液の分解を抑制する技術が確立されている(非特許文献3)。またセパレータにポリオレフィン樹脂を用いたとしても、正極表面では高電圧下において酸化反応が誘起され、セパレータの黒色化、表面劣化などの事例も報告されている。
以上の思想のもとで、蓄電デバイス用セパレータの材料について、電気化学反応又はその他の化学反応に対して不活性な化学構造を採用するため、ポリオレフィン製微多孔膜の開発及び実用化が広く展開されている。
また、蓄電デバイス用セパレータの作製時に、単数の微多孔膜又は複数の微多孔膜の積層体を基材として用い、基材の面上に、熱可塑性樹脂層、耐熱性樹脂層、水溶性樹脂層などの機能層又は機能膜を形成することも提案されている(特許文献16~19)。
また、蓄電デバイス用セパレータの作製時に、単数の微多孔膜又は複数の微多孔膜の積層体を基材として用い、基材の面上に、ポリフッ化ビニリデン(PVDF)系樹脂含有層、PVDF系樹脂及び無機フィラーを含有する層などの活性層を形成することも提案されている(特許文献18及び20)。
また、蓄電デバイス用セパレータの作製時に、単数の微多孔膜又は複数の微多孔膜の積層体を基材として用い、基材の面上に全芳香族ポリアミド(アラミドとも呼ばれる)等の耐熱性樹脂層を形成したり(特許文献16)、又は基材の両面に、アラミド等を含む多孔膜、及びセルロースエーテル等の水溶性樹脂を含む多孔膜をそれぞれ積層したりすることが提案されている(特許文献19)。
しかしながら、樹脂としてポリオレフィンを採用する限り、セパレータの機械的な微多孔構造を改良しても、性能向上に限界があった。例えば、ポリオレフィンの融点以上でのセパレータ耐熱安定性、又はオレフィンユニットが有する電気陰性度によって、電解液との親和性又は保液性が不十分であることによって、Liイオン又はその溶媒和したイオンクラスタのセパレータ内の透過性が満足できない。
特開2020-64879号公報 韓国登録特許第10-1943491号公報 韓国公開特許第2019-0108438号公報 国際公開第2020/075866号 韓国公開特許第10-2018-0147041号公報 韓国公開特許第10-2018-0147042号公報 特開平9-216964号公報 国際公開第97/44839号 特開平11-144700号公報 特開平11-172036号公報 特開2001-176484号公報 特開2000-319441号公報 特開2011-071128号公報 特開2014-056843号公報 特開平10-261435号公報 国際公開第2008/156033号 特許第6580234号公報 特許第6367453号公報 国際公開第2012/018132号 韓国公開特許第10-2020-0026172号公報
Pekka Pyykko及びMichiko Atsumi著、「Molecular Single-Bond Covalent Radii for Elements 1-118」、Chem.Eur.J., 2009, 15, 186-197 Robin Walsh著、「Bond dissociation energy values in silicon-containing compounds and some of their implications」、Acc.Chem.Res., 1981, 14, 246-252 リチウムイオン二次電池(第2版) 日刊工業新聞社 発行 基礎高分子化学 東京化学同人 発行 ACS Appl.Mater. Interfaces 2014, 6, 22594-22601 Energy Storage Materials 2018, 10, 246-267 The Chemistry of Organic Silicon Compounds Vol.2, Wiley (1998), Chap.4
本開示は、より安全性の高い蓄電デバイス用セパレータ、及びこれを用いた蓄電デバイス等を提供することを目的とする。
例えば、特許文献1~6に記載の蓄電デバイス用セパレータは、局所短絡発生時の安全性において更に改善の余地があった。したがって、第一の実施形態において、本開示は、局所短絡に伴い熱暴走に至る可能性が低減された、より安全性の高い蓄電デバイス用セパレータ、及び蓄電デバイスを提供することを目的とする。
また、近年、モバイルデバイス搭載用途又は車載用リチウムイオン二次電池の高出力化と高エネルギー密度化が進んでいる一方、電池セルの小型化と長期使用時の安定なサイクル放充電性能が求められている。そのため、薄膜(例えば15μm以下)で高品位(例えば、物性均一性があり、かつ樹脂凝集物がない)なセパレータが必要とされている。さらに、電池安全性の水準についても、以前より厳格となっており、特許文献7,8にも記載されるように、シャットダウン機能と高温破膜性を有するセパレータ、及びその安定な製造方法が期待されている。これに関連して、シャットダウン温度の水準として150℃より低いほど望ましく、また破膜温度の水準としては高温であるほど望ましい。
しかしながら、特許文献7~14に記載される架橋方法は、いずれもセパレータ製膜のインプロセスで、又はセパレータ製膜直後のバッチで行われるものである。したがって、特許文献7~14に記載される架橋構造の形成後には、セパレータの塗工加工及びスリットを行わなければならず、その後の電極との積層・捲回工程では内部応力が増加するため、作製された電池が変形することがある。例えば、加温により架橋構造を形成すると、その架橋構造を有するセパレータの内部応力が常温又は室温で増加することがある。さらに、紫外線、電子線などの光照射により架橋構造を形成すると、光の照射が不均一になり、架橋構造が不均質になることがある。これは、セパレータを構成する樹脂の結晶部周辺が電子線により架橋され易いためであると考えられる。
なお、特許文献15には、電解液にスクシンイミド類などを添加することによってリチウムイオン2次電池のサイクル特性を向上させる技術が記述されている。しかしながら、特許文献15に記載の技術は、セパレータの構造を特定することによってサイクル特性の向上を図るものではない。
また、特許文献16~19に記載されるようなセパレータ基材上の樹脂機能層又は樹脂機能膜の形成には、セパレータを備える蓄電デバイスの釘刺試験における安全性について改良の余地がある。
また、非特許文献5に示されるように、近年、LIB電池高容量化の有力候補の一つとして、NMC型正極のハイニッケル化が注目されている。しかしながら、NMCの比率が従来の(1:1:1)から、(4:3:3)、(6:2:2)、(8:1:1)等のようになるにつれ正極結晶構造の耐熱性が低下し、熱分解とともにOを放出し易くなり、連続的に、電池中の有機物の引火、又は爆発に至る。特に、NMC(622)、又はNMC(811)の正極は、従来のNMC(111)又はNMC(433)より顕著に低温領域から分解反応の開始が見られる。また、同様な傾向で、NMC以外にも、LAC型正極などの構成正極における結晶不安定性の問題(熱分解)がある。したがって、LIB電池高容量化には、熱分解又はO放出を起こし易い正極という潜在的な課題がある。
他方、非特許文献6より、電池釘刺試験の一連の過程で、釘貫通後に部分短絡による電池内部発熱の化学・物理変化の一連の時間的な変化が明らかにされている。特に、電池の発熱モードから、急激な暴走モードに切り替えるには、非特許文献5に記載の正極分解時のO放出現象が強く関係する傾向がある。
以上より、高電池容量、エネルギー密度が期待される高ニッケル含有NMC系正極で構成した電池は、従来のNMC系電池よりも釘刺試験において、短時間で急激な引火・爆発に至ることが問題であり、釘貫通時の周辺短絡を著しく抑制する必要がある。このような電池は、車載用途での事故又は災害時の破壊において、安全に取り扱うことが難しく、破壊モードを模擬した釘刺安全性の改善が大きな課題である。
また、特許文献18及び20に記載のようなセパレータ基材への従来のPVDF系樹脂塗工には、熱収縮の抑制に課題があり、高温(例えば200℃以上)での熱収縮性とホットボックス試験性について改良の余地がある。
さらに、非特許文献5に示されるように、近年、LIB電池高容量化の有力候補の一つとして、NMC型正極のハイニッケル化が注目されている。しかしながら、NMCの比率が従来の(1:1:1)から、(4:3:3)、(6:2:2)、(8:1:1)等のようになるにつれ正極結晶構造の耐熱性が低下し、熱分解とともにOを放出し易くなり、連続的に、電池中の有機物の引火、又は爆発に至る。特に、高電池容量、及び高エネルギー密度が期待されるNMC(622)、又はNMC(811)正極は、150℃~160℃付近より分解開始が見られる。このような正極構成のLIBを、車載用途での事故又は火災時でさえも安全に取り扱うためには、150℃における耐熱安定性の向上が課題である。
また、特許文献16及び19に記載のようなセパレータ基材への従来の耐熱性樹脂及び/又は水溶性樹脂の塗工には、セパレータを備える蓄電デバイスの高温(例えば150℃以上)でのバーインパクト破壊試験について改善の余地がある。
さらに、非特許文献5に示されるように、近年、LIB電池高容量化の有力候補の一つとして、NMC型正極のハイニッケル化が注目されている。しかしながら、NMCの比率が従来の(1:1:1)から、(4:3:3)、(6:2:2)、(8:1:1)等のようになるにつれ正極結晶構造の耐熱性が低下し(例えば、約250℃での結晶分解・O放出)、熱分解とともにOを放出し易くなり、連続的に、電池中の有機物の引火、又は爆発に至る。特に、NMC(622)、又はNMC(811)正極のような高ニッケル含有の場合には、150℃~160℃付近より分解開始が見られる。現在、各国の研究機関又は企業により高ニッケル含有NMCの結晶構造安定化の研究が進められており、NMCの表面処理又は微量不純物の含有調整などで改善が見られるものの、150℃~160℃で結晶分解・O放出を根本的に解決できていない。また、同様な傾向で、NMC以外にも、LAC正極などの構成正極における結晶不安定性の問題(熱分解)がある。このような正極材料を用いた高エネルギー密度LIBを車載用途へ展開した際に、万が一の場合の車両衝突事故での安全性の確保が課題である。すなわち、外力による電池構造破壊時に、火災などの高温状態でも、電池が爆発しないことが求められている。したがって、NMC正極などの最も厳しい条件下で、150℃からの結晶分解を想定した電池安全性を改善する研究が求められる。
したがって、第二の実施形態において、本開示は、蓄電デバイスの安全性、例えば、釘刺試験における安全性、熱収縮性とホットボックス試験性、及び高温バーインパクト破壊試験性の少なくとも一つを向上させることができる蓄電デバイス用セパレータ、並びにそれを用いる蓄電デバイス組み立てキット、蓄電デバイス及び蓄電デバイスの製造方法を提供することを目的とする。
本開示の実施形態の例を以下の項目に列記する。
[1]
ポリオレフィンを含むA層と、無機粒子を含むB層と、熱可塑性ポリマーを含むC層とをそれぞれ少なくとも1層ずつ備える蓄電デバイス用セパレータであって、
上記A層に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、
上記官能基は、蓄電デバイス内で上記官能基同士が縮合反応してシロキサン結合による架橋構造を形成する官能基を含む、蓄電デバイス用セパレータ。
[2]
上記A層に対し100μm四方面積のTOF-SIMS測定を行ったとき、アルカリ金属及び/又はアルカリ土類金属を含む島構造が1つ以上検出され、かつ上記島構造の大きさが9μm以上245μm以下である領域を備える、項目1に記載の蓄電デバイス用セパレータ。
[3]
上記アルカリ金属及び/又はアルカリ土類金属を含む島構造が上記セパレータに2つ以上存在し、それぞれの上記島構造の重み付き重心位置間距離の最小値及び最大値のいずれもが、6μm以上135μm以下である、項目2に記載の蓄電デバイス用セパレータ。
[4]
上記島構造はアルカリ土類金属を含み、上記アルカリ土類金属がカルシウムである、項目2又は3に記載の蓄電デバイス用セパレータ。
[5]
上記アルカリ金属及び/又はアルカリ土類金属が、リチウム、ナトリウム、マグネシウム、カリウム、及びストロンチウムからなる群から選択される少なくとも一つである、項目2又は3に記載の蓄電デバイス用セパレータ。
[6]
上記B層が無機粒子および樹脂バインダを含む無機多孔質層である、項目1~4のいずれか一項に記載の蓄電デバイス用セパレータ。
[7]
上記樹脂バインダのガラス転移温度(Tg)が-50℃~90℃である、項目6に記載の蓄電デバイス用セパレータ。
[8]
上記B層に含まれる無機粒子の含有量が、上記B層の全質量を基準として、5質量%~99質量%である、項目1~7のいずれか一項に記載の蓄電デバイス用セパレータ。
[9]
上記無機粒子が、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、およびガラス繊維からなる群から選択される少なくとも一つである、項目1~8のいずれか一項に記載の蓄電デバイス用セパレータ。
[10]
上記C層に含まれる上記熱可塑性ポリマーが、(メタ)アクリル酸エステル又は(メタ)アクリル酸を重合単位として含む、項目1~9のいずれか一項に記載の蓄電デバイス用セパレータ。
[11]
上記C層が上記B層を被覆する面積の割合が5%~98%である、項目1~10のいずれか一項に記載の蓄電デバイス用セパレータ。
[12]
上記C層に含まれる上記熱可塑性ポリマーが、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物を含む、項目1~11のいずれか一項に記載の蓄電デバイス用セパレータ。
[13]
電解液浸漬後の上記蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数を、最小二乗近似法を用いて式(1)にフィッティングしたとき、rateの範囲が3.5≦rate≦150である、項目1~12のいずれか一項に記載の蓄電デバイス用セパレータ。
Figure 0007462701000001
[14]
電解液浸漬後の上記蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数を、最小二乗近似法を用いて式(1)にフィッティングしたとき、Tの範囲が110≦T≦150、maxの範囲が0.1≦max≦30である、項目1~13のいずれか一項に記載の蓄電デバイス用セパレータ。
[15]
基材としてのポリオレフィン製微多孔膜と、上記ポリオレフィン製微多孔膜の少なくとも片面に形成された表面層とを備える蓄電デバイス用セパレータであって、
上記ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が上記蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする蓄電デバイス用セパレータ。
[16]
基材としてのポリオレフィン製微多孔膜と、上記ポリオレフィン製微多孔膜の少なくとも片面に形成された熱可塑性ポリマー含有層とを備える蓄電デバイス用セパレータであって、
上記ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が上記蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする、項目15に記載の蓄電デバイス用セパレータ。
[17]
上記熱可塑性ポリマー含有層の上記基材に対する被覆面積割合が、5%~90%である、項目16に記載の蓄電デバイス用セパレータ。
[18]
上記熱可塑性ポリマー含有層に含まれる熱可塑性ポリマーが、(メタ)アクリル酸エステル又は(メタ)アクリル酸の重合単位を含む、項目16又は15に記載の蓄電デバイス用セパレータ。
[19]
上記熱可塑性ポリマー含有層に含まれる熱可塑性ポリマーのガラス転移温度が、-40℃~105℃である、項目16~18のいずれか一項に記載の蓄電デバイス用セパレータ。
[20]
基材としてのポリオレフィン製微多孔膜と、上記ポリオレフィン製微多孔膜の少なくとも片面に配置された活性層とを備える蓄電デバイス用セパレータであって、
上記ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が上記蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする、項目15に記載の蓄電デバイス用セパレータ。
[21]
上記活性層が、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物と、無機粒子とを含有する、項目20に記載の蓄電デバイス用セパレータ。
[22]
上記活性層における上記フッ素原子含有ビニル化合物と上記無機粒子との質量比(フッ素原子含有ビニル化合物/無機粒子)が、5/95~80/20である、項目20又は21に記載の蓄電デバイス用セパレータ。
[23]
上記フッ素原子含有ビニル化合物の重量平均分子量が、0.6×10~2.5×10である、項目20~22のいずれか一項に記載の蓄電デバイス用セパレータ。
[24]
基材としてのポリオレフィン製微多孔膜と、
上記ポリオレフィン製微多孔膜の少なくとも片面に積層された、耐熱性樹脂を含有する耐熱性多孔質層と
を備える蓄電デバイス用セパレータであって、
上記ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が上記蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする、項目15に記載の蓄電デバイス用セパレータ。
[25]
上記耐熱性多孔質層は、平均粒子径が0.2μm~0.9μmの無機フィラーを30質量%~90質量%含有する、項目24に記載の蓄電デバイス用セパレータ。
[26]
上記耐熱性樹脂が、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテル、ポリエーテルケトン、ポリエーテルイミド及びセルロースから成る群から選択される少なくとも1種を含む、項目24又は25に記載の蓄電デバイス用セパレータ。
[27]
上記耐熱性樹脂が、パラ型芳香族ポリアミド、及び/又はメタ型芳香族ポリアミドを含む、項目24~26のいずれか一項に記載の蓄電デバイス用セパレータ。
[28]
上記化学物質が、上記ポリオレフィン製微多孔膜に含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、項目16~27のいずれか一項に記載の蓄電デバイス用セパレータ。
[29]
上記架橋構造が、上記ポリオレフィンの非晶部が架橋された非晶部架橋構造である、項目16~28のいずれか一項に記載の蓄電デバイス用セパレータ。
[30]
上記非晶部が、選択的に架橋された、項目28に記載の蓄電デバイス用セパレータ。
[31]
上記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、項目16~30のいずれか一項に記載の蓄電デバイス用セパレータ。
[32]
上記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、項目16~31のいずれか一項に記載の蓄電デバイス用セパレータ。
[33]
上記共有結合を介した反応が、下記反応(I)~(IV):
(I)複数の同一官能基の縮合反応;
(II)複数の異種官能基間の反応;
(III)官能基と電解液の連鎖縮合反応;及び
(IV)官能基と添加剤の反応;
から成る群から選択される少なくとも1つである、項目32に記載の蓄電デバイス用セパレータ。
[34]
上記配位結合を介した反応が、下記反応(V):
(V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
である、項目33に記載の蓄電デバイス用セパレータ。
[35]
上記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、項目33に記載の蓄電デバイス用セパレータ。
[36]
上記反応(I)が、複数のシラノール基の縮合反応である、項目33に記載の蓄電デバイス用セパレータ。
[37]
上記反応(IV)が、上記蓄電デバイス用セパレータを構成する化合物Rxと上記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、上記化合物Rxは、官能基xを有し、かつ上記化合物Ryは、連結反応ユニットyを有する、項目33に記載の蓄電デバイス用セパレータ。
[38]
上記反応(IV)が求核置換反応であり、
上記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットyが、CHSO-、CFSO-、ArSO-、CHSO-、CFSO-、ArSO-、及び下記式(y-1)~(y-6):
Figure 0007462701000002
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000003
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000004
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000005
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000006
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000007
{式中、Xは、水素原子又は1価の置換基である。}
で表される1価の基から成る群から選択される少なくとも2つである、項目37に記載の蓄電デバイス用セパレータ。
[39]
上記反応(IV)が求核置換反応であり、
上記化合物Ryが、上記連結反応ユニットyに加えて鎖状ユニットyを有し、かつ
上記鎖状ユニットyが、下記式(y-1)~(y-6):
Figure 0007462701000008
{式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
Figure 0007462701000009
{式中、nは、1~20の整数である。}
Figure 0007462701000010
{式中、nは、1~20の整数である。}
Figure 0007462701000011
{式中、nは、1~20の整数である。}
Figure 0007462701000012
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
Figure 0007462701000013
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
で表される2価の基から成る群から選択される少なくとも1つである、項目37又は38に記載の蓄電デバイス用セパレータ。
[40]
上記反応(IV)が求核付加反応であり、
上記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットyが、下記式(Ay-1)~(Ay-6):
Figure 0007462701000014
Figure 0007462701000015
Figure 0007462701000016
Figure 0007462701000017
{式中、Rは、水素原子又は1価の有機基である。}
Figure 0007462701000018
Figure 0007462701000019
で表される基から成る群から選択される少なくとも1つである、項目37に記載の蓄電デバイス用セパレータ。
[41]
上記反応(IV)が開環反応であり、
上記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットyが、下記式(ROy-1):
Figure 0007462701000020
{式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
で表される少なくとも2つの基である、項目37に記載の蓄電デバイス用セパレータ。
[42]
上記反応(V)において、上記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つである、項目34に記載の蓄電デバイス用セパレータ。
[43]
上記官能基を有するポリオレフィンが、上記官能基の架橋構造を形成する脱水縮合触媒を含有するマスターバッチ樹脂ではない、項目1~42のいずれか一項に記載の蓄電デバイス用セパレータ。
[44]
(A)電極と、項目1~43のいずれか一項に記載の蓄電デバイス用セパレータとの積層体又は捲回体を収納している、外装体;及び
(B)非水電解液を収納している容器;
を備える、蓄電デバイス組み立てキット。
[45]
正極と、負極と、項目1~43のいずれか一項に記載の蓄電デバイス用セパレータと、非水電解液とを含む、蓄電デバイス。
[46]
正極、負極、項目1~43のいずれか一項に記載の蓄電デバイス用セパレータ、及び非水電解液を含む蓄電デバイスであって、上記正極は、ニッケル-マンガン-コバルト(NMC)系リチウム含有正極、オリビン型リン酸鉄リチウム(LFP)系正極、コバルト酸リチウム(LCO)系正極、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極、及びマンガン酸リチウム(LMO)系正極からなる群から選択される少なくとも一つである、蓄電デバイス。
本開示によれば、より安全性の高い蓄電デバイス用セパレータ、及びこれを用いた蓄電デバイス等を提供することができる。
第一の実施形態において、本開示によれば、局所短絡に伴い熱暴走に至る可能性が低減された、より安全性の高い蓄電デバイス用セパレータ、及びこれを用いた蓄電デバイス等を提供することができる。
第二の実施形態において、本開示は、蓄電デバイスの安全性、例えば、釘刺試験における安全性、熱収縮性とホットボックス試験性、及び高温バーインパクト破壊試験性の少なくとも一つを向上させることができる蓄電デバイス用セパレータ、及びこれを用いた蓄電デバイス等を提供することができる。
図1(A)は、非架橋ポリオレフィン基材層と無機粒子層とを有する蓄電デバイス用セパレータの両端を開放した状態で熱収縮させたときの挙動を示す模式図である。図1(B)は、非架橋ポリオレフィン基材層と無機粒子層とを有する蓄電デバイス用セパレータの両端を固定した状態で熱収縮させたときの挙動を示す模式図である。 図2は、非架橋ポリオレフィン基材層と無機粒子層とを有する蓄電デバイス用セパレータの両端を開放した状態で熱収縮させたときの挙動を示す模式図である。 図3(A)は、架橋ポリオレフィン基材層と無機粒子層とを有する蓄電デバイス用セパレータの両端を開放した状態で熱収縮させたときの挙動を示す模式図である。図3(B)は、架橋ポリオレフィン基材層と無機粒子層とを有する蓄電デバイス用セパレータの両端を固定した状態で熱収縮させたときの挙動を示す模式図である。 図4は、架橋ポリオレフィン基材層と、無機粒子層と、熱可塑性ポリマー層とを有する蓄電デバイス用セパレータを備える蓄電デバイスにおいて、局所短絡が生じた際の挙動を示す模式図である。 図5は、非架橋ポリオレフィン基材層と、無機粒子層と、熱可塑性ポリマー層とを有する蓄電デバイス用セパレータを備える蓄電デバイスにおいて、局所短絡が生じた際の挙動を示す模式図である。 図6は、非架橋ポリオレフィン基材層と、熱可塑性ポリマー層とを有する蓄電デバイス用セパレータを備える蓄電デバイスにおいて、局所短絡が生じた際の挙動を示す模式図である。 図7は、架橋ポリオレフィン基材層と、無機粒子層とを有する蓄電デバイス用セパレータを備える蓄電デバイスにおいて、局所短絡が生じた際の挙動を示す模式図である。 図8は、非架橋ポリオレフィン基材層と、無機粒子層とを有する蓄電デバイス用セパレータを備える蓄電デバイスにおいて、局所短絡が生じた際の挙動を示す模式図である。 図9は、TOF-SIMS測定における、アルカリ金属及び/又はアルカリ土類金属を含む島構造の模式図である。 図10は、結晶構造のラメラ(結晶部)、非晶部およびそれらの間の中間層部に分かれた高次構造を有する結晶性高分子を説明するための模式図である。 図11は、ポリオレフィン分子の結晶成長を説明するための模式図である。 図12は、高温バーインパクト破壊試験(衝撃試験)の概略図である。
《蓄電デバイス用セパレータ》
蓄電デバイス用セパレータ(以下、単に「セパレータ」ともいう。)は、絶縁性とリチウムイオン透過性が必要なため、一般的には、多孔質体構造を有する絶縁材料である紙、ポリオレフィン製不織布又は樹脂製微多孔膜などから形成される。特に、リチウムイオン電池においては、セパレータの耐酸化還元劣化及び緻密で均一な多孔質構造を構築できるポリオレフィン製微多孔膜がセパレータ基材として優れている。
第一の実施形態において、蓄電デバイス用セパレータは、ポリオレフィンを含むA層と、無機粒子を含むB層と、熱可塑性ポリマーを含むC層とをそれぞれ少なくとも1層ずつ備える。A層に含まれるポリオレフィンは、1種又は2種以上の官能基を有する。官能基は、蓄電デバイス内で官能基同士が縮合反応してシロキサン結合による架橋構造を形成する官能基を含む。
第二の実施形態において、蓄電デバイス用セパレータは、基材としてのポリオレフィン製微多孔膜と、その少なくとも片面に形成された表面層とを備え、ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつセパレータの蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成される。
第二の実施形態において、蓄電デバイス用セパレータは、基材としてのポリオレフィン製微多孔膜と、その少なくとも片面に形成された熱可塑性ポリマー含有層とを備えることが好ましい。ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつセパレータの蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成される。
第二の実施形態において、蓄電デバイス用セパレータは、基材としてのポリオレフィン製微多孔膜と、その少なくとも片面に配置された活性層とを備えることが好ましい。ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつセパレータの蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成される。蓄電デバイスへの収納後に上記反応(1)~(3)のいずれかにより架橋構造を形成することができる化学架橋性セパレータ基材と、PVDF系樹脂含有層、PVDF系樹脂及び無機粒子を含有する層などの活性層とを組み合わせ、基材の架橋ゲル化に加えて、蓄電デバイス中の電極材と活性層の接着によって、高温(例えば200℃以上)での熱収縮性とホットボックス試験性を相乗的に向上させることができる。
第二の実施形態において、蓄電デバイス用セパレータは、基材としてのポリオレフィン製微多孔膜と、その少なくとも片面に積層された、耐熱性樹脂を含有する耐熱性多孔質層とを備えることが好ましい。ポリオレフィン製微多孔膜に含まれるポリオレフィンが、種又は2種以上の官能基を有し、かつセパレータの蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成される。これまでに、外力による電池構造破壊を模擬した衝撃試験:バーインパクト試験にはセパレータフィルムの機械的な強度に着目した研究が多く、高い引張強度を有するセパレータは外力を受けても、破れずに短絡を抑制できることが分かってきた。しかしながら、150℃のような高温状態では、ポリエチレン(PE)製微多孔膜は融解しており、短絡を抑制できない。他方、アラミド樹脂のような耐熱性樹脂を微多孔膜と複合化しても、アラミド樹脂のみが薄膜状に残されるため、電池内部で電極分解又は他の化学反応によるガス発生によりアラミド樹脂の薄膜状構造が破壊されて、電極間の短絡に至ることがある。蓄電デバイスへの収納後に上記反応(1)~(3)のいずれかにより架橋構造を形成することができる化学架橋性セパレータ基材と、耐熱性樹脂を含有する耐熱性多孔質層とを組み合わせ、基材の架橋ゲル化に加えて、基材に積層された多孔質層の耐熱性によって、高温(例えば150℃以上)でのバーインパクト破壊試験性を相乗的に改善することができる。結晶融解したPE微多孔膜中に架橋化構造を設けることにより流動性が低く、基材は、アラミド樹脂の融解又は軟化した状態と相溶又は混合することができないので、電極同士の接触を抑制できる。このような、高温での低流動性樹脂層は、万が一の場合に、正極からの分解O発生が伴う状態でも短絡・引火・爆発を抑制することができる。また、アラミド樹脂等の耐熱性樹脂は、極性官能基が多く含まれており、電解液と高い親和性を示す。蓄電デバイス内架橋構造を有する基材に耐熱性樹脂を塗布することで、蓄電デバイスへの組み込み・注液後に、耐熱性樹脂層から基材へ電解液を均一に供給でき、基材が均一な架橋構造を構築できることが実験的に明らかになった。
蓄電デバイス用セパレータの全体の厚み(総厚)は、絶縁性を確保する観点から、好ましくは2μm以上、より好ましくは4μm以上である。蓄電デバイス用セパレータの総厚は、イオン透過性、及び蓄電デバイスのエネルギー密度を高める観点等から、好ましくは40μm以下、より好ましくは20μm以下である。
I.第一の実施形態における蓄電デバイス用セパレータ
〈ポリオレフィン基材層〉
本願明細書において、ポリオレフィンを含むA層を、単に「ポリオレフィン基材層」ともいう。ポリオレフィン基材層は、単層構造であることが好ましい。単一構造とは、単一材料で構成される層であり、単一材料で構成されていれば、孔径の大きな粗大構造層と孔径の小さな緻密構造層を含んでもよい。
ポリオレフィン基材層は、典型的にはポリオレフィンを主成分として含む微多孔膜であり、好ましくはポリオレフィン微多孔膜である。「主成分として含む」とは、合計質量を基準として、対象の成分を50質量%以上含有することをいう。ポリオレフィン基材層に含まれるポリオレフィンは、微多孔膜を構成する樹脂成分の合計質量を基準として、例えば50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、99質量%以上、又は100質量%であってよい。
ポリオレフィンとしては、特に限定されないが、好ましくは炭素原子数3~10個のオレフィンをモノマー単位として含むポリオレフィンであってよい。そのようなポリオレフィンとしては、例えば、エチレン又はプロピレンの単独重合体、並びにエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、及びノルボルネンから成る群より選ばれる少なくとも2つのオレフィンモノマーから形成される共重合体などが挙げられ、好ましくはポリエチレン、ポリプロピレン、及びこれらの組み合わせである。
ポリエチレンの中でも、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、及び超高分子量ポリエチレン(UHMWPE)が挙げられ、微多孔が閉塞せずに、より高温で熱固定(「HS」と略記することがある。)が行えるという観点から、高密度ポリエチレン(HDPE)、及び超高分子量ポリエチレン(UHMWPE)が好ましい。一般に、低密度ポリエチレン(LDPE)とは、密度0.925g/cm未満、中密度ポリエチレン(MDPE)とは、密度0.925g/cm以上0.942g/cm未満、高密度ポリエチレン(HDPE)とは、密度0.942g/cm以上0.970g/cm未満、超高分子量ポリエチレン(UHMWPE)とは、密度0.970g/cm以上、重量平均分子量(Mw)が1,000,000以上のポリエチレンを指す。ポリエチレンの密度は、JIS K7112(1999)に記載の「D)密度勾配管法」に従って測定することができる。
ポリプロピレンとしては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、及びアタクティックポリプロピレン等が挙げられる。エチレンとプロピレンとの共重合体としては、エチレン-プロピレンランダム共重合体、及びエチレン-プロピレンラバー等が挙げられる。
ポリオレフィン基材層に含まれるポリオレフィンは、1種又は2種以上の官能基であって、蓄電デバイス内で官能基同士が縮合反応してシロキサン結合による架橋構造を形成する官能基(以下、本願明細書において「架橋性官能基」ともいう。)を有するポリオレフィンを含む。
架橋性官能基は、ポリオレフィンの主鎖にグラフトされていることが好ましい。架橋性官能基としては、架橋性シラン基、例えばトリアルコキシシリル基(-Si(OR))及び/又はジアルコキシシリル基(-Si(OR))であり、式中、Rは、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、又はこれらの組み合わせであり、好ましくはメチル、エチル、n-プロピル又はこれらの組み合わせである。架橋性シラン基としては、より好ましくは、メトキシシリル基、及びエトキシシリル基であり、より好ましくはトリメトキシシリル基(-Si(OMe))である。アルコキシシリル基は、水による加水分解反応を経てシラノール基へ変換され、縮合反応を起こし、電池内でシロキサン結合を形成することができる。下式に、Rがメチルである場合の架橋反応の例を示す。T0構造から、T1構造、T2構造又はT3構造に変化する割合は任意である。
Figure 0007462701000021
シラン変性ポリオレフィン(以下、「樹脂a」ともいう。)において、主鎖とグラフト間は共有結合で繋がれている。共有結合を形成する構造としては、特に制限されないが、例えば、アルキル、エーテル、グリコール、エステル等が挙げられる。
均一なSi含有分子構造の配置、またLiイオン配位中間体の平衡状態の寿命の観点から、樹脂aの架橋反応を行う前の段階では、樹脂aには、シラノールユニットが0.03~1.0モル%含まれる、すなわちシラノールユニット変性率が0.03~1.0モル%であることが好ましい。シラノールユニット変性率は、より好ましくは0.05~0.35モル%、さらに好ましくは0.07~0.32モル%、特に好ましくは0.08~0.30モル%、最も好ましくは0.12~0.28モル%である。本願発明者らは、シラン変性ユニットが主にセパレータの非結晶部に、より好ましくは非結晶部のみに存在すること、シラン変性ユニット同士の距離、及び-10℃~80℃での熱振動運動等に着目して、上記シラノールユニット変性量であると、樹脂aが架橋反応を構築しやすい分子構造を有する傾向にあることを見いだした。上記T0、T1、T2及びT3構造は、いずれもLiイオンとの配位中間体を構築することが可能だが、Liイオンが非結晶部でSi原子間に配位し、配位脱離及び再配位がランダムに進行すると考えられるため、樹脂aのシラノールユニット変性量を上記範囲に調整することで、より顕著な効果が得られる。
均一なSi含有分子構造の配置、またLiイオン配位中間体の平衡状態の寿命の観点から、樹脂aは、プロピレン(C)ユニット0.01~2.0モル%により、ブテン(C)ユニット0.01~2.0モル%により、又はCユニットとCユニットの合計0.01~2.0モル%により変性されることが好ましい。この場合の炭素数は、上記式中のR基と連結基の両方を考慮するものとする。
同様の観点から、樹脂aのCユニット変性率は、0.01~1.2モル%であることがより好ましく、0.01~0.75モル%であることがさらに好ましく、0.02~0.60モル%であることが特に好ましく、0.05~0.30モル%であることが最も好ましい。
均一なSi含有分子構造の配置、またLiイオン配位中間体の平衡状態の寿命の観点から、樹脂aの架橋反応を行う前の段階では、樹脂aのCユニット変性率としては、0.01~1.0モル%がより好ましく、0.30~0.70モル%がさらに好ましく、0.48~0.65モル%が特に好ましい。他方、セパレータ製膜時の熱固定(HS)工程では、樹脂aのCユニット変性率としては、0.43モル%以下が好ましく、0.40モル%以下がより好ましく、0.1モル%以下がさらに好ましい。
均一なSi含有分子構造の配置、またLiイオン配位中間体の平衡状態の寿命の観点から、樹脂aのCユニットとCユニットの合計変性率としては、1.5モル%以下がより好ましく、1.0モル%以下がさらに好ましく、0.6モル%以下が特に好ましく、0.3モル%以下が最も好ましい。
蓄電デバイスのサイクル特性と安全性の観点から、樹脂aの数平均分子量(Mn)は、好ましくは10,000~20,000であり、16,000以下であることがより好ましく、15,000以下であることがさらに好ましい。同様の観点から、樹脂aの重量平均分子量(Mw)は、好ましくは45,000~200,000であり、140,000以下であることがより好ましく、129,000以下であることがさらに好ましく、100,000以下であることが特に好ましく、72,000以下であることが最も好ましい。同様の観点から、樹脂aのMw/Mnは、好ましくは3.0~12であり、4.0~9.0であることがより好ましく、4.1~8.0であることが更に好ましい。
樹脂aについては、限定されるものではないが、その粘度平均分子量(Mv)は、例えば20,000~150,000でよく、その密度は、例えば0.90~0.97g/cm3でよく、その190℃でのメルトマスフローレート(MFR)は、例えば0.1~15g/minでよい。
シラングラフト変性ポリエチレンを構成するポリエチレンとしては、1種単独のエチレンから構成されていてもよく、2種以上のエチレンから構成されていてもよい。異なるエチレンから構成された、2種以上のシラングラフト変性ポリエチレンが併用されてもよい。
架橋反応は、蓄電デバイス内の環境で自発的に起こってもよく、又は外部刺激によって引き起こされてもよい。外部刺激としては、熱、及び光、例えば紫外線等が挙げられる。好ましくは、架橋反応は、酸性条件、アルカリ性条件、また求核性能の低い塩基が存在する条件で、触媒反応として架橋反応が促進される。縮合により形成されたシロキサン結合は高い熱力学安定性を有する。C-Cの結合エネルギーが86kcal・mol-1、C-Siの結合エネルギーが74kcal・mol-1であるのに対して、Si-Oの結合エネルギーが128kcal・mol-1であることから、シロキサン結合の熱力学的安定性が示唆される(非特許文献1,2)。そのため、例えば、反応系内に一定濃度のフッ化水素(HF)やHSOが存在することで、セパレータの高分子構造中のシラン変性ポリオレフィンのシロキサン結合への架橋反応を高収率で進行させ、セパレータに高耐熱性の構造を構築できる。
また、含Si化合物はFアニオンとの反応性が高いため、シロキサン結合でできた架橋点は高濃度のFアニオンによって分解される可能性がある。Si-Fの結合エネルギーは160kcalacl・mol-1と大変高く、Si-F結合は高い熱力学的安定性を有することから、平衡反応では系内の濃度が一定以下になるまでFアニオンが消費され続けると考えられる(非特許文献1,2)。Fアニオンによる架橋点の分解反応は、シロキサン結合のC-Si結合またはSi-OSi結合の開裂反応であると推定される。化合物Me3Si-Xを用いてSi-Xの結合解離エネルギーを見積もる実験では、Si-Xの結合解離エネルギーDは、X=MeのときにD=394±8kJ/mol、X=OMeのときにD=513±11kJ/mol、X=FのときにD=638±5kJ/molとなることが過去に報告されている(非特許文献7)。また、酸性条件では、シロキサン結合のC-Si結合またはSi-OSi結合開裂後の生成物の安定性を考慮すると、Si-OSi結合が開裂し易く、Si-FおよびHO-Siとなることが推定される。そのため、反応系内のFアニオン濃度が一定以上になると、架橋点のシロキサン結合が分解され、セパレータの耐熱性が低下する可能性があると考えられる。
本開示では、HFの濃度はPFがヤンテラー効果により、PFとHFが平衡に存在することを利用することで、シロキサン結合への架橋反応を促進させ、高い耐熱性を有するセパレータの電池内架橋反応の制御が可能になることを見出した。また、PFとHFが平衡に存在することから、シロキサン結合の架橋反応を長期的かつ継続的に引き起こすことができ、架橋反応の確率を大幅に向上することができた。ポリエチレンの非結晶構造は高い絡み合い構造であり、一部の架橋構造が形成されただけでも、そのエントロピー弾性が顕著に増す。よって、非晶部の分子運動性が低下し、全てのシラノールユニットについてシロキサン結合を形成させることが難しい。本開示では、複数条件での添加を検討し、その課題を根本的に解決できた。
後述する無機粒子を含むB層及び熱可塑性ポリマーを含むC層とともに、ポリオレフィン基材層が上記に説明したような架橋性官能基を有するポリオレフィンを含むことにより、後述局所短絡に伴い熱暴走に至る可能性が低減された、より安全性の高い蓄電デバイス用セパレータを提供することができる。その理由について、理論及び図面の態様に限定されないが、図面を参照しながら以下に説明する。
図1(A)は、架橋されていないポリオレフィン基材層(1a)と無機粒子層(2)とを有する蓄電デバイス用セパレータ(10)の両端を開放した状態で熱収縮させたときの挙動を示す模式図である。両端を開放した状態では、熱収縮による応力(4)によって収縮した基材層が無機粒子層を持ち上げ、無機粒子層の座屈破壊(5)を生じ、また、突出した無機粒子層に引っ張られた基材層が引張破壊(6)を生じる。この挙動を段階的に説明したものが図2である。非架橋ポリオレフィン基材層(1a)と無機粒子層(2)とを有する蓄電デバイス用セパレータの両端を開放した状態で熱収縮させると、基材層に熱収縮による応力(4)のベクトルが集中する部分と疎になる部分とが生じ、これによって蓄電デバイス用セパレータが波形に変形する。このとき、波形になった無機粒子層の頂点で座屈破壊(亀裂)を生じ(5)、基材層が無機粒子層に引っ張られる(6)。更に変形が進むと、複数の亀裂が隆起し、基材層が引張破壊(6)されて空隙が生じる。再び図1に戻ると、図1(B)は、非架橋ポリオレフィン基材層(1a)と無機粒子層(2)とを有する蓄電デバイス用セパレータ(10)の両端を固定した状態で熱収縮させたときの挙動を示す模式図である。両端を固定した状態は、蓄電デバイス用セパレータが蓄電デバイス内に格納された状態を模している。両端を固定した状態では、熱収縮による応力(4)によって固定治具(20)の間でポリオレフィン基材層が破断し、熱収縮が進むにつれ隙間が広がっていく。それに伴い、無機粒子層が、ポリオレフィン基材層の隙間に落ち込むように変形する。
図3(A)は、架橋されたポリオレフィン基材層(1b)と無機粒子層(2)とを有する蓄電デバイス用セパレータ(10)の両端を開放した状態で熱収縮させたときの挙動を示す模式図である。架橋されたポリオレフィン基材層の場合も、両端を開放した状態では、図1(A)及び図2と同様に、熱収縮による応力(4)によって無機粒子層の座屈破壊(5)及び基材層の引張破壊(6)を生じる。しかしながら、図3(B)に示すように両端を固定した状態では、固定治具(20)の間で架橋ポリオレフィン基材層(1b)が破断することなく引き延ばされる傾向がある。蓄電デバイス用セパレータの高い安全性は、このような、非架橋ポリオレフィン基材層と架橋ポリオレフィン基材層の、両端を固定した状態での熱収縮における挙動の違いを前提に、後述する無機粒子層および熱可塑性ポリマー層との組み合わせにより実現される。
より詳細に、図4は、架橋ポリオレフィン基材層(1b)と、無機粒子層(2)と、熱可塑性ポリマー層(3)とを有する蓄電デバイス用セパレータ(10)を備える蓄電デバイス(100)において、局所短絡(7)が生じた際の挙動を示す模式図である。局所短絡は、リチウムイオン二次電池の場合、低温で充放電サイクルを繰り返すことで負極活物質層から成長するリチウムデンドライトによって引き起こされることがある。図4に示すように、蓄電デバイスに低温充放電サイクルを行った後、圧力(8)をかけると、局所短絡(7)が生じやすい。局所短絡が生じると、短絡部分が発熱し、周囲の架橋ポリオレフィン基材層が熱収縮しようとする。しかしながら、図3で説明したように、架橋ポリオレフィン基材層の破断が起こりにくく、また、無機粒子層が熱可塑性ポリマー層によって正極に固定されているため、無機粒子層の変形が起こりにくい。そのため、熱収縮による応力(4)がポリオレフィン基材層と無機粒子層との界面に集中し、局所短絡が切断されて、その結果、熱暴走が防止される。
図5は、非架橋ポリオレフィン基材層(1a)を用いること以外は図4と同様にして、蓄電デバイス(100)に低温充放電サイクル及び圧力をかけることで局所短絡(7)を生じた際の挙動を示す模式図である。ポリオレフィン基材層が非架橋であるため、図1及び2で説明したように、非架橋ポリオレフィン基材層が破断し、局所短絡の周囲に空隙が形成される。そのため、熱収縮による応力(4)がポリオレフィン基材層と無機粒子層との界面に集中せず、局所短絡が切断されにくい。
図6は、無機粒子層を有しないこと以外は図5と同様にして、蓄電デバイス(100)に低温充放電サイクル及び圧力をかけることで局所短絡(7)を生じた際の挙動を示す模式図である。図5と同様に、非架橋ポリオレフィン基材層が破断し、局所短絡の周囲に空隙が形成される。また、非架橋ポリオレフィン基材層の変形に伴い、熱可塑性ポリマー層(3)が周囲に引っ張られて、空隙がより大きくなる。そのため、熱収縮による応力(4)が集中せず、局所短絡が切断されにくい。
図7は、熱可塑性ポリマー層を有しないこと以外は図4と同様にして、蓄電デバイス(100)に低温充放電サイクル及び圧力をかけることで局所短絡(7)を生じた際の挙動を示す模式図である。熱可塑性ポリマー層を有しないため無機粒子層が変形しやすく、図4の場合と比べて熱収縮による応力の一部が無機粒子層の変形によって吸収される。そのため、熱収縮による応力がポリオレフィン基材層と無機粒子層との界面に集中しにくく、局所短絡が切断されにくい。
図8は、非架橋ポリオレフィン基材層(1a)を用いること以外は図7と同様にして、蓄電デバイス(100)に低温充放電サイクル及び圧力をかけることで局所短絡(7)を生じた際の挙動を示す模式図である。熱可塑性ポリマー層を有しないため無機粒子層が変形しやすく熱収縮による応力(4)の一部が無機粒子層の変形によって吸収され、さらに、非架橋ポリオレフィン基材層が破断し、局所短絡の周囲に空隙が形成される。そのため、熱収縮による応力(4)がポリオレフィン基材層と無機粒子層との界面に集中せず、局所短絡が切断されにくい。
ポリオレフィン基材層は、耐酸化還元劣化及び緻密で均一な多孔質構造を得るため、シラン変性ポリオレフィン、及びシラン変性ポリオレフィン以外のポリオレフィン(以下、「シラン未変性ポリオレフィン」ともいう。)の両方を含むことが好ましい。シラン変性ポリオレフィン(以下、「樹脂a」と略記する。)と組み合わせるシラン未変性ポリオレフィンとしては、好ましくは、粘度平均分子量(Mv)が2,000,000以上のポリオレフィン(以下、「樹脂b」と略記する。)、Mvが2,000,000未満のポリオレフィン(以下、「樹脂c」と略記する。)、又はこれらの組み合わせである。樹脂aに、特定の範囲の分子量を有する2種のシラン未変性ポリオレフィンを組み合わせることで、応力集中による局所短絡の切断を起こしやすく、より安全性に優れる蓄電デバイスを得ることができる。樹脂bとしては、より好ましくは、粘度平均分子量(Mv)が2,000,000以上のポリエチレンであり、樹脂cとしては、より好ましくは、Mvが2,000,000未満のポリエチレンである。
蓄電デバイスのサイクル特性と安全性の観点から、樹脂bの数平均分子量(Mn)は、好ましくは200,000~1,400,000、より好ましくは210,000~1,200,000、更に好ましくは250,000~1,000,000である。同様の観点から、樹脂bの重量平均分子量(Mw)は、好ましくは1,760,000~8,800,000、より好ましくは1,900,000~7,100,000、更に好ましくは2,000,000~6,200,000である。同様の観点から、樹脂bのMw/Mnは、好ましくは3.0~12、より好ましくは4.0~9.0、更に好ましくは6.0~8.8である。同様の観点から、樹脂bのMvは、好ましくは2,000,000~10,000,000、より好ましくは2,100,000~8,500,000、更に好ましくは3,000,000~7,800,000、より更に好ましくは3,300,000~6,500,000である。
蓄電デバイスのサイクル特性と安全性の観点から、樹脂cの数平均分子量(Mn)は、好ましくは20,000~250,000、より好ましくは30,000~200,000、更に好ましくは32,000~150,000、より更に好ましくは40,000~110,000である。同様の観点から、樹脂cの重量平均分子量(Mw)は、好ましくは230,000~2,000,000、より好ましくは280,000~1,600,000、更に好ましくは320,000~1,200,000、より更に好ましくは400,000~1,000,000である。同様の観点から、樹脂cのMw/Mnは、好ましくは3.0~12、より好ましくは4.0~9.0、更に好ましくは6.0~8.8である。同様の観点から、樹脂cのMvは、好ましくは250,000~2,500,000、より好ましくは300,000~1,600,000、更に好ましくは320,000~1,100,000、より更に好ましくは450,000~800,000である。
ポリオレフィン基材層における樹脂aの含有量は、蓄電デバイスの安全性の観点から、ポリオレフィン原料の固形分の全質量を基準として、好ましくは3質量%~70質量%であり、より好ましくは5質量%~60質量%、さらに好ましくは10質量%~50質量%である。ポリオレフィン基材層におけるシラン未変性ポリオレフィンの合計含有量は、高いイオン透過性及び高い安全性の観点から、ポリオレフィン原料の固形分の全質量を基準として、好ましくは40質量%~95質量%、より好ましくは50質量%~90質量%、更に好ましくは60質量%~80質量%である。
同様の観点から、ポリオレフィン原料中の樹脂bの含有量は、ポリオレフィン原料の固形分の全質量を基準として、好ましくは3質量%~70質量%であり、より好ましくは5質量%~60質量%、さらに好ましくは5質量%~40質量%である。
同様の観点から、ポリオレフィン原料中の樹脂cの含有量は、ポリオレフィン原料の固形分の全質量を基準として、好ましくは1質量%~90質量%であり、より好ましくは5質量%~60質量%、さらに好ましくは5質量%~50質量%である。
同様の観点から、ポリオレフィン原料中の樹脂bに対する樹脂aの質量比(樹脂aの質量/樹脂bの質量)は、好ましくは0.07~12.00であり、より好ましくは0.10~11.00であり、さらに好ましくは0.50~10.00である。
同様の観点から、ポリオレフィン原料中の樹脂cに対する樹脂aの質量比(樹脂aの質量/樹脂cの質量)は、好ましくは0.07~12.00であり、より好ましくは0.10~11.00であり、さらに好ましくは0.20~10.00である。
同様の観点から、ポリオレフィン原料中の樹脂cに対する樹脂bの質量比(樹脂bの質量/樹脂cの質量)は、好ましくは0.06~7.00であり、より好ましくは0.10~7.00であり、さらに好ましくは0.12~6.90である。
ポリオレフィン基材層の膜厚は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、さらに好ましくは3.0μm以上である。ポリオレフィン基材層の膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。ポリオレフィン基材層の膜厚は、好ましくは100μm以下であり、より好ましくは50μm以下であり、さらに好ましくは30μm以下である。ポリオレフィン基材層の膜厚が100μm以下であることにより、イオン透過性がより向上する傾向にある。
ポリオレフィン基材層の150℃熱収縮率は、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上である。150℃熱収縮率が10%以上であることにより、熱収縮時にかかる応力が大きくなるため局所短絡を切断しやすく、熱暴走をより効果的に防止することができる。
〈無機粒子層〉
蓄電デバイス用セパレータは、無機粒子を含むB層(以下、本願明細書において「無機粒子層」ともいう。)を更に備える。
無機粒子は、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、およびガラス繊維からなる群から選択される少なくとも一つであることが好ましい。アルミナとしては、α-アルミナ、β-アルミナ、γ-アルミナ等のアルミナ、ベーマイト等のアルミナ水和物が挙げられる。リチウムイオン電池に用いられる電解質に対する安定性が高い点で、α-アルミナ、又はベーマイトが好ましい。
無機粒子層に含まれる無機粒子の含有量は、無機粒子層の全質量を基準として、好ましくは5質量%~99質量%、より好ましくは10質量%~99質量%、更に好ましくは50質量%~98質量%、より更に好ましくは90質量%~97質量%である。無機粒子の含有量が5質量%以上であると、セパレータの弾性率を高めることができ、より耐熱性の高いセパレータを得ることができる。無機粒子の含有量が99質量%以下であると、セパレータからの粉落ちを防止することができる。
無機粒子層は、無機粒子に加えて樹脂バインダを更に含む無機多孔質層であることが好ましい。樹脂バインダとしては、スチレン-ブタジエン樹脂、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ポリフッ化ビニリデン等のフッ素樹脂等の樹脂材料を用いることができる。無機粒子層に含まれる樹脂バインダの含有量は、無機粒子層の全質量を基準として、好ましくは1質量%~50質量%、より好ましくは3質量%~10質量%である。樹脂バインダが1質量%以上であると、セパレータからの粉落ちを防止することができる。無機粒子の含有量が50質量%以下であると、セパレータの弾性率を高めることができ、より耐熱性の高いセパレータを得ることができる。
樹脂バインダのガラス転移温度(Tg)は、好ましくは-50℃~90℃であり、より好ましくは-30℃~-10度である。樹脂バインダのガラス転移温度(Tg)が-50℃以上であると接着性に優れ、90℃以下であるとイオン透過性に優れる傾向にある。
無機粒子層の膜厚は、好ましくは0.5μm以上、より好ましくは1.0μm以上、さらに好ましくは2.0μm以上である。無機粒子層の膜厚が0.5μm以上であることにより、より耐熱性の高いセパレータを得ることができる。無機粒子層の膜厚は、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは6μm以下である。無機粒子層の膜厚が20μm以下であることにより、イオン透過性がより向上する傾向にある。
無機粒子層の弾性率は、好ましくは0.05GPa以上、より好ましくは0.1GPa以上である。無機粒子層の弾性率が0.05GPa以上であると、局所短絡形成時に無機粒子層とポリオレフィン基材層との界面に応力集中を発生させやすく、熱暴走をより効果的に防止することができる。無機粒子層の弾性率は、好ましくは10GPa以下、より好ましくは5GPa以下、更に好ましくは2GPa以下である。無機粒子層の弾性率が10GPa以下であると、セパレータのハンドリング性が向上する。
〈熱可塑性ポリマー層〉
蓄電デバイス用セパレータは、熱可塑性ポリマーを含むC層(以下、本願明細書において「熱可塑性ポリマー層」ともいう。)を更に備える。熱可塑性ポリマー層は、無機粒子層の表面のうち、ポリオレフィン基材層に接していない面に積層されていることが好ましい。
熱可塑性ポリマーとしては、ポリエチレン、ポリプロピレン、α-ポリオレフィン等のポリオレフィン樹脂;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー又はこれらを含むコポリマー;ブタジエン、イソプレン等の共役ジエンを単量体ユニットとして含むジエン系ポリマー若しくはこれらを含むコポリマー、又はこれらの水素化物;(メタ)アクリレート、(メタ)アクリル酸等を単量体ユニットとして含み、かつポリアルキレングリコールユニットを有していないアクリル系ポリマー、(メタ)アクリレート、(メタ)アクリル酸等を単量体ユニットとして含み、かつ1つ又は2つのポリアルキレングリコールユニットを有するアクリル系ポリマー、若しくはこれらを含むコポリマー、又はその水素化物;エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;ポリエチレングリコール、ポリプロピレングリコール等の、重合性官能基を有していないポリアルキレングリコール;ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエステル等の樹脂;アルキレングリコールユニットの繰り返し数が3以上であるエチレン性不飽和単量体を共重合ユニットとして有するコポリマー;及びこれらの組み合わせが挙げられる。蓄電デバイスの安全性を向上させる観点から、熱可塑性ポリマーは、アクリル系ポリマーが好ましく、より好ましくは(メタ)アクリル酸エステル又は(メタ)アクリル酸の重合単位を重合単位として含むポリマーである。
熱可塑性ポリマーは、蓄電デバイスの安全性を向上させる観点から、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物を含むこともまた好ましい。
熱可塑性ポリマーのガラス転移温度(Tg)は、-50℃~150℃であることが好ましい。熱可塑性ポリマーのガラス転移温度(Tg)が-50℃以上であると接着性に優れ、150℃以下であるとイオン透過性に優れる傾向にある。
熱可塑性ポリマー層が無機粒子層の表面を被覆する面積割合は、好ましくは5%以上、より好ましくは20%以上、更に好ましくは50%以上である。熱可塑性ポリマー層の面積割合が5%以上であると、電極との接着性を向上させることができる。熱可塑性ポリマー層が無機粒子層の表面を被覆する面積割合は、好ましくは98%以下である。これによって、ポリオレフィン基材層の閉孔を抑制し、高い透気度を維持することができる。
熱可塑性ポリマー層を無機粒子層から180°の角度をなすように剥離するときの剥離強度(180°剥離強度)は、好ましくは0.01N/m以上、より好ましくは0.5N/m以上である。熱可塑性ポリマー層の180°剥離強度が0.01N/m以上であると、接着力に優れ、したがって無機粒子層の変形を抑え、安全性に優れた蓄電デバイス用セパレータを得ることができる。熱可塑性ポリマー層の180°剥離強度は、ハンドリング性の観点から、好ましくは30N/m以下、より好ましくは10N/m以下である。
熱可塑性ポリマー層の膜厚は、好ましくは0.1μm以上、より好ましくは0.5μm以上である。熱可塑性ポリマー層の膜厚が0.1μm以上であると、接着力に優れ、したがって無機粒子層の変形を抑え、安全性に優れた蓄電デバイス用セパレータを得ることができる。熱可塑性ポリマー層の膜厚は、イオン透過性を高める観点から、好ましくは3μm以下、より好ましくは1μm以下である。
〈島構造〉
A層は、100μm四方面積でTOF-SIMS測定を行ったとき、アルカリ金属及び/又はアルカリ土類金属を含む島構造が少なくとも1つ以上検出されることが好ましい。島構造の大きさは、好ましくは9μm~245μm、より好ましくは10μm~230μm、更に好ましくは11μm~214μmである。蓄電デバイス用セパレータは、100μm四方面積のTOF-SIMS測定を行ったときに、カルシウムを含む島構造が2つ以上検出されることが更に好ましい。このとき、島構造の重心点間距離は、好ましくは6μm~135μm、より好ましくは8μm~130μm、更に好ましくは10μm~125μmである。図9は、TOF-SIMS測定における、アルカリ金属及び/又はアルカリ土類金属を含む島構造の模式図である。図10に模式的に示すように、100μm四方面積で島構造(9)及び島構造同士の距離(d)を測定することができる。島構造の大きさ、重心点間距離を制御する方法としては、押出機の回転数、ポリオレフィン樹脂原料の分子量等により調整することが挙げられる。
LiFSOを含む電解液を使用した蓄電デバイスを製作する際に、各部材の持ち込む水分量によるばらつき等により、アルカリ金属及び/又はアルカリ土類金属をポリオレフィン基材層内に凝集した島構造で不均一に分布させることでHFをアルカリ金属及び/又はアルカリ土類金属との塩としてトラップすることができる。アルカリ金属及び/又はアルカリ土類金属は島構造の表面から段階的に消費されていくため、トラップ効果を長期間維持することができる。それによって、電池の劣化を長期的に抑制できるため好ましい。シロキサン架橋されたセパレータは、架橋後に過剰なHFが存在すると、架橋反応の逆反応である開結合反応を触媒する可能性がある。そのため、不均一に分布するアルカリ金属及び/又はアルカリ土類金属でHFを持続的にトラップすることで、開結合反応を抑制し、シラン架橋セパレータの架橋構造の長期安定性を改善できると推測される。
アルカリ金属としてはリチウム、ナトリウム及びカリウム、アルカリ土類金属としては、マグネシウム、カルシウム及びストロンチウム等が挙げられる。島構造は、好ましくはアルカリ土類金属を含み、アルカリ土類金属は、好ましくはカルシウムである。ポリオレフィン基材層内にカルシウムを島構造の形で不均一に分布させることで、カルシウムが系内のHFをCaFとして消費し、HF濃度をより効率的に制御することが可能である。カルシウムは島構造の表面から徐々に消費されていくため、短期間で全て消費し尽くされることなく、トラップ効果を長期間維持することができると推測される。それによって、電池の劣化を長期的に抑制できるため好ましい。シロキサン架橋されたセパレータは、架橋後に過剰なHFが存在すると、架橋反応の逆反応である開結合反応を触媒する可能性がある。そのため、不均一に分布するカルシウムでHFを持続的にトラップすることで、開結合反応を抑制し、シラン架橋セパレータの架橋構造の長期安定性を改善できると推測される。電解質にLiPFを含む場合も、同様に水分量のばらつき等による過剰量のFアニオンの発生が考えられる。ポリオレフィン基材層内にカルシウムを含む島構造を設けることでFアニオンをトラップし、同様にシロキサン結合の安定性を確保でき、長期間に亘ってセパレータの架橋構造を維持できることが実験的に分かった。
〈蓄電デバイス用セパレータの諸特性〉
蓄電デバイス用セパレータの気孔率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。セパレータの気孔率が20%以上であることにより、イオンの急速な移動に対する追従性がより向上する傾向にある。一方、セパレータの気孔率は、好ましくは80%以下、より好ましくは70%以下、さらに好ましくは60%以下である。セパレータの気孔率が80%以下であることにより、膜強度がより向上し、自己放電がより抑制される傾向にある。
蓄電デバイス用セパレータの透気度は、膜の体積100cm当たり、好ましくは50秒以上、より好ましくは60秒以上、更に好ましくは70秒以上である。セパレータの透気度が50秒以上であることにより、膜厚と気孔率と平均孔径のバランスがより向上する傾向にある。セパレータの透気度は、膜の体積100cm当たり、好ましくは400秒以下、より好ましくは300秒以下、更に好ましくは250秒以下、より更に好ましくは200秒以下である。セパレータの透気度が400秒以下であることにより、イオン透過性がより向上する傾向にある。
蓄電デバイス用セパレータの膜厚は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、さらに好ましくは3.0μm以上である。セパレータの膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。セパレータの膜厚は、好ましくは100μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下である。セパレータの膜厚が100μm以下であることにより、イオン透過性がより向上する傾向にある。
蓄電デバイス用セパレータの150℃熱収縮率および電解液中の150℃熱収縮率は、好ましくは50%以下であり、より好ましくは30%以下であり、さらに好ましくは10%以下である。セパレータの150℃熱収縮率および電解液中の150℃熱収縮率が50%以下であることにより、局所短絡発生時の電池安全性をより向上させることが出来る。蓄電デバイス用セパレータの150℃熱収縮率および電解液中の150℃熱収縮率は、好ましくは0.1%以上であり、より好ましくは0.2%以上であり、さらに好ましくは0.3%以下である。セパレータの150℃熱収縮率および電解液中の150℃熱収縮率が0.1%以上であることにより、気孔率と突刺強度のバランスがより向上する傾向にある。
内部短絡などの原因で電池が異常発熱を起こすと、高温になったセパレータが変形を起こす可能性がある。本願明細書において、この現象を「熱応答」と呼び、熱応答によるセパレータの面積変化率を「熱応答指数」と呼ぶ。熱による結晶性高分子の変形は非晶部の無配向化、結晶部の繊維構造のラメラ構造化などが原因で引き起こされることが報告されており、セパレータの熱応答指数は、ポリオレフィン基材層を構成する高分子樹脂中の分子鎖のうち、結晶部・非晶部が上記変化をおこすための活性化エネルギーを超えた分子鎖の数に関係すると考えることができる。ところで、高分子の分子運動は主鎖の屈曲性(分子内相互作用)と分子間相互作用によって決まる。特に高分子固体の場合後者が重要な役割を果たし、高分子の温度を上げていくと分子間相互作用が弱まり、ミクロブラウン運動・マクロブラウン運動が活発化し結晶部・非晶部の変化が起きる。従って結晶部の高分子鎖のラメラ構造への移行・非晶部の高分子鎖の無配向化がおきるための活性化エネルギーは分子間相互作用に依存すると考えることができる。また、分子間相互作用は高分子の分子量に依存する。高分子の分子量分布はその製法により異なるが、zimm型分布、wesslau型分布(対数正規分布)、などの分布関数で近似されることが多い。従って高分子中の分子鎖ごとの上記活性化エネルギーの分布もこれらの分布関数に従うと考えることができる。セパレータの熱応答指数を、上記活性エネルギーを超えた分子鎖の累積数と考えると、熱応答は累積分布関数、例えばシグモイド関数により近似できることが予想できる。実際、発明者らが蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数と温度の関係を、最小二乗法を用いて下記式(1):
Figure 0007462701000022
にフィッティングしたところ、決定係数R2が0.95以上となるようなmax、T、rateが存在することが分かった。式中でmaxは熱応答指数の収束値に、Tは熱応答指数の変曲点に相当する。また式中でrateは熱応答指数の勾配、すなわち変形の激しさに関連するパラメータである。ポリオレフィン微多孔膜において、加熱による変形量は内部の空隙率電解液浸漬後の蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数と温度の関係を、最小二乗法を用いて式(1)式に、決定係数R2が0.95以上となるようにフィッティングしたとき、rateの値は、好ましくは3.5以上であり、より好ましくは4.0以上であり、さらに好ましくは4.5以上である。上記rateが大きいほど熱応答はゆっくりと進行し、セパレータの熱応答に周囲の電極が巻き込まれることを防ぐことが出来る。熱応答による電池の破壊を防ぐ観点から、上記rateの値が3.5以上であることが好ましい。上記rateの値は、好ましくは150以下であり、より好ましくは100以下であり、さらに好ましくは50μm以下である。上記rateが小さいほど熱応答は急速に進行し、局所短絡発生時にリチウムデンドライトにかかる応力が大きくなる。局所短絡発生時の電池安全性を向上させる観点から、上記rateの値が150以下であることが好ましい。
上記式(1)において、Tの値は、好ましくは110≦T≦150、より好ましくは115≦T≦140、更に好ましくは120≦T≦135である。上記Tの値は、熱応答の起きる温度に関係する。上記Tの範囲が上記範囲内であると、電池の通常の使用温度域でセパレータが熱応答することを防ぎつつ、局所短絡発生時に的確にリチウムデンドライトを折り、局所短絡を停止することが出来る。上記式(1)において、maxの範囲は、好ましくは0.1≦max≦30、より好ましくは0.2≦max≦20、更に好ましくは0.5≦max≦10である。上記maxの値は、熱応答指数の収束値に関係する。上記maxの範囲が上記範囲内であると、局所短絡時にセパレータの熱応答による内部短絡の発生を防ぐことが出来る。
上記式(1)においてrate、T、maxの値を制御する方法として、上記内容を鑑みるに、ポリオレフィン基材の分子量分布を調整する方法、および熱変形を抑制する効果を有する無機塗工層の機械的強度を制御する方法が考えられる。例えば、ポリオレフィン原料として、Mv=200万~900万のポリオレフィン(原料b)、及びMv=50万~200万のポリオレフィン(原料c)、そして、シラン変性ポリオレフィン原料としてMv=2万~15万のシラン変性ポリオレフィン(原料a)の、合計3種類を用いることが好ましい。さらに好ましくは、それぞれの分子量に応じて、含有量の比率を調整する。さらに好ましくは、下記式(2)で計算されるポリオレフィン基材層の目付換算突刺強度と無機塗工層の目付の比の常用対数を調整することで、rate、T、maxの値を上記範囲内に収めることが容易である。なお、上記の原料組成においては、原料aは、ポリオレフィン基材層の全質量中の比率が3質量%~70質量%であり、それ以外に含まれる原料bと原料cの比率(樹脂bの質量/樹脂cの質量)が、0.06~7.00であることが好ましい。上記の常用対数は、0.1~3であることが好ましい。
Figure 0007462701000023
II.第二の実施形態における蓄電デバイス用セパレータ
〈ポリオレフィン基材層〉
セパレータ基材を構成するポリオレフィンに含まれる官能基は、ポリオレフィンの結晶部に取り込まれず、非晶部において架橋されると考えられるので、第二の実施形態に係るセパレータは、蓄電デバイスへ収納された後に、周囲の環境又は蓄電デバイス内部の化学物質を利用して、架橋構造を形成し、それにより内部応力の増加又は作製された蓄電デバイスの変形を抑制して、釘刺試験時の安全性、熱収縮性とホットボックス試験性、及び高温バーインパクト破壊試験性の少なくとも一つを向上させることができる。
(1)ポリオレフィンの官能基同士の縮合反応は、例えば、ポリオレフィンに含まれる2つ以上の官能基Aの共有結合を介した反応であることができる。(3)ポリオレフィンの官能基と他の種類の官能基との反応は、例えば、ポリオレフィンに含まれる官能基Aと官能基Bの共有結合を介した反応であることができる。
また、(2)ポリオレフィンの官能基と蓄電デバイス内部の化学物質との反応において、例えば、ポリオレフィンに含まれる官能基Aは、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかと、又は基材としてのポリオレフィン製微多孔膜に含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかと、共有結合又は配位結合を形成することができる。ポリオレフィン製微多孔膜に電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかを含有させるタイミングは問わず、セパレータの蓄電デバイスへの収納前、収納中、又は収納後でよい。また、反応(2)によれば、セパレータ内部だけでなく、セパレータと電極の間又はセパレータと固体電解質界面(SEI)の間にも架橋構造を形成して、蓄電デバイスの複数の部材間の強度を向上させることができる。
反応(1)~(3)のいずれかにより形成される架橋構造は、ポリオレフィンの非晶部が架橋された非晶部架橋構造であることが好ましい。セパレータ基材を構成するポリオレフィンに含まれる官能基は、ポリオレフィンの結晶部に取り込まれず、非晶部において架橋されると考えられるので、結晶部及びその周辺が架橋し易い従来の架橋型セパレータと比べて、シャットダウン機能と高温耐破膜性を両立しながら内部応力の増加又は作製された蓄電デバイスの変形を抑制することができ、ひいては蓄電デバイスの釘刺試験時の安全性、熱収縮性とホットボックス試験性、及び高温バーインパクト破壊試験性の少なくとも一つを確保することができる。同様の観点から、ポリオレフィンの非晶部は、より好ましくは、選択的に架橋されており、さらに好ましくは、結晶部よりも有意に架橋されている。シラン架橋構造などの非晶部架橋構造を有するポリオレフィン製微多孔膜のゲル化度は、好ましくは30%以上、より好ましくは70%以上である。
上記架橋反応機構・架橋構造については明らかではないが、本発明者らは以下のように考える。
(1)高密度ポリエチレン製微多孔膜における結晶構造
高密度ポリエチレン等に代表されるポリオレフィン樹脂は図10に示すように、一般に結晶性高分子であり、結晶構造のラメラ(結晶部)、非晶部およびそれらの間の中間層部に分かれた高次構造を有する。結晶部、および結晶部と非晶部の間の中間層部においては、高分子鎖の運動性は低く、切り分けができないが、固体粘弾性測定では0~120℃領域に緩和現象が観測できる。他方、非晶部は高分子鎖の運動性が非常に高く、固体粘弾性測定では-150~-100℃領域に観測される。このことが後述するラジカルの緩和又はラジカルの移動反応、架橋反応などに深く関係する。
また、結晶を構成するポリオレフィン分子は単一ではなく、図11に例示されるように、複数の高分子鎖が小さなラメラを形成した後、ラメラが集合化し、結晶となる。このような現象は直接的に観測することが難しい。近年シミュレーションにより、学術的に研究が進められ、明らかになってきた。なお、ここでは、結晶とは、X線構造解析により計測される最小結晶の単位であり、結晶子サイズとして算出できる単位である。このように、結晶部(ラメラ内部)といえども、結晶中にも一部拘束されずに、運動性がやや高い部分が存在すると予測される。
(2)電子線による架橋反応機構
次に、高分子への電子線架橋(以後、EB架橋に省略)反応機構は以下のとおりである。(i)数十kGyから数百kGyの電子線の照射、(ii)反応対象物(高分子)への電子線の透過と二次電子発生、(iii)二次電子による高分子鎖中の水素の引き抜き反応とラジカル発生、(iv)ラジカルによる隣接水素の引き抜きと活性点の移動、(v)ラジカル同士の再結合による架橋反応またはポリエン形成。ここで、結晶部に発生したラジカルについては、運動が乏しいため、長期間に亘り存在し、かつ不純物等が結晶内へ進入できないため、反応・消光の確率が低い。このようなラジカル種は、Stable Radicalと呼ばれており、数ヶ月という長い期間で残存し、ESR測定によって、寿命を明らかにした。結果として、結晶内における架橋反応は乏しいと考えられる。しかし、結晶内部に僅かに存在する、拘束されていない分子鎖又は周辺の結晶-非晶中間層部では、発生したラジカルは、やや長寿命を有する。このようなラジカル種は、Persistent Radicalと呼ばれており、運動性のある環境下では、高い確率で分子鎖間の架橋反応が進行すると考えられる。一方、非結晶部は運動性が非常に高いため、発生したラジカル種は寿命が短く、分子鎖間の架橋反応だけではなく、一本の分子鎖内のポリエン反応も高確率で進行すると考えられる。
以上の様に、結晶レベルのミクロな視野においては、EB架橋による架橋反応は結晶内部又はその周辺が局在していると推測できる。
(3)化学反応による架橋反応機構
ポリオレフィン樹脂中の官能基と蓄電デバイス若しくはポリオレフィン微多孔膜中に含まれる化学物質とを反応させ、又は蓄電デバイス若しくはポリオレフィン微多孔膜中に含まれる化学物質を触媒として用いることが好ましい。
前述のように、ポリオレフィン樹脂には結晶部と非晶部が存在する。しかし、前述の官能基は、立体障害のため結晶内部には存在せず、非晶部に局在する。このことは、一般的に知られており、ポリエチレン鎖状に僅かに含まれるメチル基のようなユニットは結晶中に取り込まれることはあるが、エチル基より嵩高いグラフトは取り込まれることはない(非特許文献2)。このため、電子線架橋と異なる反応による架橋点は、非晶部のみに局在する。
(4)架橋構造の違いと効果との関係
電池内部の化学反応による架橋反応では、反応生成物のモルフォロジーが相違する。本開示に至るまでの研究では、架橋構造の解明及び構造変化に伴うに微多孔膜の物性変化を明らかにするために、以下の実験により現象解明に至った。
まず、引張破断試験による膜の機械的物性を調査した。また、引張破断試験を行うと同時に、放射光を用いたin-situ X線構造解析により、結晶構造変化について解析した。結果は、EB架橋または化学架橋(前)未実施の膜を基準にすると、EB架橋膜は、ひずみ量が大きくなるにつれ、結晶部の細分化が抑制されていることが分かった。これは結晶部内又は周辺が選択的に架橋されたためである。それに伴い、ヤング率と破断強度が著しく向上し、高い機械的強度を発現できた。一方、化学架橋膜は、架橋反応前後に、結晶の細分化に違いが見られないため、非結晶部が選択的に架橋されたことを示唆する。また、架橋反応前後に、機械的強度にも変化がなかった。
次に、ヒューズ/メルトダウン特性試験により、両者の結晶融解時の挙動を調べた。結果、EB架橋処理した膜は、ヒューズ温度が著しく高くなり、メルトダウン温度は200℃以上まで上昇する。一方、化学架橋膜は、架橋処理前後において、ヒューズ温度は変化が見られず、メルトダウン温度は200℃以上まで上昇したことが確認された。このことから、結晶融解によって発生するヒューズ特性において、EB架橋膜は、結晶部周辺が架橋したため、融解温度の上昇、融解速度の低下が原因であったと考えられる。一方、化学架橋膜は、結晶部に架橋構造がないため、ヒューズ特性へ変化を及ぼさないと断定した。また、200℃前後の高温領域では、両者とも結晶融解後、架橋構造を有するため、樹脂物全体がゲル状態で安定化でき、良いメルトダウン特性を得られる。
上記の知見を下表にまとめる。
Figure 0007462701000024
第二の実施形態に係るセパレータの構成要素について以下に説明する。
上記で説明された基材としてのポリオレフィン製微多孔膜は、単数のポリオレフィン含有微多孔層から成る単層膜、複数のポリオレフィン含有微多孔層から成る多層膜、又はポリオレフィン系樹脂層とそれ以外の樹脂を主成分として含む層との多層膜であることができる。
2つのポリオレフィン含有微多孔層から形成される二層膜の場合には、両層のポリオレフィン組成は異なることができる。また、3つ以上のポリオレフィン含有微多孔層から形成される多層膜の場合には、その最外部と最内部のポリオレフィン組成は異なることができ、例えば三層膜であることができる。
基材としての多層膜は、ポリオレフィンを含むA層と、ポリオレフィンを含むB層とを少なくとも1層ずつ備える2層以上の積層構造を有することが好ましく、より好ましくは、A層の両側(両面)にB層をそれぞれ1層ずつ備える3層以上の積層構造を有する。積層構造は、上記A層及びB層をそれぞれ1層ずつ有する限りにおいて、「A層-B層」の二層構造、又は「B層-A層-B層」の三層構造に限定されない。例えば、ポリオレフィン微多孔膜は、いずれか一方又は両方のB層の上や、A層とB層の間に一つ又は複数の更なる層が形成されていてもよい。
A層及びB層は、ポリオレフィンを含み、好ましくはポリオレフィンから構成される。A層及びB層のポリオレフィンの形態は、ポリオレフィンの微多孔質体、例えば、ポリオレフィン系繊維の織物(織布)、ポリオレフィン系繊維の不織布などであってよい。
〈ポリオレフィン〉
ポリオレフィンとしては、特に限定されないが、例えば、エチレン若しくはプロピレンのホモ重合体、又はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、及びノルボルネンから成る群より選ばれる少なくとも2つのモノマーから形成される共重合体などが挙げられる。この中でも、孔が閉塞せずに、より高温で熱固定(「HS」と略記することがある)が行えるという観点から、高密度ポリエチレン、低密度ポリエチレン、又は超高分子量ポリエチレン(UHMWPE)が好ましく、高密度ポリエチレン又はUHMWPEがより好ましい。一般に、UHMWPEの重量平均分子量は、1,000,000以上であることが知られている。なお、ポリオレフィンは、1種単独で用いても、2種以上を併用してもよい。
また、ポリオレフィン製微多孔膜は、重量平均分子量(Mw)が2,000,000未満のポリオレフィンを含むことが好ましく、Mwが2,000,000未満のポリオレフィンを、ポリオレフィン全体に対して、より好ましくは40質量%以上、さらに好ましくは80質量%以上の割合で含む。Mwが2,000,000未満のポリオレフィンを用いることにより、蓄電デバイスの加熱試験等において早期にポリマーの収縮の緩和が起き、特に加熱安全性試験において安全性を保ち易い傾向にある。なお、Mwが2,000,000未満のポリオレフィンを用いる場合を、1,000,000以上のポリオレフィンを用いる場合と比較すると、得られる微多孔膜の厚み方向の弾性率が小さくなる傾向にあるため、比較的にコアの凹凸が転写され易い微多孔膜が得られる。セパレータを構成するポリオレフィン製微多孔膜全体の重量平均分子量は、好ましくは100,000以上2,000,000以下であり、より好ましくは150,000以上1,500,000以下である。
〈1種又は2種以上の官能基を有するポリオレフィン〉
ポリオレフィン製微多孔膜は、架橋構造の形成、耐酸化還元劣化及び緻密で均一な多孔質構造の観点から、1種又は2種以上の官能基を有するポリオレフィンとして、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンを含むことが好ましい。なお、本明細書では、官能基変性ポリオレフィンとは、ポリオレフィンの製造後に官能基を結合させた物をいう。官能基は、ポリオレフィン骨格に結合するか、又はコモノマーに導入可能なものであり、好ましくは、ポリオレフィン非晶部の選択的な架橋に関与するものであり、例えば、カルボキシル基、ヒドロキシ基、カルボニル基、重合性不飽和炭化水素基、イソシアネート基、エポキシ基、シラノール基、ヒドラジド基、カルボジイミド基、オキサゾリン基、アセトアセチル基、アジリジン基、エステル基、活性エステル基、カーボネート基、アジド基、鎖状又は環状ヘテロ原子含有炭化水素基、アミノ基、スルフヒドリル基、金属キレート基、及びハロゲン含有基から成る群から選択される少なくとも1つであることができる。
セパレータの強度、イオン透過性、耐酸化還元劣化及び緻密で均一な多孔質構造などの観点から、セパレータは、1種又は2種以上の官能基を有するポリオレフィンとUHMWPEの両方を含むことが好ましい。1種又は2種以上の官能基を有するポリオレフィンとUHMWPEを併用する場合、好ましくは、セパレータにおいて、1種又は2種以上の官能基を有するポリオレフィンとUHMWPEの質量比(1種又は2種以上の官能基を有するポリオレフィンの質量/超高分子量ポリエチレンの質量)が、0.05/0.95~0.80/0.20である。
〈架橋構造〉
ポリオレフィン製微多孔膜に含まれるポリオレフィンの架橋構造は、耐蓄電デバイスの釘刺試験における安全性、熱収縮性とホットボックス試験性、及び高温バーインパクト破壊試験性の少なくとも一つに寄与し、好ましくはポリオレフィンの非晶部に形成される。架橋構造は、例えば、共有結合、水素結合又は配位結合のいずれかを介した反応により形成されることができる。中でも、共有結合を介した反応は、下記反応(I)~(IV):
(I)複数の同一官能基の縮合反応
(II)複数の異種官能基間の反応
(III)官能基と電解液の連鎖縮合反応
(IV)官能基と添加剤の連鎖縮合反応
から成る群から選択される少なくとも1つであることが好ましい。
また、配位結合を介した反応は、下記反応(V):
(V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
であることが好ましい。
反応(I)
セパレータの第一官能基をAとして、反応(I)の模式的スキーム及び具体例を以下に示す。
Figure 0007462701000025
{式中、Rは、置換基を有していてもよい炭素数1~20のアルキル基又はヘテロアルキル基である。}
反応(I)のための官能基Aがシラノール基である場合には、ポリオレフィンは、シラングラフト変性されていることが好ましい。シラングラフト変性ポリオレフィンは、主鎖がポリオレフィンであり、その主鎖にアルコキシシリルをグラフトとして有する構造で構成されている。なお、前記アルコキシシリルに置換したアルコキシドは、例えば、メトキシド、エトキシド、ブトキシドなどが挙げられる。例えば、上記式中、Rは、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチルなどであることができる。また、主鎖とグラフト間は共有結合で繋いでおり、アルキル、エーテル、グリコール又はエステルなどの構造が挙げられる。セパレータの製造プロセスを考慮すると、シラングラフト変性ポリオレフィンは、架橋処理工程の前の段階では、炭素に対するケイ素の割合(Si/C)が、0.2~1.8%であることが好ましく、0.5~1.7%であることがより好ましい。
好ましいシラングラフト変性ポリオレフィンは、密度が0.90~0.96g/cmであり、かつ190℃でのメルトフローレート(MFR)が、0.2~5g/分である。シラングラフト変性ポリオレフィンは、セパレータの製造プロセスにおいて樹脂凝集物の発生を抑制し、かつ電解液と接触するときまでシラン架橋性を維持するという観点から、脱水縮合触媒を含有するマスターバッチ樹脂ではないことが好ましい。脱水縮合触媒は、アルコキシシリル基含有樹脂のシロキサン結合形成反応の触媒としても機能することが知られている。本明細書では、押出機を用いた樹脂混練の連続プロセス中に脱水縮合触媒(例えば、有機金属含有触媒)をアルコキシシリル基含有樹脂又は他の混練樹脂へ事前に添加し、コンパウンドした物をマスターバッチ樹脂と呼ぶ。
反応(II)
セパレータの第一官能基をA、かつ第二官能基をBとして、反応(II)の模式的スキーム及び具体例を以下に示す。
Figure 0007462701000026
Figure 0007462701000027
Figure 0007462701000028
Figure 0007462701000029
反応(I)と反応(II)は、触媒作用を受けることができ、例えば、セパレータが組み込まれる蓄電デバイス内部の化学物質により触媒的に促進されることができる。化学物質は、例えば、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかであることができる。
反応(III)
セパレータの第一官能基をA、かつ電解液をSolとして、反応(III)の模式的スキーム及び具体例を以下に示す。
Figure 0007462701000030
Figure 0007462701000031
Figure 0007462701000032
Figure 0007462701000033
反応(IV)
セパレータの第一官能基をA、所望により組み込まれる第二官能基をB、かつ添加剤をAddとして、反応(IV)の模式的スキームを以下に示す。
Figure 0007462701000034
反応(IV)は、上記スキームにおいて点線で表される共有結合の形成の観点から、セパレータを構成する化合物Rxと添加剤(Add)を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であることが好ましい。化合物Rxは、セパレータに含まれるポリオレフィン、例えばポリエチレン又はポリプロピレンなどでよく、好ましくは、ポリオレフィンは、官能基xにより、例えば、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つにより変性される。
複数の化合物Rxは、添加剤としての化合物Ryを介して架橋されるので、化合物Ryは、2つ以上の連結反応ユニットyを有することが好ましい。複数の連結反応ユニットyは、化合物Rxの官能基xと求核置換反応、求核付加反応又は開環反応を起こすことができる限り、任意の構造又は基でよく、置換又は非置換でよく、ヘテロ原子又は無機物を含んでよく、互いに同一でも異なってもよい。また、化合物Ryは鎖状構造を有するときには、複数の連結反応ユニットyは、それぞれ独立に、末端基であるか、主鎖に組み込まれるか、又は側鎖若しくはペンダントであることができる。
反応(IV)が求核置換反応である場合、あくまでも一例として、化合物Rxの官能基xを求核性基と見なし、かつ化合物Ryの連結反応ユニットyを脱離基と見なして以下に説明するが、しかしながら、官能基xと連結反応ユニットyは、求核性に応じて、いずれも脱離基になることができるものとする。
求核試剤の観点から、化合物Rxの官能基xは、酸素系求核基、窒素系求核基、硫黄系求核基であることが好ましい。酸素系求核基としては、水酸基、アルコキシ基、エーテル基、カルボキシル基などが挙げられ、中でも-OH及び-COOHが好ましい。窒素系求核基としては、アンモニウム基、第一アミノ基、第二アミノ基などが挙げられ、中でも-NH及び-NH-が好ましい。硫黄系求核基としては、例えば、-SH、チオエーテル基などが挙げられ、-SHが好ましい。
反応(IV)が求核置換反応である場合には、脱離基の観点から、化合物Ryの連結反応ユニットyとしては、CHSO-、CHCHSO-などのアルキルスルホニル基;アリールスルホニル基(-ArSO-);CFSO-、CClSO-などのハロアルキルスルホニル基;CHSO -、CHCHSO -などのアルキルスルホネート基;アリールスルホネート基(ArSO -);CFSO -、CClSO -などのハロアルキルスルホネート基;及び複素環式基が好ましく、これらを単独で又は複数種の組み合わせとして使用することができる。複素環に含まれるヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられ、中でも、脱離性の観点から、窒素原子が好ましい。複素環に窒素原子が含まれている脱離基としては、下記式(y-1)~(y-6):
Figure 0007462701000035
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000036
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000037
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000038
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000039
{式中、Xは、水素原子又は1価の置換基である。}
Figure 0007462701000040
{式中、Xは、水素原子又は1価の置換基である。}
で表される1価の基が好ましい。
式(y-1)~(y-6)において、Xは、水素原子又は1価の置換基である。1価の置換基としては、例えば、アルキル基、ハロアルキル基、アルコキシル基、ハロゲン原子などが挙げられる。
反応(IV)が求核置換反応であり、かつ化合物Ryが鎖状構造を有する場合には、化合物Ryは、連結反応ユニットyに加えて、鎖状ユニットyとして、下記式(y-1)~(y-6):
Figure 0007462701000041
{式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
Figure 0007462701000042
{式中、nは、1~20の整数である。}
Figure 0007462701000043
{式中、nは、1~20の整数である。}
Figure 0007462701000044
{式中、nは、1~20の整数である。}
Figure 0007462701000045
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
Figure 0007462701000046
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
で表される2価の基から成る群から選択される少なくとも1つを有することが好ましい。また、化合物Ryに複数の鎖状ユニットyが含まれる場合には、それらは、互いに同一でも異なっていてもよく、それらの配列はブロックでもランダムでもよい。
式(y-1)において、mは、0~20の整数であり、架橋網目の観点から、好ましくは1~18である。式(y-1)~(y-6)において、nは、1~20の整数であり、架橋網目の観点から、好ましくは2~19又は3~16である。式(y-5)~(y-6)において、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、鎖状構造の安定性の観点から、好ましくは、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ドデシレン基、о-フェニレン基、m-フェニレン基、又はp-フェニレン基である。
反応(IV)が求核置換反応である場合について、化合物Rxの官能基xと、化合物Ryの連結反応ユニットy及び鎖状ユニットyとの好ましい組み合わせを下記表2~4に示す。
Figure 0007462701000047
Figure 0007462701000048
Figure 0007462701000049
求核置換反応の具体例1として、ポリオレフィンの官能基xが-NHであり、添加剤(化合物Ry)の連結反応ユニットyが、スクシンイミドに由来する骨格であり、かつ鎖状ユニットyが-(O-C-である場合の反応スキームを以下に示す。
Figure 0007462701000050
求核置換反応の具体例2として、ポリオレフィンの官能基xが-SH及び-NHであり、添加剤(化合物Ry)の連結反応ユニットyが、窒素含有環状骨格であり、かつ鎖状ユニットyがо-フェニレンである場合の反応スキームを以下に示す。
Figure 0007462701000051
反応(IV)が求核付加反応である場合、化合物Rxの官能基xと化合物Ryの連結反応ユニットyとが付加反応を起こすことができる。求核付加反応において、化合物Rxの官能基xは、酸素系求核基、窒素系求核基、硫黄系求核基であることが好ましい。酸素系求核基としては、水酸基、アルコキシ基、エーテル基、カルボキシル基などが挙げられ、中でも-OH及び-COOHが好ましい。窒素系求核基としては、アンモニウム基、第一アミノ基、第二アミノ基などが挙げられ、中でも-NH及び-NH-が好ましい。硫黄系求核基としては、例えば、-SH、チオエーテル基などが挙げられ、-SHが好ましい。
求核付加反応において、化合物Ryの連結反応ユニットyは、付加反応性又は原料の入手容易性の観点から、下記式(Ay-1)~(Ay-6):
Figure 0007462701000052
Figure 0007462701000053
Figure 0007462701000054
Figure 0007462701000055
{式中、Rは、水素原子又は1価の有機基である。}
Figure 0007462701000056
Figure 0007462701000057
で表される基から成る群から選択される少なくとも1つであることが好ましい。
式(Ay-4)において、Rは、水素原子又は1価の有機基であり、好ましくは、水素原子、C1~20アルキル基、脂環式基、又は芳香族基であり、より好ましくは、水素原子、メチル基、エチル基、シクロヘキシル基又はフェニル基である。
反応(IV)が求核付加反応である場合について、化合物Rxの官能基xと化合物Ryの連結反応ユニットyの好ましい組み合わせを下記表5及び6に示す。
Figure 0007462701000058
Figure 0007462701000059
求核付加反応の具体例として、セパレータの官能基xが-OHであり、添加剤(化合物Ry)の連結反応ユニットyが-NCOである場合の反応スキームを以下に示す。
Figure 0007462701000060
反応(IV)が開環反応である場合、化合物Rxの官能基xと化合物Ryの連結反応ユニットyとが開環反応を起こすことができ、原料の入手容易性の観点から、連結反応ユニットy側の環状構造が開くことが好ましい。同様の観点から、連結反応ユニットyは、エポキシ基であることがより好ましく、化合物Ryが、少なくとも2つのエポキシ基を有することがさらに好ましく、ジエポキシ化合物であることがよりさらに好ましい。
反応(IV)が開環反応である場合、化合物Rxの官能基xは、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであることが好ましく、かつ/又は化合物Ryの連結反応ユニットyが、下記式(ROy-1):
Figure 0007462701000061
{式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
で表される少なくとも2つの基であることが好ましい。式(ROy-1)において、複数のXは、それぞれ独立に、水素原子又は1価の置換基であり、好ましくは、水素原子、C1~20アルキル基、脂環式基、又は芳香族基であり、より好ましくは、水素原子、メチル基、エチル基、シクロヘキシル基又はフェニル基である。エポキシ開環反応について、化合物Rxの官能基xと化合物Ryの連結反応ユニットyの好ましい組み合わせを下記表7に示す。
Figure 0007462701000062
反応(V)
セパレータの第一官能基をA、かつ金属イオンをMn+として、反応(V)の模式的スキーム、及び官能基Aの例を以下に示す。
Figure 0007462701000063
上記スキーム中、金属イオンMn+は、蓄電デバイスから溶出したもの(以下、溶出金属イオンともいう。)であることが好ましく、例えば、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つであることができる。官能基Aが-COOの場合の配位結合を以下に例示する。
Figure 0007462701000064
官能基Aが-COOHであり、かつ溶出金属イオンがZn2+である場合の反応(V)の具体的なスキームを以下に示す。
Figure 0007462701000065
上記スキームにおいて、フッ酸(HF)は、例えば、蓄電デバイスの充放電サイクルに応じて、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物若しくは吸水物のいずれかに由来することができる。
〈その他の含有物〉
ポリオレフィン製微多孔膜は、所望により、ポリオレフィンに加えて、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料、無機フィラー、無機粒子等の公知の添加剤を含んでよい。
〈微多孔膜の特性〉
以下の微多孔膜の特性は、平膜又は単層膜の場合である。以下の特性は、微多孔膜が積層膜の形態である場合には、積層膜からポリオレフィン微多孔膜以外の層を除いてから測定されることができる。
ポリオレフィン製微多孔膜の気孔率は、好ましくは20%以上であり、より好ましくは30%以上であり、さらに好ましくは32%以上又は35%以上である。微多孔膜の気孔率が20%以上であることにより、リチウムイオンの急速な移動に対する追従性がより向上する傾向にある。一方、微多孔膜の気孔率は、好ましくは90%以下、より好ましくは80%以下、さらに好ましくは50%以下である。微多孔膜の気孔率が90%以下であることにより、膜強度がより向上し、自己放電がより抑制される傾向にある。微多孔膜の気孔率は、実施例に記載の方法により測定することができる。
ポリオレフィン製微多孔膜の透気度は、膜の体積100cm当たり、好ましくは1秒以上であり、より好ましくは50秒以上であり、さらに好ましくは55秒以上、よりさらに好ましくは70秒以上、90秒以上、又は110秒以上である。微多孔膜の透気度が1秒以上であることにより、膜厚と気孔率と平均孔径のバランスがより向上する傾向にある。また、微多孔膜の透気度は、好ましくは400秒以下であり、より好ましくは300秒以下であり、さらに好ましくは270秒以下である。微多孔膜の透気度が400秒以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の透気度は、実施例に記載の方法により測定することができる。
ポリオレフィン製微多孔膜の引張強度は、MD及びTD(MDと直交する方向、膜幅方向)の両方向において、それぞれ、好ましくは1000kgf/cm以上であり、より好ましくは1050kgf/cm以上であり、さらに好ましくは1100kgf/cm以上である。引張強度が1000kgf/cm以上であることにより、スリット又は蓄電デバイス捲回時での破断がより抑制されるか、蓄電デバイス内の異物等による短絡がより抑制される傾向にある。他方、微多孔膜の引張強度は、好ましくは5000kgf/cm以下であり、より好ましくは4500kgf/cm以下であり、さらに好ましくは4000kgf/cm以下である。微多孔膜の引張強度が5000kgf/cm以下であることにより、加熱試験時に微多孔膜が早期に緩和して収縮力が弱まり、結果として安全性が高まる傾向にある。
ポリオレフィン製微多孔膜の引張弾性率は、MD及びTDの両方向において、それぞれ、好ましくは120N/cm以下であり、より好ましくは100N/cm以下であり、さらに好ましくは90N/cm以下である。120N/cm以下の引張弾性率は、リチウムイオン二次電池用セパレータとしては極度に配向していないことを示しており、加熱試験等において、例えばポリエチレンなどの閉塞剤が溶融し収縮する際に、早期にポリエチレンなどが応力緩和を起こし、これによって電池内でのセパレータの収縮が抑えられ、電極同士の短絡を防ぎ易くなる傾向にある。すなわち、セパレータの、加熱時の安全性をより向上し得る。このような低引張弾性率の微多孔膜は、微多孔膜を形成するポリオレフィン中に重量平均分子量が500,000以下のポリエチレンを含むことによって達成し易い。一方、微多孔膜の引張弾性率の下限値は、特に制限はないが、好ましくは10N/cm以上であり、より好ましくは30N/cm以上であり、さらに好ましくは50N/cm以上である。ポリオレフィン製微多孔膜のMD及びTD方向の引張弾性率の比(MD方向の引張弾性率/TD方向の引張弾性率)は、好ましくは0.2~3.0であり、より好ましくは0.5~2.0であり、更に好ましくは0.8~1.2である。ポリオレフィン製微多孔膜のMD及びTD方向の引張弾性率の比がこのような範囲内にあると、ポリエチレンなどの閉塞剤が溶融し収縮する際に、MD方向、及びTD方向の収縮力が均一になる。その結果電池内でセパレータが熱収縮したとき、セパレータに隣接する電極にかかるせん断応力もMD方向、及びTD方向に均一になり、電極とセパレータとの積層体の破壊を防ぐ傾向にある。すなわち、セパレータの、加熱時の安全性をより向上し得る。微多孔膜の引張弾性率は、延伸の程度を調整したり、必要に応じ延伸後に緩和を行ったりすること等により適宜調整することができる。
ポリオレフィン製微多孔膜の膜厚は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、さらに好ましくは3.0μm以上、4.0μm以上、又は5.5μm以上である。微多孔膜の膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。また、微多孔膜の膜厚は、好ましくは500μm以下であり、より好ましくは100μm以下であり、さらに好ましくは80μm以下、22μm以下又は19μm以下である。微多孔膜の膜厚が500μm以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の膜厚は実施例に記載の方法により測定することができる。
近年の比較的高容量のリチウムイオン二次電池に使用されるセパレータの場合には、ポリオレフィン製微多孔膜の膜厚は、好ましくは25μm以下であり、より好ましくは22μm以下又は20μm以下であり、さらに好ましくは18μm以下であり、特に好ましくは16μm以下である。この場合、微多孔膜の膜厚が25μm以下であることにより、透過性がより向上する傾向にある。この場合、微多孔膜の膜厚の下限値は、1.0μm以上、3.0μm以上、4.0μm以上、又は5.5μm以上でよい。
〈表面層〉
表面層は、基材としてのポリオレフィン製微多孔膜の少なくとも片面に形成される。表面層は、基材の片面若しくは両面に配置されてよく、基材の少なくとも一部が露出するように配置されていても好ましい。表面層としては、熱可塑性ポリマー含有層、活性層、及び耐熱性多孔質層からなる群から選択される少なくとも一つの層であることが好ましい。
(熱可塑性ポリマー含有層)
熱可塑性ポリマー含有層は、基材としてのポリオレフィン製微多孔膜の少なくとも片面に形成される。熱可塑性ポリマー含有層は、基材の片面若しくは両面に配置されてよく、基材の少なくとも一部が露出するように配置されていても好ましい。
基材面のうちの、熱可塑性ポリマー含有層の配置可能な面の全面積に対する熱可塑性ポリマー含有層の面積割合(被覆面積割合)は、5%~90%であることが好ましい。この被覆面積割合を90%以下とすることは、熱可塑性ポリマーによる基材の孔の閉塞を更に抑制し、セパレータの透過性を一層向上する観点から好ましい。一方、被覆面積割合を5%以上とすることは、電極との接着性を一層向上する観点から好ましい。このような観点から、被覆面積割合の上限値は、80%以下、75%以下、又は70%であることがより好ましく、また、この面積割合の下限値は、10%以上、又は15%以上であることがより好ましい。この被覆面積割合は、得られるセパレータの熱可塑性ポリマー含有層の形成面をSEMで観察することにより測定される。また、熱可塑性ポリマー含有層が無機粒子と混在した層である場合には、熱可塑性ポリマーと無機粒子の全面積を100%として熱可塑性ポリマーの存在面積を算出する。
熱可塑性ポリマー含有層をセパレータ基材の面の一部にのみ配置する場合、熱可塑性ポリマー層の配置パターンとしては、例えば、ドット状、ストライプ状、格子状、縞状、亀甲状、ランダム状等、及びこれらの組み合わせが挙げられる。基材上に配置される熱可塑性ポリマー含有層の厚さは、基材の片面当たり、0.01μm~5μmであることが好ましく、0.1μm~3μmであることがより好ましく、0.1~1μmであることが更に好ましい。
熱可塑性ポリマー含有層は、熱可塑性ポリマーを含む。熱可塑性ポリマー含有層は、その全量に対して、好ましくは60質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、特に好ましくは98質量%以上の熱可塑性ポリマーを含んでよい。熱可塑性ポリマー層は、熱可塑性ポリマーに加えて、その他の成分を含んでもよい。
熱可塑性ポリマーとしては、例えば、以下の:
ポリエチレン、ポリプロピレン、α-ポリオレフィン等のポリオレフィン樹脂;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー又はこれらを含むコポリマー;
ブタジエン、イソプレン等の共役ジエンを単量体ユニットとして含むジエン系ポリマー若しくはこれらを含むコポリマー、又はこれらの水素化物;
(メタ)アクリレート、(メタ)アクリル酸等を単量体ユニットとして含み、かつポリアルキレングリコールユニットを有していないアクリル系ポリマー、(メタ)アクリレート、(メタ)アクリル酸等を単量体ユニットとして含み、かつ1つ又は2つのポリアルキレングリコールユニットを有するアクリル系ポリマー、若しくはこれらを含むコポリマー、又はその水素化物;
エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;
エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;
ポリエチレングリコール、ポリプロピレングリコール等の、重合性官能基を有していないポリアルキレングリコール;
ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の樹脂;
アルキレングリコールユニットの繰り返し数が3以上であるエチレン性不飽和単量体を共重合ユニットとして有するコポリマー;及び
これらの組み合わせ;
が挙げられる。
これらの中でも、セパレータを備える蓄電デバイスの突刺試験における安全性を向上させるという観点から、熱可塑性ポリマーは、(メタ)アクリル酸エステル又は(メタ)アクリル酸の重合単位を含むことが好ましい。
釘刺試験では、釘の貫通したデバイス周辺は、短絡面積をできるだけ小さくすることで、発熱の発生を抑制できると実験的に示唆できる。一方、釘に最も接近した部分は、非常に高い温度であり、ポリエチレン微多孔膜は融解状態である。融解した樹脂は、比表面積が最小になろうとする力で、釘から同心円状に穴が拡大し、未溶融の部分へ収縮することが実験的に観察されている。この際に形成された穴は、すなわち短絡面積となり、内部発熱の速度や最終的の電池発火・爆発するか否かを支配すると考えられる。
他方、電池等の蓄電デバイスの製造時、不可避的に、捲回キットに曲がる(R)部分が発生することがあり、全面積(領域)の正・負極のクリアランスが均一ではないことがある。アクリル樹脂などの熱可塑性ポリマーの未塗工の化学架橋基材は、耐熱性が改善されたものの、正・負極の不均一なクリアランスの中で、より薄い部分での釘刺破壊試験時では多く収縮し、広い短絡面積ができると推測される。加えて、蓄電デバイスのサイクル時に電極の膨張収縮変形のために、熱可塑性ポリマー未塗工セパレータには、全面におけるズレが発生し、正・負極間のクリアランスが不均一となることがある。このような電極間により接近した部分は、釘刺破壊試験時で多く収縮し、広い短絡面積ができると推測される。
これに対して、アクリル樹脂等の熱可塑性ポリマーを塗工した化学架橋基材膜は、熱可塑性ポリマー層がセパレータと電極間に接着性を示し、より正・負極間に全面積において均一なクリアランスを保つことができる。また、蓄電デバイスのサイクル時の電極膨張収縮変形に追従でき、長期使用しても均一なクリアランスを確保できる。このように均一なクリアランスが確保されたことに加えて、塗布面積が調整された熱可塑性ポリマー層は電解液と膨潤でき、熱可塑性ポリマー層から化学架橋基材へ電解液を供給(染み出す)できることで、化学架橋基材を蓄電デバイス内で全面積に対して均等に架橋反応進行させることができ、それによって、良好な釘刺試験結果を得ることができる。
熱可塑性ポリマーのガラス転移温度(Tg)は、セパレータを備える蓄電デバイスの突刺試験における安全性を向上させるという観点から、-40℃~105℃の範囲内にあることが好ましく、-38℃~100℃の範囲内にあることがより好ましい。
ポリオレフィン多層微多孔質膜への濡れ性、ポリオレフィン多層微多孔質膜と熱可塑性ポリマー層との結着性、及び電極との接着性の観点から、熱可塑性ポリマー層には、ガラス転移温度が20℃未満のポリマーがブレンドされていることが好ましく、耐ブロッキング性及びイオン透過性の観点から、ガラス転移温度が20℃以上のポリマーもブレンドされていることが好ましい。
熱可塑性ポリマーがガラス転移温度を少なくとも2つ有することは、限定されるものではないが、2種類以上の熱可塑性ポリマーをブレンドする方法、コアシェル構造を備える熱可塑性ポリマーを用いる方法等によって達成できる。
コアシェル構造とは、中心部分に属するポリマーと、外殻部分に属するポリマーが異なる組成から成る、二重構造の形態をしたポリマーである。
特に、ポリマーブレンド及びコアシェル構造において、ガラス転移温度の高いポリマーと低いポリマーとを組み合せることにより、熱可塑性ポリマー全体のガラス転移温度を制御できる。また、熱可塑性ポリマー全体に複数の機能を付与できる。
セパレータのブロッキング抑制性及びイオン透過性の観点から、熱可塑性コポリマーは、ガラス転移温度が、例えば、20℃以上、25℃以上、又は30℃以上であるときに粒子状であることが好ましい。
熱可塑性ポリマー層に粒子状熱可塑性コポリマーを含有させることによって、基材上に配置された熱可塑性ポリマー層の多孔性及びセパレータの耐ブロッキング性を確保することができる。
粒子状熱可塑性コポリマーの平均粒径は、好ましくは10nm~2,000nm、より好ましくは50nm~1,500nm、更に好ましくは100nm~1,000nm、特に好ましくは130nm~800nmであり、とりわけ好ましくは150~800nmであり、最も好ましくは200~750nmである。この平均粒径を10nm以上とすることは、少なくとも多孔膜を含む基材に粒子状熱可塑性ポリマーを塗工したときに、基材の孔に入り込まない程度の粒子状熱可塑性ポリマーの寸法が確保されることを意味する。従って、この場合、電極とセパレータとの間の接着性、及び蓄電デバイスのサイクル特性を向上させるという観点から好ましい。また、この平均粒径を2,000nm以下とすることは、電極とセパレータとの接着性、及び蓄電デバイスのサイクル特性を両立させるために必要な量の粒子状の熱可塑性ポリマーを基材上に塗工するという観点から好ましい。
上記で説明した粒子状熱可塑性ポリマーは、対応する単量体又はコモノマーを使用して既知の重合方法により製造することができる。重合方法としては、例えば、溶液重合、乳化重合、塊状重合等の適宜の方法を採用することができる。
熱可塑性ポリマー層を塗工によって容易に形成することができるので、乳化重合により粒子状熱可塑性ポリマーを形成し、それにより、得られた熱可塑性ポリマーエマルジョンを水系ラテックスとして使用することが好ましい。
熱可塑性ポリマー含有層は、熱可塑性ポリマーのみを含有していてもよいし、熱可塑性ポリマーに加えて、これ以外の任意成分を含んでいてもよい。任意成分としては、例えば、ポリオレフィン微多孔膜について上記で説明された公知の添加剤等が挙げられる。
(活性層)
活性層は、基材としてのポリオレフィン製微多孔膜の少なくとも片面に配置される。上記で説明された化学架橋性基材であるポリオレフィン製微多孔膜に活性層を配置することにより、そのような化学架橋性を有していない基材への従来の樹脂塗工と比べて、熱収縮性及び/又はホットボックス試験性に優れる傾向にある。また、活性層を基材上に塗工する工程を経て、活性層を基材に結着させることにより得られたセパレータは、イオン透過性が低下し難く、出力特性の高い蓄電デバイスを与える傾向にある。更に、異常発熱時の温度上昇が速い場合においても、セパレータは、円滑なシャットダウン特性を示し、高い安全性が得られ易い傾向にある。このような観点から、活性層は、基材の片面又は両面に配置されてよく、基材の少なくとも一部が露出するように配置されていても好ましい。
活性層は、熱収縮性及び/又はホットボックス試験性の観点から、フッ素原子含有ビニル化合物を含むことが好ましく、フッ素原子含有ビニル化合物と無機粒子とを含むことがより好ましい。
フッ素原子含有ビニル化合物としては、例えば、フッ素系樹脂又はバインダとして知られる化合物を使用することができる。
フッ素原子含有ビニル化合物の重量平均分子量(Mw)は、0.6×10~2.5×10の範囲内にあることが好ましい。フッ素原子含有ビニル化合物のMwが、この範囲内にあると、熱収縮性とホットボックス試験性が良好となる傾向にあるため好ましい。同様の観点から、フッ素原子含有ビニル化合物の分子量は、270kDa~600kDaの範囲内にあることが好ましく、また分子量270kDa~310kDaのフッ素原子含有ビニル化合物と分子量570kDa~600kDaのフッ素原子含有ビニル化合物を併用することも好ましい。
フッ素原子含有ビニル化合物の融点は、熱収縮性とホットボックス試験性の観点から、130℃~171℃の範囲内にあることが好ましい。同様の観点から、融点130℃~136℃のフッ素原子含有ビニル化合物、融点167℃~171℃のフッ素原子含有ビニル化合物、及び融点150℃±1℃のフッ素原子含有ビニル化合物から成る群から少なくとも1つを選択して使用することができる。
フッ素系樹脂又はバインダとして知られる化合物の中でも、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(高分子PVDF-HFP)、ポリフッ化ビニリデン-クロロトリフルオロエチレン(高分子PVDF-CTFE)、PVDFホモポリマー、PVDFとテトラフルオロエチレン・エチレン共重合体(ETFE)の混合物、又はフッ化ビニリデン-テトラフルオロエチレン-エチレン三元重合体から成る群から選択される少なくとも一つが好ましく、高分子PVDF-HFP、及び高分子PVDF-CTFEから成る群から選択される少なくとも一つがより好ましい。HFP又はCTFEをフッ化ビニリデンと共重合することによって、フッ素系樹脂の結晶性を適度な範囲に制御できるため、電極との接着処理の際に活性層の流動を抑制することができる。さらに、電極との接着処理の際、その接着力が向上するため、二次電池用セパレータとして用いた際に、界面ずれが生じないため、熱収縮性及び/又はホットボックス試験性が向上する。なお、フッ素系樹脂は、通常、乳化重合、又は懸濁重合により得られる。
PVDFの具体例は、アルケマ社のKynar Flex(登録商標)シリーズ、例えば、LBG、LBG8200等;SOLVAY社のソレフ(登録商標)シリーズ、例えば、グレード1015、6020等である。
高分子PVDF-HFPの具体例は、SOLVAY社のソレフ(登録商標)シリーズ、例えば、グレード21216、21510(いずれもアセトンに溶解する)等である。高分子PVDF-CTFEの具体例は、SOLVAY社のソレフ(登録商標)シリーズ、例えば、グレード31508(アセトンに溶解する)等である。
上記のフッ素系樹脂のうち、高分子PVDF-HFP及び高分子PVDF-CTFEは、HFP又はCTFE由来の構成単位の割合が2.0質量%~20.0質量%であることが好ましい。HFP又はCTFE含有量が2.0質量%以上であると、フッ素系樹脂の結晶化が高度に進行することを抑え、HFP又はCTFE含有量が20.0質量%以下であると、フッ素系樹脂の結晶化が適度に発現される。同様の観点から、高分子PVDF-HFP及び高分子PVDF-CTFEにおけるHFP又はCTFE由来の構成単位の割合は、2.25質量%以上がより好ましく、2.5質量%以上が更に好ましく、また18質量%以下がより好ましく、15質量%以下が更に好ましい。
ホットボックス(HotBox)試験では、150℃でポリエチレン等のポリオレフィン製セパレータが、結晶融解後に正・負極間の隔離層を設けることが重要である。電池などの蓄電デバイスの製造時、不可避的に、捲回キットには曲がる(R)部分が発生することがあり、全面積(領域)の正・負極のクリアランスが均一ではないことがある。PVDF等のフッ素系樹脂の未塗工の化学架橋基材は、耐熱性が改善されたものの、正・負極の不均一なクリアランスの中で、より薄い部分での短絡抑制が不十分と推測される。加えて、蓄電デバイスのサイクル時に、電極の膨張収縮変形のため、PVDF等のフッ素系樹脂の未塗工のセパレータに全面におけるズレが発生し、正・負極間のクリアランスが不均一となることがあり、それによって、電極間により接近した部分で短絡し易い。さらに、NMC正極等の正極の部分的な熱分解が発生した場合には、O放出による局部的な膨張に伴い、その近辺に圧縮ひずみの発生が予想される。すなわち、NMC正極中において、ニッケル含有割合が多ければ多いほどに、より低温度領域からO発生が見られる正極を用いた際に、正・負極間の隔離を確保することがますます難しくなる。同様な傾向で、NMC以外にも、LAC正極などの構成正極における結晶不安定性(熱分解性)の問題がある。NMC正極などの最も厳しい条件下で、150℃からの結晶分解を想定して、この問題を解決し、ひいては熱収縮性とホットボックス試験性を向上させることができる。
他方、PVDF等のフッ素系樹脂を塗工した化学架橋基材膜は、フッ素系樹脂層がセパレータと電極間に接着性を示し、より正・負極間に全面積において均一なクリアランスを保つことができる。また、活性層を含むセパレータを電解液に含浸させた場合、電池等の蓄電デバイスのサイクル時に電極膨張収縮変形があった場合、又は正極の熱分解時にO発生があった場合でも、変形を追従でき、長期使用しても均一なクリアランスを確保できる。このように均一なクリアランスが確保されたことに加えて、調整されたPVDF系樹脂は電解液と膨潤でき、均一に化学架橋基材へ電解液を供給(染み出す)できることで、化学架橋基材の電池内での均一な架橋反応を進行させることができる。よって、セパレータ全面積に亘って良い耐熱性の発現を確保でき、良いHotBox試験結果を得るためには、上記のフッ素系樹脂を選択することが好ましい。
活性層に、ヒドロキシル基(‐OH)、カルボキシル基(‐COOH)、無水マレイン酸基(‐COOOC‐)、スルホン酸基(‐SOH)、及びピロリドン基(‐NCO‐)から成る群より選択された1つ以上の極性基、又はこれらのうちの2種以上の極性基を有して成る高分子が含まれると、セパレータの低温(例えば、90℃未満、50℃未満、25℃未満、10℃未満、5℃未満、0℃以下など)でのサイクル特性が改善されるので、より好ましい。このような高分子としては、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、及びシアノエチルスクロースから選択される少なくとも一つの高分子が挙げられる。活性層に、上記のような極性基を有する高分子を含むことによって、セパレータの低温でのサイクル特性が改善するのは、これらの高分子の有する高い比誘電率のために、低温時においてもセパレータの抵抗が下がるためであると推定される。極性基を有する高分子の比誘電率は1から100(測定周波数=1kHz)が使用可能であり、特に10以上であることが好ましい。
活性層には、上記の樹脂以外の樹脂(他の樹脂)を含んでもよい。他の樹脂としては、例えば、ポリフッ化ビニリデン‐トリクロロエチレン、ポリメチルメタクリレート、ポリアクリロニトリル、ポリビニルアセテート、エチレンビニルアセテート共重合体、ポリイミド、ポリエチレンオキシドなどをそれぞれ単独でまたはこれらを2種以上混合して使うことができ、これに限定されることはない。
活性層に使用する無機粒子としては、特に限定されないが、200℃以上の融点を持ち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
無機粒子としては、特に限定されないが、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維等が挙げられる。これらは、単独で用いてもよいし、複数を併用してもよい。
これらの中でも、電気化学的安定性及びセパレータの耐熱特性を向上させる観点から、アルミナ、水酸化酸化アルミニウム等の酸化アルミニウム化合物;及びカオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト等の、イオン交換能を持たないケイ酸アルミニウム化合物が好ましい。
なお、アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナ等の多くの結晶形態が存在するが、いずれも好適に使用することができる。これらの中でも、α-アルミナが熱的・化学的にも安定なので好ましい。
酸化アルミニウム化合物としては、水酸化酸化アルミニウム(AlO(OH))が特に好ましい。水酸化酸化アルミニウムとしては、リチウムデンドライトの発生に起因する内部短絡を防止する観点から、ベーマイトがより好ましい。活性層を構成する無機粒子として、ベーマイトを主成分とする粒子を採用することで、高い透過性を維持しながら、非常に軽量な多孔層を実現できる上に、より薄い多孔層においても多孔膜の高温での熱収縮が抑制され、優れた耐熱性を発現する傾向にある。電気化学デバイスの特性に悪影響を与えるイオン性の不純物を低減できる合成ベーマイトがさらに好ましい。
イオン交換能を持たないケイ酸アルミニウム化合物としては、安価で入手も容易なため、主としてカオリン鉱物から構成されているカオリンがより好ましい。カオリンには、湿式カオリン及びこれを焼成処理して成る焼成カオリンが知られている。焼成カオリンが特に好ましい。焼成カオリンは、焼成処理の際に、結晶水が放出されており、更に不純物も除去されていることから、電気化学的安定性の観点で特に好ましい。
無機粒子の平均粒径(D50)は、0.2μm以上2.0μm以下であることが好ましく、0.2μmを超えて2.0μm以下であることがより好ましい。無機粒子のD50を上記範囲内に調整することは、活性層の厚さが薄い場合(例えば、5μm以下)であっても、高温(例えば200℃、又は200℃以上)における熱収縮を抑制する観点から好ましい。無機粒子の粒径及びその分布を調整する方法としては、例えば、ボールミル、ビーズミル、ジェットミル等の適宜の粉砕装置を用いて無機粒子を粉砕して粒径を小さくする方法等を挙げることができる。
無機粒子の形状としては、例えば、板状、鱗片状、針状、柱状、球状、多面体状、塊状等が挙げられる。これらの形状を有する無機フィラーの複数種を組み合わせて用いてもよい。
活性層におけるフッ素原子含有ビニル化合物と無機粒子との質量比(フッ素原子含有ビニル化合物/無機粒子)は、5/95~80/20であることが好ましく、より好ましくは7/93~65/35、更に好ましくは9/91~50/50、より更に好ましくは10/90~40/60である。フッ素原子含有ビニル化合物と無機粒子との質量比が、このような範囲内にあると、熱収縮性及び/又はホットボックス試験性だけでなく、電池捲回性も良好となる傾向にあるため、好ましい。例えば、フッ素原子含有ビニル化合物として、上記PVDF-HFP等を使用すると、この樹脂に特有のトライボマテリアル効果により膜表面に樹脂が溶け出すため、電池捲回性が向上する傾向にある。
活性層の厚みは、熱収縮性及び/又はホットボックス試験性を向上させる観点から、5μm以下であることが好ましく、2μmm以下であることがより好ましい。活性層の厚みは、耐熱性及び絶縁性を向上させる観点から、0.5μm以上であることが好ましい。
活性層の層密度は、0.5g/cm~3.0g/cmであることが好ましく、0.7g/cm~2.0g/cmであることがより好ましい。活性層の層密度が0.5g/cm以上であると、高温での熱収縮率が良好となる傾向にあり、3.0g/cm以下であると、透気度が良好になる傾向にある。
活性層は、フッ素原子含有ビニル化合物及び無機粒子以外の任意成分を含んでよい。任意成分としては、例えば、ポリオレフィン微多孔膜について上記で説明された公知の添加剤(無機粒子を除く)等が挙げられる。また、活性層に付与する性質、活性層の所定の厚みに応じて、使用されるフッ素原子含有ビニル化合物と無機粒子と任意成分の種類・品質・グレードを調整してよい。
(耐熱性多孔質層)
耐熱性多孔質層は、耐熱性樹脂を含有し、内部に多数の微細孔を有する。耐熱性多孔質層において、これらの微細孔は、互いに連結された構造でよく、一方の面から他方の面へと気体又は液体が通過可能である。
耐熱性多孔質層は、基材としてのポリオレフィン製微多孔膜の少なくとも片面に積層される。上記で説明された化学架橋性基材であるポリオレフィン製微多孔膜に耐熱性多孔質層を配置することにより、そのような化学架橋性を有していない基材への従来の耐熱性樹脂塗工と比べて、高温バーインパクト破壊試験性に優れる傾向にある。また、耐熱性多孔質層を基材に積層する工程を経て、耐熱性多孔質層を基材に結着させることにより得られたセパレータは、イオン透過性が低下し難く、出力特性の高い蓄電デバイスを与える傾向にある。更に、異常発熱時の温度上昇が速い場合においても、セパレータは、円滑なシャットダウン特性を示し、高い安全性が得られ易い傾向にある。このような観点から、耐熱性多孔質層は、基材の片面又は両面に配置されてよく、基材の少なくとも一部が露出するように配置されていても好ましい。
耐熱性多孔質層は、高温バーインパクト破壊試験性の改善の観点から、耐熱性樹脂と、無機フィラーとを含むことが好ましい。
耐熱性樹脂としては、融点が150℃を超える樹脂、融点が250℃以上の樹脂、又は実質的に融点が存在しない樹脂についてはその熱分解温度が250℃以上の樹脂を使用することが好ましい。このような耐熱性樹脂としては、例えば、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテル、ポリエーテルケトン、ポリエーテルイミド、セルロース等が挙げられる。中でも、耐久性の観点から全芳香族ポリアミドが好ましく、パラ型芳香族ポリアミド及び/又はメタ型芳香族ポリアミドがより好ましい。また、多孔質層の形成性及び耐酸化還元性の観点からは、メタ型芳香族ポリアミドが好ましい。
耐熱性樹脂の分子量分布Mw/Mnが、5≦Mw/Mn≦100であり、かつ/又は、重量平均分子量Mwが8.0×10以上1.0×10以下であることが好ましい。これらの分子量を特徴とする耐熱性樹脂を用いると、湿式塗工法にてポリオレフィン微多孔膜上に耐熱性多孔質層を形成する場合に、より良好な耐熱性多孔質層が形成することができる。これは、上記のように分子量分布が広い耐熱性樹脂においては低分子量体も多く含まれているため、その樹脂を溶解させた塗工液の加工性が向上するからである。このため、欠陥が少なく、膜厚が均一な耐熱性多孔質層が形成され易くなる。また、強い塗工圧力を掛けずとも良好に塗工できるようになるので、ポリオレフィン製微多孔膜表面の孔の目詰まりの発生が抑制され、耐熱性多孔質層とポリオレフィン製微多孔膜との界面における通気性の低下を防げる。また、塗工液をポリオレフィン微多孔膜上に塗工して、これを凝固液中に浸漬した際に、塗工膜中の樹脂が動き易くなるために、良好な孔形成が可能となる。さらに、樹脂に含まれる低分子量体と無機フィラーとのなじみも良く、孔形成に寄与する無機フィラーの脱落も防ぐことができる。結果として、均一な微細孔を有した耐熱性多孔質層が形成され易くなる。したがって、優れたイオン透過性を有し、電極との接触性も良好なセパレータが得られるようになる。
また、耐熱性樹脂には、分子量が8,000以下の低分子量ポリマーが、好ましくは1重量%以上15重量%以下、より好ましくは3重量%以上10重量%以下含まれる。その場合には、上記と同様に良好な耐熱性多孔質層が形成されることができる。
さらに、耐熱性樹脂として芳香族ポリアミドを用いた場合には、芳香族ポリアミドの末端基濃度比が[COOX{式中、Xは、水素、アルカリ金属又はアルカリ土類金属を表す}]/[NH]≧1であると好ましい。例えば、COONa等の末端カルボキシル基は、電池の負極側に生成する好ましくない皮膜を除去する効果がある。従って、末端カルボキシル基が末端アミン基よりも多い芳香族ポリアミドを用いると、長期間に亘って放電容量が安定した非水電解質二次電池が得られる傾向にある。例えば、充放電を100サイクル、又は1000サイクル繰り返した後でさえも、良好な放電容量を有する電池が得られることがある。
耐熱性多孔質層に使用する無機フィラーとしては、特に限定されないが、200℃以上の融点を持ち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
無機フィラーの形状としては、例えば、粒状、板状、鱗片状、針状、柱状、球状、多面体状、塊状等が挙げられる。これらの形状を有する無機フィラーの複数種を組み合わせて用いてもよい。
無機フィラーの平均粒子径(D50)は、0.2μm以上0.9μm以下であることが好ましく、0.2μmを超えて0.9μm以下であることがより好ましい。無機フィラーのD50を上記範囲内に調整することは、耐熱性多孔質層の厚さが薄い場合(例えば、5μm以下、又は4μm以下)であっても、高温(例えば、150℃以上、200℃以上、又は200℃以上)での熱収縮の抑制、又は高温でのバーインパクト破壊試験性の改善の観点から好ましい。無機フィラーの粒径及びその分布を調整する方法としては、例えば、ボールミル、ビーズミル、ジェットミル等の適宜の粉砕装置を用いて無機フィラーを粉砕して粒径を小さくする方法等を挙げることができる。
耐熱性多孔質層には、耐熱性樹脂に加えて、耐熱性多孔質層の質量を基準として25質量%~95質量%の無機フィラーが含まれることが好ましい。25質量%以上の無機フィラーは、高温での寸法安定性及び耐熱性について好ましく、他方では、95質量%以下の無機フィラーは、強度、ハンドリング性又は成型性について好ましい。
また、高温でのバーインパクト破壊試験性の改善の観点からは、耐熱性多孔質層は、平均粒子径が0.2μm~0.9μmの範囲内にある無機フィラーを、耐熱性多孔質層の質量を基準として、30質量%~90質量%含有することが好ましく、32質量%~85質量%含有することがより好ましい。
無機フィラーとしては、特に限定されないが、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維等が挙げられる。これらは、単独で用いてもよいし、複数を併用してもよい。
これらの中でも、電気化学的安定性及びセパレータの耐熱特性を向上させる観点から、アルミナ、水酸化酸化アルミニウム等の酸化アルミニウム化合物;及びカオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト等の、イオン交換能を持たないケイ酸アルミニウム化合物が好ましい。
なお、アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナ等の多くの結晶形態が存在するが、いずれも好適に使用することができる。これらの中でも、α-アルミナが熱的・化学的にも安定なので好ましい。
酸化アルミニウム化合物としては、水酸化酸化アルミニウム(AlO(OH))が特に好ましい。水酸化酸化アルミニウムとしては、リチウムデンドライトの発生に起因する内部短絡を防止する観点から、ベーマイトがより好ましい。耐熱性多孔質層を構成する無機フィラーとして、ベーマイトを主成分とする粒子を採用することで、高い透過性を維持しながら、非常に軽量な多孔質層を実現できる上に、より薄い多孔質層においても微多孔膜の高温での熱収縮が抑制され、優れた耐熱性を発現する傾向にある。電気化学デバイスの特性に悪影響を与えるイオン性の不純物を低減できる合成ベーマイトがさらに好ましい。
イオン交換能を持たないケイ酸アルミニウム化合物としては、安価で入手も容易なため、主としてカオリン鉱物から構成されているカオリンがより好ましい。カオリンには、湿式カオリン及びこれを焼成処理して成る焼成カオリンが知られている。焼成カオリンが特に好ましい。焼成カオリンは、焼成処理の際に、結晶水が放出されており、更に不純物も除去されていることから、電気化学的安定性の観点で特に好ましい。
耐熱性多孔質層の空孔率は、60%以上90%以下の範囲内にあることが好ましい。耐熱性多孔質層の空孔率が90%以下であると、耐熱性の観点から好ましい。また、耐熱性多孔質層の空孔率が60%以上であると、電池のサイクル特性又は保存特性及び放電性の観点から好ましい。同様の観点から、耐熱性多孔質層の塗工量(目付)は、2g/m~10g/mであることが好ましい。
耐熱性樹脂層の厚みは、高温バーインパクト破壊試験性の観点から、基材としてのポリオレフィン製微多孔膜の片面当たり、8μm以下であることが好ましく、4μm以下又は3.5μm以下であることがより好ましい。耐熱性樹脂層の厚みは、耐熱性及び絶縁性を向上させる観点から、0.5μm以上であることができる。
耐熱性樹脂層は、耐熱性樹脂及び無機粒子以外の任意成分を含んでよい。任意成分としては、例えば、ポリオレフィン微多孔膜について上記で説明された公知の添加剤(無機粒子を除く)、耐熱性樹脂以外の樹脂等が挙げられる。
《蓄電デバイス用セパレータの製造方法》
本開示の蓄電デバイス用セパレータの製造方法は、ポリオレフィンを含む基材層を製造し、次いで、基材層上に所望の層を形成又は配置することにより製造することができる。所望の層とは、第一の実施形態において、無機粒子を含む層(B層)と熱可塑性ポリマーを含む層(C層)、第二の実施形態において、表面層(すなわち、熱可塑性ポリマー含有層、活性層、及び耐熱性多孔質層の少なくとも一つ)である。
I.第一の実施形態における蓄電デバイス用セパレータの製造方法
〈ポリオレフィン基材層の製造方法〉
ポリオレフィン基材層の製造方法は、例えば、以下の工程:
(1)シート成形工程;
(2)延伸工程;
(3)多孔体形成工程;及び
(4)熱処理工程;
を含むことができる。ポリオレフィン基材層の製造方法は、所望により、シート成形工程(1)前に混錬工程、及び/又は熱処理工程(3)後に捲回・スリット工程を更に含んでもよい。
混練工程は、ポリオレフィン基材層の原料樹脂と、所望により、可塑剤及び/又は無機フィラー等を混錬して混練物を得る工程である。ポリオレフィン基材層の原料樹脂としては、上述したポリオレフィン樹脂を使用することができる。混練は、混錬機を用いて行うことができる。後の製造プロセスにおいて樹脂凝集物の発生を抑制するという観点から、脱水縮合触媒を含有するマスターバッチ樹脂を混錬物に加えないことが好ましい。可塑剤としては、例えば、沸点以下の温度でポリオレフィンと均一な溶液を形成し得る有機化合物を使用することができる。より具体的には、デカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n-デカン、n-ドデカン、及びパラフィン油等が挙げられる。これらの中でも、パラフィン油、ジオクチルフタレートが好ましい。可塑剤は、1種を単独で用いても、2種以上を併用してもよい。使用されるポリオレフィン樹脂の合計質量に対する可塑剤の割合は、得られる微多孔膜の気孔率の観点から、20質量%以上が好ましく、溶融混練時の粘度の観点から90質量%以下が好ましい。
シート成形工程は、得られた混練物、又はポリオレフィン樹脂原料と任意の可塑剤及び/又は無機フィラー等との混合物を押出し、冷却固化させ、シート状に成型加工してシートを得る工程である。シート成形の方法としては、特に限定されないが、例えば、溶融混練し押出された溶融物を、圧縮冷却により固化させる方法が挙げられる。冷却方法としては、冷風、冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロール及び/又はプレス機に接触させる方法等が挙げられるが、冷媒で冷却したロール及び/又はプレス機に接触させる方法が、膜厚制御性が優れる点で好ましい。
ポリオレフィン基材層中の樹脂凝集物の発生を抑制する観点から、シート成形工程におけるシラン変性ポリオレフィンと、シラン未変性ポリオレフィンとの質量比(シラン変性ポリオレフィンの質量/シラン未変性ポリオレフィンの質量)が、0.05/0.95~0.4/0.6であることが好ましく、より好ましくは0.06/0.94~0.38/0.62である。シラン未変性ポリオレフィンは、好ましくは超高分子量ポリエチレン(UHMWPE)である。
延伸工程は、得られたシートを少なくとも一軸方向に延伸して延伸物を得る工程である。必要に応じて、延伸前にシートから可塑剤及び/又は無機フィラーを抽出してもよい。シートの延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター、又はテンターとテンターとの組み合わせによる逐次二軸延伸、及び同時二軸テンター若しくはインフレーション成形による同時二軸延伸等が挙げられる。より均一な膜を得るという観点からは、同時二軸延伸であることが好ましい。面倍率は、膜厚の均一性、引張伸度と気孔率と平均孔径のバランスの観点から、好ましくは8倍以上であり、より好ましくは15倍以上であり、さらに好ましくは20倍以上又は30倍以上である。面倍率が8倍以上であることにより、高強度で厚み分布が良好のものが得られ易くなる傾向にある。面倍率は、破断防止などの観点から250倍以下でよい。
多孔体形成工程は、延伸工程後の延伸物から可塑剤及び/又は無機フィラーを抽出することで延伸物を多孔化し、微多孔膜を得る工程である。可塑剤の抽出方法としては、例えば、延伸物を抽出溶媒に浸漬する方法、延伸物に抽出溶媒をシャワーする方法等が挙げられる。抽出溶媒としては、特に限定されないが、例えば、ポリオレフィンに対して貧溶媒であり、且つ、可塑剤及び/又は無機フィラーに対しては良溶媒であり、沸点がポリオレフィンの融点よりも低い溶媒が好ましい。このような抽出溶媒としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン、フルオロカーボン系等ハロゲン化炭化水素類;エタノール、イソプロパノール等のアルコール類;アセトン、2-ブタノン等のケトン類;アルカリ水等が挙げられる。抽出溶媒は、1種を単独で用いても、2種以上を併用してもよい。
熱処理工程は、延伸工程の後、微多孔膜を熱処理する工程である。必要に応じて、熱処理前に微多孔膜から可塑剤を更に抽出してもよい。熱処理の方法としては、特に限定されないが、例えば、テンター及び/又はロール延伸機を利用して、延伸及び緩和操作等を行う熱固定方法が挙げられる。緩和操作とは、膜の機械方向(MD)及び/又は幅方向(TD)へ、所定の温度及び緩和率で行う縮小操作のことをいう。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、又は緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、又はMDとTD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。
捲回・スリット工程は、得られた微多孔膜を、必要に応じてスリットして、その後の工程における取扱性のために所定のコアへ捲回する工程である。
ポリオレフィン基材層が電解液と接触するときまで架橋性を維持させるという観点から、ポリオレフィン基材層の製造工程は、架橋処理工程を含まないことが好ましい。すなわち、架橋処理工程は、ポリオレフィン基材層を備えるセパレータを蓄電デバイス内に組み込んだ後、蓄電デバイス内で行われることが好ましい。架橋処理工程は、一般に、シラン変性ポリオレフィンを含む処理対象物を、有機金属含有触媒と水の混合物に接触させるか、又は塩基溶液若しくは酸溶液に浸漬させ、シラン脱水縮合反応を行ってオリゴシロキサン結合を形成する工程である。有機金属含有触媒としては、例えば、ジ-ブチルスズ-ジ-ラウレート、ジ-ブチルスズ-ジ-アセテート、ジ-ブチルスズ-ジ-オクトエートなどが挙げられる。塩基溶液とは、pHが7を超え、例えば水酸化アルカリ金属類、水酸化アルカリ土類金属類、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アンモニア、及びアミン化合物などを含むアルカリ性溶液を意味する。酸溶液とは、pHが7未満であり、無機酸及び/又は有機酸などを含む酸性溶液を意味する。
〈島構造の形成方法〉
ポリオレフィン基材層の製造工程において、シート成形工程で原料を押出機へ投入する際に、原料へ一定濃度のアルカリ金属及び/又はアルカリ土類金属化合物を混合することで、セパレータ中にアルカリ金属及び/又はアルカリ土類金属の島構造を形成することができる。しかしながら、分子量が大きく異なる原料を使用した場合は、原料間の溶解粘度差があるため、アルカリ金属及び/又はアルカリ土類金属化合物を樹脂原料へ均一分散させることが難しい。さらに、シラン変性ポリオレフィンを含む溶融混合の場合では、ヘテロ官能基を有するユニットがあるため、分散はさらに難しい。このような複雑な混合樹脂では、高い回転数で押出機によるせん断攪拌を行うことで、アルカリ金属及び/又はアルカリ土類金属化合物の分散の均一性が改善される一方、細かく島構造が隣接して分散されるため、電解液中のFアニオンを必要以上に消費するという問題点がある。また、高い回転数での押出機によるせん断攪拌は、ポリオレフィンの分子量劣化を引き起こすため、セパレータの機械的強度および開孔性を大幅に損なう。
機械的強度及び開孔性等を損わずに島構造の構築を制御するためには、ポリオレフィン原料としてMv=200万~900万(原料b)およびMv=50万~200万(原料c)のもの、そして、シラン変性ポリオレフィン原料としてMv=2万~15万(原料a)のもの、合計3種類を用いることが好ましい。さらに好ましくは、それぞれの分子量に応じて含有量の比率を調整する。これによって、限定した大きさ、分散度を有するアルカリ金属及び/又はアルカリ土類金属化合物を含む島構造の構築を制御することができる。
なお、上記の原料組成においては、原料aは、全体中の比率が3質量%~70質量%であり、それ以外に含まれる原料bと原料cの比率(樹脂bの質量/樹脂cの質量)が、0.06質量%~7.00質量%であることが好ましい。
〈ポリオレフィン基材層の表面処理〉
上記で説明された各種の工程を含む方法により得られた微多孔膜は、蓄電デバイス用セパレータのポリオレフィン基材層として使用することができる。ポリオレフィン基材層の表面に表面処理を施しておくと、その後に塗工液を塗工し易くなると共に、基材層と塗工層との接着性が向上するため好ましい。表面処理の方法としては、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、及び紫外線酸化法等が挙げられる。
〈無機粒子層の形成方法〉
無機粒子層は、溶媒中に無機粒子及び任意の樹脂バインダ等を含む塗工液をポリオレフィン基材層に塗工し、溶媒を除去することにより形成することができる。溶媒としては、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)との混合溶媒等の貧溶媒を含むことが好ましい。
塗工方法は、所望の塗工パターン、塗工膜厚、及び塗工面積を実現できる方法であればよい。例えば、ダイ塗工、カーテン塗工、含浸塗工、ブレード塗工、ロッド塗工及びグラビア塗工等が挙げられる。
塗工後に塗工膜から溶媒を除去する方法は、ポリオレフィン基材層及び無機粒子層に悪影響を及ぼさない方法であればよい。例えば、基材を固定しながら基材の融点以下の温度にて加熱乾燥する方法、及び低温で減圧乾燥する方法等が挙げられる。
〈熱可塑性ポリマー層の形成方法〉
熱可塑性ポリマー層は、溶媒中に熱可塑性ポリマーを含む塗工液を無機粒子層に塗工することにより形成することができる。無機粒子層を有しない蓄電デバイス用セパレータを製造する場合は、熱可塑性ポリマー層の塗工液をポリオレフィン基材層上に直接塗工してもよい。塗工液は、熱可塑性ポリマーを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。塗工液は、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等の貧溶媒を含むことが好ましい。
塗工方法は、所望の塗工パターン、塗工膜厚、及び塗工面積を実現できる方法であればよい。例えば、ダイ塗工、カーテン塗工、含浸塗工、ブレード塗工、ロッド塗工及びグラビア塗工等が挙げられる。
塗工後に塗工膜から溶媒を除去する方法は、ポリオレフィン基材層、無機粒子層及び熱可塑性ポリマー層に悪影響を及ぼさない方法であればよい。例えば、基材を固定しながら基材の融点以下の温度にて加熱乾燥する方法、及び低温で減圧乾燥する方法等が挙げられる。
II.第二の実施形態における蓄電デバイス用セパレータの製造方法
〈基材としてのポリオレフィン製微多孔膜の製造方法〉
第二の実施形態に係るセパレータの製造方法として、基材としてポリオレフィン製微多孔膜が単層膜(平膜)の場合について以下に説明するが、平膜以外の形態を除く意図ではない。微多孔膜の製造方法は、以下の工程:
(1)シート成形工程;
(2)延伸工程;
(3)多孔体形成工程;及び
(4)熱処理工程;
を含む。微多孔膜の製造方法は、所望により、シート成形工程(1)前の樹脂変性工程若しくは混錬工程、及び/又は熱処理工程(3)後の捲回・スリット工程を含んでよいが、蓄電デバイスに収納されるときまで微多孔膜の架橋性を維持するという観点から、架橋構造形成工程又は架橋促進触媒との接触工程を含まないことが好ましい。
架橋構造形成工程は、(1)微多孔膜に含まれる複数の官能基同士を縮合反応させる副次的工程、(2)微多孔膜に含まれる官能基を蓄電デバイス内部の化学物質と反応させる副次的工程、又は(3)微多孔膜に含まれる官能基を他の官能基と反応させる副次的工程を含むものである。架橋促進触媒は、架橋反応、例えば、上記で説明された(I)複数の同一官能基の縮合反応、(II)複数の異種官能基間の反応、(III)官能基と電解液の連鎖縮合反応、(IV)官能基と添加剤の連鎖縮合反応などを促進することが可能な任意に触媒である。
混練工程では、混錬機を用いて、例えば、ポリオレフィンと、所望により他の樹脂と、可塑剤又は無機材とを混錬することができる。製造プロセスにおいて樹脂凝集物の発生を抑制し、かつ蓄電デバイスに収納されるときまで微多孔膜の架橋性を維持するという観点から、架橋促進触媒を含有するマスターバッチ樹脂を混錬物に加えないことが好ましい。
混錬工程又はシート成形工程に供されるポリオレフィンは、オレフィンホモポリマーに限られず、官能基を有する単量体を共重合されたポリオレフィン、又は官能基変性ポリオレフィンであることができる。その官能基は、架橋構造の形成に関与することが可能な官能基であり、例えば、上記で説明された反応(I)~(V)における官能基A及び/又はBでよい。予め官能基A及び/又はBを有する単量体単位を含むポリオレフィン原料を準備することにより、樹脂変性工程を省略することができる。
他方、ポリオレフィン原料が、架橋構造の形成に関与することが可能な官能基を有していないか、そのような官能基のモル分率が所定の割合に満たない場合には、ポリオレフィン原料を樹脂変性工程に供し、樹脂骨格に官能基を組み込むか、又は官能基のモル分率を増加させて、官能基変性ポリオレフィンを得ることができる。樹脂変性工程は、既知の方法により行われることができる。例えば、官能基A及び/又はBをポリオレフィン骨格に導入できるように、液体噴霧、気体噴霧、乾式混合、浸漬、塗布などによりポリオレフィン原料を反応試薬と接触させることができる。
可塑剤としては、特に限定されないが、例えば、沸点以下の温度でポリオレフィンと均一な溶液を形成し得る有機化合物が挙げられる。より具体的には、デカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n-デカン、n-ドデカン、パラフィン油等が挙げられる。これらの中でも、パラフィン油、ジオクチルフタレートが好ましい。可塑剤は、1種単独で用いても、2種以上を併用してもよい。可塑剤の割合は特に限定されないが、得られる微多孔膜の気孔率の観点から、ポリオレフィンとシラングラフト変性ポリオレフィンは、必要に応じて、合計質量に対して20質量%以上が好ましく、溶融混練時の粘度の観点から90質量%以下が好ましい。
シート成形工程は、得られた混練物、又はポリオレフィンと可塑剤の混合物を押出し、冷却固化させ、シート状に成型加工してシートを得る工程である。シート成形の方法としては、特に限定されないが、例えば、溶融混練し押出された溶融物を、圧縮冷却により固化させる方法が挙げられる。冷却方法としては、冷風、冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロール又はプレス機に接触させる方法等が挙げられるが、冷媒で冷却したロール又はプレス機に接触させる方法が、膜厚制御性が優れる点で好ましい。
官能基を有する単量体を共重合されたポリオレフィン又は官能基変性ポリオレフィンと、他のポリオレフィンとを併用する場合には、セパレータ中の樹脂凝集物又は内部最大発熱速度の観点から、シート成形工程では質量比(官能基を有する単量体を共重合されたポリオレフィン又は官能基変性ポリオレフィン/他のポリオレフィン)が、0.05~0.4/0.6~0.95であることが好ましく、より好ましくは0.06~0.38/0.62~0.94である。
150℃以下の低温シャットダウン性と180~220℃の高温での耐破膜性を有しながら蓄電デバイス破壊時の熱暴走を抑制して安全性を向上させるという観点から、シート成形工程では、官能基を有する単量体を共重合されたポリオレフィン又は官能基変性ポリオレフィンが、その官能基の架橋反応を促進する触媒をシート成形工程前から含有するマスターバッチ樹脂ではないことが好ましい。
延伸工程は、得られたシートから、必要に応じて可塑剤又は無機材を抽出し、更にシートを一軸以上の方向へ延伸する工程である。シートの延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター又はテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンター又はインフレーション成形による同時二軸延伸等が挙げられる。より均一な膜を得るという観点からは、同時二軸延伸であることが好ましい。トータルの面倍率は、膜厚の均一性、引張伸度と気孔率と平均孔径のバランスの観点から、好ましくは8倍以上であり、より好ましくは15倍以上であり、さらに好ましくは20倍以上又は30倍以上である。トータルの面倍率が8倍以上であることにより、高強度で厚み分布が良好のものが得られ易くなる傾向にある。また、この面倍率は、破断防止などの観点から、250倍以下でよい。
多孔体形成工程は、延伸工程後の延伸物から可塑剤を抽出して、延伸物を多孔化する工程である。可塑剤の抽出方法としては、特に限定されないが、例えば、延伸物を抽出溶媒に浸漬する方法、延伸物に抽出溶媒をシャワーする方法等が挙げられる。抽出溶媒としては、特に限定されないが、例えば、ポリオレフィンに対して貧溶媒であり、かつ、可塑剤又は無機材に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いものが好ましい。このような抽出溶媒としては、特に限定されないが、例えば、n-ヘキサン又はシクロヘキサン等の炭化水素類;塩化メチレン又は1,1,1-トリクロロエタン、フルオロカーボン系等ハロゲン化炭化水素類;エタノール又はイソプロパノール等のアルコール類;アセトン又は2-ブタノン等のケトン類;アルカリ水等が挙げられる。抽出溶媒は、1種単独で用いても、2種以上を併用してもよい。
熱処理工程は、延伸工程の後、さらに必要に応じてシートから可塑剤を抽出し、更に熱処理を行い、微多孔膜を得る工程である。熱処理の方法としては、特に限定されないが、例えば、テンターやロール延伸機を利用して、延伸及び緩和操作等を行う熱固定方法が挙げられる。緩和操作とは、膜の機械方向(MD)及び/又は幅方向(TD)へ、所定の温度及び緩和率で行う縮小操作のことをいう。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、又は緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、又はMDとTD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。
〈捲回/スリット工程/後処理工程〉
捲回工程は、得られた微多孔膜を、必要に応じてスリットして、所定のコアへ捲回する工程である。
得られたポリオレフィン製微多孔膜に表面処理を施しておくと、その後に塗工液を塗工し易くなると共に、ポリオレフィンと表面層との接着性が向上するため好ましい。表面処理の方法としては、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法等が挙げられる。
〈基材の多層化〉
ポリオレフィン多層微多孔膜の製造方法の一例として、第1の微多孔質層、第2の微多孔質層、そして第1の微多孔質層をこの順に有する多層膜の製造を以下に説明する。これらの多孔質層の積層方法として、例えば、以下の3層一括積層方法が挙げられる:第1と第2の微多孔質層の構成成分であるポリオレフィン樹脂組成物と可塑剤とを別々に二軸押出機を用いて溶融混練しオレフィン溶液としてから、それぞれのポリオレフィン溶液を各二軸押出機から三層用Tダイに供給し、各溶液から成形される各層(第1のポリオレフィン溶液層/第2のポリオレフィン溶液層/第1のポリオレフィン溶液層)の層厚比を所望する範囲に調整しつつ、所定の巻き取り速度で、引き取りながら冷却し、ゲル状三層シートとして形成する。
上記では3層用Tダイを使用して、3層を同時に積層形成するが、各層ごと別々に形成した後で、3層としてもよい。
〈表面層の形成方法〉
表面層は、例えば、表面層の材料を含む塗工液を基材としてのポリオレフィン製微多孔膜に塗工し、乾燥させることにより形成することができる。あるいは、基材としてのポリオレフィン製微多孔膜と表面層の膜とを個別に作製した後に、両者を積層してもよい。
(熱可塑性ポリマー含有層の形成方法)
熱可塑性ポリマーは、例えば、熱可塑性ポリマーを含む塗工液を基材に塗工することにより基材上に配置されることができる。熱可塑性ポリマーを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。塗工液は、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等の貧溶媒を含むことが好ましい。
ポリオレフィン微多孔膜の基材上に、熱可塑性ポリマーを含有する塗工液を塗工する方法については、所望の塗工パターン、塗工膜厚、及び塗工面積を実現できる方法であれば特に限定はない。例えば、無機粒子含有塗工液を塗工するために上記で説明された塗工方法を用いてよい。熱可塑性ポリマーの塗工形状の自由度が高く、かつ上記で説明されたような好ましい被覆面積割合を容易に調整し得るという観点からは、グラビアコーター法又はスプレー塗工法が好ましい。
塗工後に塗工膜から溶媒を除去する方法については、基材及び熱可塑性ポリマー含有層に悪影響を及ぼさない方法であれば特に限定はない。例えば、基材を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、熱可塑性ポリマーに対する貧溶媒に浸漬して該熱可塑性ポリマーを粒子状に凝固させると同時に溶媒を抽出する方法等が挙げられる。
(活性層の形成方法)
基材に活性層を配置又は形成する方法としては、例えば、基材の少なくとも片面に、フッ素含有ビニル化合物及び無機粒子を含む塗工液を塗工する方法を挙げることができる。この場合には、塗工液は、分散安定性及び塗工性の向上のために、溶剤、分散剤等を含んでいてもよい。塗工液は、シアノエチルポリビニルアルコール、アセトンなどの有機溶剤を含むか、又は水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等を含むことができる。
塗工液を基材に塗工する方法は、必要とする層厚及び塗工面積を実現できる限り、特に限定されない。例えば、樹脂バインダを含む粒子原料と、ポリマー基材原料とを共押出法により積層して押出してもよいし、基材と活性層の膜とを個別に作製した後に、両者を貼り合せてもよい。
塗工後に塗工膜から溶媒を除去する方法については、ポリオレフィン樹脂、フッ素含有ビニル化合物又は無機粒子に悪影響を及ぼさない方法であれば特に限定はない。例えば、基材を固定しながら、ポリオレフィン樹脂又はフッ素含有ビニル化合物の融点以下の温度で塗工膜を乾燥する方法、低温で減圧乾燥する方法等が挙げられる。
(基材への耐熱性樹脂層の形成方法)
基材に耐熱性樹脂層を形成する方法としては、例えば、基材の少なくとも片面に、耐熱性樹脂及び無機フィラーを含む塗工液を塗工する方法を挙げることができる。この場合には、塗工液は、分散安定性及び塗工性の向上のために、溶剤、分散剤等を含んでいてもよい。塗工液は、NMP、IPA、シアノエチルポリビニルアルコール、アセトンなどの有機溶剤を含むか、又は水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等を含むことができる。
塗工液を基材に塗工する方法は、必要とする層厚及び塗工面積を実現できる限り、特に限定されない。例えば、樹脂バインダを含む粒子原料と、ポリマー基材原料とを共押出法により積層して押出してもよいし、基材と耐熱性樹脂層の膜とを個別に作製した後に、両者を貼り合せてもよい。
塗工後に塗工膜から溶媒を除去する方法については、ポリオレフィン樹脂、耐熱性樹脂又は無機フィラーに悪影響を及ぼさない方法であれば特に限定はない。例えば、基材を固定しながら、ポリオレフィン樹脂又は耐熱性樹脂の融点以下の温度で塗工膜を乾燥する方法、低温で減圧乾燥する方法等が挙げられる。
上記で説明された各種の工程を含む方法により得られたセパレータは、蓄電デバイスに、特にリチウム電池又はリチウムイオン二次電池に利用されることができる。
《蓄電デバイス》
本開示の蓄電デバイスは、正極と、負極と、本開示の蓄電デバイス用セパレータと、非水電解液と、所望により添加剤とを含む。蓄電デバイスは、正極、負極、及びこれらの間に蓄電デバイス用セパレータが配置された蓄電素子を少なくとも一つ備える。典型的には、複数の正極と複数の負極とが本開示の蓄電デバイス用セパレータを介して交互に積層され、複数の蓄電素子を形成している。蓄電素子は、典型的には、非水電解液に含浸された状態で外装体内に収容されている。
本開示の蓄電デバイス用セパレータがデバイス外装体に収納されると、官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンと、電解液又は添加剤に含まれる化学物質とが反応し、架橋構造が形成されるため、作製された蓄電デバイスには架橋構造がある。官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンは、限定されるものではないが、微多孔膜のポリオレフィン原料に由来するか、又は微多孔膜の製造プロセス中に変性されたポリオレフィンに由来することができる。
本開示の蓄電デバイスとしては、具体的には、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ニッケル水素電池、又はリチウムイオンキャパシタが好ましく、リチウム電池又はリチウムイオン二次電池がより好ましい。
リチウムイオン二次電池(LIB)は、リチウム含有正極と、負極と、LiPF等のリチウム塩を含む有機溶媒を含む電解液とを使用した蓄電池である。正極として、既知のLIB用正極を使用することができる。リチウムイオン二次電池の充電・放電の時には、イオン化したリチウムが電極間を往復する。また、電極間の接触を抑制しながら、前記イオン化したリチウムが、電極間の移動を比較的高速に行う必要があるため、電極間にセパレータが配置される。
以下、リチウムイオン二次電池の場合を例に挙げて説明するが、本開示の蓄電デバイスはこれに限定されない。
〈正極〉
正極は、典型的には、正極集電体と、その片面又は両面に配置された正極活物質層とを有する。正極活物質層は、正極活物質を含有し、必要に応じて導電助剤及び/又はバインダを更に含有する。
正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてよく、メッシュ状に加工されていてよい。
正極活物質は、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。より具体的に、正極活物質としては、例えば、Ni、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質が挙げられる。熱分解又はО放出し易い正極も使用することができ、例えば、ニッケル-マンガン-コバルト(NMC)系リチウム含有正極、オリビン型リン酸鉄リチウム(LFP)系正極、コバルト酸リチウム(LCO)系正極、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極、及びマンガン酸リチウム(LMO)系正極からなる群から選択される少なくとも一つであることが好ましい。リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、好ましくは、ニッケル-マンガン-コバルト(NMC)系リチウム複合酸化物である。NMC系リチウム複合酸化物である場合、ニッケル、マンガン及びコバルトの総量に対するニッケル(Ni)量のモル比は、好ましくは4~9、5~9、6~9、5~8、又は6~8である。
正極活物質としては、オリビン型リン酸鉄リチウム(LFP)系正極でもよい。オリビン型リン酸鉄リチウムはオリビン構造を持ち熱的な安定性が優れることから、60℃など比較的高温で使用されることが多いが、しかしながら、架橋構造を持たない通常のセパレータは60℃ではクリープ変形(微多孔構造の変形)を起こすためサイクル特性に課題があった。本開示の架橋構造を有するセパレータは、クリープ変形を抑制することができるため、オリビン型リン酸鉄リチウム(LFP)系正極と組み合わせて使用することにより、これまでサイクル特性に課題のあった温度域でも使用することが出来る。正極活物質としては、コバルト酸リチウム(LCO)系正極でもよい。コバルト酸リチウム(LCO)系正極は酸化電位が高いため電池の作動電圧を高くすることが出来るが、しかしながら、コバルト酸リチウムは硬度が高く、成形工程で金属摩耗による異物混入が発生しやすい傾向があった。電池組立時に金属異物が混入すると内部短絡の原因となる可能性がある。本開示の架橋構造を有するセパレータは、ヒューズ/メルトダウン特性に優れるため内部短絡発生時にも電気化学反応を安全に停止することが出来る。コバルト酸リチウム(LCO)系正極と本開示のセパレータを組み合わせて用いることで、電池の作動電圧と内部短絡時の安全性を両立することができる。正極活物質としては、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極でもよい。ニッケル-コバルト-アルミ(NCA)系リチウム含有正極を用いることで、充放電容量に優れる電池を低コストで作ることが出来るが、しかしながら、電池中に含まれる微量の水分と正極から溶出したLiイオンが反応し、リチウム化合物が生成され、当該リチウム化合物が電解液と反応することでガスが発生しやすい傾向があった。ガスの発生により電池膨れを起こす可能性がある。また、正極から溶出したリチウムイオンが消費されることで充放電容量が低下する可能性がある。本開示の架橋構造を有するセパレータはアルカリ金属/アルカリ土類金属の島構造を有する場合、当該島構造中のアルカリ金属/アルカリ土類金属とHFが反応しHF濃度を制御することが可能である。電池内で起きる反応の一つに水分とLiPFなどの電解質塩とが反応しHFを生成する反応があるが、電池内のHF濃度を制御することで水分と電解質塩の反応を促進し水分を効率的に消費することができる。ニッケル-コバルト-アルミ(NCA)系リチウム含有正極と本開示のセパレータを組み合わせて用いることで、充放電容量の低下を抑制することができる。正極活物質としては、マンガン酸リチウム(LMO)系正極でもよい。マンガン酸リチウムはスピネル構造(立方晶結晶)をもつため結晶構造が強固であり、熱的に安定で安全性に優れることから60℃など比較的高温で使用されることあるが、しかしながら、架橋構造を持たない通常のセパレータは60℃ではクリープ変形(熱収縮)を起こすためサイクル特性に課題があった。本開示の架橋構造を有するセパレータは、クリープ変形を抑制することができるため、マンガン酸リチウム(LMO)系正極と組み合わせて使用することにより、これまでサイクル特性に課題のあった温度域でも使用することが出来る。
正極活物質としては、低コストで寿命が長く、安全性にも優れることからオリビン型リン酸鉄リチウム(LFP)系正極でもよい。正極活物質としては作動電圧が高く,優れたサイクル寿命を達成できることから正極活物質としては、コバルト酸リチウム(LCO)系正極でもよい。正極活物質としては、層状構造をもち、容量密度、コスト、熱的安定性のバランスに優れることから正極活物質としては、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極でもよい。正極活物質としては、スピネル構造(立方晶結晶)をもち、結晶構造が強固であることから熱的に安定で安全性に優れることから正極活物質としては、マンガン酸リチウム(LMO)系正極でもよい。
正極活物質層の導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維等が挙げられる。導電助剤の含有量は、正極活物質100質量部当たり10質量部以下とすることが好ましく、より好ましくは1~5質量部である。
正極活物質層のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダの含有量は、正極活物質100質量部当たり6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
〈負極〉
負極は、典型的には、負極集電体と、その片面又は両面に配置された負極活物質層を有する。負極活物質層は、負極活物質を含有し、必要に応じて導電助剤及び/又はバインダを更に含有する。
負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚みは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
負極活物質は、リチウムイオンを0.4V(vs.Li/Li)よりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。より具体的に、負極活物質としては、例えば、アモルファスカーボン(ハードカーボン)、黒鉛(人造黒鉛、天然黒鉛)、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、Si材料、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。上記のSi材料としては、例えば、シリコン、Si合金、Si酸化物等が挙げられる。
負極活物質層の導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有量は、負極活物質100質量部当たり、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
負極活物質層のバインダとしては、例えば、カルボキシメチルセルロース、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、及びフッ素ゴムが挙げられる。また、ジエン系ゴム、例えばスチレンブタジエンゴム等も挙げられる。バインダの含有量は、負極活物質100質量部当たり、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
〈蓄電デバイス用セパレータ〉
蓄電デバイス用セパレータとしては、本開示の蓄電デバイス用セパレータを使用することができる。
〈電解液〉
電池中の電解液は、水分を含んでよく、そして電池作製後の系内に含まれる水分は、電解液に含有される水分、又は電極若しくはセパレータ等の部材に含まれた持ち込み水分であってもよい。電解液は、非水系溶媒を含むことができる。非水系溶媒に含まれる溶媒として、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非水系溶媒としては、非プロトン性溶媒が好ましい。
非プロトン性溶媒としては、例えば、環状カーボネート、フルオロエチレンカーボネート、ラクトン、硫黄原子を有する有機化合物、鎖状フッ素化カーボネート、環状エーテル、モノニトリル、アルコキシ基置換ニトリル、ジニトリル、環状ニトリル、短鎖脂肪酸エステル、鎖状エーテル、フッ素化エーテル、ケトン、上記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネート等が挙げられる。
フルオロエチレンカーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オン等が挙げられる。
ラクトンとしては、例えば、γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトン等が挙げられる。
硫黄原子を有する有機化合物としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、ジメチルスルホキシド、テトラメチレンスルホキシド、及びエチレングリコールサルファイト等が挙げられる。
鎖状カーボネートとしては、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート等が挙げられる。
環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサン等が挙げられる。
モノニトリルとしては、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリル等が挙げられる。
アルコキシ基置換ニトリルとしては、例えば、メトキシアセトニトリル及び3-メトキシプロピオニトリル等が挙げられる。
ジニトリルとしては、例えば、マロノニトリル、スクシノニトリル、メチルスクシノニトリル、グルタロニトリル、2-メチルグルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリル、エチレングリコールビス(プロピオニトリル)エーテル等が挙げられる。
環状ニトリルとしては、例えば、ベンゾニトリル等が挙げられる。
短鎖脂肪酸エステルとしては、例えば、酢酸メチル、プロピオン酸メチル、イソ酪酸メチル、酪酸メチル、イソ吉草酸メチル、吉草酸メチル、ピバル酸メチル、ヒドロアンゲリカ酸メチル、カプロン酸メチル、酢酸エチル、プロピオン酸エチル、イソ酪酸エチル、酪酸エチル、イソ吉草酸エチル、吉草酸エチル、ピバル酸エチル、ヒドロアンゲリカ酸エチル、カプロン酸エチル、酢酸プロピル、プロピオン酸プロピル、イソ酪酸プロピル、酪酸プロピル、イソ吉草酸プロピル、吉草酸プロピル、ピバル酸プロピル、ヒドロアンゲリカ酸プロピル、カプロン酸プロピル、酢酸イソプロピル、プロピオン酸イソプロピル、イソ酪酸イソプロピル、酪酸イソプロピル、イソ吉草酸イソプロピル、吉草酸イソプロピル、ピバル酸イソプロピル、ヒドロアンゲリカ酸イソプロピル、カプロン酸イソプロピル、酢酸ブチル、プロピオン酸ブチル、イソ酪酸ブチル、酪酸ブチル、イソ吉草酸ブチル、吉草酸ブチル、ピバル酸ブチル、ヒドロアンゲリカ酸ブチル、カプロン酸ブチル、酢酸イソブチル、プロピオン酸イソブチル、イソ酪酸イソブチル、酪酸イソブチル、イソ吉草酸イソブチル、吉草酸イソブチル、ピバル酸イソブチル、ヒドロアンゲリカ酸イソブチル、カプロン酸イソブチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、イソ酪酸tert-ブチル、酪酸tert-ブチル、イソ吉草酸tert-ブチル、吉草酸tert-ブチル、ピバル酸tert-ブチル、ヒドロアンゲリカ酸tert-ブチル、及びカプロン酸tert-ブチル等が挙げられる。
鎖状エーテルとしては、例えば、ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライム等が挙げられる。フッ素化エーテルとしては、例えば、一般式Rfaa-ORbb(式中、Rfaaは、フッ素原子を含有するアルキル基であり、かつRbbは、フッ素原子を含有してよい有機基である)で表される化合物等が挙げられる。ケトンとしては、例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン等が挙げられる。
上記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物としては、例えば、ハロゲン原子がフッ素である化合物等を挙げることができる。
ここで、鎖状カーボネートのフッ素化物としては、例えば、メチルトリフルオロエチルカーボネート、トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、トリフルオロエチルメチルカーボネート、メチル2,2-ジフルオロエチルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートが挙げられる。上記のフッ素化鎖状カーボネートは、下記の一般式:
cc-O-C(O)O-Rdd
{式中、Rcc及びRddは、CH、CHCH、CHCHCH、CH(CH、及び式CHRfee(式中、Rfeeは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基である)で表される基から成る群より選択される少なくとも一つであり、そしてRcc及び/又はRddは、少なくとも1つのフッ素原子を含有する。}で表すことができる。
また、短鎖脂肪酸エステルのフッ素化物としては、例えば、酢酸2,2-ジフルオロエチル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピルに代表されるフッ素化短鎖脂肪酸エステルが挙げられる。フッ素化短鎖脂肪酸エステルは、下記の一般式:
ff-C(O)O-Rgg
{式中、Rffは、CH、CHCH、CHCHCH、CH(CH、CFCFH、CFH、CFH、CFRfhh、CFHRfhh、及びCHRfiiから成る群より選択される少なくとも一つであり、Rggは、CH、CHCH、CHCHCH、CH(CH、及びCHRfiiから成る群より選択される少なくとも一つであり、Rfhhは、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、Rfiiは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてRff及び/又はRggは、少なくとも1つのフッ素原子を含有し、RffがCFHである場合、RggはCHではない}で表すことができる。
本願明細書において、非水系電解液とは、非水系溶媒中に電解質を含有し、全質量を基準として水の量が1質量%以下電解液をいう。非水系電解液は、水をできる限り含まないことが好ましいが、ごく微量の水分を含有してよい。そのような水分の含有量は、非水系電解液の全量当たり、好ましくは300質量ppm以下、より好ましくは200質量ppm以下である。
非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類、並びに非プロトン性溶媒等が挙げられ、非プロトン性溶媒が好ましい。非プロトン性溶媒としては、例えば、アセトニトリル、アセトニトリル以外のモノニトリル、アルコキシ基置換ニトリル、ジニトリル、環状ニトリル、鎖状カーボネート、環状カーボネート、フッ素化カーボネート、フルオロエチレンカーボネート、短鎖脂肪酸エステル、ラクトン、ケトン、硫黄原子を有する有機化合物、鎖状エーテル、環状エーテル、フッ素化エーテル、これらのH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
電解質としては、リチウム塩が好ましく、シラン架橋反応を促進する観点から、HFを発生するフッ素含有リチウム塩が更に好ましい。フッ素含有リチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、フルオロスルホン酸リチウム(LiFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)、リチウムビス(フルオロスルホニル)イミド(LiN(SOF))、ホウフッ化リチウム(LiBF)、及びリチウムビスオキサレートボレート(LiBC)等が挙げられる。理論に拘束されないが、例えば、電解質がLiPFを含む場合には、LiPFと蓄電デバイス内に含まれるわずかな水分(電極、セパレータ、電解液などの部材に含まれる水分)が反応し、フッ化水素(HF)、又はHFに由来するフッ素含有有機物が生成する。これらのHF、又はHFに由来するフッ素含有有機物は、電解液に溶け込み、架橋性シラン基を有するポリオレフィン中の非晶部へ膨潤及び拡散されることで、シラン架橋反応を触媒すると考えられる。
非水系電解液は、シラン架橋反応に触媒作用を及ぼす物質として、上記以外に、例えば、無機酸又は有機酸等の酸源、アルカリ源を含んでもよい。アルカリ源としては、例えば、水酸化アルカリ金属類、水酸化アルカリ土類金属類、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アンモニア、アミン化合物などが挙げられる。これらの中でも、蓄電デバイスの安全性とシラン架橋性の観点から、水酸化アルカリ金属類又は水酸化アルカリ土類金属類が好ましく、水酸化アルカリ金属類がより好ましく、水酸化ナトリウムがさらに好ましい。
〈外装体〉
外装体は、既知の外装体を使用することができ、例えば、電池缶又はラミネートフィルム外装体を用いてよい。電池缶としては、例えば、スチール、ステンレス、アルミニウム、又はクラッド材等から成る金属缶を用いることができる。ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体(又は負極端子及び負極端子と接続するリードタブ)を接続してよい。この場合、正極リード体及び負極リード体(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してよい。より具体的に、ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。金属フィルムとしては、好ましくはアルミニウム箔、両面の樹脂材料としては、好ましくはポリオレフィン系の樹脂である。
〈添加剤〉
添加剤は、含まれる場合、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤及び着色顔料からなる群から選択される少なくとも一つでよい。
《蓄電デバイス組立キット》
本開示の蓄電デバイス組立キットは、(A)電極と、本開示の蓄電デバイス用セパレータとの積層体又は捲回体を収納している、外装体;及び(B)非水電解液を収納している容器を備える。積層体又は捲回体は、正極、負極、及びこれらの間に蓄電デバイス用セパレータが配置された蓄電素子を少なくとも一つ備える。典型的には、複数の正極と複数の負極とが本開示の蓄電デバイス用セパレータを介して交互に積層され、複数の蓄電素子を形成している。各構成部材の詳細は上記「蓄電デバイス」の欄を参照されたい。
非水電解液を収納している容器から非水電解液を取り出し、外装体内に注入することで蓄電デバイス用セパレータを組み立てることができる。非水電解液を収納する容器の態様は、蓄電デバイス用セパレータを組み立てるまで非水電解液を保存することができる限り、限定されない。蓄電デバイス用セパレータを組み立てた後、非水電解液を収納していた容器は破棄してよく、又は別のキットの製造に再利用してもよい。
蓄電デバイス組み立てキットの使用時に、要素(A)中のセパレータと要素(B)中の非水電解液とを接触させて、外装体内で電解液と積層体又は捲回体を接触させることによって、かつ/又は組み立てられた蓄電デバイスの充放電サイクルを継続することによって、セパレータ内に架橋構造を形成して、安全性と出力を両立する蓄電デバイスを形成することができる。
理論に拘束されることを望まないが、電解質又は電解液が電極と接触するとき、及び/又は蓄電デバイスの充放電を行うとき、架橋反応に触媒作用を及ぼす物質又は架橋構造の一部になる官能基を有する物質が、電解液中、外装体内面又は電極表面に存在し、それらが電解液に溶け込み、ポリオレフィン中の非晶部へ均一に膨潤、拡散されることによって、セパレータ含有積層体又は捲回体の架橋反応を均一に促進することが考えられる。架橋反応に触媒作用を及ぼす物質は、酸溶液又は膜の形態でよく、電解質がヘキサフルオロリン酸リチウム(LiPF)を含む場合には、フッ化水素(HF)、又はフッ化水素(HF)に由来するフッ素含有有機物であることができる。架橋構造の一部になる官能基を有する物質は、例えば、上記で説明された官能基A及び/又はBを有する化合物、電解液そのもの、各種の添加剤などであることができる。
要素(2)に収納される非水電解液は、セパレータの架橋反応を促進する観点から、電解質はHFを発生するLiPF等のフッ素(F)含有リチウム塩やLiN(SOCF、LiSOCFなどの非共有電子対を有する電解質がよく、LiBF、LiBC(LiBOB)などもよい。
蓄電デバイス組み立てキットは、セパレータの架橋反応を促進する観点から、付属品(又は要素(C))として、架橋反応を促進するための触媒、例えば、有機金属含有触媒と水の混合物、酸溶液、塩基溶液などを収納する別の容器を備えてよい。
《蓄電デバイスの製造方法》
第一の実施形態において、本開示の蓄電デバイスの製造方法は、例えば、以下の工程:
(i)電極と本開示の蓄電デバイス用セパレータとの積層体又は捲回体を収納している外装体、及び非水電解液を用意する準備工程と;
(ii)非水電解液を外装体内に注ぐ注液工程と;
(iii)所望により、外装体内の電極又は外装体から露出した電極にリード端子を接続する端子接続工程と;
(iv)所望により、少なくとも1サイクルの充放電を行う充放電工程と、
を含むことができる。工程(i)~(iv)は、本開示の蓄電デバイス用セパレータを使用することを除いて、本技術分野において既知の方法で行うことができる。工程(i)~(iv)においては、「蓄電デバイス」の項目で説明された電極及び非水電解液を使用することができ、本技術分野において既知の正極、負極、電解液、外装体及び充放電装置を使用することもできる。
工程(ii)によってセパレータと非水電解液とを接触させて、シラン変性ポリオレフィンのシラン架橋反応を開始することが好ましい。セパレータのシラン架橋反応を確実に進行させる観点から、工程(iii)及び(iv)を行うことが好ましい。理論に拘束されないが、充放電サイクルによって、シラン架橋反応に触媒作用を及ぼす物質が電解液中又は電極表面に生成し、それによりシラン架橋反応がより効率的に進行すると考えられる。
第二の実施形態において、蓄電デバイスの製造方法は、1種類又は2種類以上の官能基を有するポリオレフィンを含むセパレータを用いて、以下の工程:(1)官能基同士を縮合反応させるか、(2)官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)ポリオレフィンの官能基を他の種類の官能基と反応させて、架橋構造を形成する架橋工程を含むことができる。架橋工程は、上記で説明されたセパレータの架橋構造を形成する反応と同様に行われることができる。また、架橋工程は、蓄電デバイス内の化合物、デバイス周囲の環境を利用して行われることができるので、電子線、100℃以上の高温などの過度な条件を必要とすることがなく、5℃~90℃の温度及び/又は周囲雰囲気下などのマイルドな条件を採用することができる。
蓄電デバイスの製造プロセスにおいて架橋工程を行うことによって、セパレータの製膜プロセス中又はその直後に架橋構造の形成を行うことを省略することができ、蓄電デバイス作製後の応力歪みを緩和又は解消し、かつ/又は光照射若しくは加温などの比較的高いエネルギーを用いなくてもセパレータに架橋構造を付与して、架橋ムラ、未溶融樹脂凝集物の発生、環境への負担などを低減することができる。
架橋工程のうちで、(2)官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)ポリオレフィンの官能基を他の種類の官能基と反応させることによって、セパレータ内部だけでなく、セパレータと電極の間又はセパレータと固体電解質界面(SEI)の間にも架橋構造を形成して、蓄電デバイスの複数の部材間の強度を向上させることができる。
本開示の蓄電デバイスの製造方法において、上記で説明された蓄電デバイス組み立てキットを使用することができる。その場合には、本開示の蓄電デバイスの製造方法は、以下の工程;
(i)上記で説明された蓄電デバイス組み立てキットを用意する工程と、
(ii)蓄電デバイス組み立てキットの要素(A)と要素(B)を合せて、(1)セパレータに含まれるポリオレフィンの官能基同士を縮合反応させるか、(2)その官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)その官能基を他の種類の官能基と反応させる工程と、
(iii)所望により、要素(A)の電極にリード端子を接続する工程と、
(iv)所望により、少なくとも1サイクルの充放電を行う工程と、
を含む。工程(i)~(iv)は、蓄電デバイス用セパレータを使用することを除いて、本技術分野において既知の方法により行われることができ、また工程(i)~(iv)においては、本技術分野において既知の正極、負極、電解液、外装体及び充放電装置を使用することができる。
工程(ii)中又は工程(ii)後にセパレータの架橋反応を確実に実行するという観点からは、工程(iii)及び(iv)を行うことが好ましい。充放電サイクルによって、架橋反応に触媒作用を及ぼす物質又は架橋構造の一部になる官能基を有する物質が、電解液中、外装体内面又は電極表面に生成し、それにより架橋反応が達成されることが考えられる。
本開示の蓄電デバイス用セパレータは、蓄電デバイスに収納されると、架橋構造が形成されるため、従来の蓄電デバイスの製造プロセスに適合しながら、デバイス製造後に架橋反応を起こして蓄電デバイスの安全性を向上させることができる。安全性としては、例えば、局所短絡に伴い熱暴走に至る可能性の低減、釘刺試験における安全性の向上、熱収縮性とホットボックス試験性の改善、及び高温バーインパクト破壊試験性の改善が挙げられる。
上記のようにして製造された蓄電デバイス、特にLIBは、本実施形態に係るセパレータを備えるため、安全性を向上させることができる。安全性としては、例えば、局所短絡に伴い熱暴走に至る可能性の低減、釘刺試験における安全性の向上、熱収縮性とホットボックス試験性の改善、及び高温バーインパクト破壊試験性の改善が挙げられる。
《測定及び評価方法》
以降で説明するセパレータの評価方法について、TOF-SIMS分析及び画像処理、セパレータに含まれるシラン変性ポリオレフィンの検出、重量平均分子量、粘度平均分子量、メルトマスフローレイト、ポリオレフィン基材層の目付、ポリオレフィン基材層の膜厚、突刺強度、目付換算突刺強度及び気孔率の測定については、それぞれのセパレータから塗工膜(無機粒子層及び熱可塑性ポリマー層)を除去し、セパレータを非水電解液に1週間浸漬し、塩化メチレンを用いてセパレータを洗浄してから評価を行った。150℃熱収縮率、電解液中の150℃熱収縮率、熱応答指数、膜厚、透気度、粉落ち性、FUSE温度、SHORT温度についてはそれぞれのセパレータを非水電解液に1週間浸漬し、塩化メチレンを用いてセパレータを洗浄してから評価を行った。電極残存率、電池のサイクル試験容量維持率、電池の圧壊試験についてはそれぞれのセパレータを用いて単層ラミネート型非水系二次電池を作成し評価を行った。
〈セパレータに含まれるシラン変性ポリオレフィンの検出方法〉
セパレータに含まれるシラン変性ポリオレフィンが架橋した状態では、有機溶剤に対して、不溶であるか、又は溶解度が不足するため、セパレータから直接的にシラン変性ポリオレフィンの含有を測定することが困難な場合がある。その場合、サンプルの前処理として、副反応が起こらないオルトギ酸メチルを用いて、シロキサン結合をメトキシシラノールへ分解した後、溶液NMR測定を行うことによって、セパレータに含まれるシラン変性ポリオレフィンを検出したり、そのGPC測定を行なったりすることができる。前処理の実験は、特許第3529854号公報及び特許第3529858号公報を参照して行うことができる。具体的には、セパレータ製造に用いる原料としてのシラン変性ポリオレフィンのH又は13C-NMRの同定を、セパレータに含まれるシラン変性ポリオレフィンの検出方法に活用することができる。H及び13C-NMRの測定手法の一例を以下に説明する。
H-NMR測定)
試料をo-ジクロロベンゼン-d4に140℃で溶解し、プロトン共鳴周波数が600MHzのH-NMRスペクトルを得る。H-NMRの測定条件は、下記のとおりである。
装置:Bruker社製 AVANCE NEO 600
試料管直径:5mmφ
溶媒:o-ジクロロベンゼン-d4
測定温度:130℃
パルス角:30°
パルス待ち時間:1sec
積算回数:1000回以上
試料濃度:1 wt/vol%
13CのNMR測定)
試料をo-ジクロロベンゼン-d4に140℃で溶解し、13C-NMRスペクトルを得る。13C-NMRの測定条件は下記のとおりである。
装置:Bruker社製 AVANCE NEO 600
試料管直径:5mmφ
溶媒:o-ジクロロベンゼン-d4
測定温度:130℃
パルス角:30°
パルス待ち時間:5sec
積算回数:10000回以上
試料濃度:10 wt/vol%
H及び/又は13C-NMR測定により、ポリオレフィン原料においては、シラン変性ポリオレフィン中のシランユニット変性量、ポリオレフィンのアルキル基変性量などを確認することができ、そしてセパレータ中では、シラン変性ポリオレフィンの含有の同定(-CH-Si:H,0.69ppm,t;13C,6.11ppm,s)が可能である。
〈重量平均分子量(Mw)〉
Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについても同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量を算出した。
カラム :東ソー製 GMH-HT(商標)2本+GMH-HTL(商標)2本
移動相 :o-ジクロロベンゼン
検出器 :示差屈折計
流速 :1.0ml/min
カラム温度:140℃
試料濃度 :0.1wt%
(ポリエチレンの重量平均分子量(Mw))
得られた較正曲線における各分子量成分に0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることによりポリエチレン換算の分子量分布曲線を得て、重量平均分子量を算出した。
(樹脂組成物の重量平均分子量(Mw))
最も質量分率の大きいポリオレフィンのQファクター値を用い、その他はポリエチレンの場合と同様にして重量平均分子量を算出した。
〈粘度平均分子量(Mv)〉
ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvを次式により算出した。
[η]=6.77×10-4Mv0.67
〈メルトマスフローレイト(MFR)(g/10min)〉
東洋精機製メルトマスフローレイト測定機(メルトインデックサF-F01)を用いて、190℃及び加重2.16kgの条件下、10分間で押出された樹脂の重量をMFR値として定めた。
〈TOF-SIMS分析及び画像処理〉
蓄電デバイス用セパレータについて、TOF-SIMS分析を実施した。TOF-SIMS質量分析計としては、アルバック・ファイ社製のnano-TOF(TRIFTV)を用いた。分析条件は以下のとおりとし、カルシウムイオン(m/z=40の正イオンに相当)を検出した。
[イメージ測定条件]
一次イオン:ビスマス(Bi
加速電圧:30kV
イオン電流:約0.5nA(DCとして)
バンチング有
分析面積:100μm×100μm
分析時間:90分
検出イオン:正イオン(m/z=40)
中和:電子銃+Arモノマーイオン
真空度:約5.0×10-5Pa
[深さ方向の測定条件]
分析条件
一次イオン:ビスマス(Bi
加速電圧:30kV
イオン電流:約1.2nA(DCとして)
バンチング有
分析面積:100μm×100μm
分析時間:5フレーム/サイクル
検出イオン:正イオン(m/z=40)
中和:電子銃+Arモノマーイオン
真空度:約5.0×10-5Pa
スパッタ条件
スパッタイオン:GCIB(Ar2500
加速電圧:20kV
イオン電流:約5nA
スパッタ面積:400μm×400μm
スパッタ時間:30秒/サイクル
中和:電子銃+Arモノマーイオン
上述のようにして得られたTOF-SIMSスペクトルの画像データを、下記の手順に従って画像処理した。
(1)ビーム形状(直径2μm、画素分解能0.39μm)に合わせたフィルターを作成する。フィルター値は、Mathworks社製の数値演算ソフトウェアMATLABのImage Processing Toolboxの関数fspecialを使用して算出する。
fspecial(「gaussian」,[13 13],1.69865)
(2)作成したフィルターを2次元データに適用する。
(3)フィルター適用後の2次元データの平均値と標準偏差を計算する。
(4)平均値+標準偏差×3をしきい値として二値化する。ただし、正規分布の場合は、平均値+標準偏差×3の範囲に値の99.74%が収まるため、数値的には特異な部分を抽出すことを意図する。
(5)7ピクセル分の膨張収縮を行って近傍にある抽出領域を接続する。
(6)面積の小さな(50ピクセル以下)領域を除去する。
(7)残った各領域のパラメーターを計算する。
抽出面積(ピクセル)、単純重心位置(x,y
領域中の最大値、領域の平均値、重み付き重心位置(x,y
(8)各重み付き重心位置間の距離を計算する。
Mathworks社製の数値演算ソフトウェアMATLABのImage Processing Toolboxの関数regionpropsのWeightedCentroidオプションを使用して算出した。
regionprops(cc,I,‘WeightedCentroid’)
ここで、ccは、抽出した領域を示す変数であり、かつIは、フィルター適用後の2次元データを格納した変数である。
以上の処理によってカルシウムイオンの島構造を特定し、数、大きさ、重み付き重心位置間距離を算出した。
〈150℃熱収縮率(%)〉
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片を150℃のオーブン中に1時間静置した。このとき、温風が試料片に直接あたらないよう、試料片を2枚の紙に挟んだ。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、150℃熱収縮率を算出した。
150℃熱収縮率(%)={(10,000(mm)-加熱後の試料片の面積(mm))/10,000(mm)}×100
〈非水系電解液の調整〉
5体積%のアセトニトリル、62.5体積%のエチルメチルカーボネート、30体積%のエチレンカーボネート、及び2.5体積%のビニレンカーボネートの混合溶液に、電解質として0.3mol/Lのヘキサフルオロリン酸リチウム(LiPF6)、1mol/Lのリチウムビス(フルオロスルホニル)イミド(LiN(SOF))、及び20質量ppmのフルオロスルホン酸リチウム(LiFSO)を加え、非水系電解液を調整した。
〈電解液中の150℃熱収縮率(%)〉
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片をアルミパックに入れ、試験片が完全に浸かるまで前記非水電解液を注液して1週間静置した。さらに150℃のオーブン中に1時間静置した。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、電解液中の150℃熱収縮率を算出した。
電解液中の150℃熱収縮率(%)={(10,000(mm)-加熱後の試料片の面積(mm))/10,000(mm)}×100
〈膜厚(μm)〉
蓄電デバイス用セパレータの膜厚は、東洋精機製の微小測厚器、KBM(商標)用いて、室温23±2℃及び相対湿度60%で膜厚を測定した。具体的には、TD方向全幅に亘って、ほぼ等間隔に5点の膜厚を測定し、それらの平均値を得た。ポリオレフィン基材層の膜厚(表中、「基材層の膜厚」)は、蓄電デバイス用セパレータから塗工膜(無機粒子層及び熱可塑性ポリマー層)を除去して測定した。無機粒子層の膜厚は、蓄電デバイス用セパレータから熱可塑性ポリマー層を取除いて、膜厚(ポリオレフィン基材層および無機塗工層の膜厚)を測定し、ポリオレフィン基材層および無機塗工層の膜厚からさらにポリオレフィン基材層の膜厚を減算することで算出した。熱可塑性ポリマー層の膜厚は、蓄電デバイス用セパレータの膜厚からポリオレフィン基材層および無機塗工層の膜厚を減算することで算出した。
〈透気度(sec/100cm)〉
JIS P-8117(2009年)に準拠し、東洋精器(株)製のガーレー式透気度計、G-B2(商標)により、蓄電デバイス用セパレータの体積100cm当たりの透気度を測定した。
〈気孔率(%)〉
塗工膜を除去した蓄電デバイス用セパレータから10cm×10cm角の試料を切り取った。試料の体積(cm)と質量(g)を求め、それらと密度(g/cm)より、次式を用いて気孔率を計算した。なお、混合組成物の密度としては、用いた原料の各々の密度と混合比より計算して求められる値を用いた。
気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
〈突刺強度(gf)及び目付換算突刺強度(gf/(g/m))〉
カトーテック製のハンディー圧縮試験器「KES-G5(商標)」を用いて、開口部の直径11.3mmの試料ホルダーで塗工膜を除去した蓄電デバイス用セパレータを固定した。次に、固定された蓄電デバイス用セパレータの中央部に対して、針先端の曲率半径0.5mm、突刺速度2mm/secで、温度23℃、湿度40%の雰囲気下の突刺試験を行うことにより、最大突刺荷重として生の突刺強度(gf)を得た。得られた突刺強度(gf)を目付に換算した値(gf/(g/m2))(表中、目付換算突刺強度)も算出した。
〈目付(g/m)〉
10cm×10cm角の試料を、熱可塑性ポリマー層を除去した蓄電デバイス用セパレータから切り取り、(株)島津製作所製の電子天秤AEL-200を用いてポリオレフィン基材層および無機塗工層の重量を測定した。得られた重量を100倍することで1m当りのポリオレフィン基材層および無機塗工層の目付(g/m)を算出した。次に、10cm×10cm角の試料を塗工層(無機塗工層および熱可塑性ポリマー層)を除去した蓄電デバイス用セパレータから切り取り、(株)島津製作所製の電子天秤AEL-200を用いて質量を測定した。得られた質量を100倍することにより、1m当りのポリオレフィン基材層の目付(g/m)(表中、基材層の目付)を算出した。1m当りのポリオレフィン基材層および無機塗工層の目付(g/m)から1m当りのポリオレフィン基材層の目付(g/m)を減算することにより、1m当りの無機塗工層の目付(無機塗工層のポリオレフィン基材層に対する担持量、g/m
)を算出した。
〈粉落ち性(%)〉
蓄電デバイス用セパレータから10cm×10cm角の試料を切り取り、質量(g)を秤量した。一方の面を厚紙に貼りつけ固定した後、無機粒子層側に綿布で覆った直径5cm、900gの分銅を乗せ、これらを50rpmの回転数で10分間擦り合わせた。その後、再度正確に質量(g)を測定し、下記式にて粉落ち性を測定した。
粉落ち性(質量%)={(擦り合わせる前の質量(g)-擦り合わせた後の質量(g))/擦り合わせる前の質量}×100
〈第一の実施形態における、電池のサイクル試験容量維持率(%)〉
(1)正極の作製
正極活物質としてニッケル、マンガン、コバルト複合酸化物(LiNiMnCoO)(NMC)(Ni:Mn:Co=6:2:2(元素比)、密度3.50g/cm)90.4質量%、導電助材としてグラファイト粉末(密度2.26g/cm、数平均粒子径6.5μm)を1.6質量%、及びアセチレンブラック粉末(密度1.95g/cm、数平均粒子径48nm)3.8質量%、並びに樹脂バインダとしてPVDF(密度1.75g/cm)4.2質量%の比率で混合し、これらをNMP中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗工し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。このとき、正極活物質塗工量は109g/mであった。
(2)負極の作製
負極活物質としてグラファイト粉末A(密度2.23g/cm、数平均粒子径12.7μm)87.6質量%、グラファイト粉末B(密度2.27g/cm、数平均粒子径6.5μm)9.7質量%、樹脂バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)、及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗工し、120℃で3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。このとき、負極活物質塗工量は52g/mであった。
(3)非水系電解液の調整
5体積%のアセトニトリル、62.5体積%のエチルメチルカーボネート、30体積%のエチレンカーボネート、及び2.5体積%のビニレンカーボネートの混合溶液に、電解質として0.3mol/Lのヘキサフルオロリン酸リチウム(LiPF6)、1mol/Lのリチウムビス(フルオロスルホニル)イミド(LiN(SOF))、及び20質量ppmのフルオロスルホン酸リチウム(LiFSO)を加え、非水系電解液を調整した。
(4)単層ラミネート型非水系二次電池の作製
上述のようにして正極と負極とを、各極の合剤塗布面が対向するようにセパレータ(実施例のセパレータ又は比較例のセパレータ)を介して重ね合わせて積層電極体とした。この積層電極体を、100mm×60mmのアルミニウムラミネートシート外装体内に収容し、80℃で5時間真空乾燥を行って水分を除去した。非水系電解液を外装体内に注入した後、外装体を封止することにより、単層ラミネート型(パウチ型)非水系二次電池を作製した。この単層ラミネート型非水系二次電池は、設計容量値が3Ah、定格電圧値が4.2Vであった。
(5)サイクル試験容量維持率の測定
上述のようにして得られた単層ラミネート型非水系二次電池について、以下の手順に従って初回充電処理及びサイクル特性評価を行った。充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。具体的に、下記の手順では、1Cは、具体的には、4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味する。
・初回充電処理
電池の周囲温度を25℃に設定し、0.025Cに相当する0.075Aの定電流で充電して3.1Vに到達した後、3.1Vの定電圧で1.5時間充電を行った。続いて3時間休止後、0.05Cに相当する0.15Aの定電流で電池を充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。その後、0.15Cに相当する0.45Aの定電流で3.0Vまで電池を放電した。
・単層ラミネート型非水系二次電池のサイクル試験
初回充放電処理を行った電池について、サイクル試験を実施した。なお、サイクル試験は電池の周囲温度を25℃に設定した3時間後に開始した。まず、1Cに相当する3Aの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で充電し、合計3時間充電を行った。その後、3Aの定電流で3.0Vまで電池を放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を100サイクル後容量維持率(%)として求めた。
〈第一の実施形態における、FUSE温度、SHORT温度(℃)〉
直径200mmの円形状に正極、蓄電デバイス用セパレータ及び負極を切出し、重なり合わせて積層体を得た。得られた積層体に非水電解液を加え、全体に染み渡す。直径600mmの円形状アルミヒーターで上記積層体を中心部に挟み、油圧ジャッキでアルミヒーターを上下から0.5MPaに加圧した。昇温速度2℃/minで、アルミヒーターで上記積層体を加熱しながら、電極間の抵抗(Ω)を測定した。セパレータの抵抗が初めて1000Ωを超えた時の温度をFUSE温度とした。また、さらに加熱を続け、抵抗が1000Ω以下に下がる時の温度をSHORT温度とした。
〈電池の圧壊試験〉
低温サイクル試験後のラミネートセルを試料台との間に1mmの段差を設けた状態でセットし、セルの両端を把持した。直径15.8mmのSUS製丸棒で、セルを圧壊速度0.2mm/s、1.95tonの力で押し潰し、電圧が4.1Vから4.0Vに到達するまで圧壊試験を行い、電圧が4.1Vから4.0Vに到達するまでの時間を測定した。この試験を100個のセルに対して実施し、電圧が4.1Vから4.0Vに到達するまでの時間が5秒以上であったセルの数を比較した。
〈電極残存率(%)〉
作製した単層ラミネート型非水系二次電池を解体し、セパレータと電極を引き剥がし、負極をデジタルカメラで撮影し、銅箔上に残存した負極合材の割合(%)を算出した。
〈熱応答指数〉
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片を150℃のオーブン中に所定の時間静置した。このとき、温風が試料片に直接あたらないよう、試料片を複数の紙に挟んだ。さらにセパレータの到達温度が分かるよう、複数の紙の間にアイピー技研製のヒートラベル「10R-104」も挟み込んだ。挟み込む紙の枚数を調整することで、セパレータの加熱速度を調整できる。セパレータの加熱速度が2℃/minになるよう挟み込む紙の枚数を調整した。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、ヒートラベルの指示温度での熱応答指数を算出した。
熱応答指数(%)={(10,000(mm)-加熱後の試料片の面積(mm))/10,000(mm)}×100
前記所定の時間を5秒から3分まで5秒刻みで変えながら実験を繰り返し、各温度の熱応答指数を計算した。
〈セパレータ中樹脂凝集物の定量化〉
セパレータ中樹脂凝集物は、後述される実施例と比較例の製膜工程を経て得られたセパレータを透過型光学顕微鏡で観察したときに、縦100μm×横100μm以上の面積を有し、かつ光が透過しない領域として定義されるものである。透過型光学顕微鏡による観察において、セパレータ面積1000m当たりの樹脂凝集物の個数を測定した。
〈第二の実施形態におけるサイクル試験、釘刺試験、ホットボックス試験、及び高温バーインパクト破壊試験〉
(安全性試験に用いられる電池の作製)
a.正極の作製
正極活物質としてリチウムニッケルマンガンコバルト複合酸化物LiNi0.8Mn0.1Co0.1を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、及びバインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるように調整した。
b.負極の作製
負極活物質として人造グラファイト96.9質量%、及びバインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるように調整した。
c.非水電解液の調製
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させて調製した。
d.電池組立
セパレータを直径18mm、正極及び負極を直径16mmの円形に切り出し、正極と負極の活物質面が対向するよう、正極、セパレータ、負極の順に重ね、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接していた。この容器内に、上記c.で得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
(サイクル特性評価)
得られた電池の充放電は、60℃雰囲気下で1000サイクル実施した。充電は6.0mA(1.0C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を6.0mAから絞り始めるという方法で、合計3時間充電した。放電は6.0mA(1.0C)の電流値で電池電圧3.0Vまで放電した。1000サイクル目の放電容量と1サイクル目の放電容量から、容量維持率を算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
(釘刺試験)
上記1000サイクル後、4.2Vまで充電した電池に鉄釘を20mm/secの速度で打ち込み、貫通させて、内部短絡を起こす試験を行なった。本試験は、内部短絡による電池の電圧低下の時間変化挙動および内部短絡による電池表面温度上昇挙動を測定することで、内部短絡時の現象を明らかにできる。また、内部短絡時にセパレータの不十分なシャットダウン機能や低温での破膜により、電池の急激な発熱が生じる場合があり、それに伴い、電解液が発火し、電池が発煙及び/又は爆発することがある。
上記のとおりに釘刺試験を行なった電池の合否を判定した。この釘刺試験を同一セパレータについて100個の電池に対して行なって、発火・発煙・爆発しなかった電池の数を合格率(%)と算出した。
(ホットボックス試験)
上記「d.電池組立」により得られた電池を、150℃の高温に設定されたホットボックスにおいて、それぞれ1時間保存し、保存中及び保存後に電池の状態を観察した。
高温保存によりポリオレフィン系セパレータの熱収縮が進むと、電池の両電極である正極及び負極において内部短絡が起きて、発火又は爆発が観察されることがある。このような発火又は爆発が観察された電池を不合格品として評価した。発火又は爆発が観察されなかった電池を合格品として評価した。
このホットボックス試験を同一セパレータについて100個の電池に対して行って、合格率(%)を算出した。
(高温バーインパクト破壊試験)
図12は、高温バーインパクト破壊試験(衝撃試験)の概略図である。
衝撃試験では、試験台上に配置された試料の上に、試料と丸棒(φ=15.8mm)が概ね直交するように、丸棒を置いて、丸棒から61cmの高さの位置から、丸棒の上面へ18.2kgの錘を落すことにより、試料に対する衝撃の影響を観察する。
図12を参照して、実施例及び比較例における衝撃試験の手順を以下に説明する。
上記「d.電池組立」のようにして組み立てて評価のために選定された円筒型電池について、電流値3000mA(1.0C)、及び終止電池電圧4.2Vの条件下で3時間定電流定電圧(CCCV)充電した。
次に、150℃の環境下で、円筒型電池を平坦な面に横向きに置き、電池の中央部を横切るように、直径15.8mmのステンレスの丸棒を配置した。丸棒は、その長軸がセパレータのMDと平行となるように配置した。電池の中央部に配置した丸棒から電池の縦軸方向に対して、直角に衝撃が加わるように、18.2kgの錘を61cmの高さから落下させた。衝突後、電池の状態を観察し、必要に応じて電池の表面温度を測定し、電池に発火又は爆発が観察されたものを不合格として、電池に発火又は爆発が観察されなかったものを合格として、評価した。
この高温バーインパクト破壊試験を同一セパレータについて100個の電池に対して行って、合格率(%)を算出した。
〈第二の実施形態における、ヒューズ/メルトダウン(F/MD)特性〉
直径200mmの円形状に正極、セパレータ及び負極を切出し、重なり合わせし、得られた積層体に電解質含有電解液を加え、全体に染渡す。直径600mmの円形状アルミヒーターで前記積層体を中心部に挟み、油圧ジャッキでアルミヒーターを上下から0.5Mpaに加圧し、測定の準備を完了とする。昇温速度を2℃/minの速度で、アルミヒーターで前記積層体を加熱しながら、電極間の抵抗(Ω)を測定する。セパレータのヒューズともに電極間の抵抗が上昇し、抵抗が初めて1000Ωを超えた時の温度をヒューズ温度(シャットダウン温度)とする。また、さらに加熱を続け、抵抗が1000Ω以下に下がる時の温度をメルトダウン温度(破膜温度)とする。なお、上記「第二の実施形態におけるサイクル試験」の項目「a.正極の作製」により作製された正極のアルミニウム箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。また、上記「第二の実施形態におけるサイクル試験」の項目「b.負極の作製」により作製された負極の銅箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。さらに、上記「第二の実施形態におけるサイクル試験」の項目「c.非水電解液の調製」により調製された電解質含有電解液をF/MD特性試験にも使用した。
I.第一の実施形態における実施例及び比較例
《蓄電デバイス用セパレータの製造》
〈シラングラフト変性ポリオレフィンの製造〉
シラン変性ポリエチレン(樹脂a)の原料ポリエチレンとして、粘度平均分子量(Mv)が120,000のポリエチレンを使用した。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンポリマー鎖内でラジカルを発生させた。その後、溶融混錬物へトリメトキシアルコキシド置換ビニルシランを注液して付加反応を起こした。付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させた。同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制した。得られたシラン変性ポリエチレン溶融樹脂を水中で冷却し、ペレット加工した。ペレットを80℃で2日加熱乾燥し、水分と未反応のトリメトキシアルコキシド置換ビニルシランとを除いた。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は3000ppm以下であった。
〈基材層(A層)の作製〉
A層の樹脂材料として、上記で得たシラン変性ポリエチレン(樹脂a)を30質量%と、粘度平均分子量が4,500,000のホモポリマーである超高分子量ポリエチレン(樹脂b)と30質量%と、粘度平均分子量が700,000のホモポリマーである超高分子量ポリエチレン(樹脂c)を40質量%使用した。さらに、樹脂材料の合計質量を基準として、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1000質量ppmと、超高分子量ポリエチレン(樹脂b)の質量に対して、ステアリン酸カルシウム3000質量ppmとを添加し、タンブラーブレンダーを用いてドライブレンドすることにより、A層の原料混合物を得た。
得られたA層の原料混合物を、それぞれ別の二軸押出機へ窒素雰囲気下でフィーダーにより供給し、流動パラフィン(37.78℃における動粘度7.59×10-5/s)をそれぞれの押出機シリンダーにプランジャーポンプにより注入した。押出機内で原料混合物及び流動パラフィンを溶融混練し、押し出される溶融混練物の全質量を基準として流動パラフィンが70質量%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度230℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。T-ダイを経て溶融混練物を押出し、表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1370μmのゲルシート(シート状成型体)を得た。
ゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行なって、延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.4倍(即ち、7×6.3倍)、二軸延伸温度122℃とした。延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔シートを得た。多孔シートをTDテンターに導き、熱固定温度133℃、延伸倍率1.9倍で熱固定(HS)を行い、TD1.75倍まで緩和操作を行って微多孔膜基材を得た。微多孔膜基材の端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。得られた微多孔膜基材の膜厚は10μmであった。
〈無機粒子層(B層)の形成〉
無機粒子層の樹脂バインダとして用いるアクリルラテックスを以下の方法で製造した。撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液を7.5質量部添加し、初期混合物を得た。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。なお、上記乳化液は、ブチルアクリレート70質量部と、メタクリル酸メチル29質量部と、メタクリル酸1質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部及び「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部と、過硫酸アンモニウムの2%水溶液7.5質量部と、イオン交換水52質量部との混合物を、ホモミキサーにより5分間混合させて調製した。乳化液の滴下終了後、反応容器内部の温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、25%の水酸化アンモニウム水溶液でpH=8.0に調整し、少量の水を加えて固形分40%のアクリルラテックスを得た。得られたアクリルラテックスは数平均粒子径145nm、ガラス転移温度-23℃であった。
無機粒子として95質量部の水酸化酸化アルミニウム(べーマイト、平均粒径1.4μm)と、イオン性分散剤として0.4質量部(固形分換算)のポリカルボン酸アンモニウム水溶液(サンノプコ社製、SNディスパーサント5468、固形分濃度40%)とを、100質量部の水に均一に分散させて分散液を調整した。得られた分散液を、ビーズミル(セル容積200cc、ジルコニア製ビーズ径0.1mm、充填量80%)にて解砕処理し、無機粒子の粒度分布を、D50=1.0μmに調整し、無機粒子含有スラリーを作製した。粒度分布を調整した分散液に、上記で製造された樹脂バインダとしてのアクリルラテックス2.0質量部(固形分換算)を添加して、無機粒子含有スラリーを得た。微多孔膜基材のマザーロールから基材を連続的に繰り出し、基材の両面に無機粒子含有スラリーをグラビアリバースコーターで塗工した。塗工された基材を60℃の乾燥機で乾燥させて水を除去し、両面に無機粒子層を有する基材を得た。これを巻き取って、無機粒子層を有する基材のマザーロールを得た。無機粒子層に含まれる水酸化酸化アルミニウムは、95質量%、無機粒子層の膜厚は、両面の合計で5μm(片面約2.5μm)であった。
〈熱可塑性ポリマー層(C層)の形成〉
アクリル樹脂の塗工液を、下記のように調製した。撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4質量部と、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部と、を投入した。反応容器内部温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウム(2%水溶液)を7.5質量部添加した。過硫酸アンモニウム水溶液を添加した5分後に、メタクリル酸メチル15.9質量部、アクリル酸n-ブチル74.5質量部、アクリル酸2-エチルヘキシル2質量部、メタクリル酸0.1質量部、アクリル酸0.1質量部、メタクリル酸2-ヒドロキシエチル2質量部、アクリルアミド5質量部、メタクリル酸グリシジル0.4質量部、トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業株式会社製)0.4質量部、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部、p-スチレンスルホン酸ナトリウム0.05質量部、過硫酸アンモニウム(2%水溶液)7.5質量部、γ-メタクリロキシプロピルトリメトキシシラン0.3質量部、及びイオン交換水52質量部の混合物を、ホモミキサーにより5分間混合させて、乳化液を作製した。得られた乳化液を、滴下槽から反応容器に150分かけて滴下した。乳化液の滴下終了後、反応容器内部温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、水酸化アンモニウム水溶液(25%水溶液)でpH=9.0に調整し、濃度40%のアクリル樹脂(アクリル系コポリマーラテックス)を得た。これを固形分で5重量%になるようにイオン交換水で希釈し塗工液を調製した。
ポリフッ化ビニリデン-ヘキヘキサフルオロプロピレン(PVDF-HFP)の塗工液を、下記のように調製した。アルケマ社製PVDF-HFP共重合体エマルジョン(カイナーフレックス2501-20、Tg:-40℃)を固形分で5重量%になるようにイオン交換水で希釈し塗工液を調製した。
上記で作製したアクリル樹脂又はPVDF-HFPの塗工液を、無機粒子層を有する基材のマザーロールの両面にグラビアコーターを用いて塗布し、表8~14に示す厚み及び被覆面積割合で熱可塑性ポリマー層を形成し、必要に応じてスリットして、蓄電デバイス用セパレータを得た。
《実施例1~68》
表8~14に示すように、A層~C層の積層方式、材料及び膜厚等を変更して、上記の方法で蓄電デバイス用セパレータを製造した。評価結果を表8~14に示す。
実施例66では、上記「a.正極の作製」で作製された正極の代わりに、正極材料としてLiCoO層を含む正極(LCO正極)を用いた。実施例67では、上記「無機粒子層(B層)の形成」において無機粒子層を形成する際、樹脂バインダとしてアクリルラテックスの代わりに、「エポクロスK-2010E」(登録商標、日本触媒株式会社、ガラス転移温度-50℃)を用いた。実施例68では、上記「無機粒子層(B層)の形成」において無機粒子層を形成する際、樹脂バインダとしてアクリルラテックスの代わりに、「JE-1056」(登録商標、星光PMC株式会社、ガラス転移温度82℃)を用いた。
《比較例1~6》
表15に示すように、A層~C層の積層方式、材料及び膜厚等を変更して蓄電デバイス用セパレータを製造した。評価結果を表15に示す。
なお、比較例4では、得られたポリオレフィン製微多孔膜を用いて、電池組み立て前に、岩崎電機株式会社製のEB照射装置、アイ・コンパクトEB(商標)を用いて120kGyの電子線を照射させ、電子線架橋を行った。得られた電子線架橋微多孔膜及び電池について、上記評価方法に従って各種の評価を行った。
また、比較例5、及び6では、ポリオレフィン製微多孔膜の作製において、押出工程中に、スズ系シロキサン結合を形成するための触媒を被押出物に添加し、それぞれ、セパレータ成形後の加湿架橋、及び流動パラフィン抽出工程での架橋を行なった。
Figure 0007462701000066
Figure 0007462701000067
Figure 0007462701000068
Figure 0007462701000069
Figure 0007462701000070
Figure 0007462701000071
Figure 0007462701000072
Figure 0007462701000073
II.第二の実施形態における実施例及び比較例
《シラングラフト変性ポリオレフィンの製法》
シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、プロピレン又はブテン共重合αオレフィンでもよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、1000~1500ppm程度である。
上記の製法により得られたシラングラフト変性ポリオレフィンを表16~23において「シラン変性ポリエチレン」として示す。
《シラン変性PE以外の各種官能基を有する変性PEおよび共重合体の製法》
シラン変性PE以外の各種官能基を有する変性PEおよび共重合体は以下の方法で製造した。
いずれの原料についても、MIが0.5~10の範囲内になるように使用する原料の分子量で調整した。水酸基を有する変性PEは、EVA共重合体をケン化、中和することで製造した。アミン変性、オキサゾリン変性などの変性樹脂は、クロム触媒を用いて重合したPEの末端ビニル基を過酸化水素条件下でタングステン系触媒に作用させ、ビニル基をエポキシ基へ変換する。以後は、既に公知の官能基変換有機反応を用いて、対象反応部位を目的官能基へ変換し、種々の変性PEを得た。例えば、アミン変性PEの場合は、エポキシ基を有する変性PEを押出機内で200℃で溶融混練しながら、1級又は2級アミン類を液体で注入し、反応をさせる。その後、減圧弁より未反応のアミン類を除き、得られたアミン変性樹脂をストランド状に押出し、ペレット状へカットする。
上記の製法により得られた変性PEを表16~23において「変性PE又は共重合体(B)」の一種として示す。
《実施例2.1》
〈基材としてのポリオレフィン微多孔膜の作製〉
重量平均分子量が720,000のホモポリマーのポリエチレン(UHMWPE(A))79.2質量%に、粘度平均分子量120,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFRが0.44g/分のシラングラフトポリエチレン(PE(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1200μmのゲルシート(シート状成型体)を得た。
次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行い延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率7.0倍(即ち、7.0×7.0倍)、二軸延伸温度125℃とした。
次に、延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔体を得た。
次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度123℃、延伸倍率2.0倍でHSを行い、その後、TD方向1.8倍までの緩和操作を行った。
〈熱可塑性ポリマー含有層の配置〉
表16に示される種類及びガラス転移温度を有する被覆樹脂7.5質量部を92.5質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン製微多孔膜の片面にグラビアコーターを用いて塗布し、表16に示される膜厚及び被覆面積割合で熱可塑性ポリマー含有層を形成して、複合化セパレータを得た。
その後、複合化セパレータについて、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
上記の評価時には、マザーロールから巻き出した複合化セパレータを必要に応じてスリットして、評価用セパレータとして使用した。
評価用セパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果を表16に示した。
《実施例2.2~2.26、比較例2.1~2.5》
表16~23に示されるように、基材としての微多孔膜の条件、複合化構成条件、微多孔膜作製時の架橋の有無、電池組み立て後の架橋の有無などを変更したこと以外は、実施例2.1と同様の操作を行って、表16~23に示すセパレータ及び電池を得た。得られたセパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表16~23に示した。
実施例2.17では、上記「a.正極の作製」で作製された正極の代わりに、正極材料としてLi(Al,Co)O層を含む正極(LAC正極)を用いた。
実施例2.18では、上記「c.非水系電解液の調製」で調製された非水系電解液と同様な構成成分で、LiPFを濃度5.0mol/Lとなるように調整した非水系電解液を用いた。
なお、比較例2.1及び2.2では、得られたポリオレフィン製微多孔膜を用いて、電池組み立て前に、所定の線量を照射させ、電子線架橋を行った。得られた電子線架橋微多孔膜及び電池について、上記評価方法に従って各種の評価を行った。
また、比較例2.4及び2.5では、ポリオレフィン製微多孔膜の作製において、押出工程中に、スズ系シロキサン結合を形成するための触媒を被押出物に添加し、それぞれ、セパレータ成形後の加湿架橋、及び流動パラフィン抽出工程での架橋を行なった。
Figure 0007462701000074
Figure 0007462701000075
Figure 0007462701000076
Figure 0007462701000077
Figure 0007462701000078
Figure 0007462701000079
Figure 0007462701000080
Figure 0007462701000081
《実施例3.1》
〈基材としてのポリオレフィン微多孔膜の作製〉
重量平均分子量が730,000のホモポリマーのポリエチレン(UHMWPE(A))79.2質量%に、粘度平均分子量121,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFRが0.40g/分のシラングラフトポリエチレン(PE(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1250μmのゲルシート(シート状成型体)を得た。
次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行い延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率7.0倍(即ち、7×7倍)、二軸延伸温度127℃とした。
次に、延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔体を得た。
次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率2.0倍でHSを行い、その後、TD方向1.9倍までの緩和操作を行った。
〈活性層の配置〉
無機フィラーとしてのアルミナ(Al)粒子と、表24に示される種類の被覆樹脂(フッ素系樹脂)を用意し、表24に示されるフッ素系樹脂質量/無機フィラー質量の割合で両者を混合し、さらに混合物/シアノエチルポリビニルアルコール/アセトン=19.8/0.2/80の質量割合になるように混合物をシアノエチルポリビニルアルコールとアセトンに混ぜて、均一に分散させて塗布液を調製し、ポリオレフィン製微多孔膜の片面にグラビアコーターを用いて塗布し、表24に示される厚みで活性層を形成して、複合化セパレータを得た。
その後、複合化セパレータについて、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
上記の評価時には、マザーロールから巻き出した複合化セパレータを必要に応じてスリットして、評価用セパレータとして使用した。
評価用セパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果を表24に示した。
《実施例3.2~3.27、比較例3.1~3.5》
表24~31に示されるように、基材としての微多孔膜の条件、複合化構成条件、微多孔膜作製時の架橋の有無、電池組み立て条件、電池組み立て後の架橋の有無などを変更したこと以外は、実施例3.1と同様の操作を行って、表24~31に示すセパレータ及び電池を得た。得られたセパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表24~31に示した。
なお、実施例3.8Bでは、例外的に、基材としての微多孔膜の両面に厚み1.0μmの活性層を配置して、複合化セパレータを得た。
実施例3.19では、上記「a.正極の作製」で作製された正極の代わりに、正極材料としてLi(Al,Co)O層を含む正極(LAC正極)を用いた。
実施例3.20では、上記「c.非水系電解液の調製」で調製された非水系電解液と同様な構成成分で、LiPFを濃度5.0mol/Lとなるように調整した非水系電解液を用いた。
比較例3.1及び3.2では、得られたポリオレフィン製微多孔膜を用いて、電池組み立て前に、所定の線量を照射させ、電子線架橋を行った。得られた電子線架橋微多孔膜及び電池について、上記評価方法に従って各種の評価を行った。
また、比較例3.4及び3.5では、ポリオレフィン製微多孔膜の作製において、押出工程中に、スズ系シロキサン結合を形成するための触媒を被押出物に添加し、それぞれ、セパレータ成形後の加湿架橋、及び流動パラフィン抽出工程での架橋を行なった。
Figure 0007462701000082
Figure 0007462701000083
Figure 0007462701000084
Figure 0007462701000085
Figure 0007462701000086
Figure 0007462701000087
Figure 0007462701000088
Figure 0007462701000089
《実施例4.1》
〈基材としてのポリオレフィン微多孔膜の作製〉
重量平均分子量が1,000,000のホモポリマーのポリエチレン(UHMWPE(A))79.2質量%に、粘度平均分子量120,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFRが0.33g/分のシラングラフトポリエチレン(PE(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1300μmのゲルシート(シート状成型体)を得た。
次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行ない、延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率7.0倍(即ち、7×7倍)、二軸延伸温度128℃とした。
次に、延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔体を得た。
次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度131℃、延伸倍率2.0倍でHSを行い、その後、TD方向1.7倍までの緩和操作を行った。
〈耐熱性多孔質層の積層〉
パラ芳香族アラミドの場合
N-メチル-2-ピロリドン(NMP)/塩化カルシウム溶液(塩化カルシウム濃度=7.1質量%)5000質量部にパラフェニレンジアミン150質量部を添加し、N雰囲気下、溶解・攪拌させ、次いで、テレフタル酸ジクロライド273.94質量部を添加し、攪拌し、1時間反応させ、ポリパラフェニレンテレフタルアミド重合液を得た。重合液1000質量部、NMP3000質量部、及びアルミナ(Al)粒子143.4質量部を攪拌混合して、ホモジナイザーで分散して、塗料用スラリーを得た。ドラム固定式バーコーターを用いて、クリアランス20μm~30μmの条件下、塗料用スラリーをポリオレフィン製微多孔膜の片面に塗布して、約70℃の温度で乾燥させて、複合化セパレータを得た。
その後、複合化セパレータについて、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
上記の評価時には、マザーロールから巻き出した複合化セパレータを必要に応じてスリットして、評価用セパレータとして使用した。
評価用セパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果を表32に示した。
《実施例4.2~4.23、比較例4.1~4.5》
表32~39に示されるように、基材としての微多孔膜の条件、複合化構成条件、微多孔膜作製時の架橋の有無、電池組み立て条件、電池組み立て後の架橋の有無などを変更したこと以外は、実施例4.1と同様の操作を行って、表32~39に示すセパレータ及び電池を得た。得られたセパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表32~39に示した。
また、メタ芳香族ポリイミドを含む耐熱性多孔質層の積層については、実施例4.1の積層方法に代えて、以下の方法により行った。
〈耐熱性多孔質層の積層〉
メタ芳香族アラミドの場合
メタ芳香族ポリアミドと平均粒子0.6μmのベーマイトとを質量比1:1となるように調整して混合し、これらをメタ芳香族ポリアミド濃度が3質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(質量比=1:1)と混合して、塗料用スラリーを得た。マイヤーバーコーターを用いて、クリアランス20μm~30μmの条件下、塗料用スラリーをポリオレフィン製微多孔膜の片面に塗布して、塗布セパレータを得た。塗布セパレータを、質量比として水:DMAc:TPG=2:1:1及び温度35℃の凝固液中に浸漬し、続いて水洗浄・乾燥を行って、複合化セパレータを得た。
なお、実施例4.5では、例外的に、基材としての微多孔膜の両面に厚み3.5μmの耐熱性多孔質層を配置して、複合化セパレータを得た。
実施例4.16では、上記「a.正極の作製」で作製された正極の代わりに、正極材料としてLi(Al,Co)O層を含む正極(LAC正極)を用いた。
実施例4.17では、上記「c.非水系電解液の調整」で作製された非水系電解液と同様な構成成分で、LiPFを濃度5.0mol/Lとなるように調整した非水系電解液を用いた。
比較例4.1及び4.2では、得られたポリオレフィン製微多孔膜を用いて、電池組み立て前に、所定の線量を照射させ、電子線架橋を行った。得られた電子線架橋微多孔膜及び電池について、上記評価方法に従って各種の評価を行った。
また、比較例4.4及び4.5では、ポリオレフィン製微多孔膜の作製において、押出工程中に、スズ系シロキサン結合を形成するための触媒を被押出物に添加し、それぞれ、セパレータ成形後の加湿架橋、及び流動パラフィン抽出工程での架橋を行なった。
Figure 0007462701000090
Figure 0007462701000091
Figure 0007462701000092
Figure 0007462701000093
Figure 0007462701000094
Figure 0007462701000095
Figure 0007462701000096
Figure 0007462701000097
〈表15~39中の略号の説明〉
「シラン変性ポリエチレン」は、粘度平均分子量120,000~121,000のポリオレフィンを原料として用いて、トリメトキシアルコキシド置換ビニルシランによる変性反応で得られる、密度が0.95g/cmであり、かつ190℃でのメルトフローレート(MFR)が0.33~0.44g/分であるシラン変性ポリエチレンである。
「-COOH変性PE」、「-オキサゾリン変性PE」、「-オキサゾリン,-OH変性PE」、「-OH変性PE」、「-OH,-NH-変性PE」及び「-OH,アミン変性PE」は、いずれも上記[シラン変性PE以外の各種官能基を有する変性PEおよび共重合体の製法]により得られる変性PEである。
** (I)複数の同一官能基の縮合反応
(II)複数の異種官能基間の反応
(III)官能基と電解液の連鎖縮合反応
(IV)官能基と添加剤の反応
(V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
*** EC:エチレンカーボネート
**** BS(PEG):両末端スクシンイミド、EOユニット繰り返し数5
ジイソシアネート:両末端イソシアネートをウレタン結合を介して、ヘキサンユニットと連結した化合物
ジエポキシ化合物:両末端エポキシド基とブタンユニットとを連結した化合物
本開示の蓄電デバイス用セパレータは、蓄電デバイスのセパレータとして利用することができ、蓄電デバイスとしては、例えば電池、及びコンデンサー、好ましくはリチウムイオン二次電池が挙げられる。リチウムイオン二次電池は、携帯電話、ノート型パソコン等の小型電子機器、並びに電気自動車、電動バイク等の電動車両に搭載することができる。
1a 非架橋ポリオレフィン基材層
1b 架橋ポリオレフィン基材層
2 無機粒子層
3 熱可塑性ポリマー層
4 応力
5 無機粒子層の座屈破壊
6 基材層の引張破壊
7 局所短絡
8 圧力
9 島構造
10 セパレータ
20 固定治具
30 正極
40 負極
100 蓄電デバイス
d 島構造同士の距離

Claims (30)

  1. 基材としてのポリオレフィン製微多孔膜と、前記ポリオレフィン製微多孔膜の少なくとも片面に形成された表面層とを備える蓄電デバイス用セパレータであって、
    前記ポリオレフィン製微多孔膜に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、
    前記表面層は、熱可塑性ポリマー含有層、フッ素原子含有ビニル化合物を含有する活性層、又は耐熱性樹脂を含有する耐熱性多孔質層であり、かつ
    蓄電デバイス用セパレータは、蓄電デバイスへの収納後に、周囲の環境又は前記蓄電デバイス内部の化学物質を利用して、(1)前記官能基同士が縮合反応するか、(2)前記官能基が前記蓄電デバイス内部の化学物質と反応するか、又は(3)前記官能基が他の種類の官能基と反応して、架橋構造を形成するよう用いられ、前記蓄電デバイスはリチウムイオン二次電池である、蓄電デバイス用セパレータ。
  2. 前記官能基は、カルボキシル基、ヒドロキシ基、カルボニル基、重合性不飽和炭化水素基、イソシアネート基、エポキシ基、シラノール基、ヒドラジド基、カルボジイミド基、オキサゾリン基、アセトアセチル基、アジリジン基、エステル基、活性エステル基、カーボネート基、アジド基、鎖状又は環状ヘテロ原子含有炭化水素基、アミノ基、スルフヒドリル基、金属キレート基、及びハロゲン含有基から成る群から選択される少なくとも1つである、請求項1に記載の蓄電デバイス用セパレータ。
  3. 前記表面層が前記熱可塑性ポリマー含有層であり、前記熱可塑性ポリマー含有層の前記基材に対する被覆面積割合が、5%~90%である、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4. 前記熱可塑性ポリマー含有層に含まれる熱可塑性ポリマーが、(メタ)アクリル酸エステル又は(メタ)アクリル酸の重合単位を含む、請求項に記載の蓄電デバイス用セパレータ。
  5. 前記熱可塑性ポリマー含有層に含まれる熱可塑性ポリマーのガラス転移温度が、-40℃~105℃である、請求項3又は4に記載の蓄電デバイス用セパレータ。
  6. 前記表面層が前記活性層であり、前記活性層が、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物と、無機粒子とを含有する、請求項1又は2に記載の蓄電デバイス用セパレータ。
  7. 前記活性層における前記フッ素原子含有ビニル化合物と前記無機粒子との質量比(フッ素原子含有ビニル化合物/無機粒子)が、5/95~80/20である、請求項に記載の蓄電デバイス用セパレータ。
  8. 前記フッ素原子含有ビニル化合物の重量平均分子量が、0.6×10~2.5×10である、請求項6又は7に記載の蓄電デバイス用セパレータ。
  9. 前記表面層が前記耐熱性多孔質層であり、前記耐熱性多孔質層は、平均粒子径が0.2μm~0.9μmの無機フィラーを30質量%~90質量%含有する、請求項1又は2に記載の蓄電デバイス用セパレータ。
  10. 前記耐熱性樹脂が、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテル、ポリエーテルケトン、ポリエーテルイミド及びセルロースから成る群から選択される少なくとも1種を含む、請求項に記載の蓄電デバイス用セパレータ。
  11. 前記耐熱性樹脂が、パラ型芳香族ポリアミド、及び/又はメタ型芳香族ポリアミドを含む、請求項9又は10に記載の蓄電デバイス用セパレータ。
  12. 前記化学物質が、前記ポリオレフィン製微多孔膜に含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、請求項1~11のいずれか一項に記載の蓄電デバイス用セパレータ。
  13. 前記架橋構造が、前記ポリオレフィンの非晶部が架橋された非晶部架橋構造である、請求項1~12のいずれか一項に記載の蓄電デバイス用セパレータ。
  14. 前記非晶部が、選択的に架橋された、請求項13に記載の蓄電デバイス用セパレータ。
  15. 前記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、請求項1~14のいずれか一項に記載の蓄電デバイス用セパレータ。
  16. 前記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、請求項1~15のいずれか一項に記載の蓄電デバイス用セパレータ。
  17. 前記共有結合を介した反応が、下記反応(I)~(IV):
    (I)複数の同一官能基の縮合反応;
    (II)複数の異種官能基間の反応;
    (III)官能基と電解液の連鎖縮合反応;及び
    (IV)官能基と添加剤の反応;
    から成る群から選択される少なくとも1つである、請求項16に記載の蓄電デバイス用セパレータ。
  18. 前記配位結合を介した反応が、下記反応(V):
    (V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
    である、請求項17に記載の蓄電デバイス用セパレータ。
  19. 前記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、請求項18に記載の蓄電デバイス用セパレータ。
  20. 前記反応(I)が、複数のシラノール基の縮合反応である、請求項17に記載の蓄電デバイス用セパレータ。
  21. 前記反応(IV)が、前記蓄電デバイス用セパレータを構成する化合物Rxと前記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、前記化合物Rxは、官能基xを有し、かつ前記化合物Ryは、連結反応ユニットyを有する、請求項17に記載の蓄電デバイス用セパレータ。
  22. 前記反応(IV)が求核置換反応であり、
    前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
    前記化合物Ryの連結反応ユニットyが、CHSO-、CFSO-、ArSO-、CHSO-、CFSO-、ArSO-、及び下記式(y-1)~(y-6):
    Figure 0007462701000098
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure 0007462701000099
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure 0007462701000100
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure 0007462701000101
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure 0007462701000102
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure 0007462701000103
    {式中、Xは、水素原子又は1価の置換基である。}
    で表される1価の基から成る群から選択される少なくとも2つである、請求項21に記載の蓄電デバイス用セパレータ。
  23. 前記反応(IV)が求核置換反応であり、
    前記化合物Ryが、前記連結反応ユニットyに加えて鎖状ユニットyを有し、かつ
    前記鎖状ユニットyが、下記式(y-1)~(y-6):
    Figure 0007462701000104
    {式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
    Figure 0007462701000105
    {式中、nは、1~20の整数である。}
    Figure 0007462701000106
    {式中、nは、1~20の整数である。}
    Figure 0007462701000107
    {式中、nは、1~20の整数である。}
    Figure 0007462701000108
    {式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
    Figure 0007462701000109
    {式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
    で表される2価の基から成る群から選択される少なくとも1つである、請求項21又は22に記載の蓄電デバイス用セパレータ。
  24. 前記反応(IV)が求核付加反応であり、
    前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
    前記化合物Ryの連結反応ユニットyが、下記式(Ay-1)~(Ay-6):
    Figure 0007462701000110
    Figure 0007462701000111
    Figure 0007462701000112
    Figure 0007462701000113
    {式中、Rは、水素原子又は1価の有機基である。}
    Figure 0007462701000114
    Figure 0007462701000115
    で表される基から成る群から選択される少なくとも1つである、請求項21に記載の蓄電デバイス用セパレータ。
  25. 前記反応(IV)が開環反応であり、
    前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
    前記化合物Ryの連結反応ユニットyが、下記式(ROy-1):
    Figure 0007462701000116
    {式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
    で表される少なくとも2つの基である、請求項21に記載の蓄電デバイス用セパレータ。
  26. 前記反応(V)において、前記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つである、請求項18に記載の蓄電デバイス用セパレータ。
  27. 前記官能基を有するポリオレフィンが、前記官能基の架橋構造を形成する脱水縮合触媒を含有するマスターバッチ樹脂ではない、請求項1~26のいずれか一項に記載の蓄電デバイス用セパレータ。
  28. (A)電極と、請求項1~27のいずれか一項に記載の蓄電デバイス用セパレータとの積層体又は捲回体を収納している、外装体;及び
    (B)非水電解液を収納している容器;
    を備える、蓄電デバイス組み立てキット。
  29. 正極と、負極と、請求項1~27のいずれか一項に記載の蓄電デバイス用セパレータと、非水電解液とを含む、蓄電デバイス。
  30. 正極、負極、請求項1~27のいずれか一項に記載の蓄電デバイス用セパレータ、及び非水電解液を含む蓄電デバイスであって、前記正極は、ニッケル-マンガン-コバルト(NMC)系リチウム含有正極、オリビン型リン酸鉄リチウム(LFP)系正極、コバルト酸リチウム(LCO)系正極、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極、及びマンガン酸リチウム(LMO)系正極からなる群から選択される少なくとも一つである、蓄電デバイス。
JP2022088092A 2020-04-13 2022-05-30 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス Active JP7462701B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023020940A JP2023071736A (ja) 2020-04-13 2023-02-14 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス
JP2023183554A JP2024012377A (ja) 2020-04-13 2023-10-25 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2020071804 2020-04-13
JP2020071830 2020-04-13
JP2020071830 2020-04-13
JP2020071768 2020-04-13
JP2020071768 2020-04-13
JP2020071804 2020-04-13
JP2020183237 2020-10-30
JP2020183237 2020-10-30
JP2022015899A JP7193665B2 (ja) 2020-04-13 2022-02-03 蓄電デバイスの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022015899A Division JP7193665B2 (ja) 2020-04-13 2022-02-03 蓄電デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023020940A Division JP2023071736A (ja) 2020-04-13 2023-02-14 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス

Publications (2)

Publication Number Publication Date
JP2022119924A JP2022119924A (ja) 2022-08-17
JP7462701B2 true JP7462701B2 (ja) 2024-04-05

Family

ID=78085106

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2021560663A Active JP7035284B1 (ja) 2020-04-13 2021-03-12 複合型単層化学架橋セパレータ
JP2022015899A Active JP7193665B2 (ja) 2020-04-13 2022-02-03 蓄電デバイスの製造方法
JP2022088092A Active JP7462701B2 (ja) 2020-04-13 2022-05-30 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス
JP2022196333A Active JP7265084B2 (ja) 2020-04-13 2022-12-08 蓄電デバイスの製造方法
JP2023020940A Pending JP2023071736A (ja) 2020-04-13 2023-02-14 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス
JP2023183554A Pending JP2024012377A (ja) 2020-04-13 2023-10-25 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2021560663A Active JP7035284B1 (ja) 2020-04-13 2021-03-12 複合型単層化学架橋セパレータ
JP2022015899A Active JP7193665B2 (ja) 2020-04-13 2022-02-03 蓄電デバイスの製造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2022196333A Active JP7265084B2 (ja) 2020-04-13 2022-12-08 蓄電デバイスの製造方法
JP2023020940A Pending JP2023071736A (ja) 2020-04-13 2023-02-14 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス
JP2023183554A Pending JP2024012377A (ja) 2020-04-13 2023-10-25 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス

Country Status (6)

Country Link
US (1) US20220294079A1 (ja)
EP (2) EP4009437A4 (ja)
JP (6) JP7035284B1 (ja)
KR (1) KR20220033494A (ja)
CN (1) CN114223094A (ja)
WO (1) WO2021210318A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023034887A (ja) * 2021-08-31 2023-03-13 株式会社東芝 電解コンデンサの製造方法、電解コンデンサ及び電解コンデンサの製造装置
CN114806179A (zh) * 2022-03-31 2022-07-29 宁波东致杰电力科技有限公司 一种绝缘液体硅橡胶及其制备方法和应用
WO2024064698A1 (en) * 2022-09-19 2024-03-28 Amtek Research International Llc Biaxially oriented membranes from double layer, oil filled sheets
KR20240059977A (ko) * 2022-10-28 2024-05-08 에스케이온 주식회사 이차전지용 분리막, 이의 제조방법 및 리튬 이차전지
WO2024095719A1 (ja) * 2022-10-31 2024-05-10 日本ゼオン株式会社 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ
US11984564B1 (en) * 2022-12-16 2024-05-14 24M Technologies, Inc. Systems and methods for minimizing and preventing dendrite formation in electrochemical cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203145A (ja) 2016-05-13 2017-11-16 積水化学工業株式会社 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529858B2 (ja) 1972-07-28 1977-03-18
JPS529854B2 (ja) 1972-08-04 1977-03-18
JPS59109341A (ja) 1982-12-14 1984-06-25 Dainichi Nippon Cables Ltd 螺子孔あきプレ−ト片面へのゴムシ−ル体成形法
JP3735150B2 (ja) 1996-02-09 2006-01-18 日東電工株式会社 電池用セパレータおよびそれを用いた電池
WO1997044839A1 (en) 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
JP3416016B2 (ja) 1997-03-18 2003-06-16 富士通株式会社 リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池
JPH11144700A (ja) 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JPH11172036A (ja) * 1997-12-10 1999-06-29 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JP2000319441A (ja) 1999-05-12 2000-11-21 Toray Ind Inc 樹脂微多孔膜の製造方法
GB9929698D0 (en) * 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
JP4583532B2 (ja) 1999-12-15 2010-11-17 日東電工株式会社 多孔質膜
CN100346506C (zh) 2003-04-09 2007-10-31 日东电工株式会社 电池隔板用的负载粘接剂的多孔膜及其利用
KR100971108B1 (ko) 2007-06-19 2010-07-20 데이진 가부시키가이샤 비수계 2 차 전지용 세퍼레이터, 그 제조 방법 및 비수계 2 차 전지
WO2009096451A1 (ja) 2008-01-29 2009-08-06 Hitachi Maxell, Ltd. 絶縁層形成用スラリー、電気化学素子用セパレータおよびその製造方法、並びに電気化学素子
JP5714441B2 (ja) 2010-08-06 2015-05-07 住友化学株式会社 セパレータ
KR101442958B1 (ko) * 2013-02-18 2014-09-23 삼성토탈 주식회사 장기구동 성능 향상을 위한 다기능성 코팅 분리막 및 이를 구비한 이차전지
KR101723994B1 (ko) * 2014-02-21 2017-04-06 주식회사 포스코 분리막, 분리막의 제조 방법, 이를 포함하는 리튬 폴리머 이차 전지, 및 이를 이용한 리튬 폴리머 이차 전지의 제조 방법
KR101915347B1 (ko) * 2015-04-30 2018-11-05 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR101915346B1 (ko) * 2015-04-30 2018-11-05 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 의해 제조된 세퍼레이터
KR101943491B1 (ko) * 2015-05-08 2019-01-29 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
JP6739320B2 (ja) * 2015-11-30 2020-08-12 旭化成株式会社 蓄電デバイス用セパレータ
WO2019151812A1 (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
KR102160425B1 (ko) 2018-03-14 2020-09-29 엘에스일렉트릭(주) 배전반 내 차단기 관리 시스템
JP7166773B2 (ja) * 2018-03-30 2022-11-08 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
KR20200026172A (ko) 2018-08-31 2020-03-10 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR20200026756A (ko) * 2018-09-03 2020-03-11 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR20200032931A (ko) * 2018-09-19 2020-03-27 더블유스코프코리아 주식회사 분리막 및 그 제조방법
KR102601002B1 (ko) * 2018-10-11 2023-11-14 아사히 가세이 가부시키가이샤 가교 세퍼레이터를 사용한 리튬 이온 전지
KR102436842B1 (ko) * 2018-10-11 2022-08-26 아사히 가세이 가부시키가이샤 리튬 이온 전지용 세퍼레이터
JP6580234B1 (ja) 2018-10-24 2019-09-25 旭化成株式会社 蓄電デバイス用セパレータ、及びそれを用いた捲回体、リチウムイオン二次電池、並びに蓄電デバイス
KR20200061575A (ko) * 2018-11-26 2020-06-03 더블유스코프코리아 주식회사 무기 코팅 분리막 및 그 제조방법
WO2021141132A1 (ja) * 2020-01-08 2021-07-15 旭化成株式会社 無機塗工層架橋セパレータ
JP7088969B2 (ja) 2020-01-21 2022-06-21 三星エスディアイ株式会社 リチウムイオン(lithium ion)二次電池用セパレータ(separator)及びリチウムイオン二次電池
JP7021403B1 (ja) * 2020-04-13 2022-02-16 旭化成株式会社 複合型積層化学架橋セパレータ
JP2022015899A (ja) * 2020-07-10 2022-01-21 トヨタ自動車株式会社 ショットピーニング装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203145A (ja) 2016-05-13 2017-11-16 積水化学工業株式会社 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ

Also Published As

Publication number Publication date
KR20220033494A (ko) 2022-03-16
EP4235899A2 (en) 2023-08-30
JP7035284B1 (ja) 2022-03-14
JP2023022303A (ja) 2023-02-14
JP2024012377A (ja) 2024-01-30
JP2022119924A (ja) 2022-08-17
JPWO2021210318A1 (ja) 2021-10-21
JP2023071736A (ja) 2023-05-23
EP4009437A1 (en) 2022-06-08
JP7265084B2 (ja) 2023-04-25
JP7193665B2 (ja) 2022-12-20
JP2022064994A (ja) 2022-04-26
EP4009437A4 (en) 2023-06-28
CN114223094A (zh) 2022-03-22
US20220294079A1 (en) 2022-09-15
EP4235899A3 (en) 2024-04-10
WO2021210318A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7462701B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス組み立てキット及び蓄電デバイス
EP3444866B1 (en) Separator and electrochemical device including the same
CN108963165B (zh) 非水系二次电池用隔膜、其制造方法及非水系二次电池
KR101002161B1 (ko) 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20150002629A (ko) 이차 전지용 세퍼레이터
JP6916408B1 (ja) 非水系電解液および非水系二次電池
US20220294080A1 (en) Composite-Type Stacked Chemically-Crosslinked Separator
KR20180094778A (ko) 비수계 이차전지용 세퍼레이터, 및, 비수계 이차전지
KR20240049846A (ko) 가교 세퍼레이터를 사용한 리튬 이온 전지
JP7461381B2 (ja) 無機塗工層架橋セパレータ
CN112840480A (zh) 负极和包含所述负极的锂二次电池
KR20230079399A (ko) 실록산 분산 가교형 세퍼레이터
KR102331067B1 (ko) 이차전지용 분리막, 그 제조방법 및 이를 포함하는 이차전지
KR102576176B1 (ko) 다공성 분리층 및 이를 포함하는 전기화학소자
JP2022021146A (ja) 超高分子量組成化学架橋型セパレータ
US20240014511A1 (en) Separator and lithium battery employing same
EP4007058A1 (en) Porous separator and electrochemical device comprising same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240326

R150 Certificate of patent or registration of utility model

Ref document number: 7462701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150