WO2024095719A1 - 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ - Google Patents

誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ Download PDF

Info

Publication number
WO2024095719A1
WO2024095719A1 PCT/JP2023/036774 JP2023036774W WO2024095719A1 WO 2024095719 A1 WO2024095719 A1 WO 2024095719A1 JP 2023036774 W JP2023036774 W JP 2023036774W WO 2024095719 A1 WO2024095719 A1 WO 2024095719A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
particulate polymer
mass
present
binder composition
Prior art date
Application number
PCT/JP2023/036774
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024095719A1 publication Critical patent/WO2024095719A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a binder composition for a dielectric layer, a slurry composition for a dielectric layer, a dielectric layer, and a capacitor.
  • a capacitor such as a multilayer ceramic capacitor can generally be obtained by forming dielectric layers such as ceramic green sheets, stacking the dielectric layers, and optionally sintering them.
  • the dielectric layer can be obtained, for example, by first preparing a slurry composition containing a binder, a dielectric material, and a solvent, then applying the slurry composition onto a release substrate and then drying the slurry composition, and the obtained dielectric layer is then used to manufacture a capacitor.
  • Patent Document 1 proposes a binder for producing an inorganic sintered body, which contains a binder resin composition having a predetermined gel fraction and containing a predetermined composite resin, as a binder with excellent thermal decomposition properties that can produce a ceramic green sheet that can achieve a high porosity and is less likely to suffer from defects such as cracks when producing a sintered body, when used as a binder for producing a ceramic green sheet.
  • the dielectric layer such as a ceramic green sheet
  • it is usually wound into a roll together with the release substrate.
  • the dielectric layer is in close contact with the surface of the release substrate on the side on which the dielectric layer is not formed (hereinafter, sometimes referred to as the "rear surface of the release substrate"). If the dielectric layer is stored in this state, the dielectric layer may adhere to the rear surface of the release substrate (so-called blocking), which may cause breakage of the dielectric layer.
  • the dielectric layer is usually superimposed on another layer and then pressed. When the dielectric layer is subsequently peeled off from the release substrate, the dielectric layer may remain on the release substrate.
  • the present inventors have conducted extensive research with the aim of solving the above problems. As a result, the present inventors have newly discovered that the above problems can be solved by using a binder composition for a dielectric layer that contains a particulate polymer containing a specific monomer unit and water, and have thus completed the present invention.
  • the present invention aims to advantageously solve the above-mentioned problems, and [1] the present invention is a binder composition for a dielectric layer, which comprises a particulate polymer containing a (meth)acrylic acid ester monomer unit and water.
  • a binder composition for a dielectric layer can impart excellent blocking resistance to the dielectric layer.
  • the binder composition for a dielectric layer when a capacitor is manufactured by stacking a dielectric layer and another layer and pressing them together, and then peeling the dielectric layer from the release substrate, the dielectric layer can be prevented from remaining on the release substrate.
  • excellent transferability can be imparted to the dielectric layer.
  • the binder composition for the dielectric layer contains water as a solvent, the use of such a binder composition can reduce the environmental load and improve safety in the production of a capacitor.
  • whether or not a particulate polymer contains a predetermined monomer unit can be determined by using a nuclear magnetic resonance (NMR) method such as 1 H-NMR.
  • NMR nuclear magnetic resonance
  • a particulate polymer "contains a monomer unit” it means that "the particulate polymer obtained by using the monomer contains a repeating unit derived from the monomer.”
  • (meth)acrylic means acrylic and/or methacrylic.
  • the particulate polymer preferably has a glass transition temperature of -50°C or higher and 20°C or lower. If the glass transition temperature is equal to or higher than the lower limit, the blocking resistance of the dielectric layer can be improved, whereas if the glass transition temperature is equal to or lower than the upper limit, the transferability of the dielectric layer can be improved.
  • the glass transition temperature of the particulate polymer can be measured according to the method described in the Examples.
  • the particulate polymer preferably has a volume average particle size of 0.01 ⁇ m or more and 1.0 ⁇ m or less. If the volume average particle diameter of the particulate polymer is equal to or greater than the lower limit, the transferability of the dielectric layer can be improved. Also, if the volume average particle diameter of the particulate polymer is equal to or greater than the lower limit, the dielectric layer formed on the release substrate can be prevented from being unintentionally peeled off from the release substrate. In other words, the binder composition for the dielectric layer can be used to impart excellent adhesiveness to the dielectric layer.
  • the volume average particle size of the particulate polymer is equal to or less than the above upper limit, the blocking resistance of the dielectric layer can be improved.
  • the volume average particle size of the particulate polymer can be measured according to the method described in the Examples.
  • the present invention also aims to advantageously solve the above problems, and [4] the present invention is a slurry composition for a dielectric layer, comprising the binder composition for a dielectric layer according to any one of [1] to [3] above, a dielectric material, and a solvent.
  • the use of the above-mentioned dielectric layer slurry composition can impart excellent blocking resistance and transferability to the dielectric layer. Also, the use of the above-mentioned dielectric layer slurry composition can impart excellent adhesion to the dielectric layer.
  • the present invention also aims to advantageously solve the above problems, and [5] the present invention is a dielectric layer obtained by drying a coating film made of the slurry composition for a dielectric layer according to [4] above.
  • the dielectric layer has excellent blocking resistance, transferability, and adhesiveness. Since the dielectric layer has excellent blocking resistance, transferability, and adhesiveness, it is easy to handle, and as a result, capacitors can be produced efficiently.
  • Another object of the present invention is to advantageously solve the above problems, and the present invention is [6] a capacitor using the dielectric layer according to [5] above.
  • the capacitor has excellent productivity because it uses a dielectric layer that is easy to handle.
  • a binder composition for a dielectric layer that can impart excellent blocking resistance and transferability to a dielectric layer. Furthermore, according to the present invention, it is possible to provide a slurry composition for a dielectric layer that can impart excellent blocking resistance and transferability to the dielectric layer. Furthermore, according to the present invention, it is possible to provide a dielectric layer obtained by drying a coating film made of the above-mentioned slurry composition for a dielectric layer. Furthermore, according to the present invention, a capacitor using the above-mentioned dielectric layer can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a multilayer ceramic capacitor as a capacitor of the present invention.
  • the binder composition for dielectric layer of the present invention (hereinafter, sometimes simply referred to as "binder composition”) can be used to prepare the slurry composition for dielectric layer of the present invention (hereinafter, sometimes simply referred to as "slurry composition").
  • the slurry composition of the present invention can be used to form a dielectric layer used in the manufacture of a capacitor or the like.
  • the dielectric layer of the present invention is formed by drying a coating film made of the slurry composition of the present invention.
  • the capacitor of the present invention is formed using a dielectric layer formed using the slurry composition of the present invention.
  • the binder composition for a dielectric layer of the present invention contains a particulate polymer and water as a solvent, and may optionally contain components other than the particulate polymer and water (hereinafter, sometimes referred to as "other components").
  • the particulate polymer contains a (meth)acrylic acid ester monomer unit.
  • the particulate polymer contained in the binder composition of the present invention is a component that can function as a binder, and contains (meth)acrylic acid ester monomer units and may optionally contain acid group-containing monomer units.
  • the particulate polymer may also contain monomer units other than the (meth)acrylic acid ester monomer units and the acid group-containing monomer units (hereinafter, sometimes referred to as "other monomer units").
  • the particulate polymer is preferably water-insoluble.
  • water-insoluble means that when 0.5 g of the polymer is dissolved in 100 g of water at 25° C., the insoluble content is 90 mass % or more.
  • the (meth)acrylic acid ester monomer unit is a monomer unit that can be formed by a (meth)acrylic acid ester monomer.
  • the (meth)acrylic acid ester monomer include (meth)acrylic acid alkyl esters such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and octyl (meth)acrylate.
  • (meth)acrylic acid ester monomer ethyl (meth)acrylate, n-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate are preferred, and ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are more preferred.
  • the term "(meth)acrylate” means acrylate and/or methacrylate.
  • the content ratio of the (meth)acrylic acid ester monomer unit is preferably 50% by mass or more, and more preferably 55% by mass or more, and is preferably 98% by mass or less, and more preferably 95% by mass or less, when the total repeating units (total monomer units) contained in the particulate polymer is 100% by mass.
  • the content ratio of the (meth)acrylic acid ester monomer unit is equal to or more than the above lower limit, the adhesiveness and transferability of the dielectric layer can be improved.
  • the content of the (meth)acrylic acid ester monomer unit is equal to or less than the above upper limit, the blocking resistance of the dielectric layer can be improved.
  • the acid group-containing monomer unit is a monomer unit that can be formed by an acid group-containing monomer.
  • Examples of the acid group-containing monomer include a carboxylic acid group-containing monomer and a sulfonic acid group-containing monomer.
  • Examples of the carboxylic acid group-containing monomer include monocarboxylic acids and their derivatives, dicarboxylic acids and their acid anhydrides, and their derivatives.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, and the like.
  • the dicarboxylic acid includes maleic acid, fumaric acid, itaconic acid, and the like.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, and maleic acid monoesters such as butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleates.
  • maleic acid monoesters such as butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleates.
  • acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methylmaleic anhydride, dimethylmaleic anhydride, and citraconic anhydride.
  • carboxylic acid group-containing monomer an acid anhydride which generates a carboxylic acid group upon hydrolysis can also be used.
  • carboxylic acid group-containing monomer ethylenically unsaturated polycarboxylic acids such as butene tricarboxylic acid, and partial esters of ethylenically unsaturated polycarboxylic acids such as monobutyl fumarate and mono-2-hydroxypropyl maleate can also be used.
  • sulfonic acid group-containing monomer examples include vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth)allyl sulfonic acid, and 3-allyloxy-2-hydroxypropane sulfonic acid.
  • (meth)allyl means allyl and/or methallyl.
  • Acrylic acid, methacrylic acid, itaconic acid and vinyl sulfonic acid are preferred as acid group-containing monomers.
  • the content of the acid group-containing monomer unit is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more, and is preferably 10% by mass or less, and more preferably 5% by mass or less, when the total repeating units (total monomer units) contained in the particulate polymer is taken as 100% by mass. If the content ratio of the acid group-containing monomer unit is equal to or more than the lower limit, the dispersion stability of the particulate polymer in the binder composition and the slurry composition can be improved. Also, if the content ratio of the acid group-containing monomer unit is equal to or more than the lower limit, the blocking resistance of the dielectric layer can be improved. On the other hand, when the content of the acid group-containing monomer unit is equal to or less than the above upper limit, the transferability of the dielectric layer can be improved.
  • the other monomer unit is a monomer unit that can be formed by another monomer.
  • the other monomer is not particularly limited as long as it is a monomer that can be copolymerized with the above-mentioned monomer.
  • the other monomer units are preferably an aromatic vinyl monomer unit, a cyano group-containing monomer unit, and a conjugated diene monomer unit.
  • the aromatic vinyl monomer unit is a monomer unit that can be formed by an aromatic vinyl monomer.
  • the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyltoluene, and divinylbenzene. These may be used alone or in combination of two or more. Among these, styrene is preferred as the aromatic vinyl monomer.
  • the cyano group-containing monomer unit is a monomer unit that can be formed by a cyano group-containing monomer.
  • Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile. These may be used alone or in combination of two or more at any ratio. Among these, acrylonitrile is preferred as the cyano group-containing monomer.
  • the conjugated diene monomer unit is a monomer unit that can be formed by a conjugated diene monomer.
  • the conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, substituted linear conjugated pentadiene, substituted and side chain conjugated hexadienes, and the like. These may be used alone or in combination of two or more. Among these, 1,3-butadiene and 2-methyl-1,3-butadiene (isoprene) are preferred as the conjugated diene monomer, and 1,3-butadiene is more preferred.
  • amide group-containing monomers such as acrylamide and methacrylamide
  • crosslinkable monomers such as allyl glycidyl ether, allyl (meth)acrylate, and N-methylolacrylamide
  • olefins such as ethylene and propylene
  • halogen atom-containing monomers such as vinyl chloride and vinylidene chloride
  • vinyl esters such as vinyl acetate, vinyl propionate, and vinyl butyrate
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether
  • vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone
  • heterocyclic ring-containing vinyl compounds such as N-vinylpyrrolidone, vinylpyridine, and vinylimidazo
  • the content of other monomer units is preferably 1% by mass or more, more preferably 5% by mass or more, preferably 40% by mass or less, and more preferably 35% by mass or less, when the total repeating units (total monomer units) contained in the particulate polymer is taken as 100% by mass.
  • the glass transition temperature of the particulate polymer is preferably ⁇ 50° C. or higher, more preferably ⁇ 45° C. or higher, and is preferably 20° C. or lower, more preferably 15° C. or lower. If the glass transition temperature of the particulate polymer is ⁇ 50° C. or higher, the blocking resistance of the dielectric layer can be improved. On the other hand, if the glass transition temperature of the particulate polymer is 20° C. or lower, the transferability of the dielectric layer can be improved.
  • the particulate polymer has a tetrahydrofuran (THF) insoluble content of preferably 70% by mass or more, more preferably 75% by mass or more, and preferably 100% by mass or less, more preferably 98% by mass or less.
  • THF tetrahydrofuran
  • the THF insoluble content of the particulate polymer can be measured according to the method described in the Examples.
  • the volume average particle size of the particulate polymer is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the volume average particle size of the particulate polymer is equal to or greater than the above lower limit, the adhesiveness and transferability of the dielectric layer can be improved.
  • the volume average particle size of the particulate polymer is equal to or less than the above upper limit, the blocking resistance of the dielectric layer can be improved.
  • the polymerization method of the particulate polymer is not particularly limited, and may be any of solution polymerization, suspension polymerization, bulk polymerization, emulsion polymerization, etc.
  • the polymerization reaction may be addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization, etc.
  • the polymerization solvent and additives such as emulsifier, dispersant, polymerization initiator, and chain transfer agent that can be used in the polymerization may be general ones, and the amount of each of them may be the amount generally used.
  • the binder composition of the present invention contains water as a solvent.
  • the binder composition of the present invention may contain an aqueous organic solvent as a solvent other than water.
  • the aqueous organic solvent include lower alcohols such as methanol, ethanol, and isopropanol.
  • the proportion of water in the solvent is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 100% by mass (i.e., the solvent is only water).
  • the binder composition of the present invention may contain other components.
  • other components include the above-mentioned additives and viscosity modifiers used when polymerizing the particulate polymer.
  • polyvinyl butyral and the like can be used as the viscosity modifier.
  • the solids concentration of the binder composition is preferably 20% by mass or more, and more preferably 30% by mass or more, and is preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the binder composition of the present invention can be prepared by mixing the above-mentioned particulate polymer, solvent, and any other components by a known method. Specifically, the binder composition can be prepared by mixing the above-mentioned components using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a film mix, or a planetary mixer.
  • a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a film mix, or a planetary mixer.
  • the slurry composition for dielectric layer of the present invention contains the binder composition of the present invention, the dielectric material, and a solvent. That is, the slurry composition of the present invention contains a particulate polymer, a solvent containing water, and a dielectric material.
  • the solvent contained in the slurry composition may be entirely derived from the binder composition, or may be newly added to the slurry composition separately from the solvent derived from the binder composition.
  • the slurry composition of the present invention may contain components other than the particulate polymer, the dielectric material, and the solvent (hereinafter, may be referred to as "other components").
  • the slurry composition of the present invention contains the binder composition of the present invention, and therefore can impart excellent blocking resistance and transferability to the dielectric layer. Also, the slurry composition of the present invention contains the binder composition of the present invention, and therefore can impart excellent adhesion to the dielectric layer.
  • the dielectric material is not particularly limited as long as it is a material having dielectric properties, but it is preferable to use a ceramic material.
  • the ceramic material include zirconia, aluminum silicate, titanium oxide, zinc oxide, barium titanate, calcium zirconate, calcium titanate, strontium titanate, magnesia, sialon, spinemullite, silicon carbide, silicon nitride, and aluminum nitride. These ceramic materials may be used alone or in combination of two or more.
  • the ceramic material is preferably a ceramic material having a perovskite structure represented by the general formula ABO 3 as the main phase.
  • the ceramic material include barium titanate (BaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), and Ba 1-x-y Ca x Sr y Ti 1-z Zr z O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1) which forms a perovskite structure.
  • barium titanate is preferable as the ceramic material having a perovskite structure as the main phase.
  • the volume average particle diameter of the dielectric material is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, even more preferably 0.05 ⁇ m or more, even more preferably 0.08 ⁇ m or more, and is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, even more preferably 0.5 ⁇ m or less, even more preferably 0.3 ⁇ m or less, and even more preferably 0.2 ⁇ m or less.
  • the volume average particle size of the dielectric material means a particle size at which the cumulative volume calculated from the small diameter side is 50% in a particle size distribution (volume basis) obtained by measurement using a laser diffraction method.
  • the content of the dielectric material in the slurry composition is preferably 40% by mass or more, more preferably 50% by mass or more, and preferably 80% by mass or less, and more preferably 70% by mass or less, assuming that all components in the slurry composition (including the solvent) are 100% by mass.
  • Examples of the solvent contained in the slurry composition of the present invention include the same solvents as those explained in the section "Solvent” of the above "Binder composition for dielectric layer".
  • the solvent contained in the slurry composition of the present invention is not particularly limited, and may be the same as the solvent described in the "Solvent” section of the "Binder composition for dielectric layer” above, or a non-aqueous organic solvent.
  • Examples of the non-aqueous organic solvent that may be used include methylbenzene (toluene), xylene, etc.
  • the solvent is preferably water or an aqueous solvent, since this can improve the blocking resistance and transferability of the dielectric layer, and is particularly preferably water, from the viewpoints of reducing the environmental load, safety, and ease of availability.
  • the content (solid content) of the viscosity modifier in the slurry composition is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less, based on 100 parts by mass of the dielectric material in the slurry composition.
  • the solids concentration of the slurry composition is preferably 20% by mass or more, and more preferably 25% by mass or more, and is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the content (solid content) of the particulate polymer in the slurry composition is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 7 parts by mass or less, based on 100 parts by mass of the dielectric material in the slurry composition.
  • the above-mentioned slurry composition can be prepared by mixing the above-mentioned components by a known mixing method.
  • Examples of the mixer used for the preparation include those listed in the above "Method for preparing the binder composition for the dielectric layer”.
  • the dielectric layer of the present invention is obtained by drying a coating film made of the above-mentioned slurry composition of the present invention.
  • the dielectric layer of the present invention is usually a dried film obtained by partially or completely removing the solvent from a coating film made of the above-mentioned slurry composition of the present invention. That is, the dielectric layer of the present invention contains the above-mentioned particulate polymer and a dielectric material, and optionally contains a solvent and other components.
  • the dielectric layer of the present invention is obtained by drying a coating film made of the slurry composition of the present invention, and therefore has excellent blocking resistance, adhesion and transferability. Since the dielectric layer of the present invention has excellent blocking resistance, adhesion and transferability, it is easy to handle, and as a result, capacitors can be produced efficiently.
  • the content of the dielectric material in the dielectric layer is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more, and is preferably 98% by mass or less, and more preferably 95% by mass or less, assuming that all components in the dielectric layer are 100% by mass.
  • the content of the particulate polymer in the dielectric layer is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and even more preferably 7 parts by mass or less, based on 100 parts by mass of the dielectric material in the dielectric layer.
  • the thickness of the dielectric layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the dielectric layer of the present invention may have a conductor layer formed thereon.
  • the conductor layer can be formed by various printing methods such as screen printing, gravure printing, stamp printing, inkjet printing, and offset printing using a pattern formed by these methods, or by a vacuum deposition method for forming a metal deposition film.
  • a conductive paste can be used.
  • the conductive paste can be prepared by a conventional method, for example, by mixing a conductive powder such as a metal, a dispersant, a plasticizer, a solvent, etc. with a polyvinyl acetal resin.
  • the dielectric layer can be produced by applying the slurry composition of the present invention onto a release substrate and drying the formed coating film.
  • the release substrate used in producing the dielectric layer is made of a resin having flexibility. Since the release substrate is made of a resin having flexibility, the release substrate (laminated film) on which the dielectric layer is formed by applying the slurry composition onto the release substrate and drying it can be stored in a rolled state and supplied as needed.
  • the release substrate is not particularly limited, and examples thereof include substrates containing resins such as polyesters, such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, and polyvinyl chloride.
  • the release substrate is surface-treated on the side on which the dielectric layer of the present invention is formed in order to improve releasability.
  • the surface treatment include surface treatment using a release agent such as a silicone-based release agent, a fluorine-based release agent, or a wax-based release agent.
  • the thickness of the release substrate is not particularly limited, but is usually 20 ⁇ m or more and 100 ⁇ m or less.
  • the method for applying the slurry composition onto the release substrate is not particularly limited, and examples include known application methods using an applicator or various roll coaters such as a gravure coater or a comma coater (registered trademark).
  • the method for drying the coating film formed on the release substrate is not particularly limited, and examples include known drying methods using a hot air dryer.
  • the drying conditions can be set appropriately depending on the solvent content in the coating film, the thickness of the coating film, etc., but the drying temperature is usually 80°C or higher and 150°C or lower, and the drying time is usually 3 minutes or higher and 60 minutes or lower.
  • the dielectric layer of the present invention When the dielectric layer of the present invention is used to manufacture a capacitor, multiple dielectric layers may be stacked and then heated and pressed, but the dielectric layer may be peeled off from the release substrate as described above either before or after the dielectric layers are stacked and heated and pressed.
  • the capacitor of the present invention is formed using the dielectric layer of the present invention described above.
  • the capacitor of the present invention has excellent productivity because it uses a dielectric layer that is easy to handle.
  • examples of the capacitor of the present invention include a capacitor obtained by sintering a laminate formed by stacking dielectric layers (sintered product), and a capacitor obtained by not sintering a laminate formed by stacking dielectric layers (unsintered product).
  • An example of a capacitor obtained by sintering the above-mentioned laminate is a multilayer ceramic capacitor.
  • An example of a capacitor obtained without sintering the laminate is a laminated metallized film capacitor.
  • the multilayer ceramic capacitor as the capacitor of the present invention typically comprises a layered dielectric, layered internal electrodes, and external electrodes, and the dielectric is formed by sintering the stacked dielectric layers of the present invention.
  • An example of a multilayer ceramic capacitor as the capacitor of the present invention will be described below with reference to Figure 1.
  • FIG. 1 is a schematic cross-sectional view showing an example of a multilayer ceramic capacitor as a capacitor of the present invention.
  • the multilayer ceramic capacitor 10 shown in FIG. 1 has layered dielectrics 11 and layered internal electrodes 12 that are alternately stacked, and has a pair of external electrodes 13 on the outside of the dielectrics 11 and the internal electrodes 12.
  • One of the pair of internal electrodes 12 adjacent to each other along the stacking direction with the dielectric 11 sandwiched therebetween is electrically connected to one of the pair of external electrodes 13 inside the multilayer ceramic capacitor 10, and the other of the pair of internal electrodes 12 adjacent to each other along the stacking direction with the dielectric 11 sandwiched therebetween is electrically connected to the other of the pair of external electrodes 13 inside the multilayer ceramic capacitor 10.
  • a structure is formed in which a plurality of capacitor elements are electrically connected in parallel between the pair of external electrodes 13. Note that the boundary surface between the dielectric layers that may be formed when the dielectric layers of the present invention are stacked is not shown in FIG. 1 because the dielectric layers are integrated and disappear when sintered.
  • the multilayer ceramic capacitor can be manufactured by any conventional method without any particular limitations.
  • a multilayer ceramic capacitor can be manufactured by stacking a plurality of dielectric layers of the present invention, each of which has a conductive layer that can become an internal electrode, so that the dielectric layers and conductive layers alternate, heating and pressing the stack to produce a laminate, pyrolyzing and removing the binder components and the like contained in the laminate (degreasing treatment), sintering the stack, and forming external electrodes on the end faces of the sintered ceramic product obtained by sintering.
  • the degreasing treatment is usually carried out in a nitrogen atmosphere at a temperature of 300° C. to 500° C.
  • the degreasing treatment time is usually 1 hour to 5 hours.
  • the binder component content of the laminate after the degreasing treatment is usually 50 ppm or less.
  • the degreased laminate is usually sintered in a reducing atmosphere such as H 2 --N 2 --H 2 O gas with an oxygen partial pressure of 10 -9 to 10 -12 MPa at a temperature of 1000° C. to 1500° C.
  • the sintering time for the laminate is usually 1 hour to 30 hours.
  • the external electrodes can be formed by applying an external electrode material to the end faces of the sintered ceramic body obtained by sintering and then baking the applied material, thereby obtaining a multilayer ceramic capacitor as shown in FIG.
  • Examples of materials for the external electrodes include Cu paste containing glass frit.
  • the baking is usually performed in a nitrogen atmosphere at a temperature of 500° C. to 1500° C.
  • the surfaces of the external electrodes may be plated with Ni, Sn, or the like.
  • the present invention will be specifically described below based on examples, but the present invention is not limited to these examples.
  • “%” and “parts” expressing amounts are based on mass unless otherwise specified.
  • the ratio of a monomer unit formed by polymerizing a certain monomer in the particulate polymer is usually the same as the ratio (feed ratio) of the monomer to the total monomers used in the polymerization of the particulate polymer, unless otherwise specified.
  • the glass transition temperature of the particulate polymer, the volume average particle size of the particulate polymer, the THF insoluble content of the particulate polymer, the blocking resistance, the transferability, and the adhesiveness were measured and evaluated by the following procedures.
  • ⁇ Glass Transition Temperature of Particulate Polymer> The dispersions (solutions) of the particulate polymers prepared in the Examples and Comparative Examples were dried for 3 days in an environment of 50% humidity and 25°C to obtain a film having a thickness of 1.0 mm. This film was dried at 60°C for 10 hours using a vacuum dryer. Thereafter, the glass transition temperature (°C) of the dried film was measured using a differential scanning calorimeter (DSC6220SII, manufactured by Nano Technology Co., Ltd.) under the conditions of a measurement temperature of -100°C to 180°C and a heating rate of 5°C/min in accordance with JIS K7121.
  • DSC6220SII differential scanning calorimeter
  • volume average particle size of particulate polymer was measured by a laser diffraction method as follows. First, the dispersions of the particulate polymers prepared in the examples and comparative examples were adjusted to a solid content concentration of 0.1% by mass to prepare measurement samples. Then, in the particle size distribution (volume basis) measured using a laser diffraction particle size distribution measuring device (manufactured by Beckman Coulter, Inc., product name "LS-230"), the particle size D50 at which the cumulative volume calculated from the small diameter side becomes 50% was taken as the volume average particle size.
  • LS-230 laser diffraction particle size distribution measuring device
  • the dielectric layer was peeled off from the release substrate with the dielectric layer produced in the examples and comparative examples, and the peeled dielectric layer was cut into a square with a width of 5 cm and a length of 5 cm to prepare a test piece.
  • a polyethylene terephthalate (PET) film was prepared, and the PET film and the test piece (dielectric layer) were overlapped and left at 40°C and a pressure of 10 kg/ cm2 for 24 hours. After leaving for 24 hours, the adhesion state (blocking state) of the dielectric layer to the PET film was visually confirmed, and the blocking resistance was evaluated according to the following criteria.
  • B The dielectric layer blocks to the PET film, but peels off.
  • C The dielectric layer blocks to the PET film, and does not peel off.
  • the release substrates with a dielectric layer produced in the Examples and Comparative Examples were cut into squares measuring 5 cm wide x 5 cm long to prepare test pieces. Two of the above test pieces were prepared, stacked on top of each other so that the dielectric layers faced each other, and pressed at 40° C. under a pressure of 5 kg/cm 2 for 10 seconds. Thereafter, the release substrate was peeled off from one of the test pieces, and the peeled state (transferability) of the dielectric layer was visually confirmed, and the transferability was evaluated according to the following criteria.
  • C The dielectric layers do not adhere to each other, and most of the dielectric layer remains on the surface of the release substrate.
  • the release substrate with the dielectric layer produced in the examples and comparative examples was cut into a rectangle of 10 mm wide x 100 mm long to prepare a test specimen.
  • Cellophane tape (specified in JIS Z1522) was attached to the dielectric layer of the test specimen.
  • the cellophane tape was fixed flat on the horizontal surface of a test stand, and one end of the release substrate was pulled in a direction perpendicular to the cellophane tape surface at a pulling speed of 10 mm/min to peel it off, and the stress at that time was measured. The measurement was performed three times, and the average value was calculated, which was taken as the peel strength and evaluated according to the following criteria.
  • a higher peel strength indicates better adhesion between the dielectric layer and the release substrate.
  • C Peel strength is less than 10 N/m
  • Example 1 Preparation of Particulate Polymer Dispersion (Binder Composition)>
  • a 5 MPa pressure vessel equipped with a stirrer 92 parts of n-butyl acrylate (BA), 2 parts of acrylic acid (AA), and 6 parts of acrylonitrile (AN) were placed as a monomer composition, 0.4 parts of sodium lauryl sulfate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 parts of ammonium persulfate as a polymerization initiator, and after sufficient stirring, the mixture was heated to 80° C. to initiate polymerization.
  • BA n-butyl acrylate
  • AA acrylic acid
  • AN acrylonitrile
  • the mixture was cooled to stop the reaction, and a mixture containing a particulate polymer was obtained.
  • the mixture containing the particulate polymer was adjusted to pH 7 by adding 5% aqueous sodium hydroxide solution, and then the unreacted monomer was removed by heating and vacuum distillation. Then, the mixture was cooled to 30° C. or less to obtain a dispersion (solvent: water) containing the desired particulate polymer.
  • the solid content of the dispersion was 40%.
  • the glass transition temperature of the particulate polymer, the volume average particle size of the particulate polymer, and the THF insoluble content of the particulate polymer were measured.
  • ⁇ Preparation of Slurry Composition 100 parts of barium titanate (manufactured by Sakai Chemical Industry Co., Ltd., "BT-01") having a volume average particle diameter (d50) of 0.1 ⁇ m as a dielectric material, 12.5 parts (5 parts in terms of solid content) of an aqueous solution of polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., BL-2H) as a viscosity modifier, and 20 parts of water as a dispersion medium were mixed with 100 parts of zirconia beads (manufactured by Nikkato Co., Ltd.) having a particle diameter of 0.1 mm as mixing beads, using a bead mill (manufactured by Imex Co., Ltd., "RMB-01").
  • the slurry composition obtained above was applied to a release-treated film (PET38AL-5, manufactured by Lintec Corporation) having a width of 100 mm and a length of 100 mm, using a gravure coater, so that the thickness of the dielectric layer after drying was about 1.0 ⁇ m, and the film was dried at 100° C. for 5 minutes in the atmosphere to form a dielectric layer on the release substrate (ceramic green sheet method).
  • the obtained release substrate with the dielectric layer was used to evaluate blocking resistance, transferability, and adhesion. The results are shown in Table 1.
  • Example 2 In preparing the dispersion of the particulate polymer, a monomer composition containing 64 parts of 2-ethylhexyl acrylate (2-EHA), 1 part of itaconic acid (IA), and 35 parts of styrene (St) was used, and the various operations, measurements, and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • 2-EHA 2-ethylhexyl acrylate
  • IA itaconic acid
  • St styrene
  • Comparative Example 1 In preparing the slurry composition, various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that 25 parts (10 parts in terms of solid content) of an aqueous solution of polyvinyl butyral (BL-2H, manufactured by Sekisui Chemical Co., Ltd.) was used as the binder composition instead of the dispersion of the particulate polymer. The results are shown in Table 1. In Comparative Example 1, since no particulate polymer was used, the volume average particle size of the particulate polymer, the glass transition temperature of the particulate polymer, and the THF insoluble content of the particulate polymer were not measured.
  • BL-2H polyvinyl butyral
  • the mixture was cooled to stop the reaction, and a mixture containing a particulate polymer was obtained.
  • Toluene was added to the mixture containing the particulate polymer, and unreacted monomer and ion-exchanged water were removed by heating and vacuum distillation, and solvent replacement was performed.Then, the mixture was cooled to 30°C or less, and a dispersion (solvent is toluene) containing a desired particulate polymer was obtained.
  • the solid content concentration of the dispersion was 40%.
  • ⁇ Preparation of Slurry Composition 100 parts of barium titanate (manufactured by Sakai Chemical Industry Co., Ltd., "BT-01") having a volume average particle diameter (d50) of 0.1 ⁇ m as a dielectric material, and 20 parts of toluene as a dispersion medium were stirred at 500 rpm for 2 hours together with 100 parts of zirconia beads (manufactured by Nikkato Co., Ltd.), which were mixing beads and had a particle diameter of 0.1 mm, using a bead mill (manufactured by Imex Co., Ltd., "RMB-01"). Then, 20 parts of toluene were further added, and the mixture was stirred at 500 rpm for 1 hour.
  • the zirconia beads were filtered off, and a dispersion of barium titanate was prepared.
  • a dispersion of barium titanate was prepared.
  • 25 parts of the above-prepared dispersion of particulate polymer containing 10 parts of particulate polymer
  • a binder composition for a dielectric layer that can impart excellent blocking resistance and transferability to a dielectric layer. Furthermore, according to the present invention, it is possible to provide a slurry composition for a dielectric layer that can impart excellent blocking resistance and transferability to the dielectric layer. Furthermore, according to the present invention, it is possible to provide a dielectric layer obtained by drying a coating film made of the above-mentioned slurry composition for a dielectric layer. Furthermore, according to the present invention, a capacitor using the above-mentioned dielectric layer can be provided.
  • Multilayer ceramic capacitor 11 Dielectric 12: Internal electrode 13: External electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本発明は、優れた耐ブロッキング性および転写性を誘電体層に付与し得る誘電体層用バインダー組成物の提供を目的とする。本発明の誘電体層用バインダー組成物は、(メタ)アクリル酸エステル単量体単位を含有する粒子状重合体と、水とを含む。

Description

誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ
 本発明は、誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサに関する。
 積層セラミックコンデンサ等のようなコンデンサは、一般的にセラミックグリーンシート等の誘電体層を形成し、この誘電体層を重ね合わせ、任意に焼結することで得ることができる。
 上記誘電体層は、例えば、まず、バインダーと、誘電体材料と、溶媒とを含むスラリー組成物を調製し、次いで、このスラリー組成物を離型基材上に塗布し、その後乾燥することによって得ることができる。そして、得られた誘電体層はコンデンサの製造に用いられる。
 近年では、コンデンサに優れた特性を付与するために、誘電体層の製造に用いられるスラリー組成物に含まれるバインダーの開発が進められている。
 例えば、特許文献1では、セラミックグリーンシートを作製するためのバインダーとして使用した場合に、高い空孔率を実現できるとともに、焼結体を製造する際にクラック等の不具合が生じにくいセラミックグリーンシートを製造可能な、熱分解性に優れるバインダーとして、所定のゲル分率を有し、且つ、所定の複合樹脂を含有するバインダー樹脂組成物を含む、無機質焼結体製造用バインダーが提案されている。
特開2018-165230号公報
 ここで、セラミックグリーンシート等の誘電体層は、離型基材上に形成した後は、通常、離型基材と共にロール状に巻回される。ロール状に巻回されると、誘電体層は、誘電体層を形成していない側の離型基材表面(以下、「離型基材背面」と称する場合がある。)と密着した状態となるが、この状態で保存されると、誘電体層が離型基材背面と固着(所謂、ブロッキング)し、誘電体層の破断等を引き起こす恐れがある。
 また、コンデンサの製造において、離型基材上に誘電体層を形成した後に、通常、誘電体層と他の層とを重ね合わせてこれを加圧する。その後、離型基材から誘電体層を剥離する際に、離型基材に誘電体層が残留する恐れがある。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の単量体単位を含有する粒子状重合体と、水とを含む、誘電体層用バインダー組成物を用いれば、上記課題を解決できることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、[1]本発明は、(メタ)アクリル酸エステル単量体単位を含有する粒子状重合体と、水とを含む誘電体層用バインダー組成物である。
 上記誘電体層用バインダー組成物を用いれば、優れた耐ブロッキング性を誘電体層に付与できる。
 また、上記誘電体層用バインダー組成物を用いれば、コンデンサの製造において、誘電体層と他の層とを重ね合わせてこれを加圧した後に、離型基材から誘電体層を剥離する際に、離型基材に誘電体層が残留することを抑制できる。言い換えると、上記誘電体層用バインダー組成物を用いれば、優れた転写性を誘電体層に付与できる。
 更に、上記誘電体層用バインダー組成物は、溶媒として水を含むので、このようなバインダー組成物を用いれば、コンデンサの製造において、環境負荷を低減し、安全性を向上できる。
 なお、粒子状重合体が所定の単量体単位を含むか否かは、H-NMRなどの核磁気共鳴(NMR)法を用いて判定することが出来る。また、粒子状重合体が「単量体単位を含む」とは、「その単量体を用いて得た粒子状重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
 また、本発明において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 [2]上記[1]の誘電体層用バインダー組成物において、前記粒子状重合体のガラス転移温度は、-50℃以上20℃以下であることが好ましい。
 ガラス転移温度が上記下限値以上であれば、誘電体層の耐ブロッキング性を向上できる。また、ガラス転移温度が上記上限値以下であれば、誘電体層の転写性を向上できる。
 本発明において、粒子状重合体のガラス転移温度は、実施例に記載の方法に従って測定できる。
 [3]上記[1]または[2]の何れかの誘電体層用バインダー組成物において、前記粒子状重合体の体積平均粒子径が、0.01μm以上1.0μm以下であることが好ましい。
 粒子状重合体の体積平均粒子径が上記下限値以上であれば、誘電体層の転写性を向上できる。また、粒子状重合体の体積平均粒子径が上記下限値以上であれば、離型基材上に形成した誘電体層が意図せずに離型基材から剥離することを抑制できる。言い換えると、上記誘電体層用バインダー組成物を用いれば、優れた接着性を誘電体層に付与できる。
 一方、粒子状重合体の体積平均粒子径が上記上限値以下であれば、誘電体層の耐ブロッキング性を向上できる。
 本発明において、粒子状重合体の体積平均粒子径は、実施例に記載の方法に従って測定できる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[4]本発明は、上記[1]~[3]の何れかの誘電体層用バインダー組成物、誘電体材料および溶媒を含む、誘電体層用スラリー組成物である。
 上記誘電体層用スラリー組成物を用いれば、優れた耐ブロッキング性および転写性を誘電体層に付与できる。また、上記誘電体層用スラリー組成物を用いれば、優れた接着性を誘電体層に付与できる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[5]本発明は、上記[4]の誘電体層用スラリー組成物からなる塗布膜を乾燥してなる、誘電体層である。
 上記誘電体層は、耐ブロッキング性、転写性および接着性に優れている。そして、上記誘電体層は、耐ブロッキング性、転写性および接着性に優れていることから、取り扱いが容易であり、その結果、効率的にコンデンサを生産できる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[6]本発明は、上記[5]の誘電体層を用いてなる、コンデンサである。
 上記コンデンサは、取り扱いが容易な誘電体層を用いているため、生産性に優れている。
 本発明によれば、優れた耐ブロッキング性および転写性を誘電体層に付与し得る誘電体層用バインダー組成物を提供できる。
 また、本発明によれば、優れた耐ブロッキング性および転写性を誘電体層に付与し得る誘電体層用スラリー組成物を提供できる。
 また、本発明によれば、上記誘電体層用スラリー組成物からなる塗布膜を乾燥してなる誘電体層を提供できる。
 また、本発明によれば、上記誘電体層を用いてなるコンデンサを提供できる。
本発明のコンデンサとしての積層セラミックコンデンサの一例を示す概略断面図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の誘電体層用バインダー組成物(以下、単に「バインダー組成物」と称する場合がある。)は、本発明の誘電体層用スラリー組成物(以下、単に「スラリー組成物」と称する場合がある。)の調製に用いることができる。そして、本発明のスラリー組成物は、コンデンサ等の製造に用いられる誘電体層の形成に用いることができる。更に、本発明の誘電体層は、本発明のスラリー組成物からなる塗布膜を乾燥して形成されたものである。また、本発明のコンデンサは、本発明のスラリー組成物を用いて形成した誘電体層を用いてなるものである。
(誘電体層用バインダー組成物)
 本発明の誘電体層用バインダー組成物は、粒子状重合体と、溶媒としての水とを含み、任意に、粒子状重合体および水以外の成分(以下、「その他の成分」と称する場合がある。)を含んでもよい。そして、本発明のバインダー組成物において、粒子状重合体は、(メタ)アクリル酸エステル単量体単位を含有する。このようなバインダー組成物を用いれば、優れた耐ブロッキング性および転写性を誘電体層に付与できる。
 なお、本明細書において、バインダー組成物は、通常、後述する誘電体材料を含まないものである。
<粒子状重合体>
 本発明のバインダー組成物に含まれる粒子状重合体は、結着材として機能し得る成分であり、(メタ)アクリル酸エステル単量体単位を含有し、任意に、酸基含有単量体単位を含有していてもよい。また、粒子状重合体は、(メタ)アクリル酸エステル単量体単位および酸基含有単量体単位以外の単量体単位(以下、「その他の単量体単位」と称する場合がある。)を含有していてもよい。
 なお、粒子状重合体は、非水溶性であることが好ましい。ここで、本発明において、重合体が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
<<(メタ)アクリル酸エステル単量体単位>>
 (メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体により形成され得る単量体単位である。(メタ)アクリル酸エステル単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレー卜、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステルなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸エステル単量体としては、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、および2-エチルヘキシル(メタ)アクリレートが好ましく、エチルアクリレート、n-ブチルアクリレート、および2-エチルヘキシルアクリレートがより好ましい。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートおよび/又はメタクリレートを意味する。
 (メタ)アクリル酸エステル単量体単位の含有割合は、粒子状重合体中に含まれる全繰り返し単位(全単量体単位)を100質量%とした場合に、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、98質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 (メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、誘電体層の接着性および転写性を向上できる。
 一方、(メタ)アクリル酸エステル単量体単位の含有割合が上記上限値以下であれば、誘電体層の耐ブロッキング性を向上できる。
<<酸基含有単量体単位>>
 酸基含有単量体単位は、酸基含有単量体により形成され得る単量体単位である。酸基含有単量体としては、例えば、カルボン酸基含有単量体、スルホン酸基含有単量体等が挙げられる。
 カルボン酸基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体等が挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸等が挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸等が挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ブチル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸、無水シトラコン酸等が挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。
 更に、カルボン酸基含有単量体としては、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸や、フマル酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステル等も用いることができる。
 スルホン酸基含有単量体としては、例えば、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本明細書において、「(メタ)アリル」とは、アリルおよび/又はメタリルを意味する。
 酸基含有単量体としては、アクリル酸、メタクリル酸、イタコン酸およびビニルスルホン酸が好ましい。
 酸基含有単量体単位の含有割合は、粒子状重合体中に含まれる全繰り返し単位(全単量体単位)を100質量%とした場合に、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 酸基含有単量体単位の含有割合が上記下限値以上であれば、バインダー組成物およびスラリー組成物中での粒子状重合体の分散安定性を向上できる。また、酸基含有単量体単位の含有割合が上記下限値以上であれば、誘電体層の耐ブロッキング性を向上できる。
 一方、酸基含有単量体単位の含有割合が上記上限値以下であれば、誘電体層の転写性を向上できる。
<<その他の単量体単位>>
 その他の単量体単位は、その他の単量体により形成され得る単量体単位である。その他の単量体は、上述した単量体と共重合可能な単量体であれば特に限定されるものではない。
 また、その他の単量体単位は、芳香族ビニル単量体単位、シアノ基含有単量体単位、および共役ジエン単量体単位であることが好ましい。
<<芳香族ビニル単量体単位>>
 芳香族ビニル単量体単位は、芳香族ビニル単量体により形成され得る単量体単位である。芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、芳香族ビニル単量体としてはスチレンが好ましい。
<<シアノ基含有単量体単位>>
 シアノ基含有単量体単位は、シアノ基含有単量体により形成され得る単量体単位である。シアノ基含有単量体としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、シアノ基含有単量体としては、アクリロニトリルが好ましい。
<<共役ジエン単量体単位>>
 共役ジエン単量体単位は、共役ジエン単量体により形成され得る単量体単位である。共役ジエン単量体としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、共役ジエン単量体としては、1,3-ブタジエンおよび2-メチル-1,3-ブタジエン(イソプレン)が好ましく、1,3-ブタジエンがより好ましい。
 その他の単量体としては、上述した単量体以外にも、アクリルアミド、メタクリルアミド等のアミド基含有単量体;アリルグリシジルエーテル、アリル(メタ)アクリレート、N-メチロールアクリルアミド等の架橋性単量体(架橋可能な単量体);エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アミノエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等のアミノ基含有単量体;等を用いることが出来る。これらのその他の単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 その他の単量体単位の含有割合は、粒子状重合体中に含まれる全繰り返し単位(全単量体単位)を100質量%とした場合に、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。
<<粒子状重合体の性状>>
 本発明のバインダー組成物において、粒子状重合体のガラス転移温度は、-50℃以上であることが好ましく、-45℃以上であることがより好ましく、20℃以下であることが好ましく、15℃以下であることがより好ましい。
 粒子状重合体のガラス転移温度が-50℃以上であれば、誘電体層の耐ブロッキング性を向上できる。
 一方、粒子状重合体のガラス転温度が20℃以下であれば、誘電体層の転写性を向上できる。
 粒子状重合体のテトラヒドロフラン(THF)不溶分率は、70質量%以上であることが好ましく、75質量%以上であることがより好ましく、100質量%以下であることが好ましく、98質量%以下であることがより好ましい。
 粒子状重合体のTHF不溶分率が上記下限値以上であれば、誘電体層の耐ブロッキング性を向上できる。
 一方、粒子状重合体のTHF不溶分率が上記上限値以下であれば、誘電体層の接着性および転写性を向上できる。
 本発明において、粒子状重合体のTHF不溶分率は、実施例に記載の方法に従って測定できる。
 バインダー組成物中において、粒子状重合体の体積平均粒子径は、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。
 粒子状重合体の体積平均粒子径が上記下限値以上であれば、誘電体層の接着性および転写性を向上できる。
 一方、粒子状重合体の体積平均粒子径が上記上限値以下であれば、誘電体層の耐ブロッキング性を向上できる。
<<粒子状重合体の重合方法>>
 粒子状重合体の重合方法は、特に限定されることなく、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法等のいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合等の付加重合を用いることができる。そして、重合に使用され得る重合溶媒や、乳化剤、分散剤、重合開始剤、連鎖移動剤等の添加剤は、一般的なものを使用することができ、その使用量も、一般に使用される量とすることができる。
<溶媒>
 本発明のバインダー組成物は、溶媒として水を含む。溶媒として水を含むバインダー組成物を用いることで、コンデンサの製造において、環境負荷を低減し、安全性を向上できる。
 また、本発明のバインダー組成物は、溶媒として水以外にも、任意に、水性有機溶媒を含んでいてもよい。水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等の低級アルコール類等が挙げられる。なお、溶媒中の水の割合は、通常、50質量%以上であり、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%である(即ち、溶媒は水のみである)ことが更に好ましい。
<その他の成分>
 本発明のバインダー組成物は、その他の成分を含んでいてもよい。その他の成分としては、例えば、粒子状重合体を重合する際に用いる上記添加剤や粘度調整剤等が挙げられる。なお、粘度調整剤としては、ポリビニルブチラール等を用いることができる。
<誘電体層用バインダー組成物の固形分濃度>
 バインダー組成物の固形分濃度は、20質量%以上であることが好ましく、30質量%以上であることが好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
<誘電体層用バインダー組成物の調製方法>
 本発明のバインダー組成物は、上述した粒子状重合体、溶媒、および任意のその他の成分を、既知の方法で混合することにより調製できる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックス、自転公転ミキサー等の混合機を用いて上記各成分を混合することにより、バインダー組成物を調製できる。
(誘電体層用スラリー組成物)
 本発明の誘電体層用スラリー組成物は、上述した本発明のバインダー組成物、誘電体材料および溶媒を含む。即ち、本発明のスラリー組成物は、粒子状重合体と、水を含む溶媒と、誘電体材料とを含んでいる。ここでスラリー組成物に含まれる溶媒は、全てがバインダー組成物由来のものでも、バインダー組成物由来の溶媒とは別に新たにスラリー組成物に加えられたものでもよい。本発明のスラリー組成物は、粒子状重合体、誘電体材料および溶媒以外の成分(以下、「その他の成分」と称する場合がある。)を含んでいてもよい。
 そして、本発明のスラリー組成物は、本発明のバインダー組成物を含むため、優れた耐ブロッキング性および転写性を誘電体層に付与できる。また、本発明のスラリー組成物は、本発明のバインダー組成物を含むため、優れた接着性を誘電体層に付与できる。
<誘電体材料>
 誘電体材料としては、誘電性を有する材料であれば特に限定されるものではないが、セラミック材料を用いることが好ましい。セラミック材料としては、例えば、ジルコニア、ケイ酸アルミニウム、酸化チタン、酸化亜鉛、チタン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸ストロンチウム、マグネシア、サイアロン、スピネムルライト、炭化ケイ素、窒化ケイ素、窒化アルミニウム等が挙げられる。これらのセラミック材料は単独で用いてもよく、2種以上を併用してもよい。
 ここで、セラミック材料としては、一般式ABOで表されるペロブスカイト構造を主相とするセラミック材料が好ましい。当該セラミック材料として、例えば、チタン酸バリウム(BaTiO)、ジルコン酸カルシウム(CaZrO)、チタン酸カルシウム(CaTiO)、チタン酸ストロンチウム(SrTiO)、ペロブスカイト構造を形成するBa1-x-yCaSrTi1-zZr(0≦x≦1,0≦y≦1,0≦z≦1)等が挙げられる。これらの中でも、ペロブスカイト構造を主相とするセラミック材料としては、チタン酸バリウムが好ましい。
 誘電体材料の体積平均粒子径は、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、0.05μm以上であることが更に好ましく、0.08μm以上であることが更により好ましく、1μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.5μm以下であることが更に好ましく、0.3μm以下であることが更により好ましく、0.2μm以下であることがより一層好ましい。
 誘電体材料の体積平均粒子径が上記範囲内であれば、スラリー組成物中における誘電体材料の分散性および分散安定性を向上できる。そして、その結果、誘電体材料が均一に分散した誘電体層を作製できる。
 本発明において、誘電体材料の体積平均粒子径は、レーザー回折法により測定して得られた粒子径分布(体積基準)において、小径側から計算した累積体積が50%なる粒子径を意味する。
 スラリー組成物中における誘電体材料の含有割合は、スラリー組成物中の全成分(溶媒も含む)を100質量%とした場合に、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
<溶媒>
 本発明のスラリー組成物に含まれる溶媒は、上記した「誘電体層用バインダー組成物」の「溶媒」の項で説明した溶媒と同様のものが挙げられる。
 また本発明のスラリー組成物に含まれる溶媒としては、特に限定されず、上記した「誘電体層用バインダー組成物」の「溶媒」の項で説明した溶媒と同様のもの、および、非水性有機溶媒の何れも使用することができる。非水性有機溶媒としては、例えば、メチルベンゼン(トルエン)、キシレン等を用いることができる。
 誘電体層の耐ブロッキング性および転写性を向上できることから、溶媒は水又は水性溶媒が好ましい。そして、環境負荷低減、安全性および入手容易性の観点から、溶媒は水であることが特に好ましい。
<その他の成分>
 本発明のスラリー組成物に含まれ得るその他の成分としては、上記した「誘電体層用バインダー組成物」の「その他の成分」の項で説明したものと同様のものが挙げられる。
 ここで、その他の成分として粘度調整剤を用いる場合、スラリー組成物中における粘度調整剤の含有量(固形分)は、スラリー組成物中の誘電体材料を100質量部とした場合に、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、20質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることが更に好ましい。
<誘電体層用スラリー組成物の固形分濃度>
 スラリー組成物の固形分濃度は、20質量%以上であることが好ましく、25質量%以上であることが好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
<粒子状重合体の含有量>
 スラリー組成物中における粒子状重合体の含有量(固形分)は、スラリー組成物中の誘電体材料を100質量部とした場合に、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、7質量部以下であることが更に好ましい。
<誘電体層用スラリー組成物の調製方法>
 上述したスラリー組成物は、上記各成分を、既知の混合方法により混合することで調製することができる。調製に用いる混合機としては、上記した「誘電体層用バインダー組成物の調製方法」で列挙したものが挙げられる。
(誘電体層)
 本発明の誘電体層は、上述した本発明のスラリー組成物からなる塗布膜を乾燥してなるものである。本発明の誘電体層は、通常、本発明のスラリー組成物からなる塗布膜から溶媒を部分的又は完全に除去して得られる乾燥膜である。即ち、本発明の誘電体層は、上述した粒子状重合体と、誘電体材料とを含み、任意に、溶媒、その他の成分を含んでいる。
 ここで、本発明の誘電体層は、本発明のスラリー組成物からなる塗布膜を乾燥してなるものであるため、耐ブロッキング性、接着性および転写性に優れている。そして、本発明の誘電体層は、耐ブロッキング性、接着性および転写性に優れていることから、取り扱いが容易であり、その結果、効率的にコンデンサを生産できる。
 誘電体層中における誘電体材料の含有割合は、誘電体層中の全成分を100質量%とした場合に、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることが更に好ましく、98質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 誘電体層中における粒子状重合体の含有量は、誘電体層中の誘電体材料を100質量部とした場合に、0.1質量部以上であることが好ましく、0.2質量部以上であることがより好ましく、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、7質量部以下であることが更に好ましい。
 誘電体層の厚みは、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、10μm以下であることが好ましく、5μm以下であることがより好ましい。
 本発明の誘電体層は、誘電体層上に導電体層が形成されていてもよい。導電体層の形成には、スクリーン印刷法、グラビア印刷法、スタンプ印刷法、インクジェット印刷法、およびそれらで形成されたパターンを用いたオフセット印刷法等の各種印刷法、金属蒸着膜を形成するための真空蒸着法等を適用できる。
 ここで、印刷法により導電体層を形成する場合には、導電ペーストを用いることができる。導電ペーストは、従来公知の方法により調製でき、例えば、ポリビニルアセタール樹脂に、金属等の導電性粉末、分散剤、可塑剤、溶剤等を混合して調製できる。
<誘電体層の作製方法>
 誘電体層は、本発明のスラリー組成物を離型基材上に塗布し、形成した塗布膜を乾燥させることにより作製できる。
 ここで、誘電体層を作製する際に用いる離型基材は、可撓性を有する樹脂からなるものである。離型基材が可撓性を有する樹脂からなることで、離型基材上にスラリー組成物を塗布し、乾燥して得られる誘電体層が形成された離型基材(積層フィルム)を、ロール状に巻回した状態で保存し、必要に応じて供給できる。
 離型基材としては、特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル等の樹脂を含む基材が挙げられる。
 離型基材は、本発明の誘電体層が形成される側の面に、離型性を向上するための表面処理が施されていることが好ましい。表面処理としては、特に限定されず、例えば、シリコーン系離型剤、フッ素系離型剤、ワックス系離型剤等の離型剤を用いた表面処理が挙げられる。
 離型基材の厚みは特に限定されるものではないが、通常、20μm以上100μm以下である。
 スラリー組成物の離型基材上への塗布方法としては、特に限定されず、例えば、アプリケーターや、グラビアコーターおよびコンマコーター(登録商標)に代表される各種ロールコーター等を用いる公知の塗布方法が挙げられる。
 離型基材上に形成した塗布膜の乾燥方法としては、特に限定されず、例えば、熱風乾燥機を用いる公知の乾燥方法が挙げられる。なお、乾燥条件は、塗布膜中の溶媒の含有量、塗布膜の厚さ等に応じて適宜設定できるが、乾燥温度は、通常、80℃以上150℃以下であり、乾燥時間は、通常、3分以上60分以下である。
 なお、本発明の誘電体層をコンデンサの製造に用いる際には、複数の誘電体層を重ね合わせて、その後加熱圧着が実施され得るが、上述した離型基材からの誘電体層の剥離は、誘電体層の重ね合わせおよび加熱圧着の前に実施しても、誘電体層の重ね合わせおよび加熱圧着の後に実施してもよい。
(コンデンサ)
 本発明のコンデンサは、上述した本発明の誘電体層を用いてなるものである。本発明のコンデンサは、取り扱いが容易な誘電体層を用いているため、生産性に優れている。
 ここで、本発明のコンデンサとしては、誘電体層を重ね合わせた積層体を焼結することにより得られるもの(焼結物)、および、誘電体層を重ね合わせた積層体を焼結せずに得られるもの(未焼結物)等が挙げられる。
 上記積層体を焼結してなるコンデンサとしては、例えば、積層セラミックコンデンサ等が挙げられる。
 上記積層体を焼結せずに得られるコンデンサとしては、例えば、積層型金属化フィルムコンデンサ等が挙げられる。
 なお、以下では、一例としてコンデンサが積層セラミックコンデンサである場合について説明するが、本発明は下記の一例に限定されるものではない。
 本発明のコンデンサとしての積層セラミックコンデンサは、通常、層状の誘電体、層状の内部電極、および外部電極を備える、そして、該誘電体は、重ね合わせた本発明の誘電体層を焼結してなるものである。以下、図1を参照して、本発明のコンデンサとしての積層セラミックコンデンサの一例を説明する。
 図1は、本発明のコンデンサとしての積層セラミックコンデンサの一例を示す概略断面図である。図1に示す積層セラミックコンデンサ10は、交互に積層された、層状の誘電体11と、層状の内部電極12とを備えており、誘電体11および内部電極12の外側に一対の外部電極13を備えている。そして、積層方向に沿って誘電体11を挟んで隣り合う一対の内部電極12のうちの一方は、積層セラミックコンデンサ10の内部において一対の外部電極13のうちの一方に電気的に接続されており、積層方向に沿って誘電体11を挟んで隣り合う一対の内部電極12のうちの他方は、積層セラミックコンデンサ10の内部において一対の外部電極13のうちの他方に電気的に接続されている。これにより、一対の外部電極13間は、複数のコンデンサ要素が電気的に並列に接続された構造となっている。なお、本発明の誘電体層を重ね合わせた際に形成され得る誘電体層同士の境界面は、焼結により誘電体層同士が一体化して消滅するため、図1には示されていない。
 積層セラミックコンデンサは、特に限定されず、従来公知の方法により製造できる。例えば、積層セラミックコンデンサは、内部電極となり得る導電体層が形成された本発明の誘電体層を、誘電体層と導電体層が交互なるように複数枚重ね合わせ、これを加熱圧着して積層体を作製し、この積層体中に含まれるバインダー成分等を熱分解して除去し(脱脂処理)、更にこれを焼結し、そして、焼結して得られたセラミック焼結物の端面に外部電極を形成することにより製造できる。
 脱脂処理は、通常、窒素雰囲気中において、300℃以上500℃以下の温度で行う。脱脂処理の時間は、通常、1時間以上5時間以下である。
 なお、脱脂処理後の積層体のバインダー成分の含有量は、通常、50ppm以下である。
 脱脂処理された積層体の焼結は、通常、酸素分圧10-9~10-12MPaのH-N-HOガス等の還元性雰囲気中において、1000℃以上1500℃以下の温度で行う。積層体の焼結時間は、通常、1時間以上30時間以下である。
 外部電極は、焼結して得られたセラミック焼結物の端面に外部電極用材料を塗布し、これを焼き付けることにより形成できる。これにより、例えば、図1に示すコンデンサとしての積層セラミックコンデンサを得ることができる。
 外部電極用材料としては、例えば、ガラスフリットを含有するCuペースト等が挙げられる。焼き付けは、通常、窒素雰囲気中において、500℃以上1500℃以下の温度で行う。なお、外部電極の表面には、NiやSn等のめっきを施すこともできる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される粒子状重合体において、ある単量体を重合して形成される単量体単位の粒子状重合体における割合は、別に断らない限り、通常は、その粒子状重合体の重合に用いる全単量体に占める当該単量体の比率(仕込み比)と一致する。
 更に、実施例および比較例において、粒子状重合体のガラス転移温度、粒子状重合体の体積平均粒子径、粒子状重合体のTHF不溶分率、耐ブロッキング性、転写性、および接着性は、以下の手順で測定および評価した。
<粒子状重合体のガラス転移温度>
 実施例および比較例で調製した粒子状重合体の分散液(溶液)を、50%湿度、25℃の環境下で3日間乾燥させて、厚み1.0mmのフィルムを得た。このフィルムを、真空乾燥機を用いて60℃で10時間乾燥させた。その後、乾燥させたフィルムをサンプルとして、JISK7121に準じて、測定温度-100℃~180℃、昇温速度5℃/分の条件下で、示差走査熱量分析計(DSC6220SII、ナノテクノロジー社製)を用いてガラス転移温度(℃)を測定した。
<粒子状重合体の体積平均粒子径>
 粒子状重合体の体積平均粒子径は、レーザー回折法にて以下のように測定した。
 まず、実施例および比較例で調製した粒子状重合体の分散液を固形分濃度0.1質量%に調整して測定用試料を準備した。そして、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)を用いて測定された粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を体積平均粒子径とした。
<粒子状重合体のTHF不溶分率>
 実施例および比較例で調製した粒子状重合体の分散液(溶液)を、50%湿度、23~25℃の環境下で乾燥させて、厚み約0.3mmに成膜した。成膜したフィルムを3mm角に裁断し、精秤した。裁断により得られたフィルム片の質量をw0とした。
 上記フィルム片を、100gのテトラヒドロフラン(THF)に24時間、25℃にて浸漬した。その後、THFから引き揚げたフィルム片を105℃で3時間真空乾燥して、不溶分の質量w1を計測した。
 そして、下記式(1)にしたがってTHF不溶分率(質量%)を算出した。
 THF不溶分率(質量%)=(w1/w0)×100 (1)
<耐ブロッキング性>
 実施例および比較例で製造した誘電体層付き離型基材から誘電体層を剥がし、剥がした誘電体層を幅5cm×長さ5cmに正方形に切って試験片とした。ポリエチレンテレフタレート(PET)フィルムを準備し、PETフィルムと試験片(誘電体層)とを重ね合わせ、40℃、10kg/cmの加圧下で24時間放置した。24時間放置後のPETフィルムへの誘電体層の接着状態(ブロッキング状態)を目視で確認し、下記基準で耐ブロッキング性を評価した。
A:誘電体層がPETフィルムにブロッキングしない
B:誘電体層がPETフィルムにブロッキングするが、剥がれる
C:誘電体層がPETフィルムにブロッキングし、剥がれない
<転写性>
 実施例および比較例で製造した誘電体層付き離型基材を幅5cm×長さ5cmに正方形に切って試験片とした。
 上記試験片を2つ準備し、誘電体層が向かい合うように、互いを重ね合わせ、40℃、5kg/cmの加圧下で10秒間プレスした。
 その後、一方の試験片の離型基材を剥がして、誘電体層の剥離状態(転写性)を目視で確認し、下記基準で転写性を評価した。
A:誘電体層同士が接着した状態を維持し、且つ、剥がした離型基材の表面に誘電体層が残らない
B:誘電体層同士が接着した状態を維持しているが、剥がした離型基材の表面に誘電体層が一部残っている
C:誘電体層同士が接着せず、離型基材の表面に誘電体層が殆ど残っている
<接着性>
 実施例および比較例で製造した誘電体層付き離型基材を、幅10mm×長さ100mmの長方形に切り出し、試験片とした。試験片の誘電体層にセロハンテープ(JISZ1522に規定されるもの)を貼り付けた。セロハンテープを試験台の水平面に、平らな状態に固定し、離型基材の一端を、セロハンテープ面に対して垂直方向に引張り速度10mm/分で引張って剥がし、そのときの応力を測定した。測定を3回行い、その平均値を求めてこれをピール強度とし、下記の基準により評価した。ピール強度が大きいほど、誘電体層と離型基材との接着性が優れることを示す。
A:ピール強度が50N/m以上
B:ピール強度が10N/m以上50N/m未満
C:ピール強度が10N/m未満
(実施例1)
<粒子状重合体の分散液(バインダー組成物)の調製>
 撹拌機付き5MPa耐圧容器に、単量体組成物として、n-ブチルアクリレート(BA)92部、アクリル酸(AA)2部、およびアクリロニトリル(AN)6部、乳化剤としてラウリル硫酸ナトリウム0.4部、イオン交換水150部、並びに重合開始剤として過硫酸アンモニウム0.5部を入れ、十分に撹拌した後、80℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。
 上記粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH7に調整した後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状重合体を含む分散液(溶媒が水)を得た。なお、分散液の固形分濃度は40%であった。
 得られた分散液を用いて、粒子状重合体のガラス転移温度、粒子状重合体の体積平均粒子径、および粒子状重合体のTHF不溶分率を測定した。
<スラリー組成物の調製>
 誘電体材料として体積平均粒子径(d50)が0.1μmであるチタン酸バリウム(堺化学工業(株)製「BT-01」)100部、粘度調整剤としてのポリビニルブチラール(積水化学工業社製、BL-2H)の水溶液12.5部(固形分換算で5部)、および、分散媒としての水20部を、混合用ビーズである粒径0.1mmのジルコニアビーズ(ニッカトー(株)製)100部と共に、ビーズミル(アイメックス(株)製「RMB-01」)を用いて、500rpmで20時間撹拌した。その後、水20部を更に加え、500rpmで10時間撹拌した。ジルコニアビーズを濾別し、チタン酸バリウムの分散液を調製した。
 上記チタン酸バリウムの分散液152.5部(チタン酸バリウムを100部含有)に、上記で調製した粒子状重合体の分散液を12.5部(粒子状重合体を5部含有)加え、これらを自転公転ミキサーを用いて、1000rpmで3分間撹拌して、スラリー組成物を調製した。
<誘電体層の作製>
 上記で得られたスラリー組成物を、幅100mm×長さ100mmの離型処理したフィルム(リンテック社製、PET38AL-5)に、乾燥後の誘電体層の厚みが約1.0μmになるようにグラビアコーターで塗布し、大気下にて100℃で5分間乾燥させ、離型基材上に誘電体層を作成した(セラミックグリーンシート法)。得られた誘電体層付き離型基材を用いて、耐ブロッキング性、転写性、および接着性を評価した。結果を表1に示す。
(実施例2)
 粒子状重合体の分散液の調製において、単量体組成物として、2-エチルヘキシルアクリレート(2-EHA)64部、イタコン酸(IA)1部、およびスチレン(St)35部を含むものを用いたこと以外は、実施例1と同様にして、各種操作、測定、および評価を実施した。結果を表1に示す。
(比較例1)
 スラリー組成物の調製において、バインダー組成物として、粒子状重合体の分散液に代えて、ポリビニルブチラール(積水化学工業社製、BL-2H)の水溶液25部(固形分換算で10部)を用いたこと以外は、実施例1と同様にして、各種操作、測定、および評価を実施した。結果を表1に示す。
 なお、比較例1では、粒子状重合体を使用しなかったため、粒子状重合体の体積平均粒子径、粒子状重合体のガラス転移温度、および粒子状重合体のTHF不溶分率の測定は行わなかった。
(比較例2)
 粒子状重合体の分散液の調製、およびスラリー組成物の調製において、溶媒および分散媒としてトルエンを用いたこと、具体的には、以下のようにして粒子状重合体の分散液およびスラリー組成物を調製したこと、ならびに、スラリー組成物の調製において、ポリビニルブチラール(積水化学工業社製、BL-2H)を使用しなかったこと以外は、実施例1と同様にして、各種操作、測定、および評価を実施した。結果を表1に示す。
<粒子状重合体の分散液(バインダー組成物)の調製>
 撹拌機付き5MPa耐圧容器に、単量体組成物として、n-ブチルアクリレート(BA)92部、アクリル酸(AA)2部、およびアクリロニトリル(AN)6部、乳化剤としてラウリル硫酸ナトリウム0.4部、イオン交換水150部、並びに重合開始剤として過硫酸アンモニウム0.5部を入れ、十分に撹拌した後、80℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。
 上記粒子状重合体を含む混合物に、トルエンを添加して、加熱減圧蒸留によって未反応単量体およびイオン交換水を除去し、溶媒置換を行った。その後、30℃以下まで冷却し、所望の粒子状重合体を含む分散液(溶媒がトルエン)を得た。なお、分散液の固形分濃度は40%であった。
<スラリー組成物の調製>
 誘電体材料として体積平均粒子径(d50)が0.1μmであるチタン酸バリウム(堺化学工業(株)製「BT-01」)100部、および、分散媒としてのトルエン20部を、混合用ビーズである粒径0.1mmのジルコニアビーズ(ニッカトー(株)製)100部と共に、ビーズミル(アイメックス(株)製「RMB-01」)を用いて、500rpmで2時間撹拌した。その後、トルエン20部を更に加え、500rpmで1時間撹拌した。ジルコニアビーズを濾別し、チタン酸バリウムの分散液を調製した。
 上記チタン酸バリウムの分散液140.0部(チタン酸バリウムを100部含有)に、上記で調製した粒子状重合体の分散液を25部(粒子状重合体を10部含有)加え、これらを自転公転ミキサーを用いて、1000rpmで3分間撹拌して、スラリー組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
 表1からも明らかな通り、実施例の粒子状重合体の分散液(バインダー組成物)を用いれば、優れた耐ブロッキング性および転写性を誘電体層に付与できることが分かる。
 本発明によれば、優れた耐ブロッキング性および転写性を誘電体層に付与し得る誘電体層用バインダー組成物を提供できる。
 また、本発明によれば、優れた耐ブロッキング性および転写性を誘電体層に付与し得る誘電体層用スラリー組成物を提供できる。
 また、本発明によれば、上記誘電体層用スラリー組成物からなる塗布膜を乾燥してなる誘電体層を提供できる。
 また、本発明によれば、上記誘電体層を用いてなるコンデンサを提供できる。
10:積層セラミックコンデンサ
11:誘電体
12:内部電極
13:外部電極

Claims (6)

  1.  (メタ)アクリル酸エステル単量体単位を含有する粒子状重合体と、水とを含む誘電体層用バインダー組成物。
  2.  前記粒子状重合体のガラス転移温度が、-50℃以上20℃以下である請求項1に記載の誘電体層用バインダー組成物。
  3.  前記粒子状重合体の体積平均粒子径が、0.01μm以上1.0μm以下である請求項1に記載の誘電体層用バインダー組成物。
  4.  請求項1~3のいずれかに記載の誘電体層用バインダー組成物、誘電体材料および溶媒を含む誘電体層用スラリー組成物。
  5.  請求項4に記載の誘電体層用スラリー組成物からなる塗布膜を乾燥してなる、誘電体層。
  6.  請求項5に記載の誘電体層を用いてなる、コンデンサ。
     
PCT/JP2023/036774 2022-10-31 2023-10-10 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ WO2024095719A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022175100 2022-10-31
JP2022-175100 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095719A1 true WO2024095719A1 (ja) 2024-05-10

Family

ID=90930497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036774 WO2024095719A1 (ja) 2022-10-31 2023-10-10 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ

Country Status (2)

Country Link
TW (1) TW202423880A (ja)
WO (1) WO2024095719A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335764A (ja) * 2003-05-08 2004-11-25 Jsr Corp 誘電体膜およびその製造方法
WO2021210318A1 (ja) * 2020-04-13 2021-10-21 旭化成株式会社 複合型単層化学架橋セパレータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335764A (ja) * 2003-05-08 2004-11-25 Jsr Corp 誘電体膜およびその製造方法
WO2021210318A1 (ja) * 2020-04-13 2021-10-21 旭化成株式会社 複合型単層化学架橋セパレータ

Also Published As

Publication number Publication date
TW202423880A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
TWI496831B (zh) A method for producing a slurry composition
JP4299833B2 (ja) 電極段差吸収用印刷ペーストおよび電子部品の製造方法
US7651764B2 (en) Release layer paste and method of production of a multilayer type electronic device
CN106575574B (zh) 叠层陶瓷电容器内部电极用膏体及叠层陶瓷电容器
US20060035071A1 (en) Release layer paste and method of production of multilayer type electronic device
JP3831748B2 (ja) グリーンシート用塗料、グリーンシート、グリーンシート用塗料の製造方法、グリーンシートの製造方法および電子部品の製造方法
JP7329037B2 (ja) 焼結用樹脂組成物、無機微粒子分散スラリー組成物、及び、無機微粒子分散シート
JP5224722B2 (ja) 樹脂組成物、導電ペースト及びセラミックペースト
JP4183573B2 (ja) 導電ペースト用バインダー樹脂及び導電ペースト
TWI248457B (en) Water-soluble acrylic binder, method for producing the same, ceramic slurry composition, method for producing the same, laminate ceramic electronic part and method for manufacturing the same
JP4637985B2 (ja) セラミックグリーンシート成形用バインダー
WO2024095719A1 (ja) 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、およびコンデンサ
TWI838578B (zh) 導電性糊及使用其的電子零件的製造方法
WO2024095664A1 (ja) 誘電体層用バインダー組成物、誘電体層用スラリー組成物、誘電体層、及びコンデンサ
JP2006083060A (ja) グリーンシート用塗料、グリーンシート、グリーンシート用塗料の製造方法、グリーンシートの製造方法および電子部品の製造方法
JPH06295840A (ja) 多層セラミックキャパシタの製造方法
JP4640028B2 (ja) 剥離層用ペースト及び積層型電子部品の製造方法
WO2024095663A1 (ja) 誘電体層用スラリー組成物、誘電体層、及びコンデンサ
JP4766505B2 (ja) セラミックスラリー、セラミックグリーンシートおよび積層セラミック電子部品
JP3808853B2 (ja) グリーンシート用塗料、グリーンシート、グリーンシートの製造方法および電子部品の製造方法
JP2007022829A (ja) セラミック塗料及び積層型電子部品の製造方法
JP3743588B2 (ja) 誘電体材料成形用バインダー
JPS605063A (ja) セラミツク組成物
JP2007116083A (ja) 積層セラミックコンデンサ内部電極用導電ペースト、及び、積層セラミックコンデンサの製造方法
JP2005303008A (ja) セラミックペースト及び積層セラミックコンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885482

Country of ref document: EP

Kind code of ref document: A1