JP7344945B2 - 制御装置、及びモータ駆動システム - Google Patents

制御装置、及びモータ駆動システム Download PDF

Info

Publication number
JP7344945B2
JP7344945B2 JP2021157208A JP2021157208A JP7344945B2 JP 7344945 B2 JP7344945 B2 JP 7344945B2 JP 2021157208 A JP2021157208 A JP 2021157208A JP 2021157208 A JP2021157208 A JP 2021157208A JP 7344945 B2 JP7344945 B2 JP 7344945B2
Authority
JP
Japan
Prior art keywords
inverter
prediction
control device
motor
harmonic current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021157208A
Other languages
English (en)
Other versions
JP2023047985A (ja
Inventor
毅 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021157208A priority Critical patent/JP7344945B2/ja
Priority to US17/951,572 priority patent/US12062997B2/en
Priority to CN202211169287.1A priority patent/CN115864919A/zh
Publication of JP2023047985A publication Critical patent/JP2023047985A/ja
Application granted granted Critical
Publication of JP7344945B2 publication Critical patent/JP7344945B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、モータを駆動するインバータから発生する高調波電流を抑制するアクティブフィルタ部を制御する制御装置、及び当該制御装置を備えるモータ駆動システムに関する。
近年、地球の気候変動に対する具体的な対策として、低炭素社会又は脱炭素社会の実現に向けた取り組みが活発化している。車両においても、CO2排出量の削減が強く要求され、駆動源の電動化が急速に進んでいる。具体的には、電気自動車あるいはハイブリッド電気自動車といった、駆動源としてのモータと、このモータに電力を供給する電源としてのバッテリと、を備える車両(以下「電動車両」ともいう)の開発が進められている。
一般的に、電動車両の駆動源としてのモータには交流モータが用いられる。このため、電動車両には、直流電源であるバッテリから供給された直流電力を交流電力に変換してモータに供給するインバータが設けられる。このような構成の場合、インバータのスイッチング動作時に、サージ状のノイズ電流による高調波電流(以下、単に「高調波電流」ともいう)が、バッテリとインバータとを接続する電力線上に発生し得る。このような高調波電流は、異音等のさまざまな障害の発生要因となるため、できるだけ抑制(低減)することが望まれる。
特許文献1には、直流電源と電力変換器との間を接続する電力線の通過電流を電流センサにより測定し、制御装置が、電流センサにより測定された通過電流の交流成分と逆極性の交流電流に相当する補償電流を逐次算出するとともに、この補償電流を発生させるための電流指令値を生成してアクティブフィルタへ与えるようにした技術が記載されている。そして、アクティブフィルタは、制御装置からの電流指令値にしたがった補償電流を上記の電力線へ供給するようにしている。
特開2005-304235号公報
しかしながら、従来技術にあっては、制御装置の処理負荷を低減しつつ、高調波電流を適切に抑制する観点から、改善の余地があった。例えば、上記の従来技術のように、アクティブフィルタからの補償電流をフィードバック制御により制御すると、高調波電流に対する補償電流の応答性が課題となる。一方、アクティブフィルタからの補償電流をフィードフォワード制御により制御すると、高調波電流に対する補償電流の応答性向上を見込めるものの、制御装置の処理負荷が増大するおそれがあった。
本発明は、制御装置の処理負荷を低減しつつ、高調波電流を適切に抑制可能な技術を提供する。
本発明は、
モータを駆動するインバータから発生する高調波電流を抑制するアクティブフィルタ部を制御する制御装置であって、
前記制御装置は、
前記インバータの少なくとも次のキャリア周期における前記モータの制御情報に基づき、現在から先の所定の予測対象期間に含まれる各予測点における前記高調波電流を予測する予測部と、
前記予測部の予測結果に基づき、前記予測対象期間のうち前記次のキャリア周期に含まれる予測点に対応する時期に、当該予測点における高調波電流と逆極性の補償電流を発生させる電流指令値を前記アクティブフィルタ部へ出力する指令値決定部と、
を備え、
前記各予測点は、前記予測対象期間の開始時から所定の時間間隔で設けられ、
前記時間間隔は、前記次のキャリア周期が長いほど長い、
制御装置である。
本発明によれば、制御装置の処理負荷を低減しつつ、高調波電流を適切に抑制できる。
モータ駆動システム1の一例を示す図である。 制御装置30が有するアクティブフィルタ制御部300の一例を示すブロック図である。 制御装置30(アクティブフィルタ制御部300)による具体的な高調波電流の予測例を示す図である。 過変調PWM制御時の予測対象期間の一例を示す図である。 モータ駆動システム1の変形例を示す図である。
以下、本発明の制御装置の一実施形態を、図面を参照しながら詳細に説明する。以下に説明する実施形態は、本発明の制御装置を、電動車両のモータ駆動システムに適用した場合の例である。
[モータ駆動システム]
本実施形態の電動車両(以下「車両V」ともいう)は、図1に示すモータ駆動システム1を備える。モータ駆動システム1は、直流電源であるバッテリBATと、車両Vの駆動輪(不図示)を駆動する駆動源としての駆動用モータMOTと、バッテリBATと駆動用モータMOTとの間で授受される電力の変換を行う電力変換部10と、アクティブフィルタ部20と、制御装置30と、を備える。
バッテリBATは、車両Vを駆動するための電力(すなわち駆動用モータMOTを駆動するための電力)を蓄電可能な蓄電装置である。バッテリBATの正極端子(図1中「P0」で図示)は高電位側電力線Lpに接続され、バッテリBATの負極端子(図1中「N0」で図示)は低電位側電力線Lnに接続される。バッテリBATは、例えば、リチウムイオン電池等により実現される単位蓄電セル(不図示)を複数個直列又は直並列に接続して、正極端子と負極端子との端子間電圧として100~400[V]といった高電圧を出力可能に構成される。
駆動用モータMOTは、第1モータM1と、第1モータM1よりも高出力な第2モータM2とを含む。第1モータM1及び第2モータM2のそれぞれは、例えば、永久磁石同期型の三相交流モータである。第1モータM1及び第2モータM2は、共通の駆動輪を駆動するものであってもよいし、互いに異なる駆動輪を駆動するものであってもよい。
第1モータM1及び第2モータM2には、それぞれの状態を検出するモータセンサ(不図示)が設けられている。モータセンサの一例は、ロータの回転角度を検出するレゾルバである。モータセンサは、検出結果(例えばロータの回転角度)を示す検出信号を、制御装置30へ送る。この時、モータセンサはCAN(Controller Area Network)等の車内ネットワークを介して制御装置30へ送ってもよい。
電力変換部10は、第1インバータ11と、第1インバータ11よりも高出力な第2インバータ12とを含む。第1インバータ11及び第2インバータ12のそれぞれは、例えば、制御装置30からの制御信号にしたがって駆動する6つのスイッチング素子(不図示)を備える三相インバータである。スイッチング素子は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等である。
第1インバータ11の高電位側直流端子(図1中「P1」で図示)は、高電位側電力線Lpを介して、バッテリBATの正極端子に接続される。また、第1インバータ11の低電位側直流端子(図1中「N1」で図示)は、低電位側電力線Lnを介して、バッテリBATの負極端子に接続される。そして、第1インバータ11の交流端子(図1中「U1、V1、W1」で図示)は、第1三相線L1を介して、第1モータM1に接続される。
第1インバータ11は、高電位側直流端子及び低電位側直流端子を介して入力されたバッテリBATの電力(直流電力)を三相の交流電力に変換する。そして、第1インバータ11は、変換した交流電力を、交流端子を介して、第1モータM1へ出力する。すなわち、第1インバータ11の高電位側直流端子及び低電位側直流端子は第1インバータ11の入力部ということもでき、第1インバータ11の交流端子は第1インバータ11の出力部ということもできる。
また、第1インバータ11には、高電位側直流端子と低電位側直流端子との端子間電圧(すなわち第1インバータ11への入力電圧)を検出する電圧センサSv1が設けられている。電圧センサSv1は、検出結果を示す検出信号を、車内ネットワーク等を介して制御装置30へ送る。さらに、バッテリBATと第1インバータ11とを接続する高電位側電力線Lpには、当該電力線を流れる電流値を検出する電流センサSi1が設けられている。電流センサSi1は、検出結果を示す検出信号を、車内ネットワーク等を介して制御装置30へ送る。また、第1インバータ11と第1モータM1とを接続する第1三相線L1にも各相を流れる電流値を検出する電流センサを設けて、この電流センサからの検出信号が制御装置30へ送られるようにしてもよい。
第1インバータ11と同様に、第2インバータ12の高電位側直流端子(図1中「P2」で図示)は、高電位側電力線Lpを介して、バッテリBATの正極端子に接続される。また、第2インバータ12の低電位側直流端子(図1中「N2」で図示)は、低電位側電力線Lnを介して、バッテリBATの負極端子に接続される。そして、第2インバータ12の交流端子(図1中「U2、V2、W2」で図示)は、第2三相線L2を介して、第2モータM2に接続される。
第2インバータ12は、高電位側直流端子及び低電位側直流端子を介して入力されたバッテリBATの電力(直流電力)を三相の交流電力に変換する。そして、第2インバータ12は、変換した交流電力を、交流端子を介して、第2モータM2へ出力する。すなわち、第2インバータ12の高電位側直流端子及び低電位側直流端子は第2インバータ12の入力部ということもでき、第2インバータ12の交流端子は第2インバータ12の出力部ということもできる。
また、第2インバータ12には、高電位側直流端子と低電位側直流端子との端子間電圧(すなわち第2インバータ12への入力電圧)を検出する電圧センサSv2が設けられている。電圧センサSv2は、検出結果を示す検出信号を、車内ネットワーク等を介して制御装置30へ送る。さらに、バッテリBATと第2インバータ12とを接続する高電位側電力線Lpには、当該電力線を流れる電流値を検出する電流センサSi2が設けられている。電流センサSi2は、検出結果を示す検出信号を、車内ネットワーク等を介して制御装置30へ送る。また、第2インバータ12と第2モータM2とを接続する第2三相線L2にも各相を流れる電流値を検出する電流センサを設けて、この電流センサからの検出信号が制御装置30へ送られるようにしてもよい。
モータ駆動システム1では、第1インバータ11及び第2インバータ12のスイッチング動作時に、サージ状のノイズ電流による高調波電流が高電位側電力線Lp上に発生し得る。低出力の第1インバータ11から発生する高調波電流は比較的小さいものとなるため、この高調波電流がバッテリBATや第2インバータ12に与える影響も比較的小さくなる。一方、高出力の第2インバータ12からは、比較的大きな高調波電流が発生し得る。このような大きな高調波電流は、バッテリBATや第1インバータ11等の障害の発生要因となり得る。
そこで、モータ駆動システム1では、第2インバータ12から発生する高調波電流を抑制可能なアクティブフィルタ部20を設けている。アクティブフィルタ部20は、第2インバータ12から発生する高調波電流と逆極性(逆位相)の補償電流をアクティブフィルタ部20が発生させるための直流電源である低圧電源21と、低圧電源21から供給された電力(直流電力)から補償電流に相当する交流電力を生成する単相インバータ22とを含む。単相インバータ22は、例えば、制御装置30からの制御信号にしたがって駆動する4つのスイッチング素子(不図示)を備え、これらスイッチング素子のスイッチングにより補償電流を生成する。アクティブフィルタ部20(単相インバータ22)によって生成された補償電流は、絶縁トランス23を介して、高電位側電力線Lpに供給される。
また、本実施形態では、バッテリBAT及び第1インバータ11と、第2インバータ12との間に、アクティブフィルタ部20に加えてインダクタ24も設けている。これにより、第2インバータ12から発生する高調波電流をインダクタ24によっても抑制できる。すなわち、本実施形態の構成によれば、アクティブフィルタ部20による補償電流及びインダクタ24の併用により、第2インバータ12から発生する高調波電流をより効果的に抑制することができる。なお、インダクタ24は、必須の構成ではなく、省略することも可能である。
制御装置30は、モータ駆動システム1を含む車両V全体を統括制御する。例えば、制御装置30は、三角波比較型のPWM(Pulse Width Modulation)制御により、第1インバータ11及び第2インバータ12の駆動(すなわちスイッチング素子のオン・オフ)を制御して、第1インバータ11から第1モータM1あるいは第2インバータ12から第2モータM2に供給される電力を制御する。制御装置30は、第1インバータ11から第1モータM1に供給される電力を制御することで第1モータM1の駆動を制御でき、また、第2インバータ12から第2モータM2に供給される電力を制御することで第2モータM2の駆動を制御できる。
例えば、制御装置30は、不図示の車速センサによって検出された車両Vの走行速度、及び不図示のAP(アクセルポジション)センサによって検出された車両VのAP開度に基づき、車両Vの走行に要求される駆動力(以下「要求駆動力」ともいう)を導出する。そして、制御装置30は、導出した要求駆動力を目標値として、第1モータM1及び/又は第2モータM2の出力を制御する。
また、制御装置30は、例えば、三角波比較型のPWM制御により、単相インバータ22の駆動(すなわちスイッチング素子のオン・オフ)を制御して、アクティブフィルタ部20から高電位側電力線Lpに供給される補償電流を制御する。制御装置30は、駆動用モータMOTの制御情報等に基づき、電力変換部10のインバータのスイッチング動作により発生する高調波電流を予測し、アクティブフィルタ部20からの補償電流をフィードフォワード制御により制御する。これにより、アクティブフィルタ部20からの補償電流をフィードバック制御により制御するようにした場合に比べて、高調波電流に対する補償電流の応答性の向上を図ることができる。
より具体的に説明すると、本実施形態では、制御装置30は、第2モータM2の制御情報に基づき、第2インバータ12から発生する高調波電流を抑制する補償電流を生成するようにアクティブフィルタ部20を制御する。ここで、第2モータM2の制御情報は、第2インバータ12から発生する高調波電流を予測可能とする情報であって、例えば、第2インバータ12のキャリア信号(例えばキャリア周期)、第2モータM2のdq軸電圧、dq軸電流、モータ電気角、回転数、Vpn電圧等をあらわす情報である。第2モータM2の制御情報は、第2モータM2に設けられたモータセンサ(例えばレゾルバ)、電圧センサSv2、及び電流センサSi2の検出結果等に基づき取得することが可能である。
なお、制御装置30は、例えば、各種演算を行うプロセッサ、各種情報を記憶する記憶装置、制御装置30の内部と外部とのデータの入出力を制御する入出力装置などを備えるECU(Electronic Control Unit)によって実現することができる。また、制御装置30は、1つのECUによって実現されてもよいし、複数のECUによって実現されてもよい。
[アクティブフィルタ制御部]
次に、アクティブフィルタ部20を制御するために制御装置30が有する機能部であるアクティブフィルタ制御部300の一例について説明する。図2に示すように、アクティブフィルタ制御部300は、予測部310と、指令値決定部320とを含む。
予測部310は、例えば、第2インバータ12の少なくとも次のキャリア周期における第2モータM2の制御情報に基づき、現在から先の所定の予測対象期間に含まれる各予測点における第2インバータ12からの高調波電流を予測する。
具体的に説明すると、予測部310は、第2モータM2をモデル化したモータモデル311と、第2モータM2の回転数を予測するための回転数予測モデル312と、第2インバータ12をモデル化したインバータモデル313とを有する。
予測部310は、モータモデル311を用いて、第2モータM2の制御情報、電圧センサSv2や電流センサSi2の検出結果、及びインバータモデル313によって導出された相電圧等に基づき、現在よりも先の所定の時期(例えば予測対象期間に含まれる各予測点)における第2モータM2の出力トルク及び各相を流れる相電流を予測する。
また、予測部310は、回転数予測モデル312を用いて、モータモデル311によって予測された第2モータM2の出力トルクに基づき、現在よりも先の所定の時期(例えば予測対象期間に含まれる各予測点)における第2モータM2の回転数を予測する。制御装置30は、回転数予測モデル312によって予測された第2モータM2の回転数に基づき、現在よりも先の第2インバータ12のキャリア周期(例えば第2インバータ12の次のキャリア周期)を決定したりする。
また、予測部310は、インバータモデル313を用いて、モータモデル311によって予測された第2モータM2の相電流、回転数予測モデル312によって予測された第2モータM2の回転数、電流センサSi2の検出結果等に基づき、現在よりも先の所定の時期(例えば予測対象期間に含まれる各予測点)において第2インバータ12から発生する高調波電流を予測する。そして、予測部310は、第2インバータ12から発生する高調波電流を予測すると、その予測結果を指令値決定部320へ渡す。
指令値決定部320は、例えば、予測部310の予測結果に基づき、次のキャリア周期に含まれる予測点に対応する時期に、当該予測点における高調波電流と逆極性の補償電流を発生させる電流指令値をアクティブフィルタ部20へ出力する。
具体的に説明すると、指令値決定部320は、予測部310の予測結果として得られた高調波電流から、この高調波電流と逆極性の補償電流をアクティブフィルタ部20から発生させるための周波数毎の電圧指令値を生成する。そして、指令値決定部320は、生成した周波数毎の電圧指令値に基づき、PWM制御部321により単相インバータ22をPWM制御して、単相インバータ22に補償電流の生成を行わせる。
なお、予測部310及び指令値決定部320を含むアクティブフィルタ制御部300は、例えば、制御装置30を実現するECUのプロセッサが記憶装置にあらかじめ記憶されたプログラムを実行することにより実現可能である。
[制御装置による具体的な高調波電流の予測例]
次に、制御装置30(アクティブフィルタ制御部300)による具体的な高調波電流の予測例について、図3を参照しながら説明する。
図3に示す例において、第2インバータ12(すなわち第2モータM2)を駆動するために制御装置30が用いるキャリア信号は、時期t0から時期t1までの第1周期Cc1と、時期t1から時期t2までの第2周期Cc2と、時期t2から時期t3までの第3周期Cc3と、の3つのキャリア周期を有する。
また、図3に示す例において、第2モータM2の回転数(図3中「モータ回転数」と図示)は時系列的に後になるほど大きくなっており、それに伴い、キャリア周期も時系列的に後のものほど短くなっている。具体的には、第1周期Cc1の長さをT1[s]とし、第2周期Cc2の長さをT2[s]とし、第3周期Cc3の長さをT3[s]とすると、T1>T2>T3である。
アクティブフィルタ部20から発生させる補償電流をフィードフォワード制御により制御するため、制御装置30は、所定の予測開始時期となると、現在(すなわち予測開始時期)から先の所定の予測対象期間に含まれる各予測点における高調波電流を予測する。ここで、予測対象期間は、例えば、抑制対象となる高調波電流の発生源となるインバータ(ここでは第2インバータ12)の少なくとも次のキャリア周期を含む期間とすることができる。
本実施形態では、次のキャリア周期の開始時期の所定期間前の時期である予測開始時期から、次のキャリア周期の終了時期までの期間が、予測対象期間として設定され得る。また、予測開始時期としては、次のキャリア周期の開始時期までにそのキャリア周期を含む予測対象期間についての高調波電流の予測が完了できるような時期が設定される。
具体的に説明すると、制御装置30は、第1周期Cc1の開始に伴い、まず、次のキャリア周期(すなわち第2周期Cc2)で第2インバータ12等を制御するために用いる各種指令値を決定する(図3中「指令値決定(t1)」と図示)。これにより、第2周期Cc2の長さや第2周期Cc2における第2インバータ12のスイッチング内容等が決定される。
そして、制御装置30は、第2周期Cc2における各種指令値の決定後、予測開始時期である時期t10となると、第2周期Cc2で発生する高調波電流の予測を開始する(図3中「高調波予測(t1-t2)」と図示)。
第2周期Cc2で発生する高調波電流を予測するにあたって、制御装置30は、時期t10から時期t2までの期間を予測対象期間(図3中「予測対象期間α」と図示)とし、この予測対象期間に含まれる各予測点における高調波電流を予測する。予測対象期間αは、図3に示すように、第2周期Cc2を含む。
各予測点は、予測対象期間の開始時(すなわち予測開始時期)から所定の時間間隔で設けられる。この時間間隔(以下「予測点の間隔」ともいう)は、次のキャリア周期の長さに比例するようになっており、次のキャリア周期が長いほど長くなる。一例として、本実施形態では、次のキャリア周期の長さをTx[s]とし、予測点の間隔をSx[s]とすると、Sx=Tx/10である。つまり、本実施形態では、次のキャリア周期に含まれる予測点の数は、そのキャリア周期の長さによらず一定の10個となる。
具体的に説明すると、図3に示す予測対象期間αには、同図中、黒色の円で示す予測点が設けられる。このうち、時系列的に最も前の予測点p1は時期t10からT2/10[s]後の時期となり、予測点p1の次の予測点p2は予測点p1からT2/10[s]後の時期となる。また、予測点p2の次の予測点p3は予測点p2からT2/10[s]後の時期となり、予測点p3の次の予測点p4は予測点p3からT2/10[s]後の時期となり、予測点p4の次の予測点p5は予測点p4からT2/10[s]後の時期となる。予測点p5後の予測点も同様にして、第2周期Cc2の終了時期である時期t2まで、T2/10[s]間隔で設けられる。
また、同様にして、制御装置30は、第2周期Cc2の開始に伴い、次のキャリア周期(すなわち第3周期Cc3)で第2インバータ12を制御するために用いる各種指令値を決定(図3中「指令値決定(t2)」と図示)する。そして、制御装置30は、第3周期Cc3における各種指令値の決定後、第3周期Cc3で発生する高調波電流を予測する(図3中「高調波予測(t2-t3)」と図示)。この場合の予測対象期間(図3中「予測対象期間β」と図示)における予測点の間隔は、第3周期Cc3の長さに比例するものとなり、具体的には、図3に示すようにT3/10[s]となる。
このように、次のキャリア周期で発生する高調波電流を予測するにあたって、そのキャリア周期の長さに比例した時間間隔で設けられた予測点における高調波電流を予測するようにすることで、そのキャリア周期で発生する高調波電流を精度よく予測することを可能としつつも、当該予測を行うための制御装置30の処理負荷を低減できる。
仮に、次のキャリア周期で発生する高調波電流を予測するにあたって、そのキャリア周期の長さによらず一定の時間間隔で設けられた予測点における高調波電流を予測するようにしたとする。この場合、次のキャリア周期で発生する高調波電流を精度よく予測するためには、予測点の間隔をある程度短くする必要がある。しかしながら、キャリア周期が比較的長い場合には、そのキャリア周期で発生する高調波電流の変動がなだらかなものとなるため、このような短い間隔で高調波電流を予測しなくても、そのキャリア周期で発生する高調波電流を精度よく予測することが可能である。
そこで、本実施形態では、次のキャリア周期の長さに比例した時間間隔で設けられた予測点における高調波電流を予測するようにすることで、過剰な予測点についての高調波電流の予測を削減し、次のキャリア周期で発生する高調波電流を予測するにあたっての制御装置30の処理負荷の低減を図っている。
また、次のキャリア周期の長さに比例した時間間隔で予測点を設けることで、そのキャリア周期の長さによらず予測点の数を略一定とすることができる。したがって、次のキャリア周期の長さによらず略一定の処理負荷でそのキャリア周期で発生する高調波電流を予測することが可能となる。これにより、キャリア周期がどのように変化する場合であっても、各キャリア周期で発生する高調波電流を予測するための制御装置30の消費電力を略一定にできる。そして、このように、各キャリア周期で発生する高調波電流を予測するための制御装置30の消費電力を略一定にすることで、その消費電力の推定を容易化できる。
ところで、前述したように、予測対象期間の始点である予測開始時期は、次のキャリア周期の開始時期よりも前の時期となる。このため、例えば、予測対象期間αには、予測点p1及び予測点p2といった第2周期Cc2外の予測点も含まれることになる。そして、このような次のキャリア周期外の予測点における高調波電流の予測結果は、次のキャリア周期で発生する高調波電流を抑制する補償電流の生成に利用されない。したがって、このような無駄な予測点は、なるべく少なくすることが望まれる。
そこで、本実施形態では、予測対象期間に含まれる各予測点における高調波電流の予測が完了する完了時期から次のキャリア周期の開始時期までの第1期間が、次のキャリア周期においてインバータを駆動するための指令値が決定された時期から、予測対象期間に含まれる各予測点における高調波電流の予測を開始する予測開始時期までの第2期間よりも短くなるようにしている。
具体的に説明すると、図3に示すように、第2周期Cc2において第2インバータ12を駆動するための各種指令値が決定された時期をt11とし、第2周期Cc2を含む予測対象期間αに含まれる各予測点における高調波電流の予測が完了する完了時期をt12とする。この場合、時期t12から時期t1までの期間tbが上記の第1期間に相当し、時期t11から時期t10までの期間taが上記の第2期間に相当する。そして、期間tbが、期間taよりも短くなるようにしている。
このように、次のキャリア周期の開始時期までにそのキャリア周期を含む予測対象期間についての高調波電流の予測を完了できる範囲で、予測開始時期をできるだけ後の時期とすることで、前述した無駄な予測点を削減することができ、次のキャリア周期で発生する高調波電流を予測するための制御装置30の処理負荷を一層低減することが可能となる。
一方、仮に、第2周期Cc2で発生する高調波電流の予測を開始する予測開始時期を、第2周期Cc2において第2インバータ12を駆動するための各種指令値が決定された時期t11とした場合には、図3中、白色の円で示すような無駄な予測点が増えることになるため、その分、制御装置30の処理負荷が増大することになる。
また、制御装置30は、正弦波PWM制御と、過変調PWM制御との2つの変調方法を切り替えて第2インバータ12(すなわち第2モータM2)を駆動してもよい。図4には、過変調PWM制御時に、制御装置30が第2インバータ12のスイッチング素子のゲート端子に印加するゲート信号と、第2インバータ12から発生する高調波電流の一例を示した。
そして、制御装置30は、設定する予測対象期間を変調方法によって切り替えるようにしてもよい。具体的には、制御装置30は、正弦波PWM制御により第2インバータ12を駆動している場合には、図3等に示したように、次のキャリア周期(すなわち1つのキャリア周期)を含む予測対象期間を設定する。
一方、制御装置30は、過変調PWM制御により第2インバータ12を駆動している場合には、正弦波PWM制御により第2インバータ12を駆動している場合よりも予測対象期間を長くする。具体的には、この場合、図4に示すように、制御装置30は、第2インバータ12の基本波周期Tfの6分の1(すなわちTf/6)を含む予測対象期間を設定する。ここで、第2インバータ12の基本波周期Tfは、第2モータM2の回転周波数を極対数(第2インバータ12のスイッチング素子の数)で除した基本波周波数の逆数である。そして、この場合、制御装置30は、基本波周期Tfの6分の1の期間をさらに10で除した時間間隔で予測点を設定する(図4中、黒色の円を参照)。
このようにすることで、制御装置30は、変調方法によって適切な予測対象期間及び予測点を設定でき、高調波電流を精度よく予測することを可能としつつも、当該予測を行うための処理負荷を低減できる。すなわち、過変調PWM制御時には、正弦波PWM制御時に比べて、高調波電流の周波数が低くなり、高調波電流の変動がなだらかなものとなる。このため、短い間隔で高調波電流を予測しなくても、高調波電流を精度よく予測することが可能である。したがって、制御装置30は、過変調PWM制御により第2インバータ12を駆動している場合には、上記のように予測対象期間及び予測点を設定することで、過剰な予測点についての高調波電流の予測を削減することが可能となる。
[変形例]
次に、前述した実施形態の変形例について説明する。なお、以下では、前述した構成と同一の構成については同一の符号を付して、その説明を適宜省略又は簡略化する。
前述した例では、第2インバータ12から発生する高調波電流と逆極性の補償電流を生成するアクティブフィルタ部20のみを設けていたが、これに限らない。例えば、図5に示すように、第2インバータ12から発生する高調波電流と逆極性の補償電流を生成するアクティブフィルタ部20に加えて、第1インバータ11から発生する高調波電流と逆極性の補償電流を生成するアクティブフィルタ部20’をさらに設けてもよい。すなわち、図5に示すように、第1モータM1、第1インバータ11及びアクティブフィルタ部20’と、第2モータM2、第2インバータ12及びアクティブフィルタ部20とが、各インバータ11、12に電力を供給するバッテリBATに対して並列に接続されるように、モータ駆動システム1を構成してもよい。アクティブフィルタ部20’を設けた場合、制御装置30は、前述した例と同様にして、第1モータM1の制御情報等に基づき第1インバータ11から発生する高調波電流を予測し、これと逆極性の補償電流をアクティブフィルタ部20’に生成させればよい。このようにすれば、第1インバータ11から発生する高調波電流も抑制することが可能となる。したがって、第1モータM1、第1インバータ11及びアクティブフィルタ部20’と、第2モータM2、第2インバータ12及びアクティブフィルタ部20とが、バッテリBATに対して並列に接続されたモータ駆動システム1における高調波電流をより適切に抑制することが可能となる。
また、図5に示すように、前述したインダクタ24に代えて、パッシブフィルタ50を設けてもよい。そして、バッテリBATとアクティブフィルタ部20’との間にも、同様にパッシブフィルタ50を設けてもよい。
以上に説明したように、本発明によれば、制御装置の処理負荷を低減しつつ、高調波電流を適切に抑制できる。
以上、図面を参照しながら、本発明の各種実施形態について説明したが、本発明はかかる例に限定されないことはいうまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記の実施形態における各構成要素を任意に組み合わせてもよい。
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、前述した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1) モータ(第1モータM1、第2モータM2)を駆動するインバータ(第1インバータ11、第2インバータ12)から発生する高調波電流を抑制するアクティブフィルタ部(アクティブフィルタ部20、アクティブフィルタ部20’)を制御する制御装置(制御装置30)であって、
前記制御装置は、
前記インバータの少なくとも次のキャリア周期における前記モータの制御情報に基づき、現在から先の所定の予測対象期間に含まれる各予測点における前記高調波電流を予測する予測部(予測部310)と、
前記予測部の予測結果に基づき、前記予測対象期間のうち前記次のキャリア周期に含まれる予測点に対応する時期に、当該予測点における高調波電流と逆極性の補償電流を発生させる電流指令値を前記アクティブフィルタ部へ出力する指令値決定部(指令値決定部320)と、
を備え、
前記各予測点は、前記予測対象期間の開始時から所定の時間間隔で設けられ、
前記時間間隔は、前記次のキャリア周期が長いほど長い、
制御装置。
(1)によれば、制御装置の処理負荷を低減しつつ、高調波電流を適切に抑制できる。
(2) (1)に記載の制御装置であって、
前記制御装置は、
正弦波PWM制御と、過変調PWM制御との2つの変調方法を切り替えて前記インバータを駆動可能に構成され、
前記過変調PWM制御により前記インバータを駆動している場合には、前記正弦波PWM制御により前記インバータを駆動している場合よりも、前記予測対象期間を長くする、
制御装置。
(2)によれば、変調方法によって適切な予測対象期間を設定でき、高調波電流を精度よく予測することを可能としつつも、当該予測を行うための制御装置の処理負荷を低減できる。
(3) (2)に記載の制御装置であって、
前記正弦波PWM制御により前記インバータが駆動されている場合の予測対象期間は、前記次のキャリア周期を含み、
前記過変調PWM制御により前記インバータが駆動されている場合の予測対象期間は、前記インバータの基本波周期の6分の1を含む、
制御装置。
(3)によれば、変調方法によって適切な予測対象期間を設定でき、高調波電流を精度よく予測することを可能としつつも、当該予測を行うための制御装置の処理負荷を低減できる。
(4) (1)から(3)のいずれかに記載の制御装置であって、
前記次のキャリア周期に含まれる予測点の数は、前記次のキャリア周期の長さによらず一定である、
制御装置。
(4)によれば、次のキャリア周期の長さによらず略一定の処理負荷でそのキャリア周期で発生する高調波電流を予測することが可能となる。
(5) (1)から(4)のいずれかに記載の制御装置であって、
前記各予測点における前記高調波電流の予測が完了する完了時期から前記次のキャリア周期の開始時期までの期間は、前記次のキャリア周期において前記インバータを駆動するための指令値が決定された時期から、前記各予測点における前記高調波電流の予測を開始する予測開始時期までの期間よりも短い、
制御装置。
(5)によれば、次のキャリア周期で発生する高調波電流を予測するための制御装置の処理負荷を低減することが可能となる。
(6) (1)から(5)のいずれかに記載の制御装置を備えたモータ駆動システムであって、
前記モータと、当該モータを駆動する前記インバータと、当該インバータから発生する前記高調波電流を抑制する前記アクティブフィルタ部とが、各インバータに電力を供給する電源に対して複数並列に接続された、
モータ駆動システム(モータ駆動システム1)。
(6)によれば、モータと、当該モータを駆動するインバータと、当該インバータから発生する高調波電流を抑制するアクティブフィルタ部とが、各インバータに電力を供給する電源に対して複数並列に接続されたモータ駆動システムにおける高調波電流を適切に抑制できる。
M1 第1モータ(モータ)
M2 第2モータ(モータ)
1 モータ駆動システム
11 第1インバータ(インバータ)
12 第2インバータ(インバータ)
20、20’ アクティブフィルタ部
30 制御装置
310 予測部
320 指令値決定部

Claims (6)

  1. モータを駆動するインバータから発生する高調波電流を抑制するアクティブフィルタ部を制御する制御装置であって、
    前記制御装置は、
    前記インバータの少なくとも次のキャリア周期における前記モータの制御情報に基づき、現在から先の所定の予測対象期間に含まれる各予測点における前記高調波電流を予測する予測部と、
    前記予測部の予測結果に基づき、前記予測対象期間のうち前記次のキャリア周期に含まれる予測点に対応する時期に、当該予測点における高調波電流と逆極性の補償電流を発生させる電流指令値を前記アクティブフィルタ部へ出力する指令値決定部と、
    を備え、
    前記各予測点は、前記予測対象期間の開始時から所定の時間間隔で設けられ、
    前記時間間隔は、前記次のキャリア周期が長いほど長い、
    制御装置。
  2. 請求項1に記載の制御装置であって、
    前記制御装置は、
    正弦波PWM制御と、過変調PWM制御との2つの変調方法を切り替えて前記インバータを駆動可能に構成され、
    前記過変調PWM制御により前記インバータを駆動している場合には、前記正弦波PWM制御により前記インバータを駆動している場合よりも、前記予測対象期間を長くする、
    制御装置。
  3. 請求項2に記載の制御装置であって、
    前記正弦波PWM制御により前記インバータが駆動されている場合の予測対象期間は、前記次のキャリア周期を含み、
    前記過変調PWM制御により前記インバータが駆動されている場合の予測対象期間は、前記インバータの基本波周期の6分の1を含
    前記インバータの基本波周期は、前記モータの回転周波数を極対数で除した基本波周波数の逆数である、
    制御装置。
  4. 請求項1から3のいずれか1項に記載の制御装置であって、
    前記次のキャリア周期に含まれる予測点の数は、前記次のキャリア周期の長さによらず一定である、
    制御装置。
  5. 請求項1から4のいずれか1項に記載の制御装置であって、
    前記各予測点における前記高調波電流の予測が完了する完了時期から前記次のキャリア周期の開始時期までの期間は、前記次のキャリア周期において前記インバータを駆動するための指令値が決定された時期から、前記各予測点における前記高調波電流の予測を開始する予測開始時期までの期間よりも短い、
    制御装置。
  6. 請求項1から5のいずれか1項に記載の制御装置を備えたモータ駆動システムであって、
    前記モータと、当該モータを駆動する前記インバータと、当該インバータから発生する前記高調波電流を抑制する前記アクティブフィルタ部とが、各インバータに電力を供給する電源に対して複数並列に接続された、
    モータ駆動システム。
JP2021157208A 2021-09-27 2021-09-27 制御装置、及びモータ駆動システム Active JP7344945B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021157208A JP7344945B2 (ja) 2021-09-27 2021-09-27 制御装置、及びモータ駆動システム
US17/951,572 US12062997B2 (en) 2021-09-27 2022-09-23 Control device and motor drive system
CN202211169287.1A CN115864919A (zh) 2021-09-27 2022-09-23 控制装置以及马达驱动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021157208A JP7344945B2 (ja) 2021-09-27 2021-09-27 制御装置、及びモータ駆動システム

Publications (2)

Publication Number Publication Date
JP2023047985A JP2023047985A (ja) 2023-04-06
JP7344945B2 true JP7344945B2 (ja) 2023-09-14

Family

ID=85661143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021157208A Active JP7344945B2 (ja) 2021-09-27 2021-09-27 制御装置、及びモータ駆動システム

Country Status (3)

Country Link
US (1) US12062997B2 (ja)
JP (1) JP7344945B2 (ja)
CN (1) CN115864919A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047479A1 (fr) 2006-10-19 2008-04-24 Mitsubishi Electric Corporation Dispositif de conversion de puissance
JP2021040423A (ja) 2019-09-03 2021-03-11 株式会社デンソー 回転電機の制御装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746917B2 (ja) * 1987-07-28 1995-05-17 三菱電機株式会社 3相変換器の制御装置
US5334923A (en) * 1990-10-01 1994-08-02 Wisconsin Alumni Research Foundation Motor torque control method and apparatus
US5459524A (en) * 1991-11-18 1995-10-17 Cooper; J. Carl Phase modulation demodulator apparatus and method
JP3212850B2 (ja) * 1995-10-26 2001-09-25 財団法人鉄道総合技術研究所 特定周波数成分信号の動作位相算出方法および装置並びにアクティブフィルタのデジタル制御システム
US5910892A (en) * 1997-10-23 1999-06-08 General Electric Company High power motor drive converter system and modulation control
EP1553693B1 (en) * 2002-10-17 2007-12-19 Denso Corporation Ac rotary electric machine magnetic noise reduction method, motor control device and ac rotary electric machine using the same
JP2005304235A (ja) 2004-04-14 2005-10-27 Toyota Motor Corp 車両用電源装置
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
US7768220B2 (en) * 2008-04-24 2010-08-03 Gm Global Technology Operations, Inc. Harmonic torque ripple reduction at low motor speeds
JP5133834B2 (ja) * 2008-09-30 2013-01-30 トヨタ自動車株式会社 交流電動機の制御装置
JP5368777B2 (ja) * 2008-11-17 2013-12-18 トヨタ自動車株式会社 交流電動機の制御装置
CN102301586B (zh) * 2009-01-29 2013-12-25 丰田自动车株式会社 交流电动机的控制装置
JP5291804B2 (ja) * 2009-11-17 2013-09-18 シャープ株式会社 符号化装置、符号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5755334B2 (ja) * 2011-09-22 2015-07-29 三菱電機株式会社 モータ制御装置
IN2014CN02973A (ja) * 2011-09-30 2015-07-03 Mitsubishi Electric Corp
JP5890345B2 (ja) * 2013-04-18 2016-03-22 トヨタ自動車株式会社 外部給電システム
CN105594117B (zh) * 2013-09-30 2018-04-13 大金工业株式会社 功率转换装置
KR102248724B1 (ko) * 2013-12-18 2021-05-07 오티스 엘리베이터 컴파니 멀티레벨 라인 회생 구동을 위한 제어 전략들
US10003285B2 (en) * 2014-06-23 2018-06-19 Steering Solutions Ip Holding Corporation Decoupling current control utilizing direct plant modification in electric power steering system
US10890905B1 (en) * 2014-08-29 2021-01-12 Electro Standards Laboratories Advanced arresting gear controller
JP6488192B2 (ja) * 2015-05-25 2019-03-20 日立オートモティブシステムズ株式会社 インバータ制御装置
JP6623740B2 (ja) * 2015-12-17 2019-12-25 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
US10158312B2 (en) * 2016-01-20 2018-12-18 Toyota Jidosha Kabushiki Kaisha Motor control apparatus
JP6699348B2 (ja) * 2016-05-20 2020-05-27 株式会社デンソー 電力変換装置の制御装置
BR112018076923A2 (pt) * 2016-07-20 2019-04-02 Nsk Ltd. aparelho de direção elétrica
JP6568658B2 (ja) * 2016-09-05 2019-08-28 日立オートモティブシステムズ株式会社 回転電動機の制御方法および制御装置、並びに回転電動機駆動システム
US10027262B2 (en) * 2016-09-13 2018-07-17 Ford Global Technologies, Llc Pseudorandom PWM variation based on motor operating point
JP6765985B2 (ja) * 2017-02-16 2020-10-07 日立オートモティブシステムズ株式会社 インバータ装置および電動車両
JP6593372B2 (ja) * 2017-03-06 2019-10-23 トヨタ自動車株式会社 駆動装置
WO2018230541A1 (ja) * 2017-06-16 2018-12-20 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
WO2019180971A1 (ja) * 2018-03-23 2019-09-26 三菱電機株式会社 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7009344B2 (ja) * 2018-11-01 2022-01-25 株式会社Soken 回転電機の駆動装置
US11489478B2 (en) * 2019-01-16 2022-11-01 Mitsubishi Electric Corporation Power conversion device
JP6849000B2 (ja) * 2019-03-14 2021-03-24 ダイキン工業株式会社 直接形の電力変換装置
JP7242523B2 (ja) * 2019-12-27 2023-03-20 日立Astemo株式会社 インバータ制御装置、電動車両システム
JP7413171B2 (ja) * 2020-07-15 2024-01-15 株式会社日立製作所 モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
JP6980068B1 (ja) * 2020-09-02 2021-12-15 三菱電機株式会社 回転電機の制御装置
DE112021006077T5 (de) * 2020-11-20 2023-08-31 Mitsubishi Electric Corporation Energie-umwandlungseinrichtung
US11876471B2 (en) * 2021-06-25 2024-01-16 Texas Instruments Incorporated Motor controller including resonant controllers
US11967891B2 (en) * 2022-02-15 2024-04-23 Eaton Intelligent Power Limited Mitigation of harmonic disturbances in a power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047479A1 (fr) 2006-10-19 2008-04-24 Mitsubishi Electric Corporation Dispositif de conversion de puissance
JP2021040423A (ja) 2019-09-03 2021-03-11 株式会社デンソー 回転電機の制御装置

Also Published As

Publication number Publication date
JP2023047985A (ja) 2023-04-06
CN115864919A (zh) 2023-03-28
US20230111419A1 (en) 2023-04-13
US12062997B2 (en) 2024-08-13

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
US8278865B2 (en) Control device
US8264181B2 (en) Controller for motor drive control system
JP5018516B2 (ja) 回転電機制御装置
US9407181B2 (en) Vehicle and method for controlling vehicle
US9906167B2 (en) Power converter with selective dead-time insertion
US9166516B2 (en) Motor drive apparatus and vehicle including the same, and method for controlling motor drive apparatus
JP2017204918A (ja) 交流電動機の制御装置
KR101684538B1 (ko) 하이브리드 차량의 인버터 제어 방법
US9960726B1 (en) Electric drive power converter with low distortion dead-time insertion
JP2014158402A (ja) 電力変換装置
JP6985193B2 (ja) 放電制御装置
JP2015109770A (ja) 電動機駆動装置
JP5391698B2 (ja) 回転機の制御装置及び制御システム
JP2005117839A (ja) パルス幅変調波形生成方法及び装置
JP4049038B2 (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2011067010A (ja) 車両のモータ駆動装置
JP7344945B2 (ja) 制御装置、及びモータ駆動システム
JP2012060840A (ja) 車両用回転電機の駆動制御装置
WO2016189671A1 (ja) モータ制御装置及びその停止方法
JP2015220968A (ja) 回転電機制御装置
JP2014128098A (ja) 交流電動機の制御システム
JP2022080187A (ja) 電力変換装置及び電力変換システム
JP2010220306A (ja) モータの制御装置
JP2002247889A (ja) モータの駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7344945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150