WO2019180971A1 - モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ - Google Patents

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ Download PDF

Info

Publication number
WO2019180971A1
WO2019180971A1 PCT/JP2018/011936 JP2018011936W WO2019180971A1 WO 2019180971 A1 WO2019180971 A1 WO 2019180971A1 JP 2018011936 W JP2018011936 W JP 2018011936W WO 2019180971 A1 WO2019180971 A1 WO 2019180971A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
phase
motor drive
drive device
Prior art date
Application number
PCT/JP2018/011936
Other languages
English (en)
French (fr)
Inventor
裕次 ▲高▼山
和徳 畠山
遥 松尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/970,010 priority Critical patent/US11316465B2/en
Priority to PCT/JP2018/011936 priority patent/WO2019180971A1/ja
Priority to JP2020507291A priority patent/JP6925510B2/ja
Priority to CN201880091254.5A priority patent/CN111937295B/zh
Publication of WO2019180971A1 publication Critical patent/WO2019180971A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/24Hand-supported suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/26Arrangements for controlling single phase motors

Definitions

  • the present invention relates to a motor driving device that drives a motor, an electric blower including the motor driving device, a vacuum cleaner, and a hand dryer.
  • Patent Document 1 discloses a technique that can change the voltage applied to the motor from the motor drive control circuit in accordance with the type of the motor and keep the voltage applied to the motor constant.
  • the voltage command is controlled to be constant so as to keep the voltage applied to the motor constant.
  • the power supply source of the motor is a battery
  • the remaining capacity of the battery is When the battery output voltage decreases and the battery output voltage decreases, the battery discharge current increases. Therefore, there has been a problem that the battery temperature rises due to the increase of the discharge current, the battery performance is lowered, and the life is shortened.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device that can suppress an increase in battery temperature.
  • a motor drive device converts a DC voltage output from a battery into an AC voltage, and outputs the AC voltage as an applied voltage applied to the motor.
  • An inverter is provided. The applied voltage when the DC voltage is the second voltage lower than the first voltage is lower than the applied voltage when the DC voltage is the first voltage.
  • the motor drive device has an effect of suppressing an increase in battery temperature.
  • FIG. 4 shows the structure of the motor drive system provided with the motor drive device which concerns on embodiment of this invention.
  • the figure which shows the circuit structure of the single phase inverter shown in FIG. The figure which shows the functional constitution for generating the pulse width modulation (Pulse Width Modulation: PWM) signal shown in FIG.
  • Time chart showing waveforms of voltage command, PWM signal, and motor applied voltage shown in FIG. 4 is a time chart showing the waveform when the voltage command shown in FIG. 4 is modulated, the waveform of the PWM signal, and the waveform of the motor applied voltage.
  • FIG.3 The figure which shows the function structure for calculating the advance angle phase and voltage amplitude instruction
  • the figure which shows the discharge characteristic of the power supply shown in FIG. The figure which shows the relationship between the DC voltage and voltage command which are shown in FIG.
  • Flowchart for explaining the operation of voltage command control by the voltage amplitude command control unit shown in FIG. The figure which shows an example of the calculation method of the advance angle phase shown in FIG.
  • route of the motor current by the polarity of an inverter output voltage Schematic sectional view showing the schematic structure of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that can be used as the switching element shown in FIG.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FIG. 1 is a diagram showing a configuration of a motor drive system including a motor drive device according to an embodiment of the present invention.
  • a motor drive system 1 according to an embodiment of the present invention includes a power supply 10, a motor drive device 2, and a single-phase motor 12.
  • the power source 10 is a battery that supplies DC power to the motor drive device 2.
  • the single phase motor 12 is a brushless motor including a permanent magnet type rotor 12a and a stator 12b.
  • the single-phase motor 12 may be a permanent magnet type motor that generates an induced voltage, and is not limited to a brushless motor. It is assumed that four permanent magnets are arranged in the circumferential direction on the rotor 12a. These permanent magnets are arranged such that the directions of the respective magnetic poles are alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a.
  • a winding (not shown) is wound around the stator 12b.
  • a motor current flows through the winding. The motor current is equal to the alternating current supplied from the single-phase inverter 11 to the single-phase motor 12.
  • the motor driving device 2 is a device that drives the single-phase motor 12 by supplying AC power to the single-phase motor 12.
  • the motor drive device 2 includes a voltage sensor 20, a position sensor 21, a single phase inverter 11, a control unit 25, and a drive signal generation unit 32.
  • the voltage sensor 20 detects a DC voltage V dc output from the power supply 10.
  • the voltage sensor 20 may detect a voltage applied to the input terminal of the motor driving device 2 or may detect a DC voltage applied to a wiring connected to the output terminal of the power supply 10.
  • the position sensor 21 detects the rotor rotational position, which is the rotational position of the rotor 12a, and outputs the detected rotational position information as a position sensor signal 21a.
  • the position sensor signal 21a is a signal that takes a binary potential of high level or low level according to the direction of magnetic flux generated from the rotor 12a.
  • the single-phase inverter 11 is a power converter having a DC / AC conversion function for converting DC power supplied from the power supply 10 into AC power and applying the AC power to the motor.
  • the control unit 25 generates PWM signals Q1, Q2, Q3, and Q4 based on the DC voltage Vdc and the position sensor signal 21a output from the position sensor 21.
  • the PWM signals Q1, Q2, Q3, and Q4 may be simply referred to as PWM signals.
  • the drive signal generation unit 32 amplifies the PWM signal output from the control unit 25 and outputs the amplified signal as drive signals S1, S2, S3, and S4 for driving the switching elements in the single-phase inverter 11.
  • the drive signal S1 is a signal obtained by amplifying the PWM signal Q1
  • the drive signal S2 is a signal obtained by amplifying the PWM signal Q2
  • the drive signal S3 is a signal obtained by amplifying the PWM signal Q3
  • the drive signal S4 is obtained by PWM.
  • the signal Q4 is an amplified signal.
  • the control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34.
  • the processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control. Details of PWM control and advance angle control will be described later. Examples of the processor 31 include a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or system LSI (Large Scale Integration). .
  • the memory 34 is nonvolatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
  • the semiconductor memory can be exemplified.
  • the memory 34 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a minidisk, or a DVD (Digital Versatile Disc).
  • the memory 34 stores a program read by the processor 31.
  • the memory 34 is used as a work area when the processor 31 performs arithmetic processing. 1 may be realized by a processor that executes a dedicated program stored in the memory 34, or may be dedicated hardware. Details of the configuration of the carrier generation unit 33 will be described later.
  • FIG. 2 is a diagram showing a circuit configuration of the single-phase inverter shown in FIG.
  • the single-phase inverter 11 has a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected.
  • FIG. 2 shows a single-phase motor 12 connected to the single-phase inverter 11 in addition to the plurality of switching elements 51, 52, 53, 54 included in the single-phase inverter 11.
  • Each of the two switching elements 51 and 53 located on the high potential side is referred to as an upper arm switching element.
  • Each of the two switching elements 52 and 54 located on the low potential side is referred to as a lower arm switching element.
  • connection end 11-1 of the switching element 51 to the switching element 52 and the connection end 11-2 of the switching element 53 to the switching element 54 constitute an AC end in the bridge circuit.
  • a single-phase motor 12 is connected to the connection end 11-1 and the connection end 11-2.
  • a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed.
  • a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed.
  • a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed.
  • the switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54.
  • Each of the body diodes 51a, 52a, 53a, and 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
  • Each of the plurality of switching elements 51, 52, 53, and 54 can be exemplified by a MOSFET made of a silicon-based material.
  • each of the plurality of switching elements 51, 52, 53, 54 is not limited to a MOSFET made of a silicon-based material, and at least one of the plurality of switching elements 51, 52, 53, 54 is carbonized.
  • a MOSFET composed of a wide band gap semiconductor such as silicon, a gallium nitride-based material, or diamond may be used.
  • wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the plurality of switching elements 51, 52, 53, 54, the withstand voltage and allowable current density of the switching elements 51, 52, 53, 54 are increased, A semiconductor module incorporating the switching elements 51, 52, 53, and 54 can be reduced in size.
  • wide bandgap semiconductors have high heat resistance, so it is possible to reduce the size of the heat dissipation part to dissipate the heat generated in the semiconductor module, and simplify the heat dissipation structure that dissipates the heat generated in the semiconductor module. Is possible.
  • FIG. 3 is a diagram showing a functional configuration for generating the PWM signal shown in FIG.
  • FIG. 4 is a diagram showing in detail the carrier comparison unit and the carrier generation unit shown in FIG.
  • the function of generating the PWM signals Q1, Q2, Q3, and Q4 can be realized by the carrier generation unit 33 and the carrier comparison unit 38 shown in FIG.
  • the function of the carrier comparison unit 38 is realized by the processor 31 shown in FIG.
  • the carrier comparison unit 38 includes an advance angle phase ⁇ v , a reference phase ⁇ e , a carrier generated by the carrier generation unit 33, a DC voltage V dc, and a voltage amplitude command V that is an amplitude value of the voltage command V m. * And are entered.
  • the carrier comparison unit 38 generates a PWM signal based on the advance angle phase ⁇ v , the reference phase ⁇ e , the carrier, the DC voltage V dc, and the voltage amplitude command V *.
  • the advance phase ⁇ v and the reference phase ⁇ e are used to generate the voltage commands V m1 and V m2 shown in FIG. Advanced angle phase theta v is calculated by the advance angle phase calculation section which will be described later.
  • the “advance angle phase” is an advance angle ⁇ vv , which is the advance angle of the voltage command, expressed as a phase.
  • the “advance angle” is a phase difference between a motor applied voltage applied to the stator winding by the single-phase inverter 11 and a motor induced voltage induced in a stator winding (not shown).
  • the motor applied voltage is synonymous with the inverter output voltage that is the output voltage of the single-phase inverter 11.
  • the reference phase ⁇ e is calculated by a rotation speed calculation unit described later.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle, which is the angle of the rotor 12a from the reference position, into an electrical angle.
  • the carrier generation unit 33 includes a carrier frequency setting unit 33a.
  • a carrier frequency f C [Hz], which is a carrier frequency, is set in the carrier frequency setting unit 33a.
  • the period synchronized carrier advanced angle phase theta v is generated.
  • the generated carrier is output to the carrier comparison unit 38.
  • FIG. 4 shows a waveform of a triangular wave that is an example of a carrier.
  • the triangular wave is a signal wave having a peak value “1” and a valley value “0”.
  • the PWM control of the single-phase inverter 11 includes synchronous PWM control and asynchronous PWM control. For asynchronous PWM control, it is not necessary to synchronize the carrier to advance the phase theta v.
  • the carrier comparator 38 includes an absolute value calculator 38a, a divider 38b, a multiplier 38c, a multiplier 38d, an adder 38e, an adder 38f, a comparator 38g, a comparator 38h, an output inverter 38i, and an output inverter 38j. Have.
  • the absolute value calculator 38a calculates the absolute value
  • is divided by the DC voltage Vdc .
  • the battery voltage decreases by dividing the absolute value
  • the modulation rate can be increased as compared with the case where the division is not performed by the DC voltage Vdc.
  • the battery voltage means the output voltage of the battery.
  • Multiplication unit 38c the sum of the reference phase theta e binary angle phase theta v, calculates the sine of the result of the sum.
  • Multiplication unit 38c by multiplying the output from the divider 38b of the calculated sine and calculates the voltage command V m.
  • Adding section 38e adds 1 to the voltage command V m is the output of the multiplication unit 38c.
  • the output of the adder 38e as the voltage command V m1 for driving the two switching elements 51 and 52 shown in FIG. 2, is input to the comparison unit 38 g.
  • the voltage command V m1 and the carrier are input to the comparison unit 38g.
  • the comparison unit 38g compares the voltage command V m1 with the carrier, and the comparison result is the PWM signal Q2.
  • the output inversion unit 38i inverts the output of the comparison unit 38g.
  • the output of the output inverting unit 38i is the PWM signal Q1.
  • the switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting unit 38i.
  • the multiplication unit 38d multiplies the voltage command V m that is the output of the multiplication unit 38c by -1.
  • the adder 38f adds 1 to the output of the multiplier 38d.
  • the output of the adder 38f is input to the comparison unit 38h.
  • the voltage command V m2 and the carrier are input to the comparison unit 38h.
  • the comparison unit 38h compares the voltage command V m2 with the carrier, and the comparison result is the PWM signal Q4.
  • the output inversion unit 38j inverts the output of the comparison unit 38h.
  • the output of the output inverting unit 38j is the PWM signal Q3.
  • the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting unit 38j.
  • FIG. 5 is a time chart showing waveforms of the voltage command, the PWM signal, and the motor applied voltage shown in FIG.
  • FIG. 5 shows position sensor signal, rotor mechanical angle ⁇ m , reference phase ⁇ e , advance angle phase ⁇ v , voltage command V m1 , voltage command V m2 , carrier, PWM signals Q 1, Q 2, Q 3, Q 4 and motor application A voltage waveform is shown.
  • the waveform of the voltage command V m1 is indicated by a broken line
  • the waveform of the voltage command V m2 is indicated by a one-dot chain line.
  • These waveforms are waveforms that are detected when, for example, the rotor 12a having four permanent magnets rotates once.
  • A, B, C, D, and E indicated by arrows in FIG. 5 represent timings at which currents flowing in the coils wound around the stator 12b of the single-phase motor 12 are commutated.
  • the carrier comparison unit 38 shown in FIG. 4 can generate the PWM signals Q1, Q2, Q3, and Q4 using the voltage commands V m1 and V m2 having waveforms as shown in FIG. Further, by using the PWM signals Q1, Q2, Q3, and Q4 to control the switching elements 51, 52, 53, and 54 in the single-phase inverter 11, the motor-applied voltage that is PWM-controlled has a single-phase. Applied to the motor 12.
  • the motor applied voltage is a signal that takes a high level, low level, or zero level potential.
  • the bipolar modulation method is a modulation method that outputs a voltage pulse that changes at a positive or negative potential.
  • the unipolar modulation method is a modulation method that outputs voltage pulses that change at three potentials every half cycle of the power source, that is, voltage pulses that change between a positive potential, a negative potential, and a zero potential.
  • the waveforms of the PWM signals Q1, Q2, Q3, and Q4 shown in FIG. 5 are due to unipolar modulation. Any modulation method may be used for the motor drive device 2 according to the present embodiment. In applications where the waveform of the motor applied voltage and the waveform of the current flowing through the coil of the single-phase motor 12 need to be made closer to a sine wave, unipolar modulation with less harmonic content is employed than bipolar modulation. It is preferable.
  • the motor applied voltage is determined by comparing the carrier and the voltage command. As the motor rotation speed increases, the frequency of the voltage command increases, so that the number of voltage pulses included in the motor applied voltage output during one electrical angle cycle decreases. For this reason, the influence of the number of voltage pulses on the distortion of the current waveform is increased.
  • the number of voltage pulses in one electrical angle cycle is controlled to be an odd number. It is preferable to do. By controlling the number of voltage pulses in one cycle of the electrical angle to be an odd number, the waveform of the current flowing through the coil of the single-phase motor 12 can be made closer to a sine wave.
  • FIG. 6 is a time chart showing a waveform when the voltage command shown in FIG. 4 is modulated, a waveform of a PWM signal, and a waveform of a motor applied voltage.
  • FIG. 6 shows a voltage command V m1 and a voltage command V m2 that show constant values during overmodulation. Overmodulation is that the modulation rate exceeds 1.
  • the number of pulses of the PWM signal becomes smaller than when the modulation rate is 1 or less. .
  • the controllability of the switching element provided in the single-phase inverter 11 is lowered.
  • the output voltage of the single-phase inverter 11, that is, the motor applied voltage can also fluctuate.
  • the voltage command V m1 and the voltage command V m2 are constant in a state where the value of the discharge voltage is high.
  • the motor applied voltage also increases. Therefore, not only the discharge current of the battery increases, but an excessive current may flow through the single-phase motor 12.
  • the current is controlled so that the motor applied voltage becomes constant. For example, the remaining capacity of the battery decreases and the output voltage of the battery decreases. Then, the discharge current of the battery is increased by controlling the voltage command to be constant. Therefore, when the discharge current increases, the temperature of the battery rises, and there is a possibility that the battery performance is deteriorated and the life is shortened.
  • the motor drive device 2 is configured such that when the battery voltage decreases, the voltage command V m1 and the voltage command V m2 in the overmodulation region decrease.
  • FIG. 7 is a diagram showing a functional configuration for calculating the advance angle phase and voltage amplitude commands shown in FIG. 3 and FIG.
  • the functions of the rotation speed calculation unit 42, the advance phase calculation unit 44, and the voltage amplitude command control unit 45 shown in FIG. 7 are realized by the processor 31 and the memory 34 shown in FIG. That is, a computer program for executing the processing of the rotation speed calculation unit 42, the advance phase calculation unit 44, and the voltage amplitude command control unit 45 is stored in the memory 34, and the processor 31 reads and executes the program.
  • the functions of the rotation speed calculation unit 42, the advance phase calculation unit 44, and the voltage amplitude command control unit 45 are realized.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 and the reference phase ⁇ e based on the position sensor signal 21a.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle ⁇ m that is the rotation angle of the rotor 12a from the reference position into an electrical angle.
  • the advance phase calculation unit 44 calculates the advance phase ⁇ v based on the rotation speed ⁇ and the reference phase ⁇ e calculated by the rotation speed calculation unit 42.
  • FIG. 8 is a diagram showing the discharge characteristics of the power source shown in FIG.
  • FIG. 9 is a diagram showing the relationship between the DC voltage and the voltage command shown in FIG.
  • FIG. 10 is a flowchart for explaining the operation of voltage command control by the voltage amplitude command control unit shown in FIG.
  • FIG. 8 shows the discharge characteristics of the battery.
  • the vertical axis represents the battery output voltage
  • the horizontal axis represents the battery discharge time.
  • the output voltage V A from time T1 after the lapse of a certain time after the battery immediately after full charge starts discharging is higher than the output voltage V B from time T1 to the time T2 after the lapse of certain time.
  • the output voltage V c from the time T2 to the time T3 after a certain period of time shows a value lower than the output voltage V B.
  • the output voltage V B is the first voltage.
  • Output voltage V c is the second voltage.
  • the output voltage VA is a third voltage.
  • the voltage V 1 represents, for example, a discharge start voltage
  • the voltage V 3 represents, for example, a discharge end voltage
  • the voltage V 2 represents, for example, an average voltage obtained by averaging output voltages from the start of discharge to the end of discharge.
  • the voltage V 1 , the voltage V 2, and the voltage V 3 need only have a relationship of V 1 > V 2 > V 3 , and the voltage V 1 may be a voltage lower than the discharge start voltage, V 3 may be higher than the discharge end voltage, and voltage V 2 may be higher or lower than the average voltage.
  • the horizontal axis in FIG. 9 represents the output voltage of the battery, and the vertical axis in FIG. 9 represents the voltage amplitude command.
  • V * x indicated by a solid line is a voltage amplitude command used when the voltage command is controlled to be constant.
  • V * indicated by a broken line is a voltage amplitude command output from the voltage amplitude command control unit 45 according to the present embodiment.
  • the voltage amplitude command control unit 45 is set with a table indicating the correspondence between the output voltage indicated by the broken line and the voltage command amplitude command.
  • V * 1 is a voltage amplitude command corresponding to the voltage V 1.
  • V * 3 is the voltage amplitude command corresponding to the voltage V 3.
  • V * 2 is the voltage amplitude command corresponding to the voltage V 2.
  • the voltage amplitude commands V * 1 and V * 3 are lower than the voltage amplitude command V * 2.
  • the voltage amplitude command control unit 45 determines whether or not the output voltage of the battery, that is, the DC voltage V dc is equal to or lower than the voltage V 2 by referring to the table (step S1).
  • step S2 When the DC voltage V dc is equal to or lower than the voltage V 2 (step S1, Yes), the voltage amplitude command control unit 45 is higher than the voltage amplitude command V * 3 and lower than the voltage amplitude command V * 2. Is output (step S2).
  • step S3 When the DC voltage V dc is higher than the voltage V 2 (step S1, No), the voltage amplitude command control unit 45 is higher than the voltage amplitude command V * 1 and lower than the voltage amplitude command V * 2. Is output (step S3).
  • the voltage amplitude command V * output from the voltage amplitude command control unit 45 is input to the carrier comparison unit 38.
  • the carrier comparison section 38 since the low voltage command is generated than the voltage command V m corresponding to the voltage amplitude command V * 2, this voltage command than the modulation rate when the voltage amplitude command V * 2 is input A carrier signal is generated with a low modulation rate. A voltage lower than the motor applied voltage when the voltage amplitude command V * 2 is input is applied to the single phase motor 12.
  • the motor drive device 2 when the DC voltage that is the output voltage of the battery changes from the first voltage to the second voltage, the voltage applied to the motor is lower than the first applied voltage from the first applied voltage. The voltage is changed to the second applied voltage.
  • the motor drive device 2 when the DC voltage is a third voltage higher than the first voltage, a third applied voltage lower than the first applied voltage is output as the motor applied voltage.
  • the heat generation of these heat generating components can be suppressed and the life of the heat generating components can be extended.
  • the capacity of the battery can be used to the maximum by suppressing the increase in current, the operation time of the product mounted on the motor drive device 2 can be extended.
  • FIG. 11 is a diagram showing an example of a method for calculating the advance phase shown in FIG.
  • the horizontal axis of FIG. 11 is a motor rotational speed N
  • the vertical axis of FIG. 11 is a lead angle phase theta v.
  • the motor rotation speed N is the rotation speed per unit time and corresponds to the rotation speed.
  • Advanced angle phase theta v as shown in FIG. 11, the advance angle phase theta v with respect to the increase of the motor rotation speed N can be determined using a function that increases.
  • FIG. 11 is a diagram showing an example of a method for calculating the advance phase shown in FIG.
  • the horizontal axis of FIG. 11 is a motor rotational speed N
  • the vertical axis of FIG. 11 is a lead angle phase theta v.
  • the motor rotation speed N is the rotation speed per unit time and corresponds to the rotation speed.
  • Advanced angle phase theta v as shown in FIG. 11, the advance angle phase theta v with respect to the increase
  • the advance phase ⁇ v is determined by a linear function, but the present invention is not limited thereto, and the advance phase ⁇ v becomes the same as the motor rotation speed N increases. if or advanced phase theta v a larger relationship, it may be used functions other than first-order linear function.
  • the load torque increases with an increase in the number of rotations of the blades, which is the load of the motor, and also increases with an increase in the diameter of the air passage.
  • the diameter of the air passage represents the size of the suction port when an electric vacuum cleaner is taken as an example.
  • the voltage amplitude command V * decreases according to the battery voltage regardless of the change in the state of the suction port, that is, the change in the load torque. with control of, the more advanced angle phase theta v motor speed N becomes lower control is reduced is performed. That is, in the motor drive device 2, when the motor applied voltage changes from the first applied voltage to the second applied voltage, the advance angle ⁇ vv calculated using the rotational position information is changed from the first advance angle to the first advance angle. Is changed to a smaller second advance angle. In the motor drive device 2, when the DC voltage is the third voltage higher than the first voltage, the third advance angle larger than the first advance angle is set to the advance angle ⁇ vv .
  • the advance angle ⁇ vv is controlled to change according to the motor rotation speed N, so that the advance angle ⁇ vv is controlled to be constant.
  • a decrease in power factor is suppressed, and a decrease in power consumption is suppressed.
  • a large torque can be obtained in a wide rotational speed range while suppressing a reduction in power consumption, and the single phase motor 12 can be driven stably.
  • FIG. 12 is a first diagram showing a motor current path according to the polarity of the inverter output voltage.
  • FIG. 13 is a second diagram showing a motor current path according to the polarity of the inverter output voltage.
  • FIG. 14 is a third diagram showing a motor current path according to the polarity of the inverter output voltage.
  • FIG. 15 is a schematic cross-sectional view showing a schematic structure of a MOSFET that can be used as the switching element shown in FIG. In the following, the schematic structure of the MOSFET will be described first with reference to FIG. 15, and then the path of the motor current will be described with reference to FIGS.
  • FIG. 15 illustrates an n-type MOSFET.
  • a p-type semiconductor substrate 600 is used as shown in FIG.
  • a source electrode S, a drain electrode D, and a gate electrode G are formed on the semiconductor substrate 600.
  • an n-type region 601 is formed by ion implantation of a high concentration impurity.
  • an oxide insulating film 602 is formed between a portion where the n-type region 601 is not formed and the gate electrode G. That is, the oxide insulating film 602 is interposed between the gate electrode G and the p-type region 603 in the semiconductor substrate 600.
  • the channel 604 is an n-type channel in the example of FIG.
  • the current flows into the single-phase motor 12 through the channel of the switching element 51, which is the upper arm of the first phase, as shown by the thick solid line (a) in FIG. It flows out of the single-phase motor 12 through the channel of the switching element 54 which is a two-phase lower arm.
  • the polarity of the inverter output voltage is negative, the current flows into the single-phase motor 12 through the channel of the switching element 53 which is the upper arm of the second phase, as shown by the thick broken line (b) in FIG. And flows out of the single-phase motor 12 through the channel of the switching element 52 which is the lower arm of the first phase.
  • the conduction loss is smaller when a current is passed through a MOSFET channel than when a current is passed in the forward direction of a diode. Therefore, in the present embodiment, in the return mode in which the return current flows, the MOSFET on the side having the body diode is controlled to be turned on in order to reduce the current flowing through the body diode.
  • the switching element 52 is controlled to be turned on at the timing when the reflux current shown by the thick solid line (c) in FIG. 13 flows. If controlled in this way, as indicated by a thick solid line (e) in FIG. 14, most of the return current flows through the channel side of the switching element 52 having a small resistance value. Thereby, the conduction loss in the switching element 52 is reduced. Further, the switching element 51 is controlled to be turned on at the timing when the return current indicated by the thick broken line (d) in FIG. 13 flows. If controlled in this way, as indicated by a thick broken line (f) in FIG. 14, most of the reflux current flows through the channel side of the switching element 51 having a small resistance value. Thereby, the conduction loss in the switching element 51 is reduced.
  • the loss of the switching element can be reduced by turning on the MOSFET on the side having the body diode at the timing when the reflux current flows through the body diode.
  • the structure of the MOSFET is made surface mount type so that heat can be dissipated by the substrate, and part or all of the switching element is formed of a wide band gap semiconductor, thereby suppressing the heat generation of the MOSFET only by the substrate. Realize the structure. Note that if heat can be radiated only by the substrate, a heat sink is unnecessary, which contributes to the miniaturization of the inverter and can lead to the miniaturization of the product.
  • the air passage is a space around the fan that generates an air flow, such as an electric blower, or a passage through which wind generated by the electric blower flows.
  • FIG. 16 is a configuration diagram of a vacuum cleaner provided with a motor drive device according to an embodiment of the present invention.
  • the vacuum cleaner 61 includes a battery 67 that is a DC power source, the motor driving device 2 shown in FIG. 1, the electric blower 64 that is driven by the single-phase motor 12 shown in FIG. 1, a dust collection chamber 65, and a sensor. 68, a suction port 63, an extension pipe 62, and an operation unit 66.
  • the battery 67 corresponds to the power supply 10 shown in FIG.
  • the user who uses the vacuum cleaner 61 has the operation unit 66 and operates the vacuum cleaner 61.
  • the motor driving device 2 of the electric vacuum cleaner 61 drives the electric blower 64 using the battery 67 as a power source.
  • the electric blower 64 is driven, dust is sucked from the suction port body 63, and the sucked dust is collected in the dust collecting chamber 65 via the extension pipe 62.
  • the vacuum cleaner 61 is a product in which a plurality of heat generating parts such as a battery 67, an electric blower 64, and an inverter board (not shown) are densely packed in a part, and the motor rotation speed fluctuates greatly.
  • the control method according to the above-described embodiment is suitable. That is, in the electric vacuum cleaner 61, the voltage amplitude command V * decreases according to the voltage of the battery 67, so that the current flowing through the plurality of heat generating components is reduced. Therefore, the heat generation of the plurality of heat generating components is suppressed, and the life of the plurality of heat generating components can be extended.
  • the vacuum cleaner 61 can be reduced in size and weight. Moreover, since the capacity
  • FIG. 17 is a configuration diagram of a hand dryer provided with a motor driving device according to an embodiment of the present invention.
  • the hand dryer 90 includes a motor drive device 2, a casing 91, a hand detection sensor 92, a water receiver 93, a drain container 94, a cover 96, a sensor 97, an air inlet 98, and an electric blower 95.
  • the sensor 97 is either a gyro sensor or a human sensor.
  • the water is blown off by the air blow by the electric blower 95, and the blown water is collected by the water receiver 93. After that, it is stored in the drain container 94.
  • the hand dryer 90 is a product in which a plurality of heat-generating components are densely packed and the motor rotation speed fluctuates as in the case of the electric vacuum cleaner 61 shown in FIG. For this reason, also in the hand dryer 90, the control method which concerns on embodiment mentioned above is suitable, and the effect similar to the vacuum cleaner 61 can be acquired.
  • FIG. 18 is a diagram for explaining modulation control in the motor drive device according to the embodiment of the present invention.
  • the relationship between the rotational speed and the modulation rate is shown.
  • the waveform of the inverter output voltage when the modulation factor is 1.0 or less and the waveform of the inverter output voltage when the modulation factor exceeds 1.0 are shown.
  • the load torque of the rotating body increases as the number of rotations increases. For this reason, it is necessary to increase the motor output torque as the rotational speed increases.
  • the motor output torque increases in proportion to the motor current, and the inverter output voltage needs to be increased to increase the motor current. Therefore, the number of revolutions can be increased by increasing the modulation rate and increasing the inverter output voltage.
  • region between said (A) and said (B) is a gray zone, and depending on a use, it may be contained in a low-speed rotation area, and may be included in a high-speed rotation area.
  • the modulation factor is set to a value larger than 1.0.
  • the modulation factor exceeds 1.0, the motor output voltage increases, but since the number of switching times decreases, there is a concern about current distortion.
  • the reactance component of the motor increases and di / dt, which is a change component of the motor current, decreases. Therefore, current distortion is smaller than in the low speed rotation range, and the influence on waveform distortion is small.
  • the modulation rate is set to a value larger than 1.0, and control is performed to reduce the number of switching pulses. By this control, an increase in switching loss is suppressed and high efficiency can be achieved.
  • the control unit 25 is set with a first rotation speed that determines the boundary between the low-speed rotation region and the high-speed rotation region, and the control unit 25 is configured when the rotation speed of the motor or the load is equal to or lower than the first rotation speed.
  • the modulation rate is set to 1.0 or less, and when the rotation speed of the motor or load exceeds the first rotation speed, the modulation rate may be set to exceed 1.
  • the configuration example in which the motor driving device 2 is applied to the electric vacuum cleaner 61 and the hand dryer 90 has been described.
  • the motor driving device 2 is applied to an electric device in which the motor is mounted. can do.
  • Electric equipment equipped with motors is incinerator, crusher, dryer, dust collector, printing machine, cleaning machine, confectionery machine, tea making machine, woodworking machine, plastic extruder, cardboard machine, packaging machine, hot air generator, OA Equipment, electric blower, etc.
  • the electric blower is a blowing means for transporting objects, for sucking dust, or for general air supply / discharge.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Cleaning And Drying Hair (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Inverter Devices (AREA)

Abstract

モータ駆動装置(2)は、バッテリである電源(10)から出力される直流電圧を交流電圧に変換し、交流電圧を、モータに印加する印加電圧として出力するインバータである単相インバータ(11)を備える。直流電圧が第1電圧よりも低い第2電圧のときの印加電圧は、直流電圧が第1電圧のときの印加電圧よりも低い。これにより、バッテリの放電電流が抑制され、バッテリの温度上昇を抑制できるモータ駆動装置(2)を得ることができる。

Description

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
 本発明は、モータを駆動するモータ駆動装置、モータ駆動装置を備える電動送風機、電気掃除機及びハンドドライヤに関する。
 特許文献1には、モータ駆動制御回路からモータに印加される電圧をモータの種類に応じて変えることができ、かつ、モータに印加される電圧を一定に保つ技術が開示されている。
特許第5541332号公報
 しかしながら、特許文献1に開示される技術では、モータに印加される電圧を一定に保つように電圧指令が一定に制御されるため、例えばモータの電力供給源がバッテリの場合、バッテリの残容量が低下してバッテリの出力電圧が低下すると、バッテリの放電電流が増加する。従って、放電電流の増加によりバッテリの温度が上昇して、バッテリの性能が低下すると共に寿命が短くなるという課題があった。
 本発明は、上記に鑑みてなされたものであって、バッテリの温度上昇を抑制できるモータ駆動装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、バッテリから出力される直流電圧を交流電圧に変換し、交流電圧を、モータに印加する印加電圧として出力するインバータを備える。直流電圧が第1電圧よりも低い第2電圧のときの印加電圧は、直流電圧が第1電圧のときの印加電圧よりも低い。
 本発明に係るモータ駆動装置は、バッテリの温度上昇を抑制できるという効果を奏する。
本発明の実施の形態に係るモータ駆動装置を備えたモータ駆動システムの構成を示す図 図1に示す単相インバータの回路構成を示す図 図1に示すパルス幅変調(Pulse Width Moduration:PWM)信号を生成するための機能構成を示す図 図3に示すキャリア比較部及びキャリア生成部を詳細に示す図 図4に示す電圧指令と、PWM信号と、モータ印加電圧との波形を示すタイムチャート 図4に示す電圧指令が変調時の波形と、PWM信号の波形と、モータ印加電圧の波形とを示すタイムチャート 図3及び図4に示される進角位相及び電圧振幅指令を算出するための機能構成を示す図 図1に示す電源の放電特性を示す図 図8に示す直流電圧と電圧指令との関係を示す図 図7に示す電圧振幅指令制御部による電圧指令制御の動作を説明するフローチャート 図7に示す進角位相の算出方法の一例を示す図 インバータ出力電圧の極性によるモータ電流の経路を示す第1の図 インバータ出力電圧の極性によるモータ電流の経路を示す第2の図 インバータ出力電圧の極性によるモータ電流の経路を示す第3の図 図2に示すスイッチング素子として利用可能なMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の概略構造を示す模式的断面図 本発明の実施の形態に係るモータ駆動装置を備えた電気掃除機の構成図 本発明の実施の形態に係るモータ駆動装置を備えたハンドドライヤの構成図 本発明の実施の形態に係るモータ駆動装置における変調制御を説明するための図
 以下に、本発明の実施の形態に係るモータ駆動装置、電動送風機、電気掃除機及びハンドドライヤを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は本発明の実施の形態に係るモータ駆動装置を備えたモータ駆動システムの構成を示す図である。本発明の実施の形態に係るモータ駆動システム1は、電源10、モータ駆動装置2及び単相モータ12を備える。
 電源10は、モータ駆動装置2に直流電力を供給するバッテリである。
 単相モータ12は、永久磁石型のロータ12aとステータ12bとを備えるブラシレスモータである。なお、単相モータ12は誘起電圧を発生する永久磁石型モータであればよく、ブラシレスモータに限定されない。ロータ12aには、4個の永久磁石が周方向に配列されているものとする。これらの永久磁石は、それぞれの磁極の方向が、周方向に交互に反転するように配置され、ロータ12aの複数個の磁極を形成する。ステータ12bには不図示の巻線が巻かれている。当該巻線にはモータ電流が流れる。モータ電流は、単相インバータ11から単相モータ12へ供給される交流電流に等しい。
 モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を駆動する装置である。モータ駆動装置2は、電圧センサ20、位置センサ21、単相インバータ11、制御部25及び駆動信号生成部32を備える。
 電圧センサ20は、電源10から出力される直流電圧Vdcを検出する。なお、電圧センサ20は、モータ駆動装置2の入力端に印加される電圧を検出してもよいし、電源10の出力端に接続される配線へ印加される直流電圧を検出してもよい。
 位置センサ21は、ロータ12aの回転位置であるロータ回転位置を検出し、検出した回転位置情報を位置センサ信号21aとして出力する。位置センサ信号21aは、ロータ12aから発生する磁束の方向に応じて、ハイレベル又はローレベルの2値の電位をとる信号である。
 単相インバータ11は、電源10から供給される直流電力を交流電力に変換して、モータに印加する直流交流変換機能を有する電力変換器である。
 制御部25は、直流電圧Vdcと、位置センサ21から出力されるの位置センサ信号21aとに基づき、PWM信号Q1,Q2,Q3,Q4を生成する。以下ではPWM信号Q1,Q2,Q3,Q4を単にPWM信号と称する場合がある。
 駆動信号生成部32は、制御部25から出力されたPWM信号を増幅し、増幅した信号を単相インバータ11内のスイッチング素子を駆動するための駆動信号S1,S2,S3,S4として出力する。駆動信号S1はPWM信号Q1が増幅された信号であり、駆動信号S2はPWM信号Q2が増幅された信号であり、駆動信号S3はPWM信号Q3が増幅された信号であり、駆動信号S4はPWM信号Q4が増幅された信号である。
 制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。PWM制御及び進角制御の詳細は後述する。プロセッサ31には、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、又はシステムLSI(Large Scale Integration)を例示できる。
 メモリ34には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性、又は揮発性の半導体メモリを例示できる。またメモリ34は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)でもよい。メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域として使用される。なお図1に示すキャリア生成部33の機能は、メモリ34に格納される専用のプログラムを実行するプロセッサで実現してもよいし、専用のハードウェアであってもよい。キャリア生成部33の構成の詳細は後述する。
 図2は図1に示す単相インバータの回路構成を示す図である。単相インバータ11は、ブリッジ接続された複数のスイッチング素子51,52,53,54を有する。図2には、単相インバータ11が有する複数のスイッチング素子51,52,53,54の他にも、単相インバータ11に接続される単相モータ12が示される。高電位側に位置する2つのスイッチング素子51,53のそれぞれは、上アームのスイッチング素子と称される。低電位側に位置する2つのスイッチング素子52,54のそれぞれは、下アームのスイッチング素子と称される。
 スイッチング素子51のスイッチング素子52への接続端11-1と、スイッチング素子53のスイッチング素子54への接続端11-2は、ブリッジ回路における交流端を構成する。接続端11-1及び接続端11-2には単相モータ12が接続される。
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。ボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。
 複数のスイッチング素子51,52,53,54のそれぞれには、シリコン系材料により構成されるMOSFETが例示できる。但し、複数のスイッチング素子51,52,53,54のそれぞれは、シリコン系材料により構成されるMOSFETに限定されず、複数のスイッチング素子51,52,53,54の内の少なくとも1つは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により構成されるMOSFETでもよい。
 一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、複数のスイッチング素子51,52,53,54の内の少なくとも1つにワイドバンドギャップ半導体を用いることにより、スイッチング素子51,52,53,54の耐電圧性及び許容電流密度が高くなり、スイッチング素子51,52,53,54を組み込んだ半導体モジュールを小型化できる。またワイドバンドギャップ半導体は、耐熱性も高いため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能であり、また半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。
 図3は図1に示すPWM信号を生成するための機能構成を示す図である。図4は図3に示すキャリア比較部及びキャリア生成部を詳細に示す図である。PWM信号Q1,Q2,Q3,Q4を生成する機能は、図3に示すキャリア生成部33及びキャリア比較部38によって実現できる。キャリア比較部38の機能は、図1に示すプロセッサ31により実現される。キャリア比較部38には、進角位相θと、基準位相θと、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、進角位相θ、基準位相θ、キャリア、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号を生成する。
 進角位相θ及び基準位相θは、図4に示す電圧指令Vm1,Vm2の生成に用いられる。進角位相θは、後述する進角位相算出部で算出される。「進角位相」とは、電圧指令の進み角である進角θvvを、位相で表したものである。「進み角」とは、単相インバータ11がステータ巻線に印加するモータ印加電圧と、不図示のステータ巻線に誘起されるモータ誘起電圧との間の位相差である。モータ印加電圧は、単相インバータ11の出力電圧であるインバータ出力電圧と同義である。モータ印加電圧がモータ誘起電圧よりも進んでいるとき、「進み角」は正の値をとる。基準位相θは、後述する回転速度算出部で算出される。基準位相θは、基準位置からのロータ12aの角度であるロータ機械角を、電気角に換算した位相である。
 図4に示すように、キャリア生成部33は、キャリア周波数設定部33aを有する。キャリア周波数設定部33aには、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数設定部33aでは、進角位相θの周期同期したキャリアが生成される。生成されたキャリアはキャリア比較部38に出力される。図4には、キャリアの一例である三角波の波形が示される。三角波は、その山の値が“1”であり、その谷の値が“0”となる信号波である。なお単相インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがある。非同期PWM制御の場合、進角位相θにキャリアを同期させる必要はない。
 キャリア比較部38は、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、加算部38e、加算部38f、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。
 絶対値演算部38aは、電圧振幅指令V*の絶対値|V*|を演算する。除算部38bでは、絶対値|V*|が、直流電圧Vdcにより除算される。例えば、電源10の電圧が低下した場合でも、絶対値|V*|を直流電圧Vdcで除算することにより、電源10の電圧の低下によってモータ印加電圧が低下しないように、バッテリ電圧が低下してかつ直流電圧Vdcで除算しない場合に比べて、変調率を増加させることができる。バッテリ電圧はバッテリの出力電圧を意味する。
 乗算部38cは、基準位相θに進角位相θを足し合わせ、足し合わせた結果の正弦を演算する。乗算部38cは、演算された正弦に除算部38bの出力を乗算することにより、電圧指令Vを演算する。
 加算部38eは、乗算部38cの出力である電圧指令Vに1を加算する。加算部38eの出力は、図2に示す2つのスイッチング素子51,52を駆動するための電圧指令Vm1として、比較部38gに入力される。比較部38gには、電圧指令Vm1及びキャリアが入力される。比較部38gは、電圧指令Vm1とキャリアとを比較し、比較結果は、PWM信号Q2となる。
 出力反転部38iは、比較部38gの出力を反転する。出力反転部38iの出力は、PWM信号Q1となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンすることはない。
 乗算部38dは、乗算部38cの出力である電圧指令Vに、-1を乗算する。加算部38fは、乗算部38dの出力に1を加算する。加算部38fの出力は、図2に示す2つのスイッチング素子53,54を駆動するための電圧指令Vm2として、比較部38hに入力される。比較部38hには、電圧指令Vm2及びキャリアが入力される。比較部38hは、電圧指令Vm2とキャリアとを比較し、比較結果は、PWM信号Q4となる。
 出力反転部38jは、比較部38hの出力を反転する。出力反転部38jの出力は、PWM信号Q3となる。出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンすることはない。
 図5は図4に示す電圧指令と、PWM信号と、モータ印加電圧との波形を示すタイムチャートである。図5には、位置センサ信号、ロータ機械角θ、基準位相θ、進角位相θ、電圧指令Vm1、電圧指令Vm2、キャリア、PWM信号Q1,Q2,Q3,Q4及びモータ印加電圧の波形が示される。電圧指令Vm1の波形は破線で示され、電圧指令Vm2の波形は一点鎖線で示される。これらの波形は、例えば4個の永久磁石を備えたロータ12aが1回転するときに検出される波形である。図5に矢印で示されるA,B,C,D,Eは、単相モータ12のステータ12bに巻かれるコイルに流れる電流が転流するタイミングを表す。
 図4に示すキャリア比較部38は、図5に示すような波形の電圧指令Vm1,Vm2を使用して、PWM信号Q1,Q2,Q3,Q4を生成することができる。また、このようなPWM信号Q1,Q2,Q3,Q4を利用して単相インバータ11内のスイッチング素子51,52,53,54が制御されることにより、PWM制御されたモータ印加電圧が単相モータ12に印加される。モータ印加電圧は、ハイレベル、ローレベル又はゼロレベルの電位をとる信号である。
 ところでPWM信号Q1,Q2,Q3,Q4を生成する際に使用される変調方式には、バイポーラ変調方式と、ユニポーラ変調方式とが知られている。バイポーラ変調方式は、正又は負の電位で変化する電圧パルスを出力する変調方式である。ユニポーラ変調方式は、電源半周期ごとに3つの電位で変化する電圧パルス、すなわち正の電位と負の電位と零の電位とに変化する電圧パルスを出力する変調方式である。
 図5に示すPWM信号Q1,Q2,Q3,Q4の波形は、ユニポーラ変調によるものである。本実施の形態に係るモータ駆動装置2には、何れの変調方式を用いてもよい。なお、モータ印加電圧の波形と、単相モータ12のコイルに流れる電流の波形とを、より正弦波に近づける必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。
 上述の通り、モータ印加電圧は、キャリアと電圧指令とを比較することにより決定される。モータ回転数が高くなればなるほど、電圧指令の周波数が増加するため、電気角一周期中に出力されるモータ印加電圧に含まれる電圧パルスの数が減少する。そのため、電圧パルスの数が電流波形の歪へもたらす影響が大きくなる。一般的に、電圧パルスの数が偶数回の場合、モータ印加電圧には偶数次調波が重畳され、正側の波形と負側の波形との対称性が無くなる。よって、単相モータ12のコイルに流れる電流の波形を、高調波の含有率を抑えた正弦波に近づけるためには、電気角一周期中の電圧パルスの数が、奇数回となるように制御することが好ましい。電気角一周期中の電圧パルスの数が、奇数回となるように制御することにより、単相モータ12のコイルに流れる電流の波形を正弦波に近づけることが可能となる。
 図6は図4に示す電圧指令が変調時の波形と、PWM信号の波形と、モータ印加電圧の波形とを示すタイムチャートである。図6には、過変調時に一定の値を示す電圧指令Vm1及び電圧指令Vm2が示される。過変調は変調率が1を超えることである。図6に示されるように、過変調時の電圧指令Vm1及び電圧指令Vm2がキャリアのピーク値を超えると、PWM信号のパルス数は、変調率が1以下の場合に比べて、少なくなる。PWM信号のパルス数が少なくなると、単相インバータ11に設けられるスイッチング素子の制御性が低下するため、バッテリの放電電圧が変動すると、単相インバータ11の出力電圧、すなわちモータ印加電圧も変動する可能性がある。例えば、満充電直後のバッテリの放電電圧の値は、放電開始から放電終了までの電圧の平均値よりも高いため、放電電圧の値が高い状態で電圧指令Vm1及び電圧指令Vm2が一定の値となるように制御されると、モータ印加電圧も高くなる。従って、バッテリの放電電流が増加するだけでなく、単相モータ12に過剰な電流が流れる場合がある。
 また、過変調領域で電圧指令Vm1及び電圧指令Vm2が一定になると、モータ印加電圧が一定になるように電流が制御されるため、例えばバッテリの残容量が少なくなりバッテリの出力電圧が低下すると、電圧指令が一定に制御されることによってバッテリの放電電流が増加する。従って、放電電流が増加することによって、バッテリの温度が上昇して、バッテリの性能が低下すると共に寿命が短くなる可能性がある。
 このように、過変調領域で電圧指令Vm1及び電圧指令Vm2が一定に制御されると、モータ印加電圧が高くなる場合があると共に、バッテリの寿命が短くなる可能性がある。このような問題を解決するため本実施の形態に係るモータ駆動装置2は、バッテリの電圧が低下すると、過変調領域における電圧指令Vm1及び電圧指令Vm2が低下するように構成されている。
 図7は図3及び図4に示される進角位相及び電圧振幅指令を算出するための機能構成を示す図である。図7に示される回転速度算出部42、進角位相算出部44及び電圧振幅指令制御部45のそれぞれの機能は、図1に示すプロセッサ31及びメモリ34で実現される。すなわち、回転速度算出部42、進角位相算出部44及び電圧振幅指令制御部45の処理を実行するためのコンピュータプログラムをメモリ34に格納しておき、プロセッサ31がプログラムを読み出して実行することにより、回転速度算出部42、進角位相算出部44及び電圧振幅指令制御部45の機能が実現される。
 回転速度算出部42は、位置センサ信号21aに基づき、単相モータ12の回転速度ωと、基準位相θとを算出する。基準位相θは、基準位置からのロータ12aの回転角度であるロータ機械角θを、電気角に換算した位相である。進角位相算出部44は、回転速度算出部42で算出された回転速度ω及び基準位相θに基づき進角位相θを算出する。
 次に電圧指令の制御動作について説明する。図8は図1に示す電源の放電特性を示す図である。図9は図8に示す直流電圧と電圧指令との関係を示す図である。図10は図7に示す電圧振幅指令制御部による電圧指令制御の動作を説明するフローチャートである。
 図8にはバッテリの放電特性が示され、縦軸はバッテリの出力電圧を表し、横軸はバッテリの放電時間を表す。満充電直後のバッテリが放電を開始してから一定時間経過後の時刻T1までの出力電圧Vは、時刻T1から一定時間経過後の時刻T2までの出力電圧Vよりも高い値を示す。また時刻T2から一定時間経過後の時刻T3までの出力電圧Vは、出力電圧Vよりも低い値を示す。出力電圧Vは第1電圧である。出力電圧Vは第2電圧である。出力電圧Vは第3電圧である。電圧V1は例えば放電開始電圧を表し、電圧Vは例えば放電終了電圧を表し、電圧Vは、例えば放電開始から放電終了までの出力電圧を平均した平均電圧を表す。なお、電圧V1、電圧V及び電圧Vは、V1>V>Vの関係を有していればよく、電圧V1は、放電開始電圧よりも低い電圧でもよいし、電圧Vは、放電終了電圧よりも高い電圧でもよいし、電圧V2は、平均電圧よりも高い電圧又は低い電圧でもよい。
 図9の横軸はバッテリの出力電圧を表し、図9の縦軸は電圧振幅指令を表す。実線で示されるV*xは、電圧指令が一定に制御されるときに利用される電圧振幅指令である。破線で示されるV*は、本実施の形態に係る電圧振幅指令制御部45から出力される電圧振幅指令である。電圧振幅指令制御部45には、破線で示される出力電圧と電圧指令振幅指令との対応関係を示すテーブルが設定される。V*1は電圧Vに対応する電圧振幅指令である。V*3は電圧Vに対応する電圧振幅指令である。V*2は電圧Vに対応する電圧振幅指令である。電圧振幅指令V*1及びV*3は、電圧振幅指令V*2よりも低い。
 電圧振幅指令制御部45は、当該テーブルを参照することによって、バッテリの出力電圧すなわち直流電圧Vdcが電圧V以下であるか否かを判断する(ステップS1)。
 直流電圧Vdcが電圧V以下の場合(ステップS1,Yes)、電圧振幅指令制御部45は、電圧振幅指令V*3よりも高くかつ電圧振幅指令V*2よりも低い電圧振幅指令V*を出力する(ステップS2)。
 直流電圧Vdcが電圧Vより高い場合(ステップS1,No)、電圧振幅指令制御部45は、電圧振幅指令V*1よりも高くかつ電圧振幅指令V*2よりも低い電圧振幅指令V*を出力する(ステップS3)。
 電圧振幅指令制御部45から出力された電圧振幅指令V*はキャリア比較部38に入力される。キャリア比較部38では、電圧振幅指令V*2に対応する電圧指令Vよりも低い電圧指令が生成されるため、この電圧指令により、電圧振幅指令V*2が入力されるときの変調率よりも低い変調率でキャリア信号が生成される。単相モータ12には、電圧振幅指令V*2が入力されるときのモータ印加電圧よりも低い電圧が印加される。
 このように、モータ駆動装置2では、バッテリの出力電圧である直流電圧が第1電圧から第2電圧に変化したとき、モータに印加される電圧を第1印加電圧から第1印加電圧よりも低い第2印加電圧に変化させる。また、モータ駆動装置2では、直流電圧が第1電圧よりも高い第3電圧のとき、第1印加電圧よりも低い第3印加電圧がモータ印加電圧として出力される。これにより、電圧指令が一定に制御される場合に比べて、モータ印加電圧が低下し、バッテリの放電電流が低下する。放電電流が低下することによってバッテリの発熱が抑制されるため、バッテリの性能の低下を抑制できると共に、バッテリの寿命を長くすることができる。また、単相インバータ11を構成する抵抗器及びスイッチング素子などの発熱部品に流れる電流が低減されるため、これらの発熱部品の発熱が抑制されて、発熱部品の長寿命化を図ることができる。また、電流の増加が抑制されることによってバッテリの容量を最大限使用できるため、モータ駆動装置2に搭載される製品の運転時間を延ばすことができる。
 次に、本実施の形態における進角制御について説明する。図11は図7に示す進角位相の算出方法の一例を示す図である。図11の横軸はモータ回転数Nであり、図11の縦軸は進角位相θである。モータ回転数Nは単位時間当たりの回転数であり回転速度に対応する。進角位相θは、図11に示すように、モータ回転数Nの増加に対して進角位相θが増加する関数を用いて決定することができる。図11の例では、1次の線形関数により進角位相θが決定されているが、これに限らず、モータ回転数Nの増加に応じて、進角位相θが同じになる関係、又は進角位相θが大きくなる関係であれば、1次の線形関数以外の関数を用いてもよい。
 なお、電動送風機の場合、負荷トルクは、モータの負荷である羽根の回転数の増加によって増加すると共に、風路の径が広くなることでも増加する。風路の径とは、電機掃除機を例とした場合、吸込口の広さを表している。
 例えば、吸込口に何も接触していないため、風路の径が広いときには、風を吸い込む力が必要となる。従って、同一回転数で羽根が回転している場合、負荷トルクが大きくなる。一方、吸込口に何かが接触して、吸込口が塞がれている状態では、風路の径が狭くなり、風を吸い込む力が必要なくなる。そのため、同一回転数で羽根が回転している場合、負荷トルクは小さくなる。
 次に、進角制御による効果について説明する。まず、回転数の増加に応じて進角位相θを増加させることにより、回転数範囲を広げることができる。進角位相θを「0」とした場合には、モータ印加電圧とモータ誘起電圧とが釣り合う所で回転数が飽和する。回転数を更に増加させるためには、進角位相θを進め、電機子反作用によるステータに発生させる磁束を弱めることにより、モータ誘起電圧の増加が抑制され、回転数が増加する。よって、進角位相θを回転数に応じて選択することで、広い回転数領域を得ることができる。
 本実施の形態では、例えばモータ駆動装置2が電気掃除機に適用される場合、吸込口の状態の変化、すなわち負荷トルクの変化に関わらず、バッテリの電圧に応じて電圧振幅指令V*が低下する制御と共に、モータ回転数Nが低くなるほど進角位相θが小さくなる制御が行われる。すなわち、モータ駆動装置2では、モータ印加電圧が第1印加電圧から第2印加電圧に変化するとき、回転位置情報を用いて算出される進角θvvが、第1進角から第1進角よりも小さい第2進角に変化される。また、モータ駆動装置2では、直流電圧が第1電圧よりも高い第3電圧のとき、第1進角よりも大きい第3進角が進角θvvに設定される。このように、電圧振幅指令V*の制御に加えて、モータ回転数Nに応じて進角θvvが変化するように制御されることにより、進角θvvが一定に制御される場合に比べて、力率の低下が抑制され、消費電力の低下が抑制される。また消費電力の低下を抑制しながら広い回転速度範囲で大きなトルクを得ることができ、単相モータ12の安定した駆動が可能となる。
 次に、図12から図15を参照して本実施の形態における損失低減手法について説明する。図12はインバータ出力電圧の極性によるモータ電流の経路を示す第1の図である。図13はインバータ出力電圧の極性によるモータ電流の経路を示す第2の図である。図14はインバータ出力電圧の極性によるモータ電流の経路を示す第3の図である。図15は図2に示すスイッチング素子として利用可能なMOSFETの概略構造を示す模式的断面図である。以下では、まず図15を参照してMOSFETの概略の構造を説明し、その後に図12から図14を参照してモータ電流の経路を説明する。
 図15には、n型MOSFETが例示される。n型MOSFETの場合、図16に示すように、p型の半導体基板600が用いられる。半導体基板600には、ソース電極S、ドレイン電極D及びゲート電極Gが形成される。ソース電極S及びドレイン電極Dと接する部位には、高濃度の不純物がイオン注入されてn型の領域601が形成される。また、半導体基板600において、n型の領域601が形成されない部位とゲート電極Gとの間には、酸化絶縁膜602が形成される。すなわち、ゲート電極Gと、半導体基板600におけるp型の領域603との間には、酸化絶縁膜602が介在している。
 ゲート電極Gに正電圧が印加されると、半導体基板600におけるp型の領域603と酸化絶縁膜602との間の境界面に電子が引き寄せられ、当該境界面が負に帯電する。電子が集まった所は、電子の密度がホール密度よりも高くなりn型化する。このn型化した部分は電流の通り道となりチャネル604と呼ばれる。チャネル604は、図15の例では、n型チャネルである。MOSFETがオンに制御されることにより、通流する電流は、p型の領域603に形成されるボディダイオードよりも、チャネル604に多く流れる。
 インバータ出力電圧の極性が正の場合、図12の太実線(a)で示すように、電流は、第1相の上アームであるスイッチング素子51のチャネルを通って単相モータ12に流れ込み、第2相の下アームであるスイッチング素子54のチャネルを通って単相モータ12から流れ出す。また、インバータ出力電圧の極性が負の場合、図12の太破線(b)で示すように、電流は、第2相の上アームであるスイッチング素子53のチャネルを通って単相モータ12に流れ込み、第1相の下アームであるスイッチング素子52のチャネルを通って単相モータ12から流れ出す。
 次に、インバータ出力電圧が零、すなわち単相インバータ11から零電圧が出力された場合の電流経路について説明する。正のインバータ出力電圧が生成された後にインバータ出力電圧が零になると、図13の太実線(c)で示すように、電源側からは電流が流れず、単相インバータ11と単相モータ12との間で電流が行き来する還流モードとなる。このとき、単相モータ12に直前に流れている電流の向きは変わらないため、単相モータ12から流れ出した電流は、第2相の下アームであるスイッチング素子54のチャネルと、第1相の下アームであるスイッチング素子52のボディダイオード52aとを通って単相モータ12に戻る。なお、負のインバータ出力電圧が生成された後にインバータ出力電圧が零になる場合は、直前に流れていた電流の向きが逆であるため、図13の太破線(d)で示すように、還流電流の向きは逆となる。具体的に説明すると、単相モータ12から流れ出した電流は、第1相の上アームであるスイッチング素子51のボディダイオード51aと、第2相の上アームであるスイッチング素子53のチャネルとを通って単相モータ12に戻る。
 上記の説明の通り、単相モータ12と単相インバータ11との間で電流が還流する還流モードでは、第1相及び第2相の内の何れか一方の相ではボディダイオードに電流が流れる。一般的に、ダイオードの順方向に電流を流すことに比べ、MOSFETのチャネルに電流を流した方が、導通損失が小さくなることが知られている。そこで、本実施の形態では、還流電流が流れる還流モードにおいて、ボディダイオードに流れる通流電流を小さくすべく、当該ボディダイオードを有する側のMOSFETがオンに制御される。
 還流モードにおいて、図13の太実線(c)で示す還流電流が流れるタイミングでは、スイッチング素子52がオンに制御される。このように制御すれば、図14の太実線(e)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子52のチャネル側を流れる。これにより、スイッチング素子52での導通損失が低減される。また、図13の太破線(d)で示す還流電流が流れるタイミングでは、スイッチング素子51がオンに制御される。このように制御すれば、図14の太破線(f)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子51のチャネル側を流れる。これにより、スイッチング素子51での導通損失が低減される。
 前述のように、ボディダイオードに還流電流が流れるタイミングにおいて、当該ボディダイオードを有する側のMOSFETがオンに制御されることにより、スイッチング素子の損失を低減することができる。このため、MOSFETの形状を表面実装タイプにして基板にて放熱可能な構造とし、また、スイッチング素子の一部又は全部をワイドバンドギャップ半導体で形成することにより、基板のみでMOSFETの発熱を抑制する構造を実現する。なお、基板のみで放熱が可能であれば、ヒートシンクが不要となるため、インバータの小型化に寄与し、製品の小型化にも繋げることができる。
 前述の放熱方法に加え、基板を風路に設置することで、更なる放熱効果をも得ることができる。ここで、風路とは、電動送風機のように空気の流れを発生させるファンを周囲の空間、又は電動送風機が発生する風が流れる通路である。基板を風路に設置することにより、電動送風機が発生する風によって基板上の半導体素子を放熱できるので、半導体素子の発熱を大幅に抑制することができる。
 次に、実施の形態に係るモータ駆動装置の適用例について説明する。図16は本発明の実施の形態に係るモータ駆動装置を備えた電気掃除機の構成図である。電気掃除機61は、直流電源であるバッテリ67と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。バッテリ67は図1に示す電源10に相当する。
 電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ67を電源として電動送風機64を駆動する。電動送風機64が駆動することにより、吸込口体63からごみの吸込みが行われ、吸込まれたごみは、延長管62を介して集塵室65へ集められる。
 電気掃除機61では、バッテリ67、電動送風機64及び不図示のインバータ基板などの複数の発熱部品が一部箇所に密集しており、かつ、モータ回転速度が大きく変動する製品である。このように複数の発熱部品が密集するように構成される製品を駆動する際には、前述した実施の形態に係る制御手法が好適である。すなわち、電気掃除機61では、バッテリ67の電圧に応じて電圧振幅指令V*が低下するため、複数の発熱部品に流れる電流が低減される。従って、複数の発熱部品の発熱が抑制され、複数の発熱部品の長寿命化を図ることができる。また複数の発熱部品の発熱が抑制されるため、複数の発熱部品で発生した熱を放熱するための放熱部品を低減することができる。従って、電気掃除機61の小型化及び軽量化を図ることができる。また電流の増加が抑制されることによってバッテリ67の容量を最大限使用できるため、電気掃除機61の運転時間を延ばすことができる。
 図17は本発明の実施の形態に係るモータ駆動装置を備えたハンドドライヤの構成図である。ハンドドライヤ90は、モータ駆動装置2、ケーシング91、手検知センサ92、水受け部93、ドレン容器94、カバー96、センサ97、吸気口98及び電動送風機95を備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。ハンドドライヤ90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。
 ハンドドライヤ90は、図16に示す電気掃除機61と同様に、複数の発熱部品が密集し、かつ、モータ回転速度が大きく変動する製品である。このため、ハンドドライヤ90においても、前述した実施の形態に係る制御手法が好適であり、電気掃除機61と同様な効果を得ることができる。
 図18は本発明の実施の形態に係るモータ駆動装置における変調制御を説明するための図である。同図の左側には、回転数と変調率の関係が示される。また同図の右側には、変調率が1.0以下のときのインバータ出力電圧の波形と、変調率が1.0を超えるときのインバータ出力電圧の波形とが示される。一般的に、回転数の増加に伴い回転体の負荷トルクは大きくなる。このため、回転数の増加に伴いモータ出力トルクを増加させる必要がある。また、一般的にモータ出力トルクはモータ電流に比例して増加し、モータ電流の増加にはインバータ出力電圧の増加が必要である。よって、変調率を上げてインバータ出力電圧を増加させることで、回転数を増加させることができる。
 次に、本実施の形態における回転数制御について説明する。なお、以下の説明では、負荷として電動送風機を想定し、電動送風機の運転域を以下の通り区分する。
 (A)低速回転域(低回転数領域):0[rpm]から10万[rpm]
 (B)高速回転域(高回転数領域):10万[rpm]以上
 なお、上記(A)と上記(B)に挟まれた領域はグレーゾーンであり、用途に応じて、低速回転域に含まれる場合もあれば、高速回転域に含まれる場合もある。
 まず、低速回転域での制御について説明する。低速回転域では変調率を1.0以下としてPWM制御される。なお、変調率を1.0以下とすることで、モータ電流を正弦波に制御し、モータの高効率化を図ることができる。なお、低速回転域と高速回転域とで同じキャリア周波数で動作させた場合、キャリア周波数は高速回転域に合わせたキャリア周波数となるため、低速回転域ではPWMパルスが必要以上に多くなる傾向にある。このため、低速回転域ではキャリア周波数を低下させ、スイッチング損失を低下させる手法を用いてもよい。また、回転数に同期させてキャリア周波数を変化させることで、回転数に応じてパルス数が変化しないように制御してもよい。
 次に、高速回転域での制御について説明する。高速回転域では、変調率が1.0より大きな値に設定される。変調率を1.0より大きくすることで、インバータ出力電圧を増加させつつ、インバータ内のスイッチング素子が行うスイッチング回数を低減させることで、スイッチング損失の増加を抑えることができる。ここで、変調率が1.0を超えることによって、モータ出力電圧は増加するが、スイッチング回数が低下するため、電流の歪が懸念される。しかしながら、高速回転中においては、モータのリアクタンス成分が大きくなり、モータ電流の変化成分であるdi/dtが小さくなるため、低速回転域に比べて電流歪は小さくなり、波形の歪に対する影響は小さくなる。よって、高速回転域では、変調率を1.0より大きな値に設定し、スイッチングパルス数を低減させる制御を行う。この制御により、スイッチング損失の増加が抑制され、高効率化を図ることができる。
 なお、上記の通り、低速回転域と高速回転域の境界は曖昧である。このため、制御部25には、低速回転域と高速回転域との境界を決める第1回転速度が設定され、制御部25は、モータ又は負荷の回転速度が第1回転速度以下の場合には変調率を1.0以下に設定し、モータ又は負荷の回転速度が第1回転速度を超えた場合には1を超える変調率に設定するように制御すればよい。
 以上の説明の通り、本実施の形態では、電気掃除機61及びハンドドライヤ90にモータ駆動装置2を適用した構成例を説明したが、モータ駆動装置2は、モータが搭載された電気機器に適用することができる。モータが搭載された電気機器は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、OA機器、電動送風機などである。電動送風機は、物体輸送用、吸塵用、又は一般送排風用の送風手段である。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 モータ駆動システム、2 モータ駆動装置、10 電源、11 単相インバータ、11-1,11-2 接続端、12 単相モータ、12a ロータ、12b ステータ、20 電圧センサ、21 位置センサ、21a 位置センサ信号、25 制御部、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、33a キャリア周波数設定部、34 メモリ、38 キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d 乗算部、38e,38f 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、45 電圧振幅指令制御部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、61 電気掃除機、62 延長管、63 吸込口体、64,95 電動送風機、65 集塵室、66 操作部、67 バッテリ、68,97 センサ、90 ハンドドライヤ、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、96 カバー、98 吸気口、99 手挿入部、600 半導体基板、601,603 領域、602 酸化絶縁膜、604 チャネル。

Claims (9)

  1.  バッテリから出力される直流電圧を交流電圧に変換し、前記交流電圧を、モータに印加する印加電圧として出力するインバータを備え、
     前記直流電圧が第1電圧よりも低い第2電圧のときの前記印加電圧は、前記直流電圧が第1電圧のときの前記印加電圧よりも低いモータ駆動装置。
  2.  前記直流電圧が第1電圧よりも高い第3電圧のときの前記印加電圧は、前記直流電圧が第1電圧のときの前記印加電圧よりも低い請求項1に記載のモータ駆動装置。
  3.  前記モータが有するロータの回転位置を検出し、検出した前記回転位置を示す回転位置情報を出力する位置センサを備え、
     前記印加電圧が前記第1電圧のときの印加電圧から、前記第2電圧のときの前記印加電圧に変化するとき、前記回転位置情報を用いて算出される前記モータで発生する誘起電圧に対する前記印加電圧の進み角である進角を、第1進角から前記第1進角よりも小さい第2進角に変化させる請求項1に記載のモータ駆動装置。
  4.  前記直流電圧が第1電圧よりも高い第3電圧のとき、前記第1進角よりも大きい第3進角が前記進角に設定される請求項3に記載のモータ駆動装置。
  5.  前記インバータは、複数のスイッチング素子を有し、
     複数の前記スイッチング素子の内の少なくとも1つは、ワイドバンドギャップ半導体で構成される請求項1から4の何れか一項に記載のモータ駆動装置。
  6.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項5に記載のモータ駆動装置。
  7.  請求項1から6の何れか一項に記載のモータ駆動装置を備える電動送風機。
  8.  請求項7に記載の電動送風機を備える電気掃除機。
  9.  請求項7に記載の電動送風機を備えるハンドドライヤ。
PCT/JP2018/011936 2018-03-23 2018-03-23 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ WO2019180971A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/970,010 US11316465B2 (en) 2018-03-23 2018-03-23 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
PCT/JP2018/011936 WO2019180971A1 (ja) 2018-03-23 2018-03-23 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP2020507291A JP6925510B2 (ja) 2018-03-23 2018-03-23 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
CN201880091254.5A CN111937295B (zh) 2018-03-23 2018-03-23 马达驱动装置、电动送风机、吸尘器以及干手器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011936 WO2019180971A1 (ja) 2018-03-23 2018-03-23 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Publications (1)

Publication Number Publication Date
WO2019180971A1 true WO2019180971A1 (ja) 2019-09-26

Family

ID=67986837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011936 WO2019180971A1 (ja) 2018-03-23 2018-03-23 モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ

Country Status (4)

Country Link
US (1) US11316465B2 (ja)
JP (1) JP6925510B2 (ja)
CN (1) CN111937295B (ja)
WO (1) WO2019180971A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019114073A1 (de) * 2019-05-27 2020-12-03 Ebm-Papst Mulfingen Gmbh & Co. Kg Sensorloses Kommutierungsverfahren
CN112835399B (zh) * 2021-01-08 2022-03-22 厦门芯阳科技股份有限公司 一种电池类吹风机的控制方法及设备
KR102336327B1 (ko) * 2021-11-01 2021-12-08 이순 적외선 led를 이용한 헤어드라이어

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885332A (ja) * 1994-09-16 1996-04-02 Matsushita Electric Ind Co Ltd 空調用インバータ装置
JP2002247876A (ja) * 2001-02-15 2002-08-30 Mitsubishi Electric Corp インバータ装置、圧縮機制御装置、冷凍・空調装置の制御装置、モータの制御方法、圧縮機、冷凍・空調装置
JP2009011145A (ja) * 2007-05-28 2009-01-15 Seiko Epson Corp 電動モータの駆動制御回路及びそれを備えた電動モータ
JP2015023703A (ja) * 2013-07-19 2015-02-02 キヤノン株式会社 ステッピングモータの制御装置、光学機器、ステッピングモータの制御方法、及びプログラム
JP2016220474A (ja) * 2015-05-25 2016-12-22 三菱電機株式会社 モータ制御装置、電動送風機、掃除機およびハンドドライヤー

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189270A (ja) * 1997-09-08 1999-03-30 Kansai Electric Power Co Inc:The モータの駆動装置及び電気自動車
JP2002281794A (ja) * 2001-03-19 2002-09-27 Nissan Motor Co Ltd 電動機の制御装置
JP2005269723A (ja) * 2004-03-17 2005-09-29 Nissan Motor Co Ltd 電動機駆動制御装置
JP4856383B2 (ja) * 2005-03-18 2012-01-18 本田技研工業株式会社 電動パワーステアリング装置
JP4731967B2 (ja) * 2005-03-31 2011-07-27 富士重工業株式会社 リチウムイオンキャパシタ
JP2008125225A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp モータ駆動装置
EP1998434A2 (en) 2007-05-28 2008-12-03 Seiko Epson Corporation Drive control circuit for electric motor and elctric motor equipped with same
EP2343211B1 (en) * 2008-10-31 2018-04-04 Toyota Jidosha Kabushiki Kaisha Electric power source system for electrically driven vehicle and its control method
CN102202929B (zh) * 2008-10-31 2014-01-01 丰田自动车株式会社 电动车辆的电源系统及其控制方法
EP2431211A1 (en) * 2009-05-13 2012-03-21 Toyota Jidosha Kabushiki Kaisha Vehicle power conversion device and vehicle in which same is installed
JP5062440B2 (ja) 2009-05-21 2012-10-31 オンキヨー株式会社 電源回路
WO2010143279A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の電源システムの制御方法
CN103210577A (zh) * 2010-11-10 2013-07-17 国产电机株式会社 旋转电机的控制装置
JP5321660B2 (ja) * 2011-08-30 2013-10-23 トヨタ自動車株式会社 車両の制御装置及び制御方法
JP5731360B2 (ja) * 2011-11-18 2015-06-10 日立オートモティブシステムズ株式会社 電力変換装置
JP6135216B2 (ja) 2013-03-15 2017-05-31 株式会社リコー 電源装置、画像形成装置、電圧制御方法及び印刷物製造方法
DE102015105391B4 (de) * 2014-04-15 2017-09-07 Toyota Jidosha Kabushiki Kaisha Elektrisches fahrzeug
JP6857488B2 (ja) * 2016-11-29 2021-04-14 株式会社日立製作所 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885332A (ja) * 1994-09-16 1996-04-02 Matsushita Electric Ind Co Ltd 空調用インバータ装置
JP2002247876A (ja) * 2001-02-15 2002-08-30 Mitsubishi Electric Corp インバータ装置、圧縮機制御装置、冷凍・空調装置の制御装置、モータの制御方法、圧縮機、冷凍・空調装置
JP2009011145A (ja) * 2007-05-28 2009-01-15 Seiko Epson Corp 電動モータの駆動制御回路及びそれを備えた電動モータ
JP2015023703A (ja) * 2013-07-19 2015-02-02 キヤノン株式会社 ステッピングモータの制御装置、光学機器、ステッピングモータの制御方法、及びプログラム
JP2016220474A (ja) * 2015-05-25 2016-12-22 三菱電機株式会社 モータ制御装置、電動送風機、掃除機およびハンドドライヤー

Also Published As

Publication number Publication date
CN111937295A (zh) 2020-11-13
JPWO2019180971A1 (ja) 2020-12-03
US11316465B2 (en) 2022-04-26
CN111937295B (zh) 2023-08-18
US20210111655A1 (en) 2021-04-15
JP6925510B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
JP6644159B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー
JP6800329B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP6671516B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2019180971A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP6847195B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤー
JP7237198B2 (ja) モータ駆動装置、電気掃除機及び手乾燥機
WO2019180972A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7237197B2 (ja) モータ駆動装置、電気掃除機及び手乾燥機
JP6925497B2 (ja) 電気掃除機
WO2019180969A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2019180970A1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP6739691B1 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7150152B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
JP7150150B2 (ja) モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤ
WO2019180967A1 (ja) モータ駆動装置、電気掃除機及び手乾燥機
EP3952103A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
WO2019180968A1 (ja) モータ駆動装置、電気掃除機及び手乾燥機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910684

Country of ref document: EP

Kind code of ref document: A1