JP7222180B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP7222180B2
JP7222180B2 JP2018072792A JP2018072792A JP7222180B2 JP 7222180 B2 JP7222180 B2 JP 7222180B2 JP 2018072792 A JP2018072792 A JP 2018072792A JP 2018072792 A JP2018072792 A JP 2018072792A JP 7222180 B2 JP7222180 B2 JP 7222180B2
Authority
JP
Japan
Prior art keywords
region
carrier path
semiconductor device
path layer
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018072792A
Other languages
English (en)
Other versions
JP2019186312A (ja
Inventor
洋輔 桜井
勇一 小野沢
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018072792A priority Critical patent/JP7222180B2/ja
Priority to US16/281,031 priority patent/US10916628B2/en
Publication of JP2019186312A publication Critical patent/JP2019186312A/ja
Application granted granted Critical
Publication of JP7222180B2 publication Critical patent/JP7222180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、半導体装置に関する。
従来、100nm以下の微細なメサ部を有する半導体装置が知られている(例えば、非特許文献1参照)。
非特許文献1 Masahiro Tanaka and Akio Nakagawa、"Conductivity modulation in the channel inversion layer of very narrow mesa IGBT"、 Power Semiconductor Devices and IC's (ISPSD)、 2017 29th International Symposium on、IEEE、24 July 2017
半導体装置のIV特性を向上することが望ましい。
本発明の第1の態様においては、半導体基板に設けられた第1導電型のドリフト領域と、半導体基板の上面側において、ドリフト領域の上方に設けられた複数のトレンチ部と、半導体基板において、複数のトレンチ部に挟まれたメサ部に設けられた第2導電型のベース領域と、メサ部の上面において、ベース領域の上方に設けられた第1導電型のエミッタ領域と、メサ部の上面において、エミッタ領域と隣接して設けられ、ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域とを備え、メサ部のメサ幅が100nm以下であり、コンタクト領域の下端は、エミッタ領域の下端よりも浅い半導体装置を提供する。
複数のトレンチ部は、ゲート導電部を有してよい。コンタクト領域の下端は、ゲート導電部の上端よりも深くてよい。
半導体装置は、メサ部の上面に配列された複数のエミッタ領域と、隣接するエミッタ領域の間においてメサ部の上面から半導体基板の深さ方向に延伸し、ベース領域よりも高ドーピング濃度である第2導電型のキャリアパス層とを備えてよい。
キャリアパス層は、コンタクト領域と同一のドーピング濃度を有してよい。
キャリアパス層の下端の深さは、メサ部の上面におけるキャリアパス層とエミッタ領域との間隔以上であってよい。
キャリアパス層は、メサ部の上面において、隣接するエミッタ領域の中心を少なくとも含む位置に設けられてよい。
キャリアパス層は、メサ部の上面における、隣接するエミッタ領域の間の領域において、25%以上、75%以下の領域を占めてよい。
本発明の第2の態様においては、半導体基板に設けられた第1導電型のドリフト領域と、半導体基板の上面側において、ドリフト領域の上方に設けられた複数のトレンチ部と、半導体基板において、複数のトレンチ部に挟まれたメサ部に設けられた第2導電型のベース領域と、メサ部の上面において、メサ部の上面に配列された第1導電型の複数のエミッタ領域と、隣接する複数のエミッタ領域の間においてメサ部の上面からドリフト領域まで延伸し、ベース領域よりも高ドーピング濃度である第2導電型のキャリアパス層とを備える半導体装置を提供する。メサ部のメサ幅が100nm以下であってよい。キャリアパス層は、メサ部の上面における、隣接する複数のエミッタ領域の間の全領域を占めてよい。
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例1に係る半導体装置100の上面図の一例を示す。 図1Aにおけるa-a'断面の一例を示す図である。 図1Aにおけるb-b'断面の一例を示す図である。 実施例1に係るメサ部91の拡大図の一例を示す。 比較例に係る半導体装置500の構成を示す。 実施例2に係る半導体装置100の構成の一例を示す。 図4Aにおけるc-c'断面の一例を示す図である。 図4Aにおけるd-d'断面の一例を示す図である。 半導体装置のターンオフ波形の一例を示す。 図5Aのコレクタ電流Icの正孔電流および電子電流を示す。 図5Aのコレクタ電流Icの正孔電流および電子電流の内訳を示す。 電子電流比率の-Vge依存性を示す。 実施例3に係る半導体装置100の構成の一例を示す。 実施例4に係る半導体装置100の構成の一例を示す。 隣接するエミッタ領域12同士の間の領域を占めるキャリアパス層19の占有率を示す。 実施例5に係る半導体装置100の構成の一例を示す。 実施例5に係る半導体装置100の構成の一例を示す。 実施例5に係るメサ部91の拡大図の一例を示す。 実施例6に係る半導体装置100の構成の一例を示す。 実施例7に係る半導体装置100の構成の一例を示す。 実施例8に係る半導体装置100の構成の一例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本明細書においては、半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」、「おもて」、「裏」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の深さ方向をZ軸とする。なお、本明細書において、Z軸方向に半導体基板を視た場合について平面視と称する。
各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。
本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化した不純物の濃度を指す。本明細書においてドナーおよびアクセプタの濃度差をドーピング濃度とする場合がある。また、ドーピング領域におけるドーピング濃度分布のピーク値を、当該ドーピング領域におけるドーピング濃度とする場合がある。
本明細書では、NまたはPを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、NやPに付す+および-は、それぞれ、それが付されていない層や領域よりも高ドーピング濃度および低ドーピング濃度であることを意味する。また、NやPに付す++および--は、それぞれ、NやPに付す+および-の層や領域よりも高ドーピング濃度および低ドーピング濃度であることを意味する。
図1Aは、実施例1に係る半導体装置100の上面図の一例を示す。本例の半導体装置100は、トランジスタ部70を備えるIGBT(Insulated Gate Bipolar Transistor)である。
トランジスタ部70は、エミッタ領域12およびゲートトレンチ部40を有する領域である。本例のトランジスタ部70は、半導体基板10の下面側に設けられたコレクタ領域を半導体基板10の上面に投影した領域であるがこれに限られない。コレクタ領域は、第2導電型を有する。本例のコレクタ領域は、一例としてP+型である。
図1Aにおいては、半導体装置100のエッジ側であるチップ端部周辺の領域を示しており、他の領域を省略している。なお、本例では、便宜上、X軸方向の負側のエッジについて説明するものの、半導体装置100の他のエッジについても同様である。なお、半導体装置100は、還流ダイオード(FWD:Free Wheel Diode)等のダイオードを含むRC-IGBTであってもよい。
半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板等であってもよい。本例の半導体基板10は、シリコン基板である。
本例の半導体装置100は、半導体基板10の上面において、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15を備える。また、本例の半導体装置100は、半導体基板10の上面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。
エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、エミッタ電極52の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成されてよい。ゲート金属層50の少なくとも一部の領域は、アルミニウムまたはアルミニウム‐シリコン合金で形成されてよい。エミッタ電極52およびゲート金属層50は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよい。エミッタ電極52およびゲート金属層50は、互いに分離して設けられる。
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。ゲート金属層50は、ウェル領域11の上方に設けられる。
エミッタ電極52およびゲート金属層50は、層間絶縁膜を挟んで、半導体基板10の上方に設けられる。層間絶縁膜は、図1Aでは省略されている。層間絶縁膜には、コンタクトホール49、コンタクトホール54およびコンタクトホール56が貫通して設けられている。
コンタクトホール49は、ゲート金属層50とゲートランナー48とを接続する。コンタクトホール49の内部には、タングステン等で形成されたプラグが形成されてもよい。
ゲートランナー48は、ゲート金属層50とゲートトレンチ部40とを電気的に接続する。ゲートランナー48は、ダミートレンチ部30内のダミー導電部とは接続されない。例えば、ゲートランナー48は、不純物がドープされたポリシリコン等で形成される。
本例のゲートランナー48は、コンタクトホール49の下方から、ゲートトレンチ部40の先端部まで設けられる。ゲートランナー48と半導体基板10の上面との間には、酸化膜等の層間絶縁膜が設けられる。ゲートトレンチ部40の先端部において、ゲート導電部は半導体基板10の上面に露出している。ゲートトレンチ部40は、ゲート導電部の当該露出した部分にて、ゲートランナー48と接触する。
コンタクトホール56は、エミッタ電極52とダミートレンチ部30内のダミー導電部とを接続する。コンタクトホール56の内部には、タングステン等で形成されたプラグが設けられてもよい。
接続部25は、エミッタ電極52とダミー導電部との間に設けられる。接続部25は、不純物がドープされたポリシリコン等の、導電性を有する材料である。接続部25は、酸化膜等の層間絶縁膜等を介して、半導体基板10の上面の上方に設けられる。
ゲートトレンチ部40は、予め定められた配列方向(本例ではY軸方向)に沿って予め定められた間隔で配列される。本例のゲートトレンチ部40は、半導体基板10の上面に平行であって配列方向と垂直な延伸方向(本例ではX軸方向)に沿って延伸する2つの延伸部分41と、2つの延伸部分41を接続する接続部分43を有してよい。本例のゲートトレンチ部40は、ゲート金属層50と電気的に接続されている。また、ゲートトレンチ部40は、エミッタ領域12と接している。
接続部分43は、少なくとも一部が曲線状に設けられることが好ましい。ゲートトレンチ部40の2つの延伸部分41の端部を接続することで、延伸部分41の端部における電界集中を緩和することができる。ゲートトレンチ部40の接続部分43において、ゲートランナー48がゲート導電部と接続されてよい。
ダミートレンチ部30は、ゲートトレンチ部40と同様に、予め定められた配列方向(本例ではY軸方向)に沿って予め定められた間隔で配列される。本例のダミートレンチ部30は、ゲートトレンチ部40と同様に、半導体基板10の上面においてU字形状を有してよい。即ち、ダミートレンチ部30は、延伸方向に沿って延伸する2つの延伸部分31と、2つの延伸部分31を接続する接続部分33を有してよい。ダミートレンチ部30は、エミッタ電極52と電気的に接続されている。
ウェル領域11は、後述するドリフト領域18よりも半導体基板10の上面側に設けられた第2導電型の領域である。ウェル領域11は、一例としてP+型である。ウェル領域11は、ゲート金属層50が設けられる側の活性領域の端部から、予め定められた範囲で設けられる。ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域11に設けられる。ゲートトレンチ部40およびダミートレンチ部30の延伸方向の端の底は、ウェル領域11に覆われてよい。
コンタクトホール54は、トランジスタ部70において、エミッタ領域12およびコンタクト領域15の各領域の上方に設けられる。このように、層間絶縁膜には、1又は複数のコンタクトホール54が設けられている。1又は複数のコンタクトホール54は、延伸方向に延伸して設けられてよい。
メサ部91は、半導体基板10の上面と平行な面内において、Y軸方向には各トレンチ部に隣接して設けられた領域である。メサ部とは、隣り合う2つのトレンチ部に挟まれた半導体基板10の部分であって、半導体基板10の上面から、各トレンチ部の最も深い底部の深さまでの部分であってよい。各トレンチ部の延伸部分を1つのトレンチ部としてよい。即ち、2つの延伸部分に挟まれる領域をメサ部としてよい。
本例のメサ部91は、トランジスタ部70において、ゲートトレンチ部40およびダミートレンチ部30の少なくとも1つに隣接して設けられる。メサ部91は、半導体基板10の上面において、ウェル領域11と、エミッタ領域12と、ベース領域14と、コンタクト領域15とを有する。メサ部91では、エミッタ領域12およびコンタクト領域15が延伸方向において交互に設けられている。
ベース領域14は、半導体基板10の上面側に設けられた第2導電型の領域である。ベース領域14は、一例としてP-型である。例えば、ベース領域14のドーピング濃度は、2×1017cm-3以上、8×1017cm-3以下である。本例のベース領域14のドーピング濃度は、6×1017cm-3である。ベース領域14は、半導体基板10の上面において、メサ部91のX軸方向における両端部に設けられてよい。なお、図1Aは、当該ベース領域14のX軸方向の一方の端部のみを示している。
エミッタ領域12は、ベース領域14の上方において、メサ部91の上面に設けられる。本例では、複数のエミッタ領域12がX軸方向に配列されている。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、メサ部91を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。エミッタ領域12は、コンタクトホール54の下方にも設けられている。本例のエミッタ領域12は第1導電型である。エミッタ領域12は、一例としてN+型である。
コンタクト領域15は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のコンタクト領域15は、一例としてP++型である。コンタクト領域15は、メサ部91の上面に設けられる。コンタクト領域15は、エミッタ領域12と接して設けられている。コンタクト領域15は、メサ部91を挟んでX軸方向に延伸する2本のトレンチ部の一方から他方まで、Y軸方向に設けられてよい。コンタクト領域15は、ゲートトレンチ部40と接してよく、接しなくてもよい。本例のコンタクト領域15は、ダミートレンチ部30およびゲートトレンチ部40と接している。コンタクト領域15は、コンタクトホール54の下方にも設けられている。
図1Bは、図1Aにおけるa-a'断面の一例を示す図である。a-a'断面は、トランジスタ部70において、エミッタ領域12、ベース領域14およびコンタクト領域15を通過するYZ面である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21および層間絶縁膜38の上面に設けられる。
ドリフト領域18は、半導体基板10に設けられた第1導電型の領域である。本例のドリフト領域18は、一例としてN-型である。ドリフト領域18は、半導体基板10において他のドーピング領域が形成されずに残存した領域であってよい。即ち、ドリフト領域18のドーピング濃度は半導体基板10のドーピング濃度であってよい。
バッファ領域20は、ドリフト領域18の下方に設けられた第1導電型の領域である。本例のバッファ領域20は、一例としてN+型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、第2導電型のコレクタ領域22および第1導電型のカソード領域に到達することを防ぐフィールドストップ層として機能してよい。
コレクタ領域22は、トランジスタ部70において、半導体基板10の下面側に設けられる第2導電型の領域である。コレクタ領域22は、一例としてP+型である。本例のコレクタ領域22は、バッファ領域20の下方に設けられる。
コレクタ電極24は、半導体基板10の下面23に形成される。コレクタ電極24は、金属等の導電材料で形成される。
蓄積領域16は、メサ部91において、ドリフト領域18の上方に設けられる第1導電型の領域である。本例の蓄積領域16は、一例としてN+型である。本例の蓄積領域16は、ゲートトレンチ部40およびダミートレンチ部30に接して設けられる。蓄積領域16のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、トランジスタ部70のオン電圧を低減することができる。
ベース領域14は、メサ部91において、蓄積領域16の上方に設けられる第2導電型の領域である。ベース領域14は、ゲートトレンチ部40に接して設けられる。
エミッタ領域12は、メサ部91において、ベース領域14と上面21との間に設けられる。エミッタ領域12は、ゲートトレンチ部40と接して設けられる。エミッタ領域12は、ダミートレンチ部30に接してよく、接さなくてもよい。エミッタ領域12のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。エミッタ領域12のドーパントの一例はヒ素(As)である。
1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、上面21に設けられる。各トレンチ部は、上面21からドリフト領域18まで設けられる。エミッタ領域12、ベース領域14、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられる領域においては、各トレンチ部はこれらの領域も貫通して、ドリフト領域18に到達する。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
ゲートトレンチ部40は、ドリフト領域18の上方に設けられる。ゲートトレンチ部40は、半導体基板10の上面21に形成されたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。
ゲート絶縁膜42は、ゲートトレンチの内壁を覆って形成される。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。
ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に形成される。ゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。ゲートトレンチ部40は、上面21において層間絶縁膜38により覆われる。
ゲート導電部44は、半導体基板10の深さ方向において、ゲート絶縁膜42を挟んでメサ部91側で隣接するベース領域14と対向する領域を含む。ゲート導電部44に予め定められた電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に、電子の反転層であるチャネルが形成される。
ダミートレンチ部30は、ドリフト領域18の上方に設けられる。ダミートレンチ部30は、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、上面21側に形成されたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。
ダミー絶縁膜32は、ダミートレンチの内壁を覆って形成される。ダミー絶縁膜32は、ダミートレンチの内壁の半導体を酸化または窒化して形成してよい。
ダミー導電部34は、ダミートレンチの内部に形成され、且つ、ダミー絶縁膜32よりも内側に形成される。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミートレンチ部30は、上面21において層間絶縁膜38に覆われる。
層間絶縁膜38は、半導体基板10の上面の上方に設けられている。層間絶縁膜38は、エミッタ電極52と半導体基板10とを電気的に接続するための1又は複数のコンタクトホール54が設けられている。他のコンタクトホール49およびコンタクトホール54も同様に、層間絶縁膜38を貫通して設けられてよい。層間絶縁膜38の上方には、エミッタ電極52が設けられている。
図1Cは、図1Aにおけるb-b'断面の一例を示す図である。b-b'断面は、トランジスタ部70において、エミッタ領域12、ベース領域14およびコンタクト領域15を通過するXZ面である。
コンタクト領域15は、半導体基板10の上面21において、エミッタ領域12と交互に配列されている。コンタクト領域15は、エミッタ領域12よりも浅く設けられる。言い換えると、本例のコンタクト領域15の下端は、エミッタ領域12の下端よりも浅い。
ここで、コンタクト領域15がエミッタ領域12よりも浅く設けられる場合とは、深さ方向におけるコンタクト領域15のドーピング濃度分布において、エミッタ領域12の下端に対応する深さのドーピング濃度が、ベース領域14のドーピング濃度となる場合を指す。この場合、コンタクト領域15の下端が、エミッタ領域12の下端よりも浅いといえる。半導体装置100は、コンタクト領域15を浅く設けることにより、電流経路を確保しやすくなるので、IV特性を向上させることができる。例えば、エミッタ領域12の深さは、0.1μm以上、0.2μm以下である。
図2は、実施例1に係るメサ部91の拡大図の一例を示す。同図は、ダミートレンチ部30とゲートトレンチ部40との間のメサ部91を示している。
メサ幅Wmは、メサ部91のY軸方向の幅を示す。メサ部91は、IE効果を高めるために微細化されることが好ましい。本例のメサ幅Wmは、100nm以下である。本例の半導体装置100は、メサ幅Wmを狭くすることにより、ベース領域14全体が電導度変調し、チャネル領域以外のベース領域14を含むベース領域14全体で電流が流れる。また、半導体装置100が100nm以下のメサ幅を有する場合、電導度変調によりベース領域14の抵抗が低減され、半導体装置100のIV特性が向上する。
深さD1は、半導体基板10の上面21からのゲート導電部44の上端の深さを示す。このように、実際の半導体装置100では、半導体プロセスに起因して、ゲート導電部44の上端が上面21よりも深く形成される場合がある。
深さD2は、上面21からのコンタクト領域15の下端の深さを示す。深さD2は、深さD1よりも深いことが好ましい。即ち、コンタクト領域15は、少なくともゲート導電部44と対向して設けられることが好ましい。これにより、ゲート導電部44にマイナスゲートバイアスを与えた場合に、ゲート導電部44と対向するゲートトレンチ部40の周辺にホールの反転層が形成され、ベース領域14内のホールが引き抜かれやすくなる。これにより、半導体装置100のラッチアップが抑制される。
コンタクト領域15が浅くなるほど電流が流れやすくなり、IV特性が改善する。一方、コンタクト領域15を浅くし過ぎると、ゲート導電部44と対向するコンタクト領域15の領域が少なくなり、ベース領域14のホールが引き抜かれにくくなる場合がある。
本例の半導体装置100では、コンタクト領域15の下端は、ゲート導電部44の上端よりも深い。これにより、ゲート導電部44の上端の深さD1が深い場合であっても、半導体基板10の上面側において、コンタクト領域15と対向する領域を有するので、ゲート導電部44にマイナスゲートバイアスを与えた場合に、ベース領域14内のホールを引抜きしやすくなる。これにより、半導体装置100のラッチアップを抑制することができる。
以上の通り、本例の半導体装置100は、100nm以下のメサ幅Wmを有し、エミッタ領域12よりも浅く設けられたコンタクト領域15を有する。このように、メサ幅Wmとコンタクト領域15の深さを調整することにより、IV特性を改善し、且つ、ラッチアップを抑制することができる。
例えば、オン時において、半導体装置100は、100nm以下のメサ幅WmによるIE効果によって、ベース領域14を電導度変調することができる。これにより、半導体装置100のIV特性が向上する。特に、コンタクト領域15を浅く設けることにより、IV特性を向上する効果が得られやすくなる。
一方、オフ時において、半導体装置100は、100nm以下のメサ幅Wmを有するので、マイナスゲートバイアスを与えることにより、チャネル領域の全体をP型化することができる。これにより、半導体装置100は、オフ時に電流を遮断してラッチアップを抑制することができる。したがって、半導体装置100は、ゲート電圧駆動により、低オン抵抗で大電流を遮断することができる。
図3は、比較例に係る半導体装置500の構成を示す。半導体装置500は、100nm以下のメサ幅を有する場合、ホールの引抜きを改善し、ラッチアップを抑制するために、コンタクト領域515がエミッタ領域512よりも深く形成されている。しかしながら、エミッタ領域12よりも深いコンタクト領域515を有する場合、ベース領域14内に高濃度のP型領域が形成され、ベース領域14全体を伝導度変調することができない。そのため、半導体装置500は、ベース領域14の電導度変調が阻害され、電流経路が狭くなる。これにより、ベース領域14における電圧降下が大きくなり、IV特性が悪化する。
一方、半導体装置100は、100nm以下のメサ幅を有し、エミッタ領域12よりも浅いコンタクト領域15を有することにより、ベース領域14を電導度変調させ、ベース領域14の抵抗を低減してIV特性を向上することができる。また、半導体装置100は、マイナスゲートバイアスを与えることにより、ラッチアップ耐量の低下を抑制することができる。
図4Aは、実施例2に係る半導体装置100の構成の一例を示す。本例の半導体装置100は、キャリアパス層19を備える点で実施例1に係る半導体装置100と相違する。
キャリアパス層19は、メサ部91において、隣接するエミッタ領域12の間に設けられる。本例のキャリアパス層19は、コンタクト領域15と接続されている。キャリアパス層19は、隣接するエミッタ領域12の間の領域において、コンタクト領域15に挟まれた領域に設けられている。キャリアパス層19は、ベース領域14よりも高ドーピング濃度の第2導電型を有する。キャリアパス層19は、一例としてP++型である。キャリアパス層19は、コンタクト領域15と同一のドーピング濃度を有してよい。
本例のキャリアパス層19は、ベース領域14内において、コンタクト領域15とドリフト領域18とを接続する。よって、キャリアパス層19は、ベース領域14内の正孔をコンタクト領域15に引き抜くことができる。これにより、キャリアパス層19は、半導体装置100のラッチアップを抑制することができる。
図4Bは、図4Aにおけるc-c'断面の一例を示す図である。c-c'断面は、トランジスタ部70において、エミッタ領域12、ベース領域14およびキャリアパス層19を通過するYZ面である。
キャリアパス層19は、メサ部91の上面21から半導体基板10の深さ方向に延伸する。本例のキャリアパス層19は、蓄積領域16が設けられる深さと同一の深さまで延伸して設けられる。本例のキャリアパス層19は、メサ部91において、ダミートレンチ部30からゲートトレンチ部40まで延伸して設けられている。
図4Cは、図4Aにおけるd-d'断面の一例を示す図である。d-d'断面は、トランジスタ部70において、エミッタ領域12、ベース領域14、コンタクト領域15およびキャリアパス層19を通過するXZ面である。
間隔P12は、エミッタ領域12の上面21におけるX軸方向の間隔である。間隔P12は、エミッタ領域12のX軸方向の幅L12よりも大きいことが好ましい。一例において、間隔P12は、1.4μm以上、1.8μm以下である。本例の間隔P12は1.6μmである。また、幅L12は、0.2μm以上、0.6μm以下である。本例の幅L12は、0.4μmである。
幅W19は、キャリアパス層19の上面21におけるX軸方向の幅である。幅W19は、半導体装置100のIV特性と、ラッチアップ耐性とのトレードオフを考慮して設定される。具体的には、幅W19を小さくすることにより、半導体装置100のIV特性が向上しやすくなり、幅W19を大きくすることにより、半導体装置100のラッチアップ耐性が向上しやすくなる。一例において、幅W19は、0.4μm以上、1.2μm以下である。
キャリアパス層19は、メサ部91の上面21における、隣接するエミッタ領域12の間の領域において、予め定められた占有率を有する。本例のキャリアパス層19の占有率は、約33%である。キャリアパス層19の占有率は、隣接するエミッタ領域12の間の領域の面積に対する、キャリアパス層19の面積の比率で示される。エミッタ領域12およびキャリアパス層19がトレンチ部の間でY軸方向に延伸して設けられる場合、キャリアパス層19の占有率は、X軸方向の長さを用いてW19/P12で示される。例えば、キャリアパス層19の占有率は、25%以上、75%以下である。
深さD19は、半導体基板10の上面21を基準としたキャリアパス層19の下端の深さである。深さD19は、メサ部91の上面21における、キャリアパス層19とエミッタ領域12との間隔以上であることが好ましい。本例の深さD19は、0.8μmである。本例では、キャリアパス層19とエミッタ領域12との間隔は、(P12-W19)/2で示される。
キャリアパス層19は、メサ部91の上面において、隣接するエミッタ領域12の中心を少なくとも含む位置に設けられる。即ち、キャリアパス層19は、エミッタ領域12からP12/2離れた位置に少なくとも設けられる。この場合、キャリアパス層19は、隣接するエミッタ領域12の間の領域において、隣接するエミッタ領域12の中心に対して均等に設けられることが好ましい。
図5Aは、半導体装置のターンオフ波形の一例を示す。縦軸はコレクタエミッタ間電圧Vce(V)およびコレクタ電流Icの電流密度(A/cm)を示し、横軸は時間(sec)を示す。波形W1は実施例に対応し、波形W1'および波形W2'は比較例に対応する。
波形W1'は、キャリアパス層19を有さない半導体装置のターンオフ波形を示す。波形W1'では、ゲートエミッタ間電圧-Vge=0Vとしている。キャリアパス層19を有さない半導体装置において、-Vge=0Vの場合、ゲートトレンチ部40の周囲にホールの反転層が形成されないので、ベース領域14のホールを引き抜くことができない。そのため、ベース領域14の伝導度変調が解消されず、ベース領域14内にキャリアが残り、ラッチアップを抑制することができない。これにより、キャリアパス層19を有さない半導体装置では、-Vge=0Vにおいて、大電流を遮断することが出来ない。
波形W2'は、キャリアパス層19を有さない半導体装置のターンオフ波形を示す。波形W2'では、ゲートエミッタ間電圧-Vge=15Vとしている。キャリアパス層19を有さない場合であっても、ゲートエミッタ間電圧-Vge=15Vとすることにより、ラッチアップを抑制することができる。
波形W1は、キャリアパス層19を有する半導体装置100のターンオフ波形を示す。波形W1では、ゲートエミッタ間電圧-Vge=0Vとしている。半導体装置100は、キャリアパス層19を有することにより、ゲートエミッタ間電圧に依存することなく、ベース領域14のホールをキャリアパス層19から引き抜くことができる。これにより、半導体装置100は、-Vge=0Vの場合であってもラッチアップを抑制することができる。よって、半導体装置100は、100nm以下のメサ幅Wmを有する場合であっても、IV特性を改善しつつ、ラッチアップを抑制することができる。
図5Bは、図5Aのコレクタ電流Icの正孔電流および電子電流を示す。波形W1'、波形W2'、波形W1の各条件は、図5Aの場合と同じである。同図の波形は、コレクタ電流Icに加えて、コレクタ電流Icに含まれる電子電流および正孔電流について示している。コレクタ電流Icの波形は、図5Aの場合と同一である。
波形W1'では、半導体装置がキャリアパス層19を有さないので、ベース領域14のキャリアが引き抜かれておらず電導度変調したままである。したがって、波形W1'では、正孔電流に加えて電子電流が流れ続けている。このように、波形W1'では、ベース領域14の電導度変調が解消できず、電子のパスが残っていることにより、コレクタ電流Ic中の電子電流の割合が多くなる。
図5Cは、図5Aのコレクタ電流Icの正孔電流および電子電流の内訳を示す。同図は、コレクタ電流Icのピーク時の正孔電流および電子電流の内訳を示している。棒グラフは、波形W1'、波形W2'および波形W1に対応する電子電流密度(A/cm)を示している。棒グラフのうちハッチングされた領域は電子電流の割合を示し、ハッチングされていない領域は正孔電流の割合を示している。折れ線グラフは、波形W1'、波形W2'および波形W1に対応する電子電流の割合(%)を示している。
波形W1'を示すグラフでは、他の波形W2'および波形W1よりも電子電流の割合が大きい。例えば、波形W1'のように、キャリアパス層19を有さない場合、-Vge=0Vでは、電子電流がコレクタ電流Icの全電流の37%を占める。
一方、波形W1のように、キャリアパス層19を形成することにより、コレクタ電流Icの全電流に対する電子電流の割合をおよそ9%にまで低減することができる。これは、波形W2'のように、キャリアパス層19を有さない半導体装置において、-Vge=15Vでターンオフした場合と同等の水準となる。
このように、本例の半導体装置100は、キャリアパス層19を設けることにより、電子電流の流れを抑制することができる。したがって、半導体装置100は、-Vge=15Vでターンオフした場合と同等に、コレクタ電流Icに占める電子電流の割合を低減できる。
図6は、電子電流比率の-Vge依存性を示す。縦軸は電子電流比率(電子電流/全電流)(%)を示し、横軸は-Vge(V)を示す。-Vgeを大きくすることにより、コレクタ電流Icの全電流に占める電子電流の割合が大きくなる傾向にある。
キャリアパス層19を有する実施例では、キャリアパス層19を有さない比較例よりも、電子電流比率を小さくすることができる。特に、実施例に係る半導体装置100では、-Vgeによらず、電子電流比率を小さくすることができる。例えば、本例の半導体装置100は、-Vge>10Vとすることにより、ベース領域14内のキャリアを除去して電子電流を遮断することができる。
図7は、実施例3に係る半導体装置100の構成の一例を示す。同図は、図4Aにおけるd-d'断面の一例を示す図である。本例の半導体装置100は、キャリアパス層19を多段のイオン注入により形成している。本例では、4段のイオン注入により、キャリアパス層19を形成しているものの、イオン注入の回数は本例に限られない。
図8は、実施例4に係る半導体装置100の構成の一例を示す。本例の半導体装置100は、隣接するエミッタ領域12同士の間の全面にキャリアパス層19を設けている点で実施例2に係る半導体装置100と相違する。
キャリアパス層19の幅W19は、隣接するエミッタ領域12の間の全領域を占める。即ち、幅W19は、隣接するエミッタ領域12の間隔P12と等しい。この場合、キャリアパス層19の占有率が100%となる。本例の半導体装置100は、キャリアパス層19の占有率を高めることにより、コレクタ電流Icに占める電子電流の割合を更に低減することができる。これにより、ラッチアップが抑制される。
図9は、隣接するエミッタ領域12同士の間の領域を占めるキャリアパス層19の占有率を示す。キャリアパス層19の占有率が高くなると、電子の経路が制限されるので、半導体装置のIV特性が悪化する場合がある。半導体装置100は、IV特性が悪化しない程度に、キャリアパス層19の占有率を高めることが好ましい。例えば、キャリアパス層19の占有率は、25%以上であって、75%以下であってよい。
よって、キャリアパス層19の占有率を小さくすることにより、半導体装置100のIV特性が向上する。即ち、半導体装置100のIV特性の向上の観点からは、キャリアパス層19の占有率を小さくすることが好ましい。
一方、半導体装置100は、キャリアパス層19の占有率を増加させることにより、-Vgeに依存せずに、ベース領域14内のホールをキャリアパス層19により引き抜きやすくなる。キャリアパス層19の占有率を増加させることにより、-Vge=0の場合であっても、ラッチアップを抑制できる。即ち、半導体装置100のラッチアップ抑制の観点からは、キャリアパス層19の占有率を増加させることが好ましい。
このように、キャリアパス層19の占有率の設定において、ラッチアップの抑制とIV特性の改善にトレードオフの関係がある。したがって、半導体装置100の要求される特性に応じて、適宜キャリアパス層19の占有率を決定すればよい。
図10A、図10Bは、実施例5に係る半導体装置100の構成の一例を示す。図10Aは、図1Aにおけるa-a'断面の一例を示す図である。図10Bは、図1Aにおけるb-b'断面の一例を示す図である。
本例の半導体装置100は、蓄積領域16を設けていない点で実施例1に係る半導体装置100と相違する。
図10Cは、実施例5に係るメサ部91の拡大図の一例を示す。図10Cは、ダミートレンチ部30とゲートトレンチ部40との間のメサ部91を示している。
本例の半導体装置100のメサ部91のメサ幅Wmは100nm以下である。これにより、IE効果によってベース領域14を電導度変調することができ、半導体装置100のIV特性が向上する。
図11は、実施例6に係る半導体装置100の構成の一例を示す。図11は、図4Aにおけるd-d'断面の一例を示す図である。
本例の半導体装置100は、蓄積領域16を設けていない点で実施例2に係る半導体装置100と相違する。
キャリアパス層19は、メサ部91の上面21から半導体基板10の深さ方向に延伸する。本例のキャリアパス層19は、ベース領域14の深さと同一の深さまで延伸して設けられる。本例のキャリアパス層19は、メサ部91において、ダミートレンチ部30からゲートトレンチ部40まで延伸して設けられている。
なお、半導体基板10の上面21を基準としたキャリアパス層19の下端の深さD19は、メサ部91の上面21における、キャリアパス層19とエミッタ領域12との間隔以上であることが好ましい。本例では、キャリアパス層19とエミッタ領域12との間隔は、(P12-W19)/2で示される。
本例のキャリアパス層19は、ベース領域14内において、コンタクト領域15とドリフト領域18とを接続する。よって、キャリアパス層19は、ベース領域14内の正孔をコンタクト領域15に引き抜くことができる。これにより、キャリアパス層19は、半導体装置100のラッチアップを抑制することができる。
図12は、実施例7に係る半導体装置100の構成の一例を示す。図12は、図4Aにおけるd-d'断面の一例を示す図である。
本例の半導体装置100は、蓄積領域16を設けていない点で実施例3に係る半導体装置100と相違する。本例の半導体装置100は、キャリアパス層19を多段のイオン注入により形成している。本例では、4段のイオン注入により、キャリアパス層19を形成しているものの、イオン注入の回数は本例に限られない。
図13は、実施例8に係る半導体装置100の構成の一例を示す。図13には、図4Aにおけるd-d'断面の一例を示す図である。
本例の半導体装置100は、蓄積領域16を設けていない点で実施例4に係る半導体装置100と相違する。
キャリアパス層19の幅W19は、隣接するエミッタ領域12の間の全領域を占める。即ち、幅W19は、隣接するエミッタ領域12の間隔P12と等しい。この場合、キャリアパス層19の占有率が100%となる。本例の半導体装置100は、キャリアパス層19の占有率を高めることにより、コレクタ電流Icに占める電子電流の割合を更に低減することができる。これにより、ラッチアップが抑制される。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、11・・・ウェル領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、18・・・ドリフト領域、19・・・キャリアパス層、20・・・バッファ領域、21・・・上面、22・・・コレクタ領域、23・・・下面、24・・・コレクタ電極、25・・・接続部、30・・・ダミートレンチ部、31・・・延伸部分、32・・・ダミー絶縁膜、33・・・接続部分、34・・・ダミー導電部、38・・・層間絶縁膜、40・・・ゲートトレンチ部、41・・・延伸部分、42・・・ゲート絶縁膜、43・・・接続部分、44・・・ゲート導電部、48・・・ゲートランナー、49・・・コンタクトホール、50・・・ゲート金属層、52・・・エミッタ電極、54・・・コンタクトホール、56・・・コンタクトホール、70・・・トランジスタ部、91・・・メサ部、100・・・半導体装置、500・・・半導体装置、515・・・コンタクト領域、512・・・エミッタ領域

Claims (8)

  1. 半導体基板に設けられた第1導電型のドリフト領域と、
    前記半導体基板の上面側において、前記ドリフト領域の上方に設けられた複数のトレンチ部と、
    前記半導体基板において、前記複数のトレンチ部に挟まれたメサ部に設けられた第2導電型のベース領域と、
    前記メサ部の上面において、前記ベース領域の上方に設けられた第1導電型のエミッタ領域と、
    前記メサ部の上面において、前記エミッタ領域と隣接して設けられ、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域と
    前記メサ部の上面に配列された複数の前記エミッタ領域と、
    隣接する前記エミッタ領域の間において前記メサ部の上面から前記半導体基板の深さ方向に延伸し、前記ベース領域よりも高ドーピング濃度である第2導電型のキャリアパス層と
    を備え、
    前記メサ部のメサ幅が100nm以下であり、
    前記コンタクト領域の下端は、前記エミッタ領域の下端よりも浅く、
    前記半導体基板の上面において、前記コンタクト領域と前記キャリアパス層とが直接接触し
    前記キャリアパス層は、前記コンタクト領域と同一のドーピング濃度を有する
    半導体装置。
  2. 半導体基板に設けられた第1導電型のドリフト領域と、
    前記半導体基板の上面側において、前記ドリフト領域の上方に設けられた複数のトレンチ部と、
    前記半導体基板において、前記複数のトレンチ部に挟まれたメサ部に設けられた第2導電型のベース領域と、
    前記メサ部の上面において、前記ベース領域の上方に設けられた第1導電型のエミッタ領域と、
    前記メサ部の上面において、前記エミッタ領域と隣接して設けられ、前記ベース領域よりも高ドーピング濃度である第2導電型のコンタクト領域と
    前記メサ部の上面に配列された複数の前記エミッタ領域と、
    隣接する前記エミッタ領域の間において前記メサ部の上面から前記半導体基板の深さ方向に延伸し、前記ベース領域よりも高ドーピング濃度である第2導電型のキャリアパス層と
    を備え、
    前記メサ部のメサ幅が100nm以下であり、
    前記コンタクト領域の下端は、前記エミッタ領域の下端よりも浅く、
    前記キャリアパス層は、前記メサ部の上面における、隣接する前記エミッタ領域の間の領域において、25%以上、75%以下の領域を占める
    半導体装置。
  3. 前記複数のトレンチ部は、ゲート導電部を有し、
    前記コンタクト領域の下端は、前記ゲート導電部の上端よりも深い
    請求項1又は2に記載の半導体装置。
  4. 前記キャリアパス層は、前記コンタクト領域と同一のドーピング濃度を有する
    請求項に記載の半導体装置。
  5. 前記キャリアパス層の下端の深さは、前記メサ部の上面における前記キャリアパス層と前記エミッタ領域との間隔以上である
    請求項1から4のいずれか一項に記載の半導体装置。
  6. 前記キャリアパス層は、前記メサ部の上面において、隣接する前記エミッタ領域の中心を少なくとも含む位置に設けられる
    請求項1から5のいずれか一項に記載の半導体装置。
  7. 前記キャリアパス層は、前記メサ部の上面における、隣接する前記エミッタ領域の間の領域において、25%以上、75%以下の領域を占める
    請求項1に記載の半導体装置。
  8. 前記ドリフト領域の上方に設けられ、前記ドリフト領域よりも高ドーピング濃度である第1導電型の蓄積領域をさらに備え、
    前記キャリアパス層は、前記蓄積領域を貫通し、前記ドリフト領域に直接接触している
    請求項1から7のいずれか一項に記載の半導体装置。
JP2018072792A 2018-04-04 2018-04-04 半導体装置 Active JP7222180B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018072792A JP7222180B2 (ja) 2018-04-04 2018-04-04 半導体装置
US16/281,031 US10916628B2 (en) 2018-04-04 2019-02-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072792A JP7222180B2 (ja) 2018-04-04 2018-04-04 半導体装置

Publications (2)

Publication Number Publication Date
JP2019186312A JP2019186312A (ja) 2019-10-24
JP7222180B2 true JP7222180B2 (ja) 2023-02-15

Family

ID=68096111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072792A Active JP7222180B2 (ja) 2018-04-04 2018-04-04 半導体装置

Country Status (2)

Country Link
US (1) US10916628B2 (ja)
JP (1) JP7222180B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797405A (zh) * 2019-10-22 2020-02-14 上海睿驱微电子科技有限公司 一种沟槽栅igbt半导体器件及其制备方法
JP7442932B2 (ja) * 2020-03-09 2024-03-05 三菱電機株式会社 半導体装置
JP7528687B2 (ja) * 2020-09-30 2024-08-06 三菱電機株式会社 半導体装置
JP2022165840A (ja) 2021-04-20 2022-11-01 富士電機株式会社 解析装置、解析方法およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175062A (ja) 2003-12-09 2005-06-30 Toyota Central Res & Dev Lab Inc 半導体装置とラッチアップ現象の抑制方法
JP2007043123A (ja) 2005-07-01 2007-02-15 Toshiba Corp 半導体装置
JP2010283128A (ja) 2009-06-04 2010-12-16 Mitsubishi Electric Corp 電力用半導体装置
JP2011066121A5 (ja) 2009-09-16 2012-01-12
JP2012059873A (ja) 2010-09-08 2012-03-22 Renesas Electronics Corp 半導体装置
JP2017168829A (ja) 2016-03-11 2017-09-21 富士電機株式会社 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066708A (ja) * 2006-08-09 2008-03-21 Toshiba Corp 半導体装置
JP5369300B2 (ja) * 2009-09-16 2013-12-18 三菱電機株式会社 半導体装置およびその製造方法
JP5136674B2 (ja) * 2010-07-12 2013-02-06 株式会社デンソー 半導体装置およびその製造方法
DE112012007249B4 (de) * 2012-12-20 2021-02-04 Denso Corporation Halbleitervorrichtung
JP6641983B2 (ja) * 2015-01-16 2020-02-05 株式会社デンソー 半導体装置
US10205012B2 (en) * 2016-03-11 2019-02-12 Fuji Electric Co., Ltd. Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175062A (ja) 2003-12-09 2005-06-30 Toyota Central Res & Dev Lab Inc 半導体装置とラッチアップ現象の抑制方法
JP2007043123A (ja) 2005-07-01 2007-02-15 Toshiba Corp 半導体装置
JP2010283128A (ja) 2009-06-04 2010-12-16 Mitsubishi Electric Corp 電力用半導体装置
JP2011066121A5 (ja) 2009-09-16 2012-01-12
JP2012059873A (ja) 2010-09-08 2012-03-22 Renesas Electronics Corp 半導体装置
JP2017168829A (ja) 2016-03-11 2017-09-21 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
US10916628B2 (en) 2021-02-09
US20190312105A1 (en) 2019-10-10
JP2019186312A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6451869B2 (ja) 半導体装置
WO2017155122A1 (ja) 半導体装置
JP2024073632A (ja) 半導体装置
WO2018220879A1 (ja) 半導体装置
US11195941B2 (en) Semiconductor device
JP7435672B2 (ja) 半導体装置
JP7222180B2 (ja) 半導体装置
JP6708269B2 (ja) 半導体装置
US10741547B2 (en) Semiconductor device
JP7230969B2 (ja) 半導体装置
JP5480084B2 (ja) 半導体装置
TW201611275A (zh) 半導體裝置
US10297660B2 (en) Semiconductor device
US10600867B2 (en) Semiconductor device having an emitter region and a contact region inside a mesa portion
JP7327672B2 (ja) 半導体装置
US10651302B2 (en) Semiconductor device
JP7325931B2 (ja) 半導体装置
JP7115000B2 (ja) 半導体装置
US10411099B2 (en) Semiconductor device for reduced on-state resistance
JP6658955B2 (ja) 半導体装置
JP2016149429A (ja) 逆導通igbt
JP2005150348A (ja) 半導体装置
WO2023127253A1 (ja) 半導体装置
JP7264263B2 (ja) 半導体装置
WO2022264697A1 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221024

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7222180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150