JP7028040B2 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP7028040B2
JP7028040B2 JP2018078460A JP2018078460A JP7028040B2 JP 7028040 B2 JP7028040 B2 JP 7028040B2 JP 2018078460 A JP2018078460 A JP 2018078460A JP 2018078460 A JP2018078460 A JP 2018078460A JP 7028040 B2 JP7028040 B2 JP 7028040B2
Authority
JP
Japan
Prior art keywords
vehicle
engine
driving
satisfied
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078460A
Other languages
English (en)
Other versions
JP2019182335A (ja
Inventor
啓介 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018078460A priority Critical patent/JP7028040B2/ja
Priority to US16/364,406 priority patent/US11235752B2/en
Priority to CN201910284322.6A priority patent/CN110386127A/zh
Publication of JP2019182335A publication Critical patent/JP2019182335A/ja
Application granted granted Critical
Publication of JP7028040B2 publication Critical patent/JP7028040B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、車両用制御装置に関し、詳しくは、エンジンとモータと蓄電装置とを備えるハイブリッド車両に搭載される車両用制御装置に関する。
従来、この種の車両用制御装置としては、エンジンおよびモータと、モータと電力をやりとりするバッテリと、を備えるハイブリッド車両に搭載され、要求駆動力が始動閾値を超えたときに、モータの動力で走行するEVモードからエンジンおよびモータの動力で走行するHVモードに切り替える車両用制御装置において、自動運転時の要求駆動力の変動を示すプロファイルを生成し、生成したプロファイルを用いてエンジンおよびモータを制御するものが提案されている(例えば、特許文献1参照)。この車両用制御装置では、生成したプロファイルの要求駆動力に始動閾値を超える箇所が存在し且つ加速度が下限加速度を下回らない範囲で要求駆動力を変更できるときには、プロファイルを再生成する。これにより、要求駆動力が始動閾値を超える回数、即ち、エンジンの始動回数を減らしている。
特開2017-190041号公報
上述の車両用制御装置では、自動運転を行なう際に、自車の前方や後方に他車がいるか否かを考慮していないことから、自動運転を自車周辺の事情に十分に適したものとなっていない可能性があり、改善の余地がある。
本発明の車両用制御装置は、自動運転を自車周辺の事情を踏まえたより適切なものとすることを主目的とする。
本発明の車両用制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明の第1の車両用制御装置は、
エンジンおよびモータと、前記モータと電力をやりとりする蓄電装置と、を備えるハイブリッド車両に搭載され、前記エンジンの運転を伴わずに走行する電動走行と前記エンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するように前記エンジンおよび前記モータを制御する車両用制御装置であって、
運転者の加減速操作によらずに走行する自動運転モードで且つ前記電動走行のときにおいて、
自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、前記電動走行を維持し、
前記他車条件が成立しているときには、前記ハイブリッド走行への移行を許容する、
ことを要旨とする。
この本発明の第1の車両用制御装置では、エンジンの運転を伴わずに走行する電動走行とエンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するようにエンジンおよびモータを制御する。そして、運転者の加減速操作によらずに走行する自動運転モードで且つ電動走行のときにおいて、自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、電動走行を維持し、他車条件が成立しているときには、ハイブリッド走行への移行を許容する。ここで、「所定距離」は、自動運転モードのときに他車の走行(例えば、車間距離など)を考慮する必要があるか否かの境界距離を意味する。自動運転モードで且つ電動走行のときにおいて、他車条件が成立していないときには、電動走行を維持することにより、燃費の向上を図ることができ、他車条件が成立しているときには、ハイブリッド走行への移行を許容することにより、他車の走行に合わせて(車間距離などを適切に)走行することができる。これらの結果、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
本発明の第1の車両用制御装置において、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、目標車速から車速を減じた値が閾値よりも大きいときには、前記ハイブリッド走行への移行を許容するものとしてもよい。こうすれば、加速性を向上させて、目標車速により迅速に(短時間で)近づけることができる。
本発明の第1の車両用制御装置において、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、前記エンジンの暖機または前記エンジンの排気系に取り付けられた触媒の暖機が要求されているときには、前記ハイブリッド走行に移行させるものとしてもよい。こうすれば、エンジンの暖機や触媒の暖機を行なうことができる。この場合、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立しておらずに且つ前記エンジンの暖機または前記触媒の暖機が要求されており且つ目標車速から車速を減じた値が閾値よりも大きいときに、前記ハイブリッド走行に移行させるものとしてもよい。
本発明の第1の車両用制御装置において、前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、前記他車条件が成立していないときには、前記ハイブリッド走行を維持し、前記他車条件が成立しているときには、前記電動走行への移行を許容するものとしてもよい。こうすれば、他車条件が成立していないときには、エンジンの始動と停止とが頻繁に行なわれるのを抑制することができ、他車条件が成立しているときには、他車の走行に合わせて(車間距離などを適切に)走行することができる。この場合、前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、前記他車条件が成立しておらずに且つ目標車速から車速を減じた値が閾値よりも大きいときには、前記ハイブリッド走行を維持し、前記他車条件が成立しているときおよび前記目標車速から車速を減じた値が前記閾値以下のときには、前記電動走行への移行を許容するものとしてもよい。
本発明の第2の車両用制御装置は、
エンジンおよびモータと、前記モータと電力をやりとりする蓄電装置と、を備えるハイブリッド車両に搭載され、前記エンジンの運転を伴わずに走行する電動走行と前記エンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するように前記エンジンおよび前記モータを制御し、更に、前記電動走行で且つ走行出力に関連するパラメータが前記エンジンの始動閾値以上になったときには前記エンジンを始動して前記ハイブリッド走行に移行する車両用制御装置であって、
運転者の加減速操作によらずに走行する自動運転モードで且つ前記電動走行のときにおいて、
自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、前記パラメータを前記始動閾値未満の範囲内に制限し、
前記他車条件が成立しているときには、前記パラメータを前記始動閾値未満の範囲内に制限しない、
ことを要旨とする。
この本発明の第2の車両用制御装置では、エンジンの運転を伴わずに走行する電動走行とエンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するようにエンジンおよびモータを制御し、更に、電動走行で且つ走行出力に関連するパラメータがエンジンの始動閾値以上になったときにはエンジンを始動してハイブリッド走行に移行する。そして、運転者の加減速操作によらずに走行する自動運転モードで且つ電動走行のときにおいて、自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、パラメータを始動閾値未満の範囲内に制限し、他車条件が成立しているときには、パラメータを前記始動閾値未満の範囲内に制限しない。ここで、「所定距離」は、自動運転モードのときに他車の走行(例えば、車間距離など)を考慮する必要があるか否かの境界距離を意味する。また、「走行出力に関連するパラメータ」としては、例えば、走行用の要求出力(要求トルクや要求パワー)や車速、加速度などを挙げることができる。自動運転モードで且つ電動走行のときにおいて、他車条件が成立していないときには、パラメータを始動閾値未満の範囲内に制限する、即ち、電動走行を維持することにより、燃費の向上を図ることができ、他車条件が成立しているときには、パラメータを始動閾値未満の範囲内に制限しない、即ち、ハイブリッド走行への移行を許容することにより、他車の走行に合わせて(車間距離などを適切に)走行することができる。これらの結果、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
本発明の第2の車両用制御装置において、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、目標車速から車速を減じた値が閾値よりも大きいときには、前記パラメータを前記始動閾値未満の範囲内に制限しない、ものとしてもよい。こうすれば、加速性を向上させて、目標車速により迅速に(短時間で)近づけることができる。
本発明の第2の車両用制御装置において、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、前記エンジンの暖機または前記エンジンの排気系に取り付けられた触媒の暖機が要求されているときには、前記パラメータを前記始動閾値以上にするものとしてもよい。こうすれば、ハイブリッド走行に移行させて、エンジンの暖機や触媒の暖機を行なうことができる。この場合、前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立しておらずに且つ前記エンジンの暖機または前記触媒の暖機が要求されており且つ目標車速から車速を減じた値が閾値よりも大きいときに、前記パラメータを前記始動閾値以上にするものとしてもよい。
本発明の第2の車両用制御装置において、前記ハイブリッド走行で且つ前記パラメータが前記始動閾値以下の前記エンジンの停止閾値未満になったときには、前記エンジンの運転を停止して前記電動走行に移行し、更に、前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、前記他車条件が成立していないときには、前記パラメータを前記停止閾値以上の範囲内に制限し、前記他車条件が成立しているときには、前記パラメータを前記停止閾値以上の範囲内に制限しないものとしてもよい。こうすれば、他車条件が成立していないときには、ハイブリッド走行を維持して、エンジンの始動と停止とが頻繁に行なわれるのを抑制することができ、他車条件が成立しているときには、電動走行への移行を許容して、他車の走行に合わせて(車間距離などを適切に)走行することができる。この場合、前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、前記他車条件が成立しておらずに且つ目標車速から車速を減じた値が閾値よりも大きいときには、前記パラメータを前記停止閾値以上の範囲内に制限し、前記他車条件が成立しているときおよび、前記目標車速から車速を減じた値が前記閾値以下のときには、前記パラメータを前記停止閾値以上の範囲内に制限しないものとしてもよい。
本発明の第3の車両用制御装置は、
エンジンおよびモータと、前記モータと電力をやりとりする蓄電装置と、を備えるハイブリッド車両に搭載され、前記エンジンの運転を伴わずに走行する電動走行と前記エンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するように前記エンジンおよび前記モータを制御する車両用制御装置であって、
運転者の加減速操作によらずに走行出力を制御する自動運転モードで前記エンジンを始動する際において、
自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立しているときには、始動ショックの低減よりもレスポンスを優先して前記エンジンを始動する第1始動制御を実行し、
前記他車条件が成立していないときには、レスポンスよりも始動ショックの低減を優先して前記エンジンを始動する第2始動制御を実行する、
ことを要旨とする。
この本発明の第3の車両用制御装置では、エンジンの運転を伴わずに走行する電動走行とエンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するようにエンジンおよびモータを制御する。そして、運転者の加減速操作によらずに走行出力を制御する自動運転モードでエンジンを始動する際において、自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立しているときには、始動ショックの低減よりもレスポンスを優先してエンジンを始動する第1始動制御を実行し、他車条件が成立していないときには、レスポンスよりも始動ショックの低減を優先してエンジンを始動する第2始動制御を実行する。ここで、「所定距離」は、自動運転モードのときに他車の走行(例えば、車間距離など)を考慮する必要があるか否かの境界距離を意味する。自動運転モードでエンジンを始動する際に、他車条件が成立しているときには、第1始動制御を実行し、他車条件が成立していないときには、第2始動制御を実行することにより、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
こうした本発明の第3の車両用制御装置において、前記第2始動制御は、前記第1始動制御に比して、前記モータにより前記エンジンをクランキングする際のクランキングトルクを小さくする制御であるものとしてもよい。また、前記第2始動制御は、前記第1始動制御に比して、前記モータにより前記エンジンをクランキングする際のスロットル開度を小さくする制御であるものとしてもよい。さらに、前記第2始動制御は、前記第1始動制御に比して、前記エンジンの点火時期を遅くする制御であるものとしてもよい。これらのようにすれば、他車条件が成立していないときに、より適切に、レスポンスよりも始動ショックの低減を優先することができる。
本発明の第1実施例としての車両用制御装置を備えるハイブリッド自動車20の構成の概略を示す構成図である。 エンジン22の構成の概略を示す構成図である。 HVECU70により実行される要求トルク設定ルーチンの一例を示すフローチャートである。 変形例の要求トルク設定ルーチンの一例を示すフローチャートである。 変形例の要求トルク設定ルーチンの一例を示すフローチャートである。 HVECU70により実行される始動制御ルーチンの一例を示すフローチャートである。 変形例のハイブリッド自動車220の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の第1実施例としての車両用制御装置を備えるハイブリッド自動車20の構成の概略を示す構成図であり、図2は、エンジン22の構成の概略を示す構成図である。第1実施例のハイブリッド自動車20は、図1に示すように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、蓄電装置としてのバッテリ50と、ナビゲーション装置60と、ハイブリッド用電子制御ユニット(以下、「HVECU」という)70と、を備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されており、ダンパ28を介してプラネタリギヤ30のキャリヤに接続されている。このエンジン22は、図2に示すように、エアクリーナ122により清浄された空気を吸気管125に設けられたスロットルバルブ124を介して吸入すると共に燃料噴射弁126から燃料を噴射し、空気と燃料とを混合する。そして、この混合気を吸気バルブ128aを介して燃焼室129に吸入し、点火プラグ130による電気火花によって爆発燃焼させて、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。燃焼室129から排気バルブ128bを介して排気管133に排出される排気は、一酸化炭素(CO)や炭化水素(HC)、窒素酸化物(NOx)の有害成分を浄化する触媒(三元触媒)134aを有する浄化装置134を介して外気に排出される。
このエンジン22は、エンジン用電子制御ユニット(以下、「エンジンECU」という)24により運転制御されている。エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM、入出力ポート、通信ポートを備える。エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。エンジンECU24に入力される信号としては、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランク角θcrや、エンジン22の冷却水の温度を検出する水温センサ142からの冷却水温Twを挙げることができる。また、吸気バルブ128aを開閉するインテークカムシャフトの回転位置や排気バルブ128bを開閉するエキゾーストカムシャフトの回転位置を検出するカムポジションセンサ144からのカム角θci,θcoも挙げることができる。さらに、スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットル開度THや、吸気管125に取り付けられたエアフローメータ148からの吸入空気量Qa、吸気管125に取り付けられた温度センサ149からの吸気温Taも挙げることができる。加えて、排気管133における浄化装置134の上流側に取り付けられた空燃比センサ135aからの空燃比AFや、浄化装置134の下流側に取り付けられた酸素センサ135bからの酸素信号O2も挙げることができる。エンジンECU24からは、エンジン22を運転制御するための各種制御信号が出力ポートを介して出力されている。エンジンECU24から出力される信号としては、例えば、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動制御信号や、燃料噴射弁126への駆動制御信号、点火プラグ130への駆動制御信号、吸気バルブ128aの開閉タイミングを変更可能な可変バルブタイミング機構150への駆動制御信号を挙げることができる。エンジンECU24は、HVECU70と通信ポートを介して接続されている。エンジンECU24は、クランクポジションセンサ140からのクランク角θcrに基づいてエンジン22の回転数Neを演算している。また、エンジンECU24は、クランクポジションセンサ140からのクランク角θcrに対する、カムポジションセンサ144からのインテークカムシャフトのカム角θciの角度(θci-θcr)に基づいて、吸気バルブ128aの開閉タイミングVTを演算している。さらに、エンジンECU24は、水温センサ142からの冷却水温Twに基づいて浄化装置134の触媒134aの温度(触媒温度)Tcを推定している。
図1に示すように、プラネタリギヤ30は、シングルピニオン式の遊星歯車機構として構成されている。プラネタリギヤ30のサンギヤには、モータMG1の回転子が接続されている。プラネタリギヤ30のリングギヤには、駆動輪39a,39bにデファレンシャルギヤ38を介して連結された駆動軸36が接続されている。プラネタリギヤ30のキャリヤには、上述したように、ダンパ28を介してエンジン22のクランクシャフト26が接続されている。
モータMG1は、例えば同期発電電動機として構成されており、上述したように、回転子がプラネタリギヤ30のサンギヤに接続されている。モータMG2は、例えば同期発電電動機として構成されており、回転子が駆動軸36に接続されている。インバータ41,42は、モータMG1,MG2の駆動に用いられると共に電力ライン54を介してバッテリ50に接続されている。電力ライン54には、平滑用のコンデンサ57が取り付けられている。モータMG1,MG2は、モータ用電子制御ユニット(以下、「モータECU」という)40によって、インバータ41,42の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM、入出力ポート、通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。モータECU40に入力される信号としては、例えば、モータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2や、モータMG1,MG2の各相に流れる電流を検出する電流センサ45u,45v,46u,46vからの相電流Iu1,Iv1,Iu2,Iv2を挙げることができる。モータECU40からは、インバータ41,42の複数のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。モータECU40は、HVECU70と通信ポートを介して接続されている。モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の電気角θe1,θe2や角速度ωm1,ωm2,回転数Nm1,Nm2を演算している。
バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、電力ライン54に接続されている。このバッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52により管理されている。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM、入出力ポート、通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な各種センサからの信号が入力ポートを介して入力されている。バッテリECU52に入力される信号としては、例えば、バッテリ50の端子間に取り付けられた電圧センサ51aからのバッテリ50の電圧Vbや、バッテリ50の出力端子に取り付けられた電流センサ51bからのバッテリ50の電流Ib、バッテリ50に取り付けられた温度センサ51cからのバッテリ50の温度Tbを挙げることができる。バッテリECU52は、HVECU70と通信ポートを介して接続されている。バッテリECU52は、電流センサ51bからのバッテリ50の電流Ibの積算値に基づいて蓄電割合SOCを演算したり、演算した蓄電割合SOCと温度センサ51cからのバッテリ50の温度Tbとに基づいて入出力制限Win,Woutを演算したりしている。蓄電割合SOCは、バッテリ50の全容量に対するバッテリ50から放電可能な電力の容量の割合であり、入出力制限Win,Woutは、バッテリ50を充放電してもよい許容充放電電力である。
ナビゲーション装置60は、地図情報などが記憶されたハードディスクなどの記憶媒体や入出力ポート、通信ポートを有する制御部が内蔵された本体62と、自車の現在地に関する情報を受信するGPSアンテナ64と、自車の現在地に関する情報や目的地までの走行予定ルートなどの各種情報を表示すると共にユーザが各種指示を入力可能なタッチパネル式のディスプレイ66と、を備える。ここで、地図情報には、サービス情報(例えば、観光情報や駐車場など)や各走行区間(例えば、信号機間や交差点間など)の道路情報などがデータベースとして記憶されている。道路情報には、距離情報や、幅員情報、車線数情報、地域情報(市街地や郊外)、種別情報(一般道路や高速道路)、勾配情報、法定速度、信号機の数などが含まれる。ナビゲーション装置60は、HVECU70と通信ポートを介して接続されている。
このナビゲーション装置60の本体62は、ユーザによるディスプレイ66の操作により目的地が設定されると、本体62に記憶された地図情報とGPSアンテナ64からの自車の現在地と目的地とに基づいて自車の現在地から目的地までの走行予定ルートを設定し、設定した走行予定ルートをディスプレイ66に表示してルート案内を行なう。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM、入出力ポート、通信ポートを備える。HVECU70には、各種センサからの信号が入力ポートを介して入力されている。HVECU70に入力される信号としては、例えば、イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。また、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP、車速センサ88からの車速V、加速度センサ89からの加速度αも挙げることができる。さらに、周辺認識装置90からの自車の前方や後方の他車との車間距離D1,D2、自動運転モードを指示する自動運転スイッチ92からのスイッチ信号も挙げることができる。ここで、周辺認識装置90は、カメラやミリ波レーダー、準ミリ波レーダー、赤外線レーザーレーダ、ソナーなどにより構成される。HVECU70は、上述したように、エンジンECU24やモータECU40、バッテリECU52と通信ポートを介して接続されている。なお、第1実施例では、目的地(走行予定ルート)が設定されているときには、自動運転スイッチ92のオン操作を許諾し、目的地が設定されていないときには、自動運転スイッチ92のオン操作を拒否するものとした。
第1実施例の「車両用制御装置」としては、エンジンECU24とモータECU40とHVECU70とが該当する。
こうして構成された第1実施例のハイブリッド自動車20に搭載される車両制御装置では、HVECU70とエンジンECU24とモータECU40との協調制御により、エンジン22の運転を伴わずに走行する電動走行(EV走行)と、エンジン22の運転を伴って走行するハイブリッド走行(HV走行)と、を切り替えて走行するようにエンジン22とモータMG1,MG2とを制御する。以下、通常運転モード(自動運転スイッチ92がオフ)でのEV走行やHV走行、自動運転モード(自動運転スイッチ92がオン)でのEV走行やHV走行について説明する。
通常運転モードでのEV走行では、HVECU70は、最初に、アクセルペダルポジションセンサ84からのアクセル開度Accと車速センサ88からの車速Vとに基づいて走行に要求される(駆動軸36に要求される)要求トルクTd*を設定し、設定した要求トルクTd*に駆動軸36の回転数を乗じて走行に要求される(駆動軸36に要求される)要求パワーPd*を設定する。駆動軸36の回転数としては、モータECU40から通信により入力されるモータMG2の回転数Nm2が用いられる。続いて、モータMG1のトルク指令Tm1*に値0を設定すると共にバッテリ50から通信により入力されるバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTd*(要求パワーPd*)が駆動軸36に出力されるようにモータMG2のトルク指令Tm2*を設定する。そして、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。モータECU40は、モータMG1,MG2のトルク指令Tm1*,Tm2*を受信すると、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42の複数のスイッチング素子のスイッチング制御を行なう。このEV走行中に要求トルクTd*が始動閾値Tst以上に至ると、エンジン22の始動条件が成立したと判断し、エンジン22を始動してHV走行に移行する。
ここで、エンジン22の始動は、バッテリ50の入出力制限Win,Woutの範囲内で、モータMG1からクランキングトルクTcrを出力してエンジン22をクランキングすると共に要求トルクTd*とキャンセルトルクTcnとの和のトルクをモータMG2から出力し、エンジン22の回転数Neが閾値Nst以上に至ったときにエンジン22の燃料噴射制御や点火制御を開始する、ことにより行なわれる。ここで、キャンセルトルクTcnは、モータMG1からのクランキングトルクTcrの出力によりプラネタリギヤ30を介して駆動軸36に作用するトルクをキャンセルするためのトルクである。また、閾値Nstとしては、600rpmや700rpm、800rpmなどが用いられる。
また、始動閾値Tstとしては、パワーP1を駆動軸36の回転数(モータMG2の回転数Nm2)で除して得られるトルクT1と、トルクT2と、のうちの小さい方が用いられる。パワーP1は、要求パワーPd*とエンジン22を始動するのに要する始動用パワーとの和がバッテリ50の入出力制限Win,Woutの範囲内に収まると想定される比較的大きいパワーとして定められる。このパワーP1としては、固定値が用いられるものとしてもよいし、駆動軸36の回転数が大きいときには小さいときに比して小さくなるように、具体的には、駆動軸36の回転数が大きいほど小さくなるように定められた値が用いられるものとしてもよい。後者は、駆動軸36の回転数が大きいほどモータMG1の回転数Nm1が負側に大きくなり、エンジン22を始動する際のモータMG1の消費電力が小さくなることを考慮したものである。トルクT2は、要求トルクTd*とエンジン22を始動する際のキャンセルトルクTcnとの和がモータMG2の定格トルクの範囲内に収まると想定される比較的大きいトルクとして定められる。このトルクTstとしては、固定値が用いられるものとしてもよいし、駆動軸36の回転数が大きいときには小さいときに比して小さくなるように、具体的には、駆動軸36の回転数が大きいほど小さくなるように定められた値が用いられるものとしてもよい。後者は、駆動軸36の回転数(モータMG2の回転数Nm2)が大きいほどモータMG2の定格トルクが小さくなることを考慮したものである。なお、トルクT2を考慮せずにトルクT1を始動閾値Tstとして用いるものとしてもよいし、トルクT1を考慮せずにトルクT2を始動閾値Tstとして用いるものとしてもよい。
通常運転モードでのHV走行では、HVECU70は、最初に、通常運転モードでのEV走行と同様に、要求トルクTd*および要求パワーPd*を設定する。続いて、要求パワーPd*からバッテリ50の蓄電割合SOCに基づく充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じて車両に要求される(エンジン22に要求される)要求パワーPe*を設定する。そして、要求パワーPe*がエンジン22から出力されると共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTd*(要求パワーPd*)が駆動軸36に出力されるように、エンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。こうしてエンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*や目標トルクTe*をエンジンECU24に送信すると共に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。エンジンECU24は、エンジン22の目標回転数Ne*および目標トルクTe*を受信すると、エンジン22が目標回転数Ne*および目標トルクTe*に基づいて運転されるようにエンジン22の運転制御(吸入空気量制御や燃料噴射制御、点火制御など)を行なう。モータECU40によるインバータ41,42の制御については上述した。このHV走行中に要求トルクTd*が始動閾値Tst以下の停止閾値Tsp未満に至ると、エンジン22の停止条件が成立したと判断し、エンジン22の運転を停止してEV走行に移行する。なお、エンジン22の始動と停止とが頻繁に行なわれるのを抑制するために、始動閾値Tstと停止閾値Tspとにヒステリシスを持たせるのが好ましい。
自動運転モードのときには、要求トルクTd*の設定方法が異なる点を除いて、通常運転モードと同様にEV走行やHV走行を行なう。自動運転モードでの要求トルクTd*の設定では、HVECU70は、EV走行かHV走行かに拘わらずに、ナビゲーション装置60からの走行予定ルートや自車の現在地、地図情報(例えば、法定速度)と、周辺認識装置90からの自車の前方や後方の他車との車間距離D1,D2(自車周辺に他車がいる場合)と、に基づいて目標車速V*を設定し、車速Vが目標車速V*となるように仮要求トルクTdtmpを設定し、設定した仮要求トルクTdtmpに基づいて要求トルクTd*を設定する。また、自動運転モードでは、ナビゲーション装置60からの走行予定ルートと自車の現在地と地図情報とに基づいて車線維持や車線変更などが行なわれるように図示しない操舵装置を制御する。
次に、こうして構成された第1実施例のハイブリッド自動車20の動作、特に、自動運転モード(自動運転スイッチ92がオン)でEV走行のときに要求トルクTd*を設定する際の動作について説明する。図3は、HVECU70により実行される要求トルク設定ルーチンの一例を示すフローチャートである。このルーチンは、自動運転モードでEV走行のときに繰り返し実行される。なお、第1実施例では、自動運転モードでHV走行のときには、仮要求トルクTdtmpを要求トルクTd*に設定するものとした。
図3の要求トルク設定ルーチンが実行されると、HVECU70は、最初に、車速Vや目標車速V*、仮要求トルクTdtmp、他車条件フラグF1を入力する(ステップS100)。ここで、車速Vは、車速センサ88により検出された値が入力される。目標車速V*や仮要求トルクTdtmpは、上述の処理により設定された値が入力される。他車条件フラグF1は、自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立しているときには値1が設定され、他車条件が成立していないときには値0が設定されたものが入力される。所定距離は、自動運転モードのときに他車の走行を考慮する必要があるか否かの境界距離として定められる。この所定距離としては、数十m~数百m程度の範囲内で定められた固定値が用いられるものとしてもよいし、数十m~数百m程度の範囲内で、車速Vが高いときには低いときに比して長くなるように、具体的には、車速Vが高いほど長くなるように定められた値が用いられるものとしてもよい。
こうしてデータを入力すると、他車条件フラグF1の値を調べる(ステップS110)。そして、他車条件フラグF1が値0のときには、他車条件が成立していないと判断し、目標車速V*から車速Vを減じた値(V*-V)を閾値ΔVrefと比較する(ステップS120)。ここで、閾値ΔVrefは、ある程度の加速が要求されるか否かを判定するのに用いられる閾値であり、例えば、十数km/h~数十km/h程度が用いられる。
ステップS110で他車条件フラグF1が値0で且つステップS120で値(V*-V)が閾値ΔVref以下のときには、他車条件が成立しておらずに且つある程度の加速が要求されないと判断し、式(1)に示すように、仮要求トルクTdtmpを値Tevで上限ガードした値を要求トルクTd*に設定して(ステップS130)、本ルーチンを終了する。ここで、値Tevとしては、始動閾値Tst未満の値、具体的には、始動閾値Tstよりも若干小さい値が用いられる。こうした処理により、要求トルクTd*を始動閾値Tst未満の範囲内に制限する(EV走行を継続する)ことになる。これにより、燃費の向上を図ることができる。
Td*=min(Tdtmp,Tev) (1)
ステップS110で他車条件フラグF1が値0で且つステップS120で値(V*-V)が閾値ΔVrefよりも大きいときには、他車条件が成立しておらずに且つある程度の加速が要求されると判断し、仮要求トルクTdtmpを要求トルクTd*に設定して(ステップS140)、本ルーチンを終了する。こうした処理により、要求トルクTd*を始動閾値Tst未満の範囲内に制限しない(HV走行への移行を許容する)ことになる。これにより、加速性を向上させて、目標車速V*により迅速に(短時間で)近づけることができる。
ステップS110で他車条件フラグF1が値1のときには、他車条件が成立していると判断し、仮要求トルクTdtmpを要求トルクTd*に設定して(ステップS140)、本ルーチンを終了する。こうした処理により、要求トルクTd*を始動閾値Tst未満の範囲内に制限しない(HV走行への移行を許容する)ことになる。これにより、他車の走行に合わせて(車間距離などを適切に)走行することができる。
以上説明した第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードでEV走行のときにおいて、他車条件が成立していないときには、基本的には(目標車速V*から車速Vを減じた値(V*-V)が閾値ΔVref以下のときには)、要求トルクTd*を始動閾値Tst未満の範囲内に制限し(EV走行を継続し)、他車条件が成立しているときには、要求トルクTd*を始動閾値Tst未満の範囲内に制限しない(HV走行への移行を許容する)。これにより、前者の場合には、燃費の向上を図ることができ、後者の場合には、他車の走行に合わせて(車間距離などを適切に)走行することができる。これらの結果、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
しかも、第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つEV走行で且つ他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVrefよりも大きいときには、要求トルクTd*を始動閾値Tst未満の範囲内に制限しない(HV走行への移行を許容する)。これにより、加速性を向上させて、目標車速V*により迅速に(短時間で)近づけることができる。
第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つEV走行で且つ他車条件が成立していないときにおいて、値(V*-V)が閾値ΔVref以下のときには、要求トルクTd*を始動閾値Tst未満の範囲内に制限し(EV走行を継続し)、値(V*-V)が閾値ΔVrefよりも大きいときには、要求トルクTd*を始動閾値Tst未満の範囲内に制限しない(HV走行への移行を許容する)ものとした。しかし、自動運転モードで且つEV走行で且つ他車条件が成立していないときには、値(V*-V)と閾値ΔVrefとの大小関係に拘わらずに、要求トルクTd*を始動閾値Tst未満の範囲内に制限するものとしてもよい。
第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、EV走行中に要求トルクTd*が始動閾値Tst以上に至ったときにHV走行に移行するものにおいて、自動運転モードでEV走行のときには、他車条件の成立の有無(他車条件フラグF1の値)や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、要求トルクTd*を始動閾値Tst未満の範囲内に制限するか否か(EV走行を継続するかHV走行への移行を許容するか)を決定するものとした。しかし、EV走行中に要求パワーPd*が始動閾値Pst以上に至ったときにHV走行に移行するものにおいて、自動運転モードでEV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、要求パワーPd*を始動閾値Pst未満の範囲内に制限するか否かを決定するものとしてもよい。また、EV走行中に車速Vが始動閾値Vst以上に至ったときにHV走行に移行するものにおいて、自動運転モードでEV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、車速Vが始動閾値Vst未満の範囲内に制限されるようにモータMG2を制御するか否かを決定するものとしてもよい。さらに、EV走行中に加速度αが始動閾値αst以上に至ったときにHV走行に移行するものにおいて、自動運転モードでEV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、加速度αが始動閾値αst未満の範囲内に制限されるようにモータMG2を制御するか否かを決定するものとしてもよい。なお、これらの場合において、値(V*-V)と閾値ΔVrefとの大小関係を考慮せずに、他車条件の成立の有無だけを考慮するものとしてもよい。
第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、HVECU70は、自動運転モードでEV走行のときに、図3の要求トルク設定ルーチンを実行するものとしたが、これに代えて、図4の要求トルク設定ルーチンを実行するものとしてもよい。図4の要求トルク設定ルーチンは、ステップS100の処理に代えてステップS200の処理を実行すると共にステップS210,S220の処理を追加した点を除いて、図3の要求トルク設定ルーチンと同一である。したがって、同一処理については同一のステップ番号を付し、詳細な説明を省略する。
図4の要求トルク設定ルーチンでは、HVECU70は、最初に、図3の要求トルク設定ルーチンのステップS100の処理と同様に車速Vや目標車速V*、仮要求トルクTdtmp、他車条件フラグF1を入力するのに加えて、暖機要求フラグF2も入力する(ステップS200)。ここで、暖機要求フラグF2は、エンジン22の暖機要求や触媒134aの暖機要求が行なわれているときには値1が設定され、エンジン22の暖機要求も触媒134aの暖機要求も行なわれていないときには値0が設定されたものが入力される。エンジン22の暖機要求の有無は、エンジン22の冷却水温Twにより判定され、触媒134aの暖機要求の有無は、触媒134aの温度(触媒温度)Tcにより判定される。
そして、ステップS110で他車条件フラグF1が値0で且つステップS120で値(V*-V)が閾値ΔVrefよりも大きいときには、他車条件が成立しておらずに且つある程度の加速が要求されると判断し、暖機要求フラグF2の値を調べる(ステップS210)。そして、暖機要求フラグF2が値0のときには、エンジン22の暖機要求も触媒134aの暖機要求も行なわれていないと判断し、仮要求トルクTdtmpを要求トルクTd*に設定して(ステップS140)、本ルーチンを終了する。
ステップS210で暖機要求フラグF2が値1のときには、エンジン22の暖機要求や触媒134aの暖機要求が行なわれていると判断し、式(2)に示すように、仮要求トルクTdtmpを始動閾値Tstで下限ガードして要求トルクTd*を設定して(ステップS220)、本ルーチンを終了する。
Td*=max(Tdtmp,Tst) (2)
こうした処理により、要求トルクTd*が始動閾値Tst以上になり、エンジン22を始動してHV走行に移行することになる。これにより、エンジン22の暖機や触媒134aの暖機を行なうことができる。この変形例では、このようにしてHV走行に移行すると、エンジン22の暖機要求や触媒134aの暖機要求が行なわれている間は、式(3)に示すように、仮要求トルクTdtmpを停止閾値Tspで下限ガードすると共に停止閾値TspにマージンΔTspを加えた値で上限ガードして要求トルクTd*を設定する。これにより、HV走行を継続してエンジン22の暖機や触媒134aの暖機を継続することができると共に、要求トルクTd*に基づく要求パワーPd*に基づく要求パワーPe*が大きくなるのを抑制してエンジン22のエミッションが悪化するのを抑制することができる。そして、エンジン22の暖機要求も触媒134aの暖機要求も行なわれなくなると、仮要求トルクTdtmpを要求トルクTd*に設定する。これにより、エンジン22からの大きいパワーの出力やEV走行への移行を許容する。
Td*=min(max(Tdtmp,Tsp),Tsp+ΔTsp) (3)
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つEV走行で且つ他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVrefよりも大きいときにおいて、エンジン22の暖機要求や触媒134aの暖機要求が行なわれているときには、要求トルクTd*を始動閾値Tst以上にする。これにより、エンジン22を始動してHV走行に移行し、エンジン22の暖機や触媒134aの暖機を行なうことができる。
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つEV走行で且つ他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVrefよりも大きく且つエンジン22の暖機要求や触媒134aの暖機要求が行なわれているときには、要求トルクTd*を始動閾値Tst以上にするものとした。しかし、自動運転モードで且つEV走行で且つ他車条件が成立しておらずに且つエンジン22の暖機要求や触媒134aの暖機要求が行なわれているときには、値(V*-V)と閾値ΔVrefとの大小関係に拘わらずに、要求トルクTd*を始動閾値Tst以上にするものとしてもよい。
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、EV走行中に要求トルクTd*が始動閾値Tst以上に至ったときにHV走行に移行するものにおいて、自動運転モードで且つEV走行で且つ他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVrefよりも大きく且つエンジン22の暖機要求や触媒134aの暖機要求が行なわれている所定時には、要求トルクTd*を始動閾値Tst以上にするものとした。しかし、EV走行中に要求パワーPd*が始動閾値Pst以上に至ったときにHV走行に移行するものにおいて、所定時には、要求パワーPd*を始動閾値Pst以上にするものとしてもよい。また、EV走行中に車速Vが始動閾値Vst以上に至ったときにHV走行に移行するものにおいて、所定時には、車速Vが始動閾値Vst以上となるようにモータMG2を制御するものとしてもよい。さらに、EV走行中に加速度αが始動閾値αst以上に至ったときにHV走行に移行するものにおいて、所定時には、加速度αが始動閾値αst以上となるようにモータMG2を制御するものとしてもよい。なお、これらの場合において、所定時か否かについて、値(V*-V)と閾値ΔVrefとの大小関係を考慮しないものとしてもよい。
第1実施例のハイブリッド自動車20に搭載される車両用制御装置では、HVECU70は、自動運転モードでHV走行のときには、仮要求トルクTdtmpを要求トルクTd*に設定するものとしたが、これに代えて、図5の要求トルク設定ルーチンにより要求トルクTd*を設定するものとしてもよい。図5の要求トルク設定ルーチンは、自動運転モードでHV走行のときに繰り返し実行される。
図5の要求トルク設定ルーチンが実行されると、HVECU70は、図3の要求トルク設定ルーチンのステップS100,S110の処理と同様に、車速Vや目標車速V*、仮要求トルクTdtmp、他車条件フラグF1を入力し(ステップS300)、他車条件フラグF1の値を調べる(ステップS310)。そして、他車条件フラグF1が値0のときには、他車条件が成立していないと判断し、値(V*-V)を閾値ΔVrefと比較する(ステップS320)。
ステップS310で他車条件フラグF1が値0で且つステップS320で値(V*-V)が閾値ΔVrefよりも大きいときには、他車条件が成立しておらずに且つある程度の加速が要求されると判断し、式(4)に示すように、仮要求トルクTdtmpを停止閾値Tspで下限ガードして要求トルクTd*を設定して(ステップS330)、本ルーチンを終了する。こうした処理により、要求トルクTd*を停止閾値Tsp以上の範囲内に制限する(HV走行を継続する)ことになる。これにより、エンジン22の始動と停止とが頻繁に行なわれるのを抑制することができる。
Td*=max(Tdtmp,Tsp) (4)
ステップS310で他車条件フラグF1が値0で且つステップS320で値(V*-V)が閾値ΔVref以下のときには、他車条件が成立しておらずに且つある程度の加速が要求されないと判断し、仮要求トルクTdtmpを要求トルクTd*に設定して(ステップS340)、本ルーチンを終了する。こうした処理により、要求トルクTd*を停止閾値Tsp以上の範囲内に制限しない(EV走行への移行を許容する)ことになる。これにより、HV走行を継続することによる燃費の低下を抑制することができる。
ステップS310で他車条件フラグF1が値1のときには、他車条件が成立していると判断し、仮要求トルクTdtmpを要求トルクTd*に設定して(ステップS340)、本ルーチンを終了する。こうした処理により、要求トルクTd*を停止閾値Tsp以上の範囲内に制限しない(EV走行への移行を許容する)ことになる。これにより、他車の走行に合わせて(車間距離などを適切に)走行することができる。
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードでHV走行のときにおいて、他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVrefよりも大きいときには、要求トルクTd*を停止閾値Tsp以上の範囲内に制限し(HV走行を継続し)、他車条件が成立しているときには、要求トルクTd*を停止閾値Tsp以上の範囲内に制限しない(EV走行への移行を許容する)。これにより、前者の場合には、エンジン22の始動と停止とが頻繁に行なわれるのを抑制することができ、後者の場合には、他車の走行に合わせて(車間距離などを適切に)走行することができる。これらの結果、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
しかも、この変形例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つHV走行で且つ他車条件が成立しておらずに且つ値(V*-V)が閾値ΔVref以下のときには、要求トルクTd*を停止閾値Tsp以上の範囲内に制限しない(EV走行への移行を許容する)。これにより、HV走行を継続することによる燃費の低下を抑制することができる。
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、自動運転モードで且つHV走行で且つ他車条件が成立していないときにおいて、値(V*-V)が閾値ΔVrefよりも大きいときには、要求トルクTd*を停止閾値Tsp以上の範囲内に制限し(HV走行を継続し)、値(V*-V)が閾値ΔVref以下のときには、要求トルクTd*を停止閾値Tsp以上の範囲内に制限しない(EV走行への移行を許容する)ものとした。しかし、自動運転モードで且つHV走行で且つ他車条件が成立していないときには、値(V*-V)と閾値ΔVrefとの大小関係に拘わらずに、要求トルクTd*を停止閾値Tsp以上の範囲内に制限するものとしてもよい。
この変形例のハイブリッド自動車20に搭載される車両用制御装置では、HV走行中に要求トルクTd*が停止閾値Tsp未満に至ったときにEV走行に移行するものにおいて、自動運転モードでHV走行のときには、他車条件の成立の有無(他車条件フラグF1の値)や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、要求トルクTd*を停止閾値Tsp以上の範囲内に制限するか否か(HV走行を継続するかEV走行への移行を許容するか)を決定するものとした。しかし、HV走行中に要求パワーPd*が停止閾値Psp未満に至ったときにEV走行に移行するものにおいて、自動運転モードでHV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、要求パワーPd*を停止閾値Psp以上の範囲内に制限するか否かを決定するものとしてもよい。また、HV走行中に車速Vが停止閾値Vsp未満に至ったときにEV走行に移行するものにおいて、自動運転モードでHV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、車速Vが停止閾値Vsp以上の範囲内に制限されるようにエンジン22とモータMG1,MG2とを制御するか否かを決定するものとしてもよい。さらに、HV走行中に加速度αが停止閾値αsp未満に至ったときにEV走行に移行するものにおいて、自動運転モードでHV走行のときには、他車条件の成立の有無や値(V*-V)と閾値ΔVrefとの大小関係に基づいて、加速度αが停止閾値αsp以上の範囲内に制限されるようにエンジン22とモータMG1,MG2とを制御するか否かを決定するものとしてもよい。なお、これらの場合において、値(V*-V)と閾値ΔVrefとの大小関係を考慮せずに、他車条件の成立の有無だけを考慮するものとしてもよい。
次に、本発明の第2実施例のハイブリッド自動車20Bについて説明する。第2実施例のハイブリッド自動車20Bは、図1および図2に示した第1実施例のハイブリッド自動車20と同一のハード構成をしている。したがって、重複する説明を回避するために、第2実施例のハイブリッド自動車20Bのハード構成については、第1実施例のハイブリッド自動車20Bと同一の符号を付し、その図示および説明を省略する。
次に、第2実施例のハイブリッド自動車20Bの動作、特に、自動運転モードでエンジン22を始動する際の動作に対説明する。図6は、HVECU70により実行される始動制御ルーチンの一例を示すフローチャートである。このルーチンは、自動運転モードでのEV走行中にエンジン22の始動条件が成立したときに実行される。
図6の始動制御ルーチンが実行されると、HVECU70は、他車条件フラグF1を入力し(ステップS400)、入力した他車条件フラグF1の値を調べる(ステップS410)。そして、他車条件フラグF1が値1のときには、他車条件が成立していると判断し、クランキングトルクTcrにトルクTcr1を設定し(ステップS420)、エンジン22の始動時のスロットル開度としての始動時スロットル開度THstに開度THst1を設定し(ステップS430)、エンジン22の始動時の点火時期としての始動時点火時期Tfstに時期Tfst1を設定して(ステップS440)、本ルーチンを終了する。ここで、トルクTcr1や開度THst1,時期Tfst1は、始動ショックの低減よりもレスポンスを優先して設定される。したがって、エンジン22を迅速に(短時間で)始動してHV走行に移行することができる。
ステップS410で他車条件フラグF1が値0のときには、クランキングトルクTcrにトルクTcr1よりも小さいトルクTcr2を設定し(ステップS450)、始動時スロットル開度THstに開度THst1よりも小さい開度THst2を設定し(ステップS460)、始動時点火時期Tfstに時期Tfst1よりも遅い時期Tfst2を設定して(ステップS470)、本ルーチンを終了する。ここで、トルクTcr2や開度THst2、時期Tfst2は、レスポンスよりも始動ショックの低減を優先して設定される。クランキングトルクTcrを小さくすることにより、エンジン22の回転上昇が緩やかになり、始動ショックを低減することができる。始動時開度THstを小さくすることにより、エンジン22の吸入空気量が少なくなってコンプレッションが低減されると共に初爆時のトルクが小さくなり、始動ショックを低減することができる。始動時点火時期Tfstを遅くすることにより、初爆時の燃焼が緩慢になり、始動ショックを低減することができる。
以上説明した第2実施例のハイブリッド自動車20Bに搭載される車両用制御装置では、自動運転モードでエンジン22を始動する際において、他車条件が成立していないときには、他車条件が成立しているときに比して、クランキングトルクTcrを小さくし、且つ、始動時開度THstを小さくし、且つ、始動時点火時期Tfstを遅くする。これにより、車の前方および後方のうちの少なくとも一方の所定距離内に他車がいるときには、始動ショックの低減よりもレスポンスを優先することができ、他車条件が成立していないときには、レスポンスよりも始動ショックの低減を優先することができる。これらの結果、自動運転を自車周辺の事情を踏まえたより適切なものとすることができる。
第2実施例のハイブリッド自動車20Bに搭載される車両用制御装置では、自動運転モードでエンジン22を始動する際において、他車条件が成立していないときには、他車条件が成立しているときに比して、クランキングトルクTcrを小さくし、且つ、始動時開度THstを小さくし、且つ、始動時点火時期Tfstを遅くするものとした。しかし、自動運転モードでエンジン22を始動する際において、他車条件が成立していないときには、他車条件が成立しているときに比して、クランキングトルクTcrを小さくすること、始動時開度THstを小さくすること、始動時点火時期Tfstを遅くすること、のうちの1つまたは2つだけを行なうものとしてもよい。
第1実施例や第2実施例のハイブリッド自動車20,20Bに搭載される車両用制御装置では、自動運転モードのときには、目標車速V*を設定すると共に車速Vと目標車速V*とに基づいて要求トルクTd*を設定するものとした。しかし、これに代えて、目標車間距離D1*,D2*を設定すると共に車間距離D1,D2と目標車間距離D1*,D2*とに基づいて要求トルクTd*を設定するものとしてもよい。また、目標加速度α*を設定すると共に加速度αと目標加速度α*とに基づいて要求トルクTd*を設定するものとしてもよい。
第1実施例や第2実施例のハイブリッド自動車20,20Bでは、蓄電装置として、バッテリ50を用いるものとしたが、バッテリ50に代えて、キャパシタを用いるものとしてもよい。
第1実施例や第2実施例のハイブリッド自動車20,20Bでは、エンジンECU24とモータECU40とバッテリECU52とHVECU70とを備えるものとしたが、これらのうちの少なくとも2つを単一の電子制御ユニットとして構成するものとしてもよい。
第1実施例や第2実施例のハイブリッド自動車20,20Bでは、駆動輪39a,39bに連結された駆動軸36にプラネタリギヤ30を介してエンジン22およびモータMG1を接続すると共に駆動軸36にモータMG2を接続し、モータMG1,MG2に電力ラインを介してバッテリ50を接続する構成とした。しかし、図7の変形例のハイブリッド自動車220に示すように、駆動輪39a,39bに連結された駆動軸36に変速機230を介してモータMGを接続すると共にモータMGにクラッチ229を介してエンジン22を接続し、モータMGに電力ラインを介してバッテリ50を接続するいわゆる1モータハイブリッド自動車の構成としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。第1実施例や第2実施例では、エンジン22が「エンジン」に相当し、モータMG2が「モータ」に相当し、バッテリ50が「蓄電装置」に相当し、エンジンECU24とモータECU40とHVECU70とが「車両用制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、車両用制御装置の製造産業などに利用可能である。
20,20B,220 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 プラネタリギヤ、36 駆動軸、38 デファレンシャルギヤ、39a,39b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45u,45v,46u,46v 電流センサ、50 バッテリ、51a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、57 コンデンサ、60 ナビゲーション装置、62 本体、64 GPSアンテナ、66 ディスプレイ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89,92 自動運転スイッチ、90 周辺認識装置、122 エアクリーナ、124 スロットルバルブ、125 吸気管、126 燃料噴射弁、128a 吸気バルブ、128b 排気バルブ、129 燃焼室、130 点火プラグ、132 ピストン、133 排気管、134 浄化装置、134a 触媒、135a 空燃比センサ、135b 酸素センサ、136 スロットルモータ、140 クランクポジションセンサ、142 水温センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、229 クラッチ、230 変速機、MG,MG1,MG2 モータ。

Claims (6)

  1. エンジンおよびモータと、前記モータと電力をやりとりする蓄電装置と、を備えるハイブリッド車両に搭載され、前記エンジンの運転を伴わずに走行する電動走行と前記エンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するように前記エンジンおよび前記モータを制御する車両用制御装置であって、
    運転者の加減速操作によらずに走行する自動運転モードで且つ前記電動走行のときにおいて、
    自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、前記電動走行を維持し、
    前記他車条件が成立しているときには、前記ハイブリッド走行への移行を許容し、
    前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、
    前記他車条件が成立していないときには、前記ハイブリッド走行を維持し、
    前記他車条件が成立しているときには、前記電動走行への移行を許容する、
    車両用制御装置。
  2. 請求項1記載の車両用制御装置であって、
    前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、目標車速から車速を減じた値が閾値よりも大きいときには、前記ハイブリッド走行への移行を許容する、
    車両用制御装置。
  3. 請求項1または2記載の車両用制御装置であって、
    前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、前記エンジンの暖機または前記エンジンの排気系に取り付けられた触媒の暖機が要求されているときには、前記ハイブリッド走行に移行させる、
    車両用制御装置。
  4. エンジンおよびモータと、前記モータと電力をやりとりする蓄電装置と、を備えるハイブリッド車両に搭載され、前記エンジンの運転を伴わずに走行する電動走行と前記エンジンの運転を伴って走行するハイブリッド走行とを切り替えて走行するように前記エンジンおよび前記モータを制御し、更に、前記電動走行で且つ走行出力に関連するパラメータが前記エンジンの始動閾値以上になったときには前記エンジンを始動して前記ハイブリッド走行に移行すると共に前記ハイブリッド走行で且つ前記パラメータが前記始動閾値以下の前記エンジンの停止閾値未満になったときには、前記エンジンの運転を停止して前記電動走行に移行する車両用制御装置であって、
    運転者の加減速操作によらずに走行する自動運転モードで且つ前記電動走行のときにおいて、
    自車の前方および後方のうちの少なくとも一方の所定距離内に他車がいる他車条件が成立していないときには、前記パラメータを前記始動閾値未満の範囲内に制限し、
    前記他車条件が成立しているときには、前記パラメータを前記始動閾値未満の範囲内に制限せずに、
    更に、前記自動運転モードで且つ前記ハイブリッド走行のときにおいて、
    前記他車条件が成立していないときには、前記パラメータを前記停止閾値以上の範囲内に制限し、
    前記他車条件が成立しているときには、前記パラメータを前記停止閾値以上の範囲内に制限しない、
    車両用制御装置。
  5. 請求項記載の車両用制御装置であって、
    前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、目標車速から車速を減じた値が閾値よりも大きいときには、前記パラメータを前記始動閾値未満の範囲内に制限しない、
    車両用制御装置。
  6. 請求項4または5記載の車両用制御装置であって、
    前記自動運転モードで且つ前記電動走行で且つ前記他車条件が成立していないときにおいて、前記エンジンの暖機または前記エンジンの排気系に取り付けられた触媒の暖機が要求されているときには、前記パラメータを前記始動閾値以上にする、
    車両用制御装置。
JP2018078460A 2018-04-16 2018-04-16 車両用制御装置 Active JP7028040B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018078460A JP7028040B2 (ja) 2018-04-16 2018-04-16 車両用制御装置
US16/364,406 US11235752B2 (en) 2018-04-16 2019-03-26 Vehicle control device
CN201910284322.6A CN110386127A (zh) 2018-04-16 2019-04-10 车辆用控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078460A JP7028040B2 (ja) 2018-04-16 2018-04-16 車両用制御装置

Publications (2)

Publication Number Publication Date
JP2019182335A JP2019182335A (ja) 2019-10-24
JP7028040B2 true JP7028040B2 (ja) 2022-03-02

Family

ID=68161263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078460A Active JP7028040B2 (ja) 2018-04-16 2018-04-16 車両用制御装置

Country Status (3)

Country Link
US (1) US11235752B2 (ja)
JP (1) JP7028040B2 (ja)
CN (1) CN110386127A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090491A1 (ja) * 2019-11-08 2021-05-14 日産自動車株式会社 車両のエンジン始動方法、シリーズハイブリッド車両及び車両のエンジン始動装置
KR102307974B1 (ko) * 2020-05-26 2021-10-05 주식회사 현대케피코 스타트 스톱 코스팅을 해제할 시 시동 방법을 선택하는 방법 및 그 전자 장치
JP7439704B2 (ja) 2020-09-02 2024-02-28 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086802A (ja) 2010-10-22 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2015116967A (ja) 2013-12-19 2015-06-25 トヨタ自動車株式会社 ハイブリッド車両
US20150314771A1 (en) 2012-12-10 2015-11-05 Jaguar Land Rover Limited Vehicle and Method of Control Thereof
JP2017165131A (ja) 2016-03-14 2017-09-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302060B4 (de) * 2003-01-21 2015-05-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftfahrzeugs
JP4211831B2 (ja) * 2006-09-14 2009-01-21 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4552921B2 (ja) * 2006-10-25 2010-09-29 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
CN201116074Y (zh) * 2007-10-25 2008-09-17 东风电动车辆股份有限公司 由轮毂电机前驱动发动机后驱动的混合动力车
CN103109062B (zh) * 2011-09-12 2014-09-10 丰田自动车株式会社 车辆控制装置
JP6254879B2 (ja) 2014-03-25 2017-12-27 株式会社Subaru 車両用制御装置
CN105438167A (zh) * 2014-09-30 2016-03-30 天津市松正电动汽车技术股份有限公司 混合动力车辆驱动控制装置及控制方法
JP6319213B2 (ja) 2015-07-10 2018-05-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6540582B2 (ja) 2016-04-13 2019-07-10 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086802A (ja) 2010-10-22 2012-05-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20150314771A1 (en) 2012-12-10 2015-11-05 Jaguar Land Rover Limited Vehicle and Method of Control Thereof
JP2015116967A (ja) 2013-12-19 2015-06-25 トヨタ自動車株式会社 ハイブリッド車両
JP2017165131A (ja) 2016-03-14 2017-09-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JP2019182335A (ja) 2019-10-24
US20190315340A1 (en) 2019-10-17
US11235752B2 (en) 2022-02-01
CN110386127A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
JP5803964B2 (ja) ハイブリッド自動車
JP7013827B2 (ja) ハイブリッド自動車およびこれに搭載される制御装置
JP6149841B2 (ja) ハイブリッド自動車
JP6248997B2 (ja) ハイブリッド自動車
JP7028040B2 (ja) 車両用制御装置
EP3333385B1 (en) Vehicle control system
JP6233328B2 (ja) ハイブリッド自動車
JP2007168495A (ja) 動力出力装置及びその制御方法並びに車両
JP5703716B2 (ja) ハイブリッド車
JP2014073693A (ja) ハイブリッド自動車
JP2009052487A (ja) 車両および車両に搭載された内燃機関の制御方法
JP6981262B2 (ja) ハイブリッド車両
JP2002359904A (ja) ハイブリッド車両の制御装置および制御方法
JP2007176420A (ja) ハイブリッド車両およびその制御方法
JP5991145B2 (ja) ハイブリッド自動車
JP2007145220A (ja) 動力出力装置及びその制御方法並びに自動車
JP6984372B2 (ja) ハイブリッド自動車
JP6848815B2 (ja) ハイブリッド自動車
JP2019182318A (ja) ハイブリッド自動車
JP2013067297A (ja) ハイブリッド自動車
JP2020147112A (ja) ハイブリッド自動車
JP2022034770A (ja) 車両用制御装置
JP2023094316A (ja) エンジン制御装置
JP2018084223A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R151 Written notification of patent or utility model registration

Ref document number: 7028040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151