JP6917737B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP6917737B2
JP6917737B2 JP2017047171A JP2017047171A JP6917737B2 JP 6917737 B2 JP6917737 B2 JP 6917737B2 JP 2017047171 A JP2017047171 A JP 2017047171A JP 2017047171 A JP2017047171 A JP 2017047171A JP 6917737 B2 JP6917737 B2 JP 6917737B2
Authority
JP
Japan
Prior art keywords
transistor
oxide film
region
semiconductor device
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047171A
Other languages
English (en)
Other versions
JP2018152450A (ja
JP2018152450A5 (ja
Inventor
鳥井 智史
智史 鳥井
松村 英明
英明 松村
周 石原
周 石原
Original Assignee
ユナイテッド・セミコンダクター・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユナイテッド・セミコンダクター・ジャパン株式会社 filed Critical ユナイテッド・セミコンダクター・ジャパン株式会社
Priority to JP2017047171A priority Critical patent/JP6917737B2/ja
Priority to US15/902,335 priority patent/US10249637B2/en
Publication of JP2018152450A publication Critical patent/JP2018152450A/ja
Publication of JP2018152450A5 publication Critical patent/JP2018152450A5/ja
Application granted granted Critical
Publication of JP6917737B2 publication Critical patent/JP6917737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、半導体装置の製造方法に関する。
半導体基板上には、一般に種々の異なる動作電圧に対応するための、異なる膜厚のゲート絶縁膜を有するトランジスタ素子が形成される。
さらに、高機能化を目的に、トランジスタ素子に加えて、フラッシュメモリ素子を混載するLSIが知られている。
特開2015−99892号公報 特開2012−4403号公報
異なる動作電圧で、特に高い電圧に対応する為には、耐圧を確保する観点からより厚い膜厚のゲート絶縁膜を用いる必要がある。動作電圧が多種にわたった場合、それぞれに異なる膜厚のゲート絶縁膜を用意する必要がある。
また、フラッシュメモリ素子の動作には、5V以上の高電圧が必要とされる。これに対応するために高耐圧トランジスタ用のゲート絶縁膜を形成した場合、工程は増加するのみならず、ゲート酸化などの高い熱を伴う工程がさらに追加される。熱を伴う工程は、他の低電圧トランジスタ素子の特性に影響を与えるおそれが有る。
1つの側面では、工程数を増加させることなく、かつ、過大な熱を伴う工程を追加せずに、良質なゲート絶縁膜を有するフラッシュメモリ素子、各種トランジスタ、および、高耐圧トランジスタを含む半導体装置を製造することを目的とする。
上記目的を達成するために、開示の半導体装置の製造方法が提供される。この半導体装置の製造方法は、半導体基板の上に、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、および、フラッシュメモリトランジスタを有する半導体装置の製造方法であって、前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域を画定させる素子分離を形成する工程と、前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にウェルと、チャネルとを形成する工程と、前記フラッシュメモリトランジスタの領域に、トンネル酸化層と、電荷蓄積層とを形成する工程と、前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域に第1の酸化膜を形成する工程と、前記第1のトランジスタ、および、前記第2のトランジスタの領域の前記第1の酸化膜を除去する工程と、前記半導体基板を酸化することにより、前記第1のトランジスタ、および、前記第2のトランジスタの領域に第2の酸化膜を形成しつつ、前記第3のトランジスタの領域の前記第1の酸化膜と前記半導体基板との間に第1の酸化層を加えて第3の酸化膜を形成する工程と、前記第1のトランジスタの領域の前記第2の酸化膜を除去する工程と、前記半導体基板を酸化することにより、前記第1のトランジスタの領域に第4の酸化膜を形成しつつ、前記第2のトランジスタの領域の前記第2の酸化膜と前記半導体基板との間に第2の酸化層を加えて第5の酸化膜を形成するとともに、前記第3のトランジスタの領域の前記第1の酸化層と前記半導体基板との間に第3の酸化層を加えて第6の酸化膜を形成する工程と、前記第1のトランジスタ、前記第2のトランジスタ、第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にゲート電極を形成する工程と、前記ゲート電極の両側の側壁にサイドウォール構造を形成する工程と、前記ゲート電極の両側の側方の前記半導体基板内に、ソース領域と、ドレイン領域を形成する工程と、を有する。
1態様では、工程数を増加させることなく、かつ、安定した特性を有するトランジスタ、フラッシュメモリ素子、および、高耐圧トランジスタを含む半導体装置を製造することができる。
第1の実施の形態の半導体装置の製造工程を説明する断面図(その1)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その2)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その3)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その4)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その5)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その6)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その7)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その8)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その9)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その10)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その11)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その12)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その13)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その14)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その15)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その16)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その17)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その18)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その19)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その20)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その21)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その22)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その23)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その24)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その25)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その26)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その27)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その28)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その29)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その30)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その31)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その32)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その33)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その34)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その35)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その36)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その37)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その38)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その39)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その40)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その41)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その42)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その43)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その44)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その45)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その46)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その47)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その48)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その49)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その50)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その51)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その52)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その53)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その54)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その55)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その56)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その57)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その58)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その59)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その60)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その61)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その62)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その63)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その64)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その65)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その66)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その67)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その68)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その69)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その70)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その71)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その72)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その73)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その74)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その75)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その76)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その77)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その78)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その79)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その80)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その81)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その82)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その83)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その84)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その85)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その86)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その87)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その88)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その89)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その90)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その91)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その92)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その93)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その94)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その95)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その96)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その97)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その98)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その99)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その100)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その101)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その102)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その103)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その104)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その105)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その106)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その107)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その108)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その109)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その110)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その111)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その112)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その113)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その114)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その115)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その116)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その117)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その118)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その119)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その120)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その121)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その122)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その123)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その124)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その125)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その126)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その127)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その128)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その129)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その130)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その131)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その132)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その133)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その134)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その135)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その136)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その137)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その138)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その139)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その140)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その141)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その142)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その143)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その144)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その145)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その146)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その147)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その148)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その149)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その150)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その151)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その152)である。 第1の実施の形態の半導体装置の製造工程を説明する断面図(その153)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その1)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その2)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その3)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その4)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その5)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その6)である。 第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その7)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その1)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その2)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その3)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その4)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その5)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その6)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その7)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その8)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その9)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その10)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その11)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その12)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その13)である。 第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その14)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その1)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その2)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その3)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その4)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その5)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その6)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その7)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その8)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その9)である。 第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その10)である。 第1の実施の形態の変形例の半導体装置の製造工程を説明する断面図(その1)である。 第1の実施の形態の変形例の半導体装置の製造工程を説明する断面図(その2)である。 第1の実施の形態の変形例の半導体装置の製造工程を説明する断面図(その3)である。 第1の実施の形態の変形例の半導体装置の製造工程を説明する断面図(その4)である。 第1の実施の形態の変形例の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その1)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その2)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その3)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その4)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その5)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その6)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その7)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その8)である。 第2の実施の形態の半導体装置の製造工程を説明する断面図(その9)である。 第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その1)である。 第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その2)である。 第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その3)である。 第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その4)である。 第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その5)である。 第3の実施の形態の半導体装置を説明する断面図である。
<第1の実施の形態>
図1〜図153及び図154〜図184は、第1の実施の形態を説明するそれぞれ断面図、平面図である。
以下、半導体装置の製造工程を断面図、平面図に沿って詳細に説明する。
図1〜図153は、第1の実施の形態の半導体装置の製造工程を説明する断面図(その1〜その153)である。図154〜図160は、第1の実施の形態の半導体装置の製造工程におけるフラッシュメモリ素子部のマスクパターンを示す平面図(その1〜その7)である。図161〜図174は、第1の実施の形態の半導体装置の製造工程における低電圧トランジスタ部、中耐圧トランジスタ部のマスクパターンを示す平面図(その1〜その14)である。図175〜図184は、第1の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その1〜その10)である。
図1〜図51に示される領域A、Bは、フラッシュメモリセル素子部を示す領域である。フラッシュメモリ素子部は、選択トランジスタが形成される領域Aと、メモリトランジスタが形成される領域Bとを有している。図1(a)〜図51(a)は、図154〜図160に示されるT−T’線部(一点鎖線で示された部分であり、二点鎖線で示された部分を除く。以下同じ)を示す断面図である。図1(b)〜図51(b)は、図154〜図160に示されるU−U’線部を示す断面図である。図1(c)〜図51(c)は、図154〜図160に示されるV−V’線部を示す断面図である。
図52(a)〜図102(a)に示される領域C、Dは、低電圧トランジスタ部を示す領域である。図52(b)〜図102(b)に示される領域E、Fは、中耐圧トランジスタ部を示す領域である。低電圧トランジスタ部は、p型低電圧トランジスタが形成される領域Cと、n型低電圧トランジスタが形成される領域Dとを有している。中耐圧トランジスタ部は、p型中耐圧トランジスタが形成される領域Eと、n型中耐圧トランジスタが形成される領域Fとを有している。図52(a)〜図102(a)は、図161(a)〜図174(a)に示されるW−W’線部を示す断面図である。図52(b)〜図102(b)は、図161(b)〜図174(b)に示されるX−X’線部を示す断面図である。
図103〜図153に示される領域G〜Jは、高耐圧トランジスタ部を示す領域である。高耐圧トランジスタ部は、第1のp型高耐圧トランジスタが形成される領域Gと、第1のタップが形成される領域Hと、第1のn型高耐圧トランジスタが形成される領域Iと、第2のタップが形成される領域Jとを有している。図103〜図153は、図175〜図184に示されるY−Y’線部を示す断面図である。
図1、図52及び図103に示されるように、単結晶シリコンの半導体基板31上に、拡散炉により例えばO2ガスを導入して800〜1000℃程度の熱酸化処理を行って、初期酸化膜32を5〜15nm程度の膜厚で成長し、熱CVD炉により例えばシランガス、アンモニアガスなどを導入して700〜800℃程度の熱処理を行って、第1の窒化膜33を70〜150nm程度の膜厚で成膜する。次いで、素子分離領域を画定するレジスト34を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト34は、図154、図161及び図175に示される素子分離用マスクパターン201が転写されたものである。
次いで、図2、図53及び図104に示されるように、レジスト34をマスクにして、例えばCF4ガス、または、SF6ガスを含む混合ガスなどを用いて、第1の窒化膜33をプラズマ中にてエッチングする。次いで、例えばCF4ガス、または、CHF3ガスを含む混合ガスなどを用いて、初期酸化膜32をプラズマ中にてエッチングする。次いで、例えばCl2ガス、または、HBrガスを含む混合ガスなどを用いて半導体基板31をプラズマ中にて順にエッチングする。この処理により、半導体基板に深さ250〜350nm程度の素子分離溝35を形成する。
次いで、図3、図54及び図105に示されるように、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト34を除去する。
次いで、図4、図55及び図106に示されるように、例えば高密度プラズマCVD法を用いて、プラズマ酸化膜36を素子分離溝35に埋めるように成膜する。
次いで、図5、図56及び図107に示されるように、化学機械的研磨(CMP)法を用いて、プラズマ酸化膜36を第1の窒化膜33が表面に露出するまで研磨して除去して、第1の窒化膜33上で停止させる。この時、一般に残渣が発生することを防止するため、適正なオーバーポリッシュを行う。本実施の形態においては、例えば第1の窒化膜33を40〜100nm程度で残留させている。
次いで、図6、図57及び図108に示されるように、例えばリン酸処理を行って、第1の窒化膜33を除去する。
次いで、図7、図58及び図109に示されるように、例えば弗酸処理を行って、初期酸化膜32を除去する。素子分離溝35にプラズマ酸化膜36が残され、シャロー・トレンチ・アイソレーション(STI)構造により、素子分離37が形成される。
次いで、図8、図59及び図110に示されるように、拡散炉によって例えばO2ガスを導入して800〜900℃程度の熱酸化処理を行って、犠牲酸化膜38を5〜20nm程度の膜厚で成長する。
次いで、図9、図60及び図111に示されるように、p型低電圧トランジスタが形成される領域Cを開口するレジスト39を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト39は、図161に示されるp型低電圧トランジスタ用チャネル注入用マスクパターン202が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、B、および、高耐圧トランジスタ部を示す領域I〜Lは、開口部が無いので図面は省略する。そして、レジスト39をマスクとして、例えばヒ素を50〜100KeV程度、6.00E12〜9.00E12cm-2程度、チルト角7°でイオン注入を行ってp型低電圧トランジスタのチャネル(図示せず)を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト39を除去する。
次いで、図10、図61及び図112に示されるように、n型低電圧トランジスタが形成される領域Dと、n型中耐圧トランジスタが形成される領域Fと、第1のp型高耐圧トランジスタが形成される領域Gと、第1のn型高耐圧トランジスタが形成される領域Iと、第2のタップが形成される領域Jとを開口するレジスト40を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト40は、図162、および、図175に示されるPウェル注入用マスクパターン203が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、Bは、開口部が無いので図面は省略する。そして、レジスト40をマスクとして、例えばボロンを100〜200KeV程度、6.00E12〜9.00E12cm-2程度、チルト角7°で、4方向で4回のイオン注入を行って各種トランジスタにPウェル41を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト40を除去する。
次いで、図11、図62及び図113に示されるように、n型中耐圧トランジスタが形成される領域Fと、第1のn型高耐圧トランジスタが形成される領域Iとを開口するレジスト42を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト42は、図163に示されるn型中耐圧トランジスタ用チャネル注入用マスクパターン204が転写されたものである。なお、図163に示されるように、n型中耐圧トランジスタ用チャネル注入用マスクパターン204は、図176に示されるように、第1のn型高耐圧トランジスタの一部を同時に開口している。したがって、続いて記載する条件により、n型中耐圧トランジスタ以外のトランジスタの領域にも、イオン注入が行われることとなる。なお、フラッシュメモリセル素子部を示す領域A、Bは、開口部が無いので図面は省略する。そして、レジスト42をマスクとして、例えばボロンを8〜16KeV程度、4.00E12〜8.00E12cm-2程度、チルト角7°でイオン注入を行ってn型中耐圧トランジスタのチャネル(図示せず)を形成する。先に述べたように、第1のn型高耐圧トランジスタの一部にチャネル(図示せず)が同様に形成される。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト42を除去する。
次いで、図12、図63及び図114に示されるように、選択トランジスタが形成される領域Aと、メモリトランジスタが形成される領域Bと、p型低電圧トランジスタが形成される領域Cと、p型中耐圧トランジスタが形成される領域Eと、第1のp型高耐圧トランジスタが形成される領域Gと、第1のタップが形成される領域Hと、第1のn型高耐圧トランジスタが形成される領域Iとを開口するレジスト43を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト43は、図164、および、図177に示されるNウェル注入用マスクパターン205が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、Bは、全面が開口しているので図面は省略する。そして、レジスト43をマスクとして、例えばリンを250〜500KeV程度、6.00E12〜1.20E13cm-2程度、チルト角7°で、4方向で4回のイオン注入を行って各種トランジスタにNウェル44を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト43を除去する。
次いで、図13、図64及び図115に示されるように、p型中耐圧トランジスタが形成される領域Eと、第1のp型高耐圧トランジスタが形成される領域Gとを開口するレジスト45を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト45は、図165に示されるように、p型中耐圧トランジスタ用チャネル注入用マスクパターン206が転写されたものである。なお、図178に示されるように、p型中耐圧トランジスタ用チャネル注入用マスクパターン206は、第1のp型高耐圧トランジスタの一部を同時に開口している。したがって、続いて記載する条件により、p型中耐圧トランジスタ以外のトランジスタの領域にも、イオン注入が行われることとなる。なお、フラッシュメモリセル素子部を示す領域A、Bは、開口部が無いので図面は省略する。そして、レジスト45をマスクとして、例えばヒ素を80〜160KeV程度、3.00E12〜6.00E12cm-2程度、チルト角7°でイオン注入を行ってp型中耐圧トランジスタのチャネル(図示せず)を形成する。先に述べたように、第1のp型高耐圧トランジスタの一部にチャネル(図示せず)が同様に形成される。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト45を除去する。
次いで、図14、図65及び図116に示されるように、n型低電圧トランジスタが形成される領域Dを開口するレジスト46を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト46は、図166に示されるように、n型低電圧トランジスタ用チャネル注入用マスクパターン207が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、B、および、高耐圧トランジスタ部を示す領域I〜Lは、開口部が無いので図面は省略する。そして、レジスト46をマスクとして、例えばインジウムを80〜160KeV程度、3.20E12〜6.40E12cm-2程度、チルト角0°でイオン注入を行う。さらに、例えばインジウムを50〜100KeV程度、1.20E13〜2.40E13cm-2程度、チルト角7°でイオン注入を行う。さらに、例えばボロンを8〜16KeV程度、8.00E11〜1.60E12cm-2程度、チルト角7°でイオン注入を行ってn型低電圧トランジスタのチャネル(図示せず)を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト46を除去する。
次いで、図15、図66及び図117に示されるように、第1のp型高耐圧トランジスタが形成される領域Gと、第1のタップが形成される領域Hの一部とを開口するレジスト47を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト47は、図179に示されるように、p型高耐圧トランジスタ用ディープNウェル注入用マスクパターン208が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、B、低電圧トランジスタ部を示す領域C、D、および、中耐圧トランジスタ部を示す領域E、Fは、開口部が無いので図面は省略する。そして、レジスト47をマスクとして、例えばリンを500〜800KeV程度、3.00E12〜8.00E12cm-2程度、チルト角0°でイオン注入を行って第1のp型高耐圧トランジスタのディープNウェル48を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト47を除去する。
次いで、図16、図67及び図118に示されるように、選択トランジスタが形成される領域Aと、メモリトランジスタが形成される領域Bとを全面で開口するレジスト49を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト49は、フラッシュメモリ素子部を全面で開口しているフラッシュメモリセル注入用マスクパターン209(図示せず)が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜F、および、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。そして、レジスト49をマスクとして、例えばヒ素を80〜150KeV程度、2.00E12〜6.00E12cm-2程度、チルト角7°でイオン注入を行ってフラッシュメモリセル注入層(図示せず)を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト49を除去する。
次いで、図17、図68及び図119に示されるように、メモリトランジスタが形成される領域Bを開口するレジスト50を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト50は、図154に示されるように、メモリトランジスタ用チャネル注入用マスクパターン210が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜F、および、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。そして、レジスト50をマスクとして、例えばヒ素を8〜20KeV程度、1.00E13〜3.00E13cm-2程度、チルト角0°でイオン注入を行ってメモリトランジスタのチャネル(図示せず)を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト50を除去する。
そして、拡散炉によって950〜1100℃、3〜20秒程度の熱処理を行って、前述したイオン注入したシリコン基板中のイオンを活性化させる。
次いで、図18、図69及び図120に示されるように、例えば弗酸処理を行って、犠牲酸化膜38を除去する。
次いで、図19、図70及び図121に示されるように、拡散炉によって例えばO2ガスを導入して700〜900℃程度のウェット酸化処理を行って、トンネル酸化膜51を2〜15nm程度の膜厚で成長する。なお、トンネル酸化膜51は、フラッシュメモリセルへ情報を書き込み、記憶、消去する機能に必要とされるOxide−Nitride−Oxide(ONO)構造の下側の膜である。基板からの電荷をトンネル現象で流入、流出させる際に電荷が通過する膜である。
次いで、図20、図71及び図122に示されるように、熱CVD炉によりシランガス、アンモニアガスなどを導入して700〜900℃程度の熱処理、又はプラズマCVD炉にシランガス、アンモニアガスなどを導入して300〜400℃程度の処理を行って、第2の窒化膜52を5〜30nm程度の膜厚で全面に成膜する。なお、第2の窒化膜52は、フラッシュメモリセルへ情報を書き込み、記憶、消去する機能に必要とされるONO構造の中間の膜である。トンネル酸化膜51を通過した基板からの電荷を蓄積することが可能な電荷蓄積膜である。
次いで、図21、図72及び図123に示されるように、選択トランジスタが形成される領域Aを開口するレジスト53を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト53は、図155に示されるように、第1のメモリセル窒化膜エッチング用マスクパターン211が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜F、および、高耐圧トランジスタ部を示す領域G〜Jは、全面が開口しているので図面は省略する。
次いで、図22、図73及び図124に示されるように、レジスト53をマスクにして、例えばCF4ガス、または、CHF3ガスを含む混合ガスなどを用いて、第2の窒化膜52をプラズマ中にてエッチングし、トンネル酸化膜51上で停止させる。
次いで、図23、図74及び図125に示されるように、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト53を除去する。
次いで、図24、図75及び図126に示されるように、選択トランジスタが形成される領域Aと、メモリトランジスタが形成される領域Bの一部を開口するレジスト54を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト54は、図156に示されるように、第2のメモリセル窒化膜エッチング用マスクパターン212が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜F、および、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。
次いで、図25、図76及び図127に示されるように、レジスト54をマスクにして、例えばCF4ガス、または、SF6ガスを含む混合ガスなどを用いて、第2の窒化膜52をプラズマ中にてエッチングする。この際、STI構造の素子分離37の表面は、適正なオーバーエッチングの影響により、若干エッチングされ、エッチング前の形状より表面が凹んだ形状となる。
次いで、図26、図77及び図128に示されるように、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト54を除去する。ここで、メモリトランジスタには第2の窒化膜52と、トンネル酸化膜51が残存し、その他のトランジスタにはトンネル酸化膜51が半導体基板31上に残存している。
次いで、図27、図78及び図129に示されるように、例えば弗酸処理を行って、トンネル酸化膜51を除去する。ここで、メモリトランジスタには第2の窒化膜52が残存しているため、メモリトランジスタのトンネル酸化膜51はエッチングされない。それ以外のトランジスタのトンネル酸化膜51が除去される。
次いで、図28、図79及び図130に示されるように、熱CVD炉により例えばシランガス、O2ガスなどを導入して700〜900℃程度の熱処理を行って、CVD酸化膜55を5〜15nm程度の膜厚で成膜する。なお、CVD酸化膜55は、フラッシュメモリセルへ情報を書き込み、記憶、消去する機能に必要とされるONO構造の上側の膜である。さらに、CVD酸化膜55は、後述するメモリトランジスタのゲート電極に電圧が印加された際に、電荷蓄積膜との絶縁性を確保するための膜である。このCVD酸化膜55があることにより、電荷蓄積膜に電荷を蓄積する方向に電圧を印加したり、電荷蓄積膜から電荷を放出する方向に電圧を印加した場合に、適切に電荷が蓄積でき、放出できるようにする為の機能を有する。
次いで、図29、図80及び図131に示されるように、選択トランジスタが形成される領域Aの一部を開口するレジスト56を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト56は、図157に示されるように、メモリセルCVD酸化膜エッチング用マスクパターン213が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜Fは全面が開口し、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。
なお、レジスト56は第2の窒化膜52を平面視で内包するように形成されている。次いで行われる弗酸処理において、CVD酸化膜55がトンネル酸化膜51を覆った状態でエッチングすることで、トンネル酸化膜51がエッチングされて後退することを防止することができる。
次いで、図30、図81及び図132に示されるように、レジスト56をマスクとして、例えば弗酸処理を行って、CVD酸化膜55を除去する。ここで、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いのでCVD酸化膜55が残存する。他方、選択トランジスタが形成される領域Aの一部と、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜Fとは全面が開口しているのでCVD酸化膜55が除去され、半導体基板31の表面が露出する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト56を除去する。
次いで、図31、図82及び図133に示されるように、熱拡散炉により例えばO2ガスを導入して700〜900℃程度のウェット酸化処理を行って、第1の熱酸化膜57を4〜8nm程度の膜厚で成長する。ここで、CVD酸化膜55、第2の窒化膜52、トンネル酸化膜51が残存しているメモリトランジスタは、第1の熱酸化膜57は形成されない。他方、半導体基板31の表面が露出している選択トランジスタが形成される領域Aと、低電圧トランジスタと、中耐圧トランジスタとが形成される領域C〜Fは、第1の熱酸化膜57が形成される。さらに、高耐圧トランジスタが形成される領域G〜Jは、CVD酸化膜55は残存しているが、半導体基板31との界面のシリコンが酸化され、第1の界面酸化層58が成長する。よって、高耐圧トランジスタが形成される領域G〜Jは、CVD酸化膜55と共に、第1の界面酸化層58が形成されたことで、厚みが増加する。
次いで、図32、図83及び図134に示されるように、p型低電圧トランジスタが形成される領域Cと、n型低電圧トランジスタが形成される領域Dとを開口するレジスト59を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト59は、図167に示されるように、低電圧トランジスタのゲート絶縁膜形成エッチング用マスクパターン214が転写されたものである。ここで、中耐圧トランジスタが形成される領域E、Fは、レジスト59で覆われている。なお、フラッシュメモリ素子部が形成される領域A、B、および、高耐圧トランジスタが形成される領域G〜Jは、開口部が無いので図面は省略する。
次いで、図33、図84及び図135に示されるように、レジスト59をマスクとして、例えば弗酸処理を行って、第1の熱酸化膜57を除去する。ここで、メモリトランジスタ部を示す領域A、Bと、中耐圧トランジスタを示す領域E、Fと、高耐圧トランジスタ部を示す領域G〜Jは、レジスト59に開口部が無いので第1の熱酸化膜57を含めて、CVD酸化膜55、第2の窒化膜52、トンネル酸化膜51が残存する。他方、低電圧トランジスタを示す領域C、Dは開口しているので第1の熱酸化膜57が除去され、半導体基板31の表面が露出する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト59を除去する。
次いで、図34、図85及び図136に示されるように、熱拡散炉により例えばO2ガスを導入して700〜900℃の熱酸化処理を行って、第2の熱酸化膜60を1〜3nm程度の膜厚で成長する。
ここで、CVD酸化膜55、第2の窒化膜52、トンネル酸化膜51が残存しているメモリトランジスタは、第2の熱酸化膜60は形成されない。他方、半導体基板31の表面が露出している低電圧トランジスタが形成される領域C、Dは、第2の熱酸化膜60が形成される。
さらに、中耐圧トランジスタが形成される領域E、Fは、第1の熱酸化膜57が残存しているが、半導体基板31との界面のシリコンが酸化され、第2の界面酸化層61が成長する。よって、中耐圧トランジスタが形成される領域E、Fは、第1の熱酸化膜57と、第2の界面酸化層61が合わさって、第3の熱酸化膜62が4.1〜8.5nm程度の膜厚で成長する。よって、中耐圧トランジスタが形成される領域E、Fは、厚みが増加する。
さらに、高耐圧トランジスタが形成される領域G〜Jは、CVD酸化膜55と、第1の界面酸化層58が残存しているが、半導体基板31と、第1の界面酸化層58との界面のシリコンが酸化され、第3の界面酸化層63が成長する。よって、高耐圧トランジスタが形成される領域G〜Jは、第1の界面酸化層58と、第3の界面酸化層63が合わさって、第4の熱酸化膜64が成長する。したがって、高耐圧トランジスタが形成される領域G〜Jは、CVD酸化膜55と共に、第4の熱酸化膜64が形成されたことで、厚みが増加する。CVD酸化膜55と、第4の熱酸化膜64を合わせて6.5〜17.3nm程度の最も厚い膜厚の酸化層65が残存する。
本工程を完了した際に、各種トランジスタには、異なる膜厚のゲート絶縁膜が形成されることとなる。
最も動作電圧の低い低電圧トランジスタが形成される領域C、Dには、高速動作に適する最も薄い第2の熱酸化膜60が形成されている。また、第2の熱酸化膜60は、拡散炉により形成されており、トランジスタ特性の劣化が少ない良質なゲート絶縁膜として機能する。
中耐圧トランジスタが形成される領域E、Fには、中間的な膜厚の第3の熱酸化膜62が形成されている。また、第3の熱酸化膜62は、第1の熱酸化膜57と、第2の界面酸化層61が共に拡散炉により形成されており、トランジスタ特性の劣化が少ない良質なゲート絶縁膜として機能する。
選択トランジスタが形成される領域Aには、中間的な膜厚の第3の熱酸化膜62が形成されている。先に述べた内容と同様に、第3の熱酸化膜62は、第1の熱酸化膜57と、第2の界面酸化層61が共に拡散炉により形成されており、トランジスタ特性の劣化が少ない良質なゲート絶縁膜として機能する。特に、フラッシュメモリ素子部に使用される選択トランジスタは出来る限りリーク特性を抑制して消費電力を抑制することが有用であり、良質なゲート絶縁膜はフラッシュメモリ素子部を構成する上で好適である。
メモリトランジスタが形成される領域Bには、CVD酸化膜55、第2の窒化膜52、トンネル酸化膜51により、ONO構造が形成されている。トンネル酸化膜51は、他の高い熱処理による酸化の影響が第2の窒化膜52、CVD酸化膜55が残存されることで極小まで抑制され、フラッシュメモリ素子の書き込み、記憶、消去の機能を好適に維持することが可能である。
そして、高耐圧トランジスタが形成される領域G〜Jには、フラッシュメモリ素子の上側の膜であるCVD酸化膜55と共に、他の高い熱処理による酸化に伴い、シリコン基板との界面に第4の熱酸化膜64が形成されている。CVD酸化膜55と、第4の熱酸化膜64を合わせると最も高い動作電圧に耐える厚い膜厚の酸化層65を形成することができる。
本実施の形態の工程では、高耐圧トランジスタが形成される領域G〜Jに対して、さらに高い熱処理を伴う酸化の工程を追加することが無いため、他のトランジスタ素子の特性を変動することが防止でき、また、工程数を削減しつつも最も厚い酸化層65を形成することが可能である。
なお、第3の熱酸化膜62は、第1の熱酸化膜57と、第2の熱酸化膜60を形成する際に形成される第2の界面酸化層61が合わさったものであるが、第1の熱酸化膜57の形成条件と、第2の熱酸化膜60の形成条件とを適宜調整することで、希望する膜厚となるように調整することが可能である。
さらに、第4の熱酸化膜64は、第1の熱酸化膜57を形成する際に形成される第1の界面酸化層58と、第2の熱酸化膜60を形成する際に形成される第3の界面酸化層63とが合わさったものであるが、第1の熱酸化膜57の形成条件と、第2の熱酸化膜60の形成条件とを適宜調整することで、希望する膜厚となるように調整することが可能である。
次いで、図35、図86及び図137に示されるように、熱CVD炉により例えばシランガスを導入して500〜700℃程度の熱処理を行って、ポリシリコンによるゲート電極膜66を100〜160nm程度の膜厚で全面に成膜する。なお、ゲート電極膜66は、加工後に各種トランジスタ、フラッシュメモリセル部の選択トランジスタ、および、フラッシュメモリ部のメモリトランジスタのゲート電極として機能する膜である。
次いで、図36、図87及び図138に示されるように、ゲート電極を加工するためのレジスト67を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト67は、図158、図168及び図180に示されるように、各種トランジスタと、フラッシュメモリセル部の選択トランジスタと、フラッシュメモリ部のメモリトランジスタのゲート電極エッチング用マスクパターン215が転写されたものである。
次いで、図37、図88及び図139に示されるように、レジスト67をマスクにして、例えばHBrガス、または、SF6ガスを含む混合ガスなどを用いて、ゲート電極膜66をプラズマ中にてエッチングし、素子分離37上、CVD酸化膜55上、第2の熱酸化膜60上、第3の熱酸化膜62上、で停止させる。
次いで、図38、図89及び図140に示されるように、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト67を除去する。ゲート電極膜に対して、ゲート電極エッチング用マスクパターン215が転写され、メモリセル素子部の選択トランジスタ、および、メモリトランジスタ、ならびに、各種トランジスタのゲート電極68a〜68hが加工される。
次いで、図39、図90及び図141に示されるように、ゲート電極68a〜68hをマスクにして、例えば弗酸処理を行って、表面に露出しているCVD酸化膜55と、第2の熱酸化膜60と、第3の熱酸化膜62、第4の熱酸化膜64をエッチングして半導体基板31、および、第2の窒化膜52を露出させる。ここで、素子分離37が表面露出しているが、適切なオーバーエッチング量を設定することで、表面からの目減り量を最小限に抑制する。
次いで、フラッシュメモリ素子部が形成される領域A、Bを開口するレジスト69を塗布、露光、現像の処理を行ってパターンニングする。ここで、低電圧トランジスタと、中耐圧トランジスタとが形成される領域C〜Fと、高耐圧トランジスタが形成される領域G〜Jは、レジスト69で覆われている。なお、フラッシュメモリ素子部が形成される領域A、Bは、全面で開口しているため、図面は省略する。さらになお、低電圧トランジスタと、中耐圧トランジスタとが形成される領域C〜Fと、高耐圧トランジスタが形成される領域G〜Jは、開口部が無いので図面は省略する。
次いで、図40、図91及び図142に示されるように、レジスト69をマスクにして、例えばCF4ガス、または、SF6ガスを含む混合ガスなどを用いて、フラッシュメモリ素子部のメモリトランジスタが形成される領域Bに残存して露出している第2の窒化膜52と、トンネル酸化膜51とをプラズマ中でエッチングして半導体基板31上で停止する。ここで、素子分離37が表面露出している部分があるが(図示せず)、適切なオーバーエッチング量を設定することで、表面からの目減り量を最小限に抑制する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト69を除去する。フラッシュメモリ素子部のメモリトランジスタが形成される領域Bのゲート電極68bと、半導体基板31との間には、CVD酸化膜55と、第2の窒化膜52と、トンネル酸化膜51とからなるフラッシュメモリ素子のONO構造が形成される。
次いで、図41、図92及び図143に示されるように、選択トランジスタが形成される領域Aの一部と、メモリトランジスタが形成される領域Bの一部とを開口するレジスト70を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト70は、図159に示されるように、第1のフラッシュメモリセルLDD注入用マスクパターン216が転写されたものである。なお、低電圧トランジスタ部と、中耐圧トランジスタ部とを示す領域C〜F、および、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。そして、レジスト70をマスクとして、例えばBFを2〜10KeV程度、1.60E15〜3.20E15cm-2程度、チルト角0°でイオン注入を行って第1のフラッシュメモリセルLDD層71を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト70を除去する。
次いで、図42、図93及び図144に示されるように、n型中耐圧トランジスタが形成される領域Fを開口するレジスト72を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト72は、図169に示されるn型中耐圧トランジスタLDD注入用マスクパターン217が転写されたものである。なお、図181に示されるように、第1のn型高耐圧トランジスタの一部を同時に開口している。したがって、続いて記載する条件により、n型中耐圧トランジスタ以外のトランジスタの領域にも、イオン注入が行われることとなる。なお、フラッシュメモリセル素子部を示す領域A、Bは、開口部が無いので図面は省略する。そして、レジスト72をマスクとして、例えばリンを10〜30KeV程度、4.00E13〜8.00E13cm-2程度、チルト角0°でイオン注入を行ってn型中耐圧トランジスタのLDD層73aを形成する。同時に、n型高耐圧トランジスタのLDD層73bが形成される。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト72を除去する。
次いで、図43、図94及び図145に示されるように、p型中耐圧トランジスタが形成される領域Eを開口するレジスト74を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト74は、図170に示されるp型中耐圧トランジスタLDD注入用マスクパターン218が転写されたものである。なお、p型中耐圧トランジスタLDD注入用マスクパターン218は、図160に示されるように、選択トランジスタが形成される領域Aの一部と、メモリトランジスタが形成される領域Bの一部と、図182に示されるように、第1のp型高耐圧トランジスタが形成される領域Gの一部とを同時に開口している。したがって、続いて記載する条件により、p型中耐圧トランジスタ以外のトランジスタの領域にも、イオン注入が行われることとなる。そして、レジスト74をマスクとして、例えばBFを10〜30KeV程度、6.00E13〜1.20E14cm-2程度、チルト角0°で4方向で4回のイオン注入を行ってp型中耐圧トランジスタのLDD層75aを形成する。同時に、第2のフラッシュメモリセルLDD層75bと、p型高耐圧トランジスタLDD層75cとが形成される。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト74を除去する。
次いで、図44、図95及び図146に示されるように、n型低電圧トランジスタが形成される領域Dを開口するレジスト76を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト76は、図171に示されるように、n型低電圧トランジスタLDD注入用マスクパターン219が転写されたものである。なお、フラッシュメモリ素子部を示す領域A、Bと、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。そして、レジスト76をマスクとして、例えばゲルマニウムを10〜20KeV程度、4.00E14〜8.00E14cm-2程度、チルト角0°でイオン注入を行う。次いで、インジウムを30〜60KeV程度、8.00E12〜1.60E13cm-2程度、チルト角28°で4方向で4回のイオン注入を行う。次いで、ヒ素を1〜3KeV程度、2.00E14〜4.00E14cm-2程度、チルト角0°で4方向で4回のイオン注入を行う。次いで、ヒ素を4〜8KeV程度、1.20E15〜2.00E15cm-2程度、チルト角0°のイオン注入を行ってn型低電圧トランジスタLDD層77を形成する。次いで、O2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト76を除去する。
次いで、図45、図96及び図147に示されるように、p型低電圧トランジスタが形成される領域Cを開口するレジスト78を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト78は、図172に示されるように、p型低電圧トランジスタLDD注入用マスクパターン220が転写されたものである。なお、フラッシュメモリ素子部を示す領域A、Bと、高耐圧トランジスタ部を示す領域G〜Jは、開口部が無いので図面は省略する。そして、レジスト78をマスクとして、例えばヒ素を50〜80KeV程度、4.00E12〜8.00E12cm-2程度、チルト角28°で4方向で4回のイオン注入を行う。次いで、ボロンを0.5〜1KeV程度、2.40E14〜4.80E14cm-2程度、チルト角0°で4方向で4回のイオン注入を行って、p型低電圧トランジスタLDD層79を形成する。
次いで、図46、図97及び図148に示されるように、O2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト78を除去する。
次いで、図47、図98及び図149に示されるように、熱CVD炉により例えばビスターシャルブチルアミノシランガスなどを導入して500〜600℃程度の熱処理を行って、サイドウォール酸化膜80を60〜120nm程度の膜厚で成膜する。次いで、全面を例えばCF4ガス、または、CHF3ガスを含む混合ガスなどを用いて、サイドウォール酸化膜80をプラズマ中にて全面でエッチバックする。適正なオーバーエッチング量を設定して、ゲート電極68a〜68hの側壁にサイドウォール酸化膜80を残して、サイドウォール構造を形成する。
次いで、図48、図99及び図150に示されるように、選択トランジスタが形成される領域Aと、メモリトランジスタが形成される領域Bと、p型低電圧トランジスタが形成される領域Cと、p型中耐圧トランジスタが形成される領域Eと、第1のp型高耐圧トランジスタが形成される領域Gと、第2のタップが形成される領域Jとを開口するレジスト81を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト81は、図173、および、図183に示されるPSD注入用マスクパターン221が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、Bは、全面が開口しているので図面は省略する。そして、レジスト81をマスクとして、例えばボロンを6〜12KeV程度、8.00E12〜1.60E13cm-2程度、チルト角0°でイオン注入を行う。次いで、例えばゲルマニウムを15〜30KeV程度、4.00E14〜8.00E14cm-2程度、チルト角0°でイオン注入を行う。次いで、例えばボロンを3〜6KeV程度、1.20E15〜2.40E15cm-2程度、チルト角0°で4方向で4回のイオン注入を行ってPSD層82を形成する。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト81を除去する。
次いで、図49、図100及び図151に示されるように、n型低電圧トランジスタが形成される領域Dと、n型中耐圧トランジスタが形成される領域Fと、第1のタップが形成される領域Hと、第1のn型高耐圧トランジスタが形成される領域Iとを開口するレジスト83を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト83は、図174、および、図184に示されるNSD注入用マスクパターン222が転写されたものである。なお、フラッシュメモリセル素子部を示す領域A、Bは、開口部が無いので図面は省略する。そしてレジスト83をマスクとして、例えばリンを6〜16KeV程度、1.00E16〜2.00E16cm-2程度、チルト角0°でイオン注入を行って、NSD層84を形成する。
次いで、図50、図101及び図152に示されるように、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト83を除去する。
そして、ランプアニール装置によって900〜1100℃、0.1〜3秒程度の熱処理を行って、前述したイオン注入したシリコン基板中のイオンを活性化させる。
次いで、図51、図102及び図153に示されるように、スパッタ法によりコバルト膜を3〜6nm程度の膜厚で全面に成膜する。次いで、ランプアニール装置により、500〜600℃程度、10〜60秒程度の熱処理を行う。次いで、アンモニア過酸化水素水と硫酸過酸化水素水による薬液処理を行って、シリコンと反応したシリサイド層を残しつつ、シリコンと反応していないコバルト膜を除去する。シリコンが無い素子分離37上と、サイドウォール酸化膜80上の未反応のコバルト膜が除去される。次いで、ランプアニール装置により、600〜800℃程度、10〜60秒程度の処理を行って、ゲート電極68a〜68hの表面と、半導体基板31の表面にコバルトシリサイド膜85を形成する。
図51に示されるように、選択トランジスタのゲート100と、選択トランジスタのソース101と、選択トランジスタのドレイン102と、Nウェル44とにより、選択トランジスタ1がスイッチング素子として機能する。
図51に示されるように、メモリトランジスタのゲート103と、メモリトランジスタのソース104と、メモリトランジスタのドレイン105と、Nウェル44とにより、メモリトランジスタ2が記憶素子として機能する。メモリトランジスタのドレイン105は、選択トランジスタのソース101を兼ねている。
メモリトランジスタ2へ記憶された情報を読み出す際は、メモリトランジスタのゲート103と、メモリトランジスタのソース104と、Nウェル44に、例えば1.6Vの電位を印加し、メモリトランジスタのドレイン105(選択トランジスタのソース101も共通)と、選択トランジスタのゲート100と、選択トランジスタのドレイン102とを0Vとし、メモリトランジスタのソース104からメモリトランジスタのドレイン105に電流が流れるのかどうかによって読み出される。
メモリトランジスタ2へ情報を記録する際は、メモリトランジスタのゲート103に9Vを印加し、メモリトランジスタのソース104と、Nウェル44とに5Vを印加し、選択トランジスタのゲート100と、メモリトランジスタのドレイン105(選択トランジスタのソース101も共通)と、選択トランジスタのドレイン102とを0Vとし、メモリトランジスタのソース104からメモリトランジスタのドレイン105に流れる電流によって生じる電子が、ONO構造の第2の窒化膜52に蓄積することによって書きこまれる。
メモリトランジスタ2へ記憶された情報を消去する際は、メモリトランジスタのゲート103に−4〜−10Vを印加し、メモリトランジスタのソース104と、Nウェル44とに6〜12Vを印加することによって消去される。
上述したように、選択トランジスタ1と、メモリトランジスタ2によって、フラッシュメモリ素子部が構成される。メモリトランジスタ2に情報を記憶し、必要な場合に消去を行い、記憶された情報を読み出すことでフラッシュメモリとして機能する。
図102(a)に示されるように、p型低電圧トランジスタのゲート106と、p型低電圧トランジスタのソース107と、p型低電圧トランジスタのドレイン108と、Nウェル44とにより、p型低電圧トランジスタ3がスイッチング素子として機能する。
図102(a)に示されるように、n型低電圧トランジスタのゲート109と、n型低電圧トランジスタのソース110と、n型低電圧トランジスタのドレイン111と、Pウェル41とにより、n型低電圧トランジスタ4がスイッチング素子として機能する。
図102(b)に示されるように、p型中耐圧トランジスタのゲート112と、p型中耐圧トランジスタのソース113と、p型中耐圧トランジスタのドレイン114と、Nウェル44とにより、p型中耐圧トランジスタ5がスイッチング素子として機能する。
図102(b)に示されるように、n型中耐圧トランジスタのゲート115と、n型中耐圧トランジスタのソース116と、n型中耐圧トランジスタのドレイン117と、Pウェル41とにより、n型中耐圧トランジスタ6がスイッチング素子として機能する。
図153に示されるように、第1のp型高耐圧トランジスタのゲート118と、第1のp型高耐圧トランジスタのソース119と、第1のp型高耐圧トランジスタのドレイン120と、第1のタップ121と、Nウェル44と、Pウェル41と、ディープNウェル48とにより、第1のp型高耐圧トランジスタ7がスイッチング素子として機能する。第1のp型高耐圧トランジスタのゲート118の下側の半導体基板31は、第1のp型高耐圧トランジスタのソース119側にNウェル44が配置されている。他方、第1のp型高耐圧トランジスタのゲート118の下側の半導体基板31は、第1のp型高耐圧トランジスタのドレイン120側にPウェル41と、素子分離37が配置されている。さらに、Pウェル41は、Nウェル44と、ディープNウェル48とによって囲まれている。このような構造は、横方向拡散MOS(Laterally Diffused MOS:LDMOS)呼ばれる。LDMOS構造とすることで、ドレイン耐圧を好適に向上させることが可能であるため、より高い電圧での動作が要求される回路に適用できる。
図153に示されるように、第1のn型高耐圧トランジスタのゲート122と、第1のn型高耐圧トランジスタのソース123と、第1のn型高耐圧トランジスタのドレイン124と、第2のタップ125と、Pウェル41と、Nウェル44とにより、第1のn型高耐圧トランジスタ8がスイッチング素子として機能する。第1のn型高耐圧トランジスタのゲート122の下側の半導体基板31は、第1のn型高耐圧トランジスタのソース123側にPウェル41が配置されている。他方、第1のn型高耐圧トランジスタのゲート122の下側の半導体基板31は、第1のn型高耐圧トランジスタのドレイン124側にNウェル44と、素子分離37が配置されている。さらに、Nウェル44は、Pウェル41と、半導体基板31とによって囲まれている。このような構造は、第1のp型高耐圧トランジスタ7と同様にLDMOSと呼ばれる。LDMOS構造とすることで、ドレイン耐圧を好適に向上させることが可能であるため、より高い電圧での動作が要求される回路に適用できる。
次いで、図示は省略するが半導体基板31の表面全体に層間絶縁膜を形成し、各種ゲート68a〜68h上と、半導体基板31上とに、電気的に接続するコンタクトを形成し、コンタクトに接続する配線を順次形成する。さらに、接続された配線は、外部と電気信号をやり取りするためのパッドに接続されて、半導体装置として機能する。なお、一例として図160、図174及び図184に示されるように、コンタクトパターン223を配置した例を示す。
図51に示されるように、選択トランジスタ1と、メモリトランジスタ2が形成される。
選択トランジスタ1は、ゲート電極68aと、半導体基板31との間に、第3の熱酸化膜62が形成されている。第3の熱酸化膜62は熱酸化にて形成されている。したがって、選択トランジスタのゲート絶縁膜は良質に保たれ、素子特性を悪化させることが無いように形成されている。特に、フラッシュメモリ素子部には、書き込み、読み出し、消去の動作をさせるために高い電圧が掛かる。したがって、選択トランジスタ1に対しても、良質なゲート絶縁膜を使用することが好適である。
メモリトランジスタ2は、ゲート電極68bと、半導体基板31との間に、CVD酸化膜55と、第2の窒化膜52と、トンネル酸化膜51とが積層され、ONO構造を有している。メモリトランジスタ2のゲート電極68bと、半導体基板との間に、電圧を適宜印加することにより、トンネル酸化膜を介して第2の窒化膜に電荷が蓄積、放出されて、情報を記憶することが可能となる。さらに、選択トランジスタ1を動作することによって、読み出しが行える。したがって、フラッシュメモリ素子部の動作が行える構造となる。
図102(a)に示されるように、p型低電圧トランジスタ3、および、n型低電圧トランジスタ4が形成される。
p型低電圧トランジスタ3、および、n型低電圧トランジスタ4は、それぞれゲート電極68c、68dと、半導体基板31との間に、第2の熱酸化膜60が形成されている。第2の熱酸化膜60は、熱酸化にて形成されている。したがって、p型低電圧トランジスタ3、および、n型低電圧トランジスタ4のゲート絶縁膜は良質に保たれ、もっとも薄く形成されている為、素子特性を悪化させることなく、高速動作に好適なように形成されている。
さらに、図102(b)に示されるように、p型中耐圧トランジスタ5、および、n型中耐圧トランジスタ6が形成される。
p型中耐圧トランジスタ5、および、n型中耐圧トランジスタ6は、それぞれゲート電極68e、68fと、半導体基板31との間に、選択トランジスタ1と同様に、第3の熱酸化膜62が形成されている。第3の熱酸化膜62は熱酸化にて形成されている。したがって、p型中耐圧トランジスタ5、および、n型中耐圧トランジスタ6のゲート絶縁膜は良質に保たれ、素子特性を悪化させることが無いように形成されている。特に、中耐圧トランジスタは、例えば外部との電気信号のやり取りを行うなどの目的で、低電圧トランジスタよりも高い電圧が印加される。第3の熱酸化膜62は、第2の熱酸化膜60よりも膜厚が厚く形成されており、耐圧特性の点で高い電圧が印加できる点で好適である。
図153に示されるように、第1のp型高耐圧トランジスタ7、および、第1のn型高耐圧トランジスタ8が形成される。
第1のp型高耐圧トランジスタ7、および、第1のn型高耐圧トランジスタ8は、それぞれゲート電極68g、68hと、半導体基板31との間に、CVD酸化膜55と、第4の熱酸化膜64とが積層されて酸化層65が形成されている。言い換えれば、第1のp型高耐圧トランジスタ7、および、第1のn型高耐圧トランジスタ8のゲート絶縁膜は、高い電圧の印加に耐えうるように、第3の熱酸化膜62よりも、さらに厚く形成されている。特に、高耐圧トランジスタは、例えばフラッシュメモリ素子の書き込み、読み出し、消去の動作をさせるために高い電圧が必要な場合に、該当箇所のフラッシュメモリ素子部に適切な電圧、例えば5V以上の電圧を印加するスイッチング回路に用いることができる。CVD酸化膜55と、第4の熱酸化膜64とが積層された酸化層65は、第3の熱酸化膜62よりも厚く形成されているため、耐圧特性の点でさらに高い電圧を印加できる点で好適である。
なお、第1の実施の形態では、一例として素子分離を形成する工程、ウェルとチャネルとを形成する工程、トンネル酸化層と電荷蓄積層とを形成する工程の順で説明した。これらの工程は、手順を適宜変更しても構わない。例えば、素子分離を形成する工程の前に先にウェルとチャネルを形成しても構わない。必要であれば先にシリコン基板に段差となる位置合わせ用マークをパターンニング技術と、エッチング技術を用いて形成し、そのマークを用いてウェルとチャネルを形成し、後に素子分離を形成しても構わない。あるいは、ウェルと素子分離を形成したのちにチャネルを形成しても構わない。さらに、例えば、フラッシュメモリトランジスタの領域にウェルとチャネルとを形成し、トンネル酸化層と電荷蓄積層とを形成したのちに、他のトランジスタのウェルとチャネルとをさらに別工程で形成することも可能である。例えば、トンネル酸化層を形成する工程の熱工程で、他のトランジスタのウェルとチャネルとが拡散の影響を受けることを抑制したい場合に、部分的に他のトランジスタのウェルとチャネルとを形成する工程を後に別工程で設けることは好適である。これにより、他のトランジスタの電気特性の安定化を図ることができる。これに限られず、基板上に残存するゲート絶縁膜あるいはトンネル酸化膜が最終的に形成される前であれば、適宜夫々の領域のウェルとチャネルとを形成する工程は、領域ごとに形成する手順を変更しても良い。夫々のトランジスタの領域の電気特性に好適である工程の手順に変更することも可能である。
<第1の実施の形態の変形例>
第1の実施の形態にて半導体装置の製造工程を説明した。第1の実施の形態の一部の工程を変更しても、同様に半導体装置を製造することができる。以下、第1の実施の形態の変形例として、半導体装置の製造工程を断面図、平面図に沿って詳細に説明する。なお、第1の実施の形態と同じ要素について、同じ符号を付す。
図185〜図188及び図189は、第1の実施の形態の変形例を説明するそれぞれ断面図、平面図である。図185(a)〜図188(a)は、図189(a)に示されるW−W’線部を示す断面図である。図185(b)〜図188(b)は、図189(b)に示されるX−X’線部を示す断面図である。第1の実施の形態の変形例は、第1の実施の形態から一部の工程を変更したものであり、同様に半導体装置を製造することができるものである。具体的には、一部の工程で用いるマスクパターンの形状を変更し、低電圧トランジスタの領域の半導体基板の表面が薬液で処理される回数を減らす。
第1の実施の形態で説明した製造工程を用いて、図1〜図28、図52〜図79及び図103〜図130に示される工程と同様に、CVD酸化膜55を形成する。
次いで、図29及び図131に示される工程と同様に、選択トランジスタが形成される領域Aの一部を開口するレジスト56を塗布、露光、現像の処理を行ってパターンニングする。第1の実施の形態では、図80に示されるように、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜Fを全面で開口していた。しかしながら、第1の実施の形態の変形例においては、図185に示されるように、中耐圧トランジスタ部を示す領域E、Fは第1の実施の形態と同様に開口するが、低電圧トランジスタ部を示す領域C、Dを開口しない点が第1の実施の形態と異なる。ここで、図29において、レジスト56は、図157に示されるメモリセルCVD酸化膜エッチング用マスクパターン213が転写されたものである。そして、第1の実施の形態の変形例では、図185において、レジスト56は、図185に示されるように、中耐圧トランジスタ部を示す領域E、Fを同時に開口している。
次いで、図30及び図132に示される工程と同様に、レジスト56をマスクとして、例えば弗酸処理を行って、CVD酸化膜55を除去する。第1の実施の形態では、図81に示されるように、低電圧トランジスタ部と、中耐圧トランジスタ部を示す領域C〜Fが全面で開口していたため、CVD酸化膜55が除去されているが、第1の実施の形態の変形例では低電圧トランジスタ部を示す領域C、Dは開口していないため、図186に示されるように、CVD酸化膜55が残存する点が第1の実施の形態と異なる。他方、中耐圧トランジスタ部を示す領域E、Fは、開口しているのでCVD酸化膜が除去され、半導体基板31の表面が露出する。次いで、第1の実施の形態と同様に、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト56を除去する。したがって、低電圧トランジスタ部を示す領域C、Dは、半導体基板31の表面が弗酸処理にさらされない。
次いで、図31及び図133に示される工程と同様に、第1の熱酸化膜57を成長する。ここで、第1の実施の形態では、図82に示されるように、半導体基板31の表面が露出している低電圧トランジスタと、中耐圧トランジスタとが形成される領域C〜Fは、第1の熱酸化膜57が形成された。第1の実施の形態の変形例では、図187に示されるように、半導体基板31の表面が露出している中耐圧トランジスタが形成される領域E、Fは、第1の実施の形態と同様に、第1の熱酸化膜57が形成される。しかしながら、図187に示されるように低電圧トランジスタが形成される領域C、Dは、半導体基板31の表面がCVD酸化膜55に覆われているため、第1の実施の形態の図133の高耐圧トランジスタが形成される領域G〜Jと同様に、半導体基板31との界面のシリコンが酸化され第1の界面酸化層58が成長する。よって、低電圧トランジスタが形成される領域C、Dは、CVD酸化膜55と共に、第1の界面酸化層58が形成されたことで、厚みが増加する。したがって、第1の実施の形態の変形例では、低電圧トランジスタが形成される領域C、Dにおいて、半導体基板31の表面に形成される膜の構造が第1の実施の形態とは異なる。
次いで、図32、図134に示される工程と同様に、図188に示されるようにp型低電圧トランジスタが形成される領域Cと、n型低電圧トランジスタが形成される領域Dとを開口するレジスト59を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト59は、図167に示されるように、低電圧トランジスタのゲート絶縁膜形成エッチング用マスクパターン214が転写されたものと同じである。第1の実施の形態では、図83に示されるように第1の熱酸化膜57が半導体基板31の表面に成長されていた。しかしながら、第1の実施の形態の変形例では、CVD酸化膜55と共に、第1の界面酸化層58が形成されている点が異なる。
次いで、図33、図84及び図135に示される工程と同様に、レジスト59をマスクとして、例えば弗酸処理を行って、CVD酸化膜55、および、第1の界面酸化層58を除去する。第1の実施の形態では第1の熱酸化膜57を除去したが、第1の実施の形態の変形例では除去する膜が異なる。弗酸処理の時間を適宜変更することで、半導体基板31の表面を露出することが可能である。次いで、例えばO2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト59を除去する。
次いで、図34、図85及び図136に示される工程と同様に、熱拡散炉により第2の熱酸化膜60を成長する。
以降の工程は、第1の実施の形態と同様な工程を用いることで、半導体装置を製造することができる。
第1の実施の形態の変形例では、第1の実施の形態と異なるマスクパターンを用いることで、低電圧トランジスタが形成される領域C、Dの半導体基板31の表面に形成される膜が異なり、弗酸処理で除去される膜が異なることを説明した。より具体的には、第1の実施の形態では、低電圧トランジスタが形成される領域C、Dの半導体基板31上に形成されたCVD酸化膜55が弗酸処理で除去され、第1の熱酸化膜57が成長され、第1の熱酸化膜57が弗酸処理で除去され、次いで第2の熱酸化膜60が成長された。他方、第1の実施の形態の変形例では、低電圧トランジスタが形成される領域C、Dの半導体基板31上に形成されたCVD酸化膜55が弗酸処理にさらされずに残存し、第1の界面酸化層58が成長され、CVD酸化膜55、および、第1の界面酸化層58が弗酸処理で除去され、次いで第2の熱酸化膜60が成長された。
したがって、第1の実施の形態の変形例は、第1の実施の形態と比較して、具体的な工程の数は変化しないものの、低電圧トランジスタが形成される領域C、Dの半導体基板31の表面が弗酸処理にさらされる回数が少ない。なお、半導体基板31の表面は、不純物が注入された表面で有り、トランジスタが動作する際の電子やホールが流れる表面である。ここで、半導体基板31の表面は、酸化量を極力少なくし、かつ、薬液処理に晒される回数を少なくすることが好ましい。酸化量を極力少なくすることで、注入した不純物が酸化膜や酸化層に拡散して流出することを少なくすることができる。さらに、薬液処理に晒される回数を少なくすることで、素子分離37の表面が薬液処理によって後退し、半導体基板31の側面が露出する程度を少なくすることができる。例えば、素子分離37の平坦な表面よりも、半導体基板31と素子分離37との界面付近の素子分離37の表面が、薬液処理によるエッチングレートが早い場合が有る。この現象が生じると、局所的な段差が生じることとなる。
例えば、ゲート電極68c、68d、半導体基板31、および、素子分離37が近接する部分において、不要な局所的な段差が生じることで当該部分のゲート電極膜66の厚みが部分的に増加した場合に、エッチング残渣が発生する場合がある。さらに例えば、ゲート電極68c、68d、半導体基板31、および、素子分離37が近接する部分において、不要な局所的な段差が生じることで当該部分のゲート電極膜66の表面に段差が残存した場合に、ゲート電極68c、68dを形成するためのレジストによるパターンが段差により線幅が変動しやすくなる場合がある。エッチング残渣は電気的なショートの原因となり、ゲート電極68c、68dの線幅の変動はトランジスタ特性の変動の原因となる。不要な局所的な段差が生じることを抑制することで、エッチング残渣が発生することや、レジストによるパターンの線幅の変動が生じることを回避することができる。
したがって、第1の実施の形態の変形例は、第1の実施の形態と比較して、半導体基板31の表面の酸化量も少なく、弗酸処理も少なくすることができるため、良好なトランジスタ特性を得るのに好適である。さらに、第1の実施の形態の変形例は、製造工程を増やすことなく、好適な半導体装置を製造することができる。
<第2の実施の形態>
図190〜図198及び図199〜図203は、第2の実施の形態を説明するそれぞれ断面図、平面図である。第2の実施の形態は、第1の実施の形態と、同様な工程を経つつ、さらに高耐圧トランジスタのオン特性を改善するものである。特性を改善するために、一部のマスクパターンの変更と、サイドウォール形状の加工形状の変更が行われる。
以下、マスクパターンの変更が行われる工程と、製造工程が異なる点を詳述する。なお、第1の実施の形態と同じ要素について、同じ符号を付し、適宜異なる要素について異なる符号を付して説明する。
図190〜図198は、第2の実施の形態の半導体装置の製造工程を説明する断面図(その1〜その9)である。図199〜図203は、第2の実施の形態の半導体装置の製造工程における高耐圧トランジスタ部のマスクパターンを示す平面図(その1〜その5)である。
第1の実施の形態で説明したように、図103〜図109の工程と同様にSTI構造を形成する。なお、レジスト34は、図199に示される素子分離用マスクパターン224が転写された点が、第1の実施の形態と異なる。そして、図110〜図112の工程と同様に犠牲酸化膜38を成長する。ここまでの工程を経た状態を、図112と対比するために図190に示す。
図190に示される領域K〜Nは、高耐圧トランジスタ部を示す領域である。高耐圧トランジスタ部は、第2のp型高耐圧トランジスタが形成される領域Kと、第3のタップが形成される領域Lと、第2のn型高耐圧トランジスタが形成される領域Mと、第4のタップが形成される領域Nとを有している。図190は、図199に示されるZ−Z’線部を示す断面図である。
次いで、図112の工程と同様に、図190に示されるように第2のn型高耐圧トランジスタが形成される領域Mと、第4のタップが形成される領域Nとを開口するレジスト40を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト40は、図199に示されるPウェル注入用マスクパターン225が転写されたものである。なお、図112の第1のp型高耐圧トランジスタが形成される領域Gとは、第2のp型高耐圧トランジスタが形成される領域Kが開口しない点で異なる。図112の工程と同様に、Pウェル41を形成する。
次いで、図113の工程と同様に、第2のn型高耐圧トランジスタの一部にチャネル(図示せず)を形成する。ここまでの工程を経た状態を、図114と対比するために図191に示す。
次いで、図114の工程と同様に、図191に示されるように第2のp型高耐圧トランジスタが形成される領域Kと、第3のタップが形成される領域Lとを開口するレジスト43を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト43は、図200に示されるNウェル注入用マスクパターン226が転写されたものである。なお、図114の第1のn型高耐圧トランジスタが形成される領域Iとは、第2のn型高耐圧トランジスタが形成される領域Mが開口しない点が異なる。図114の工程と同様に、Nウェル44を形成する。
次いで、第1の実施の形態で説明したように、図115〜図120の工程と同様に、第2のp型高耐圧トランジスタの一部にチャネル(図示せず)を形成し、第2のp型高耐圧トランジスタに、ディープNウェル48を形成し、犠牲酸化膜38を除去する。
次いで、第1の実施の形態で説明したように、図121〜図136の工程と同様に、高耐圧トランジスタが形成される領域K〜Nに、CVD酸化膜55と、第4の熱酸化膜64とが積層された、最も厚い膜厚の酸化層65を残存させる。
次いで、第1の実施の形態で説明したように、図137〜図143の工程と同様に、ゲート電極膜66に、図201に示されるゲート電極エッチング用マスクパターン227によるレジスト67を用いて、ゲート電極68i、68jを形成する。ここまでの工程を経た状態を、図144と対比するために図192に示す。
次いで、図144の工程と同様に、図192に示されるように第2のn型高耐圧トランジスタが形成される領域Mを開口するレジスト72を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト72は、図201に示されるn型中耐圧トランジスタLDD注入用マスクパターン228が転写されたものである。なお、図144の第1のn型高耐圧トランジスタが形成される領域Iとは、第2のn型高耐圧トランジスタが形成される領域Mの開口部の範囲が大きくなっている点が異なる。図144の工程と同様に、第2のn型高耐圧トランジスタのLDD層73bが形成される。ここまでの工程を経た状態を、図145と対比するために図193に示す。
次いで、図145の工程と同様に、図193に示されるように第2のp型高耐圧トランジスタが形成される領域Kを開口するレジスト74を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト74は、図202に示されるp型中耐圧トランジスタLDD注入用マスクパターン229が転写されたものである。なお、図145の第1のp型高耐圧トランジスタが形成される領域Gとは、第2のp型高耐圧トランジスタが形成される領域Kの開口部の範囲が大きくなっている点が異なる。図145の工程と同様に、p型高耐圧トランジスタLDD層75cが形成される。
次いで、第1の実施の形態で説明したように、図146〜図148の工程と同様に、他のトランジスタのLDD層を形成してレジストを剥離する。
次いで、第1の実施の形態では図示を省略したが、図47、図98及び図149に示されているサイドウォール構造を形成する過程では、図194に示されるように最初にサイドウォール酸化膜80が形成される。第1の実施の形態では、サイドウォール酸化膜80が全面に露出した状態で、プラズマ中にて全面でエッチバックを行ったが、第2の実施の形態は、異なる方法を用いる。以下に説明する。
次いで、図194に示されるように、サイドウォール酸化膜80を形成した後、ゲート電極68i、68jそれぞれの一部を覆うように残存するレジスト86を塗布、露光、現像の処理を行ってパターンニングする。ここで、レジスト86は、図203に示されるサイドウォールオフセット用マスクパターン230が転写されたものである。
次いで、図195に示されるように、レジスト86をマスクにして、第1の実施の形態と同様に、全面を例えばCF4ガス、または、CHF3ガスを含む混合ガスなどを用いて、サイドウォール酸化膜80をプラズマ中にて全面でエッチバックする。ここで、レジスト86に被われている領域のサイドウォール酸化膜80は、残存する。図示しないが、他のトランジスタが形成される領域は、第1の実施の形態と同様にサイドウォール構造が形成されている。
次いで、図196に示されるように、O2ガス、または、O2ガスを含む混合ガスなどを用いてレジスト86を除去する。ゲート電極68i、68jそれぞれの表面と、側壁の一部と、半導体基板31の表面の一部とを覆うように、サイドウォール酸化膜80a、80bがそれぞれ残存する。第1の実施の形態の図149と、図196はサイドウォール酸化膜80の残存の形状が異なる。
次いで、第1の実施の形態で説明したように、図150〜図152の工程と同様に、図197に示されるようにPSD層82と、NSD層84を形成する。
次いで、第1の実施の形態で説明したように、図153の工程と同様に、図198に示されるようにコバルトシリサイド膜85を形成する。第2の実施の形態では、サイドウォール酸化膜80a、80bを残存させたため、ゲート電極68i、68jの一部と、半導体基板31の表面の一部には、コバルトシリサイド膜85が形成されない。
図198に示されるように、第2のp型高耐圧トランジスタのゲート126と、第2のp型高耐圧トランジスタのソース127と、第2のp型高耐圧トランジスタのドレイン128と、第3のタップ129と、Nウェル44と、ディープNウェル48とにより、第2のp型高耐圧トランジスタ9がスイッチング素子として機能する。第2のp型高耐圧トランジスタのゲート126の下側の半導体基板31は、第2のp型高耐圧トランジスタのソース127側にNウェル44が配置されている。他方、第2のp型高耐圧トランジスタのゲート126の下側の半導体基板31は、付加的な注入が行われていない部分87を有し、素子分離37も配置されていない。さらに、付加的な注入が行われていない部分87は、Nウェル44と、ディープNウェル48とによって囲まれている。このような構造は、第1のp型高耐圧トランジスタ7と同様にLDMOSと呼ばれる。第1のp型高耐圧トランジスタ7に対して、第2のp型高耐圧トランジスタ9は、素子分離37が配置されていない点と、Pウェル41が配置されていない点と、サイドウォール酸化膜80aによってドレイン領域にオフセットが設けられている点とが異なる。このような構造とすることで、ゲート電極からドレイン領域を離間させることができるため、ドレイン耐圧を高く維持することができる。さらに、スイッチングにより第2のp型高耐圧トランジスタのソース127から第2のp型高耐圧トランジスタのドレイン128に電流を流す際に、第1のp型高耐圧トランジスタ7のように素子分離37を迂回して電流が流れることがなくなる。そのため、トランジスタが動作する際に寄生抵抗となるオン抵抗を低減することが可能である。すなわち、第2のp型高耐圧トランジスタ9のようなLDMOS構造とすることで、ドレイン耐圧を好適に向上させつつ、オン抵抗を低減することができるため、より高い電圧において良好なオン特性が要求される回路に適用することができる。
図198に示されるように、第2のn高耐圧トランジスタのゲート130と、第2のn型高耐圧トランジスタのソース131と、第2のn型高耐圧トランジスタのドレイン132と、第4のタップ133と、Pウェル41とにより、第2のn型高耐圧トランジスタ10がスイッチング素子として機能する。第2のn型高耐圧トランジスタのゲート130の下側の半導体基板31は、第2のn型高耐圧トランジスタのソース131側にPウェル41が配置されている。他方、第2のn型高耐圧トランジスタのゲート130の下側の半導体基板31は、付加的な注入が行われていない部分88を有し、素子分離37も配置されていない。このような構造は、第1のn型高耐圧トランジスタ8と同様にLDMOSと呼ばれる。第1のn型高耐圧トランジスタ8に対して、第2のn型高耐圧トランジスタ10は、素子分離が配置されていない点と、Nウェル44が配置されていない点と、サイドウォール酸化膜80bによってドレイン領域にオフセットが設けられている点とが異なる。このような構造とすることで、ゲート電極からドレイン領域を離間させることができるため、ドレイン耐圧を高く維持することができる。さらに、スイッチングにより第2のn型高耐圧トランジスタのソース131から第2のn型高耐圧トランジスタのドレイン132に電流を流す際に、第1のn型高耐圧トランジスタ8のように素子分離37を迂回して電流が流れることがなくなる。そのため、トランジスタが動作する際に寄生抵抗となるオン抵抗を低減することが可能である。すなわち、第2のn型高耐圧トランジスタ10のようなLDMOS構造とすることで、ドレイン耐圧を好適に向上させつつ、オン抵抗を低減することができるため、より高い電圧において良好なオン特性が要求される回路にてきようすることができる。
<第3の実施の形態>
図204は、第3の実施の形態を説明する図である。具体的には、第1の実施の形態、および、第2の実施の形態で説明した製造方法を含む製造方法で製造される半導体装置を例示する。
半導体装置20には、図204に示されるように、MOSトランジスタ等が形成されている。例えば、シリコン基板等の半導体基板301が素子分離302により複数の素子分離領域が画定されている。そして、半導体基板301上にゲート絶縁膜303aおよびゲート電極303bが積層されている。ゲート絶縁膜303aおよびゲート電極303bの側方にはサイドウォール絶縁膜303cが形成されている。半導体基板301の表面に素子分離302が無い部分には、平面視でゲート絶縁膜303aおよびゲート電極303bを間に挟むようにして、ソース・ドレイン拡散層303dが形成されている。ソース・ドレイン拡散層303dは、一例としてLDD(Lightly doped drain)を含むものが例示されている。
次いでさらに、例えばシリコン窒化膜304aおよびシリコン酸化膜304bが全面に積層され、シリコン窒化膜304aおよびシリコン酸化膜304bにソース・ドレイン拡散層303dまで達するコンタクトホール305が形成されている。また、図示はしないが、コンタクトホール305は、ゲート電極303bに達するようにも形成されている。このコンタクトホール305の直径は、例えば0.08μm〜0.12μm程度である。このコンタクトホール305の側面および底面に倣うようにして、例えばグルーレイヤ305a(例えばTiN膜)が形成され、その内部に金属層305b(例えばタングステン膜)が埋め込まれている。
次いでさらに、例えばシリコン窒化膜306a及びシリコン酸化膜306bが全面に積層され、シリコン窒化膜306a及びシリコン酸化膜306bにグルーレイヤ305a及び金属層305b、或いは、シリコン酸化膜304bまで達する溝307が形成されている。この溝307の側面及び底面に倣うようにして、例えばバリアメタル膜307a(例えばTa膜)が形成され、その内部に金属層307b(例えばCu)が埋め込まれて配線が形成されている。
次いでさらに、例えばシリコン窒化膜308a及びシリコン酸化膜308bが全面に積層され、シリコン窒化膜308a及びシリコン酸化膜308bに下層の配線、ここでは金属層307bまで達するコンタクトホール309が形成されている。このコンタクトホール309の直径は、例えば0.08μm〜0.12μm程度である。
次いでさらに、例えばシリコン窒化膜310a及びシリコン酸化膜310bが全面に積層され、シリコン窒化膜308a及びシリコン酸化膜308bに形成されたコンタクトホール309に繋がる、或いは、シリコン酸化膜308bに達する溝311がシリコン窒化膜310a及びシリコン酸化膜310bに形成されている。これらのコンタクトホール309及び溝311の側面及び底面に倣うようにして、例えばバリアメタル膜311a(例えばTa膜)が形成され、その内部に金属層311b(例えばCu)が埋め込まれて配線が形成されている。
次いでさらに、例えばシリコン窒化膜312a及びシリコン酸化膜312bが全面に積層され、シリコン窒化膜312a及びシリコン酸化膜312bに下層の配線、ここでは金属層311bまで達するコンタクトホール313が形成されている。このコンタクトホール313の直径は、例えば0.08μm〜0.12μm程度である。
次いでさらに、例えばシリコン窒化膜314a及びシリコン酸化膜314bが全面に積層され、シリコン窒化膜312a及びシリコン酸化膜312bに形成されたコンタクトホール313に繋がる、或いは、シリコン酸化膜312bに達する溝315がシリコン窒化膜314a及びシリコン酸化膜314bに形成されている。これらのコンタクトホール313及び溝315の側面及び底面に倣うようにして、例えばバリアメタル膜315a(例えばTa膜)が形成され、その内部に金属層315b(例えばCu)が埋め込まれて配線が形成されている。
次いでさらに、例えばシリコン窒化膜316a及びシリコン酸化膜316bが全面に積層され、シリコン窒化膜316a及びシリコン酸化膜316bに下層の配線、ここでは金属層315bまで達するコンタクトホール317が形成されている。このコンタクトホール317の直径は、例えば0.30μm〜0.50μm程度である。
次いでさらに、例えばシリコン窒化膜318a及びシリコン酸化膜318bが全面に積層され、シリコン窒化膜316a及びシリコン酸化膜316bに形成されたコンタクトホール317に繋がる、或いは、シリコン酸化膜316bに達する溝319がシリコン窒化膜318a及びシリコン酸化膜318bに形成されている。これらのコンタクトホール317及び溝319の側面及び底面に倣うようにして、例えばバリアメタル膜319a(例えばTa膜)が形成され、その内部に金属層319b(例えばCu)が埋め込まれて配線が形成されている。
次いでさらに、例えばシリコン窒化膜320a及びシリコン酸化膜320bが全面に積層され、シリコン窒化膜320a及びシリコン酸化膜320bに金属層319bまで達するコンタクトホール321が形成されている。このコンタクトホールの直径は、例えば0.38μm〜0.62μm程度である。また、このコンタクトホールの側面及び底面に倣うようにして、例えばグルーレイヤ321a(例えばTiN膜)が形成され、その内部に金属層321b(例えばタングステン膜)が埋め込まれている。
次いでさらに、例えばシリコン酸化膜320bの表面の一部と、グルーレイヤ321aと、金属層321bを覆うようにしてバリアメタル膜322aが形成され、このバリアメタル膜322a上に金属層322b(例えばAl又はAl合金膜)及びバリアメタル膜322cが積層され、配線322が形成されている。更に、例えばバリアメタル膜322a、金属層322b及びバリアメタル膜322cを覆うようにしてシリコン酸化膜323aが全面に形成され、例えばシリコン窒化膜323bがシリコン酸化膜323a上に被覆膜として形成されている。さらに、例えば下層の配線、ここでは金属層322bまで達する開口323oがバリアメタル膜322c、シリコン酸化膜323a及びシリコン窒化膜323bに形成されている。開口323oは、外部との電気的な信号をやり取りするためのパッドにおける電気的な接続の機能を確保するものである。
なお、上記の実施の形態では、半導体装置20が提示され、半導体装置の製造工程を説明した。
上記の実施の形態で説明したMOSトランジスタ等は、第1の実施の形態、第1の実施の形態の変形例、および、第2の実施の形態で説明したメモリトランジスタ、選択トランジスタ、低電圧トランジスタ、中耐圧トランジスタ、高耐圧トランジスタの各種のトランジスタに置き換えることができることは当業者であれば当然に可能と理解されることは言うまでもない。
第1の実施の形態、および、第2の実施の形態で説明されたコンタクトパターン223は、上記の実施の形態で説明したコンタクトホール305の加工に用いられるパターンとして用いることができる。
上記の実施の形態で説明した製造工程と、第1の実施の形態、第1の実施の形態の変形例、および、第2の実施の形態で説明した各種のトランジスタの製造工程とを組み合わせれば、第1の実施の形態、第1の実施の形態の変形例、および、第2の実施の形態の各種のトランジスタは、半導体装置として動作させることが当然に可能である。
第1の実施の形態では、フラッシュメモリ素子として、フラッシュメモリトランジスタと、選択トランジスタとを組み合わせたもの好適な例として例示したが、これに限られることなく例えばフラッシュメモリトランジスタを単独で使用したフラッシュメモリ素子として実施することも当然に可能である。
以上、本発明の半導体装置の製造方法を、図示の実施の形態で説明したが、あくまでも実施の形態は本発明の技術的な思想を説明するための例示であり、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成に置換することができる。また、本発明に他の任意の構成物や工程が付加されていても良い。
以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)
半導体基板の上に、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、および、フラッシュメモリトランジスタを有する半導体装置の製造方法であって、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域を画定させる素子分離を形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にウェルと、チャネルとを形成する工程と、
前記フラッシュメモリトランジスタの領域に、トンネル酸化層と、電荷蓄積層とを形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域に第1の酸化膜を形成する工程と、
前記第1のトランジスタ、および、前記第2のトランジスタの領域の前記第1の酸化膜を除去する工程と、
前記半導体基板を酸化することにより、前記第1のトランジスタ、および、前記第2のトランジスタの領域に第2の酸化膜を形成しつつ、前記第3のトランジスタの領域の前記第1の酸化膜と前記半導体基板との間に第1の酸化層を加えて第3の酸化膜を形成する工程と、
前記第1のトランジスタの領域の前記第2の酸化膜を除去する工程と、
前記半導体基板を酸化することにより、前記第1のトランジスタの領域に第4の酸化膜を形成しつつ、前記第2のトランジスタの領域の前記第2の酸化膜と前記半導体基板との間に第2の酸化層を加えて第5の酸化膜を形成するとともに、前記第3のトランジスタの領域の前記第1の酸化層と前記半導体基板との間に第3の酸化層を加えて第6の酸化膜を形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にゲート電極を形成する工程と、
前記ゲート電極の両側の側壁にサイドウォール酸化膜を形成する工程と、
前記ゲート電極の両側の側方の前記半導体基板内に、ソース領域と、ドレイン領域を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
(付記2)
半導体基板の上に、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、および、フラッシュメモリトランジスタを有する半導体装置の製造方法であって、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域を画定させる素子分離を形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にウェルと、チャネルとを形成する工程と、
前記フラッシュメモリトランジスタの領域に、トンネル酸化層と、電荷蓄積層とを形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域に第1の酸化膜を形成する工程と、
前記第2のトランジスタの領域の前記第1の酸化膜を除去する工程と、
前記半導体基板を酸化することにより、前記第2のトランジスタの領域に第2の酸化膜を形成しつつ、前記第1のトランジスタ、および、前記第3のトランジスタの領域の前記第1の酸化膜と前記半導体基板との間に第1の酸化層を加えて第3の酸化膜を形成する工程と、
前記第1のトランジスタの領域の前記第3の酸化膜を除去する工程と、
前記半導体基板を酸化することにより、前記第1のトランジスタの領域に第4の酸化膜を形成しつつ、前記第2のトランジスタの領域の前記第2の酸化膜と前記半導体基板との間に第2の酸化層を加えて第5の酸化膜を形成するとともに、前記第3のトランジスタの領域の前記第1の酸化層と前記半導体基板との間に第3の酸化層を加えて第6の酸化膜を形成する工程と、
前記第1のトランジスタ、前記第2のトランジスタ、第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にゲート電極を形成する工程と、
前記ゲート電極の両側の側壁にサイドウォール酸化膜を形成する工程と、
前記ゲート電極の両側の側方の前記半導体基板内に、ソース領域と、ドレイン領域を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
(付記3)
前記第4の酸化膜は第1のトランジスタのゲート絶縁膜として、前記第5の酸化膜は第2のトランジスタのゲート絶縁膜として、前記第6の酸化膜は第3のトランジスタのゲート絶縁膜として、前記ゲート電極と前記半導体基板との間で用いられることを特徴とする付記1又は2に記載の半導体装置の製造方法。
(付記4)
前記半導体基板上に、第4のトランジスタをさらに有し、
前記素子分離を形成する工程は、前記第4のトランジスタの領域を画定させることを含み、
前記ウェルと前記チャネルとを形成する工程は、前記第4のトランジスタの領域に前記ウェルと前記チャネルとを形成することを含み、
前記第1の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第1の酸化膜を形成することを含み、
前記第1の酸化膜を除去する工程は、前記第4のトランジスタの領域の前記第1の酸化膜を除去することを含み、
前記第3の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第2の酸化膜を形成することを含み、
前記第6の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第5の酸化膜を形成することを含み、
前記ゲート電極を形成する工程は、前記第4のトランジスタの領域に前記ゲート電極を形成することを含み、
前記サイドウォール酸化膜を形成する工程は、前記第4のトランジスタの領域にサイドウォール酸化膜を形成することを含み、
前記ソース領域と、ドレイン領域を形成する工程は、前記第4のトランジスタの領域に前記ソース領域と、前記ドレイン領域を形成することを含み、
前記第4のトランジスタは、前記フラッシュメモリトランジスタと組み合わせられて、フラッシュメモリセルとなることを特徴とする付記1乃至3のいずれか1項に記載の半導体装置の製造方法。
(付記5)
前記第5の酸化膜は第4のトランジスタのゲート絶縁膜として、前記ゲート電極と前記半導体基板との間で用いられることを特徴とする付記4に記載の半導体装置の製造方法。
(付記6)
前記第1の酸化膜を除去する工程は、前記フラッシュメモリトランジスタの領域おいて、平面視で前記電荷蓄積層を内包して前記第1の酸化膜を残すように前記第1の酸化膜を除去することを含む付記1乃至5のいずれか1項に記載の半導体装置の製造方法。
(付記7)
前記第3のトランジスタは、横方向拡散型トランジスタであることを特徴とする付記1乃至6のいずれか1項に記載の半導体装置の製造方法。
(付記8)
前記素子分離を形成する工程は、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるように前記半導体基板内に形成された前記ドレイン領域に前記素子分離を設けること含む付記7に記載の半導体装置の製造方法。
(付記9)
前記サイドウォール酸化膜を形成する工程は、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるように前記サイドウォール酸化膜を形成することを含む付記7に記載の半導体装置の製造方法。
(付記10)
前記サイドウォール酸化膜を形成する工程は、前記ゲート電極の両側の側壁に前記サイドウォール酸化膜を形成する前に、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるマスクパターンを形成する工程を含む付記9に記載の半導体装置の製造方法。
(付記11)
前記フラッシュメモリトランジスタ用のウェル及びチャネルは、前記トンネル酸化層及び前記電荷蓄積層の形成前に形成し、
前記第1のトランジスタ用のウェル及びチャネル、前記第2のトランジスタ用のウェル及びチャネル、並びに前記第3のトランジスタ用のウェル及びチャネルは、前記トンネル酸化層及び前記電荷蓄積層の形成後に形成することを特徴とする付記1乃至10のいずれか1項に記載の半導体装置の製造方法。
1 選択トランジスタ
2 メモリトランジスタ
3 p型低電圧トランジスタ
4 n型低電圧トランジスタ
5 p型中耐圧トランジスタ
6 n型中耐圧トランジスタ
7 第1のp型高耐圧トランジスタ
8 第1のn型高耐圧トランジスタ
9 第2のp型高耐圧トランジスタ
10 第2のn型高耐圧トランジスタ
20 半導体装置
31、301 半導体基板
32 初期酸化膜
33 第1の窒化膜
34、39、40、42、43、45、46、47、49、50、53、54、56、59、67、69、70、72、74、76、78、81、83、86 レジスト
35 素子分離溝
36 プラズマ酸化膜
37、302 素子分離
38 犠牲酸化膜
41 Pウェル
44 Nウェル
48 ディープNウェル
51 トンネル酸化膜
52 第2の窒化膜
55 CVD酸化膜
57 第1の熱酸化膜
58 第1の界面酸化層
60 第2の熱酸化膜
61 第2の界面酸化層
62 第3の熱酸化膜
63 第3の界面酸化層
64 第4の熱酸化膜
65 酸化層
66 ゲート電極膜
68a〜68j、303b ゲート電極
71 第1のフラッシュメモリセルLDD層
73a n型中耐圧トランジスタのLDD層
73b n型高耐圧トランジスタのLDD層
75a p型中耐圧トランジスタのLDD層
75b 第2のフラッシュメモリセルLDD層
75c p型高耐圧トランジスタLDD層
77 n型低電圧トランジスタLDD層
79 p型低電圧トランジスタLDD層
80 サイドウォール酸化膜
82 PSD層
84 NSD層
85 コバルトシリサイド膜
87、88 部分
100、103、106、109、112、115、118、122 ゲート
101、104、107、110、113、116、119、123 ソース
102、105、108、111、114、117、120、124 ドレイン
121 第1のタップ
125 第2のタップ
201〜223 パターン
303a ゲート絶縁膜
303c サイドウォール絶縁膜
303d ソース・ドレイン拡散層
304a、306a、308a、310a、312a、314a、316a、318a、320a、323b シリコン窒化膜
304b、306b、308b、310b、312b、314b、316b、318b、320b、323a シリコン酸化膜
305、309、313、317、321 コンタクトホール
305a、321a グルーレイヤ
305b、307b、311b、315b、319b、321b、322b 金属層
307、311、315、319 溝
307a、311a、315a、319a、322a、322c バリアメタル膜
322 配線
323o 開口

Claims (11)

  1. 半導体基板の上に、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、および、フラッシュメモリトランジスタを有する半導体装置の製造方法であって、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域を画定させる素子分離を形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にウェルと、チャネルとを形成する工程と、
    前記フラッシュメモリトランジスタの領域に、トンネル酸化層と、電荷蓄積層とを形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域に第1の酸化膜を形成する工程であって、前記第1のトランジスタ、前記第2のトランジスタおよび前記第3のトランジスタの領域において、前記第1の酸化膜は前記半導体基板の面上に形成され、前記フラッシュメモリトランジスタの領域において、前記第1の酸化膜は前記電荷蓄積層の面上に形成される、工程と
    前記第1のトランジスタ、および、前記第2のトランジスタの領域の前記第1の酸化膜を除去する工程と、
    前記半導体基板を酸化することにより、前記第1のトランジスタ、および、前記第2のトランジスタの領域に第2の酸化膜を形成しつつ、前記第3のトランジスタの領域の前記第1の酸化膜と前記半導体基板との間に第1の酸化層を加えて第3の酸化膜を形成する工程と、
    前記第1のトランジスタの領域の前記第2の酸化膜を除去する工程と、
    前記半導体基板を酸化することにより、前記第1のトランジスタの領域に第4の酸化膜を形成しつつ、前記第2のトランジスタの領域の前記第2の酸化膜と前記半導体基板との間に第2の酸化層を加えて第5の酸化膜を形成するとともに、前記第3のトランジスタの領域の前記第1の酸化層と前記半導体基板との間に第3の酸化層を加えて第6の酸化膜を形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にゲート電極を形成する工程と、
    前記ゲート電極の両側の側壁にサイドウォール構造を形成する工程と、
    前記ゲート電極の両側の側方の前記半導体基板内に、ソース領域と、ドレイン領域を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  2. 半導体基板の上に、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、および、フラッシュメモリトランジスタを有する半導体装置の製造方法であって、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域を画定させる素子分離を形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にウェルと、チャネルとを形成する工程と、
    前記フラッシュメモリトランジスタの領域に、トンネル酸化層と、電荷蓄積層とを形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域に第1の酸化膜を形成する工程であって、前記第1のトランジスタ、前記第2のトランジスタおよび前記第3のトランジスタの領域において、前記第1の酸化膜は前記半導体基板の面上に形成され、前記フラッシュメモリトランジスタの領域において、前記第1の酸化膜は前記電荷蓄積層の面上に形成される、工程と
    前記第2のトランジスタの領域の前記第1の酸化膜を除去する工程と、
    前記半導体基板を酸化することにより、前記第2のトランジスタの領域に第2の酸化膜を形成しつつ、前記第1のトランジスタ、および、前記第3のトランジスタの領域の前記第1の酸化膜と前記半導体基板との間に第1の酸化層を加えて第3の酸化膜を形成する工程と、
    前記第1のトランジスタの領域の前記第3の酸化膜を除去する工程と、
    前記半導体基板を酸化することにより、前記第1のトランジスタの領域に第4の酸化膜を形成しつつ、前記第2のトランジスタの領域の前記第2の酸化膜と前記半導体基板との間に第2の酸化層を加えて第5の酸化膜を形成するとともに、前記第3のトランジスタの領域の前記第1の酸化層と前記半導体基板との間に第3の酸化層を加えて第6の酸化膜を形成する工程と、
    前記第1のトランジスタ、前記第2のトランジスタ、第3のトランジスタ、および、前記フラッシュメモリトランジスタの夫々の領域にゲート電極を形成する工程と、
    前記ゲート電極の両側の側壁にサイドウォール構造を形成する工程と、
    前記ゲート電極の両側の側方の前記半導体基板内に、ソース領域と、ドレイン領域を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  3. 前記第4の酸化膜は第1のトランジスタのゲート絶縁膜として、前記第5の酸化膜は第2のトランジスタのゲート絶縁膜として、前記第6の酸化膜は第3のトランジスタのゲート絶縁膜として、前記ゲート電極と前記半導体基板との間で用いられることを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記半導体基板上に、第4のトランジスタをさらに有し、
    前記素子分離を形成する工程は、前記第4のトランジスタの領域を画定させることを含み、
    前記ウェルと前記チャネルとを形成する工程は、前記第4のトランジスタの領域に前記ウェルと前記チャネルとを形成することを含み、
    前記第1の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第1の酸化膜を形成することを含み、
    前記第1の酸化膜を除去する工程は、前記第4のトランジスタの領域の前記第1の酸化膜を除去することを含み、
    前記第3の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第2の酸化膜を形成することを含み、
    前記第6の酸化膜を形成する工程は、前記第4のトランジスタの領域に前記第5の酸化膜を形成することを含み、
    前記ゲート電極を形成する工程は、前記第4のトランジスタの領域に前記ゲート電極を形成することを含み、
    前記サイドウォール構造を形成する工程は、前記第4のトランジスタの領域に前記サイドウォール構造を形成することを含み、
    前記ソース領域と、ドレイン領域を形成する工程は、前記第4のトランジスタの領域に前記ソース領域と、前記ドレイン領域を形成することを含み、
    前記第4のトランジスタは、前記フラッシュメモリトランジスタと組み合わせられて、フラッシュメモリセルとなることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。
  5. 前記第5の酸化膜は第4のトランジスタのゲート絶縁膜として、前記ゲート電極と前記半導体基板との間で用いられることを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記第1の酸化膜を除去する工程は、前記フラッシュメモリトランジスタの領域おいて、平面視で前記電荷蓄積層を内包して前記第1の酸化膜を残すように前記第1の酸化膜を除去することを含む請求項1乃至5のいずれか1項に記載の半導体装置の製造方法。
  7. 前記第3のトランジスタは、横方向拡散型トランジスタであることを特徴とする請求項1乃至6のいずれか1項に記載の半導体装置の製造方法。
  8. 前記素子分離を形成する工程は、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるように前記半導体基板内に形成された前記ドレイン領域に前記素子分離を設けること含む請求項7に記載の半導体装置の製造方法。
  9. 前記サイドウォール構造を形成する工程は、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるように前記サイドウォール構造を形成することを含む請求項7に記載の半導体装置の製造方法。
  10. 前記サイドウォール構造を形成する工程は、前記ゲート電極の両側の側壁に前記サイドウォール構造を形成する前に、前記第3のトランジスタの領域において、平面視で前記ゲート電極の一部に重なるマスクパターンを形成する工程を含む請求項9に記載の半導体装置の製造方法。
  11. 前記フラッシュメモリトランジスタ用のウェル及びチャネルは、前記トンネル酸化層及び前記電荷蓄積層の形成前に形成し、
    前記第1のトランジスタ用のウェル及びチャネル、前記第2のトランジスタ用のウェル及びチャネル、並びに前記第3のトランジスタ用のウェル及びチャネルは、前記トンネル酸化層及び前記電荷蓄積層の形成後に形成することを特徴とする請求項1乃至10のいずれか1項に記載の半導体装置の製造方法。
JP2017047171A 2017-03-13 2017-03-13 半導体装置の製造方法 Active JP6917737B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017047171A JP6917737B2 (ja) 2017-03-13 2017-03-13 半導体装置の製造方法
US15/902,335 US10249637B2 (en) 2017-03-13 2018-02-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047171A JP6917737B2 (ja) 2017-03-13 2017-03-13 半導体装置の製造方法

Publications (3)

Publication Number Publication Date
JP2018152450A JP2018152450A (ja) 2018-09-27
JP2018152450A5 JP2018152450A5 (ja) 2020-07-09
JP6917737B2 true JP6917737B2 (ja) 2021-08-11

Family

ID=63445072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047171A Active JP6917737B2 (ja) 2017-03-13 2017-03-13 半導体装置の製造方法

Country Status (2)

Country Link
US (1) US10249637B2 (ja)
JP (1) JP6917737B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524961B (zh) 2019-02-28 2021-02-02 长江存储科技有限责任公司 具有增大的击穿电压的高电压半导体器件及其制造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE533178T1 (de) * 1998-09-09 2011-11-15 Texas Instruments Inc Integrierter schaltkreis mit kondensator und diesbezügliches herstellungsverfahren
FR2816108B1 (fr) * 2000-10-30 2003-02-21 St Microelectronics Sa Procede de fabrication simultanee d'une paire de transistors a grilles isolees ayant respectivement un oxyde fin et un oxyde epais, et circuit integre correspondant comprenant une telle paire de transistors
JP5073136B2 (ja) * 2001-08-24 2012-11-14 ルネサスエレクトロニクス株式会社 半導体装置
CN100334732C (zh) * 2001-11-30 2007-08-29 株式会社瑞萨科技 半导体集成电路器件及其制造方法
JP2003203997A (ja) * 2002-01-07 2003-07-18 Mitsubishi Electric Corp 不揮発性半導体記憶装置及びその製造方法
US7235835B2 (en) * 2002-05-14 2007-06-26 Sony Corporation Semiconductor device and its manufacturing method, and electronic device
JP2004047889A (ja) 2002-07-15 2004-02-12 Sony Corp 不揮発性半導体メモリ装置およびその製造方法
US6624024B1 (en) * 2002-08-29 2003-09-23 Micron Technology, Inc. Method and apparatus for a flash memory device comprising a source local interconnect
KR100493061B1 (ko) * 2003-06-20 2005-06-02 삼성전자주식회사 비휘발성 메모리가 내장된 단일 칩 데이터 처리 장치
KR100557995B1 (ko) * 2003-07-30 2006-03-06 삼성전자주식회사 부유트랩형 비휘발성 메모리 셀을 갖는 반도체 장치 및그의 제조방법
JP4056964B2 (ja) * 2003-10-24 2008-03-05 富士通株式会社 半導体装置群及びその製造方法並びに半導体装置
KR100583969B1 (ko) * 2004-08-13 2006-05-26 삼성전자주식회사 부분 소노스 게이트 구조를 갖는 비휘발성 메모리소자의제조방법
JP4540438B2 (ja) * 2004-09-27 2010-09-08 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2006245046A (ja) * 2005-02-28 2006-09-14 Toshiba Microelectronics Corp 半導体装置の製造方法
US7351632B2 (en) * 2005-04-29 2008-04-01 Texas Instruments Incorporated Semiconductor CMOS devices and methods with NMOS high-k dielectric formed prior to core PMOS silicon oxynitride dielectric formation using direct nitridation of silicon
US7176076B2 (en) * 2005-04-29 2007-02-13 Texas Instruments Incorporated Semiconductor CMOS devices and methods with NMOS high-k dielectric present in core region that mitigate damage to dielectric materials
KR101058445B1 (ko) * 2005-05-23 2011-08-24 후지쯔 세미컨덕터 가부시키가이샤 반도체 장치
JP5042518B2 (ja) * 2006-04-12 2012-10-03 ルネサスエレクトロニクス株式会社 半導体装置
JP5013050B2 (ja) * 2006-06-14 2012-08-29 富士通セミコンダクター株式会社 半導体装置の製造方法
US20080057645A1 (en) * 2006-09-05 2008-03-06 Ememory Technology Inc. Fabricating method of mosfet with thick gate dielectric layer
JP2008187007A (ja) * 2007-01-30 2008-08-14 Renesas Technology Corp 半導体記憶装置
JP4337903B2 (ja) * 2007-04-12 2009-09-30 セイコーエプソン株式会社 集積回路装置および電子機器
JP2009111222A (ja) * 2007-10-31 2009-05-21 Renesas Technology Corp 半導体装置およびその製造方法
JP2009218494A (ja) * 2008-03-12 2009-09-24 Toshiba Corp 不揮発性半導体メモリ
US7867858B2 (en) * 2008-03-31 2011-01-11 Freescale Semiconductor, Inc. Hybrid transistor based power gating switch circuit and method
US8900422B2 (en) * 2008-04-23 2014-12-02 Intermolecular, Inc. Yttrium and titanium high-K dielectric film
US8071453B1 (en) * 2009-04-24 2011-12-06 Cypress Semiconductor Corporation Method of ONO integration into MOS flow
JP5423269B2 (ja) * 2009-09-15 2014-02-19 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP5549411B2 (ja) 2010-06-18 2014-07-16 富士通セミコンダクター株式会社 半導体素子の製造方法、半導体メモリの製造方法、及び半導体素子
WO2011161748A1 (ja) * 2010-06-21 2011-12-29 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP5640848B2 (ja) 2011-03-22 2014-12-17 富士通セミコンダクター株式会社 不揮発性半導体メモリ
KR20130019242A (ko) * 2011-08-16 2013-02-26 에스케이하이닉스 주식회사 반도체 소자 및 그 제조방법
US8685813B2 (en) * 2012-02-15 2014-04-01 Cypress Semiconductor Corporation Method of integrating a charge-trapping gate stack into a CMOS flow
JP6187184B2 (ja) 2013-11-20 2017-08-30 富士通セミコンダクター株式会社 半導体装置の製造方法及び半導体装置
JP6683488B2 (ja) * 2016-02-03 2020-04-22 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US10249637B2 (en) 2019-04-02
JP2018152450A (ja) 2018-09-27
US20180261617A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US6917072B2 (en) Semiconductor memory device
JP5013050B2 (ja) 半導体装置の製造方法
US6770535B2 (en) Semiconductor integrated circuit device and process for manufacturing the same
JP4928825B2 (ja) 半導体装置の製造方法
JP4818061B2 (ja) 不揮発性半導体メモリ
JP2003338566A (ja) 不揮発性半導体記憶装置及びその製造方法
JP5076548B2 (ja) 半導体装置とその製造方法
JP2004349680A (ja) 半導体装置およびその製造方法
JPWO2006126245A1 (ja) 半導体装置及びその製造方法
US9583502B2 (en) Method of manufacturing a semiconductor device
JP4718104B2 (ja) 半導体装置
US6784039B2 (en) Method to form self-aligned split gate flash with L-shaped wordline spacers
JP2009088060A (ja) 不揮発性半導体記憶装置及びその製造方法
US6104059A (en) Non-volatile memory having a silicide film on memory control gates and peripheral circuit transistor gates
TW201703123A (zh) 半導體裝置及其製造方法
KR20070076444A (ko) 반도체 기억 장치 및 그 제조 방법
JP5106022B2 (ja) 不揮発性半導体記憶装置及びその製造方法
JP6613183B2 (ja) 半導体装置の製造方法
JP6640632B2 (ja) 半導体装置の製造方法
JP2009272565A (ja) 半導体記憶装置、及びその製造方法
JP6917737B2 (ja) 半導体装置の製造方法
JP4266089B2 (ja) 半導体記憶装置の製造方法
JP2009010110A (ja) 不揮発性メモリ及びその製造方法
WO2006035503A1 (ja) 半導体装置および半導体装置の製造方法
JP2009164504A (ja) 容量素子、容量素子を含む不揮発性記憶装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6917737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250