JP6613183B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP6613183B2
JP6613183B2 JP2016056819A JP2016056819A JP6613183B2 JP 6613183 B2 JP6613183 B2 JP 6613183B2 JP 2016056819 A JP2016056819 A JP 2016056819A JP 2016056819 A JP2016056819 A JP 2016056819A JP 6613183 B2 JP6613183 B2 JP 6613183B2
Authority
JP
Japan
Prior art keywords
region
insulating film
gate electrode
film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016056819A
Other languages
English (en)
Other versions
JP2017174887A (ja
Inventor
淳 天羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2016056819A priority Critical patent/JP6613183B2/ja
Priority to US15/417,050 priority patent/US9947776B2/en
Publication of JP2017174887A publication Critical patent/JP2017174887A/ja
Priority to US15/951,552 priority patent/US10205006B2/en
Application granted granted Critical
Publication of JP6613183B2 publication Critical patent/JP6613183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、半導体装置の製造方法に関し、例えば、不揮発性メモリおよび容量素子を有する半導体装置の製造に利用できるものである。
電気的に書込・消去が可能な不揮発性半導体記憶装置として、EEPROM(Electrically Erasable and Programmable Read Only Memory)が広く使用されている。このような記憶装置は、MISFETのゲート電極下に、酸化膜で囲まれた導電性の浮遊ゲート電極あるいはトラップ性絶縁膜を有しており、浮遊ゲートあるいはトラップ性絶縁膜での電荷蓄積状態を記憶情報とし、それをトランジスタの閾値として読み出すものである。
トラップ性絶縁膜とは、電荷の蓄積可能な絶縁膜をいい、一例として、窒化シリコン膜などが挙げられる。このような電荷蓄積領域への電荷の注入・放出によってMISFETのしきい値をシフトさせ記憶素子として動作させる。トラップ性絶縁膜を用いた不揮発性半導体記憶装置としては、MONOS(Metal Oxide Nitride Oxide Semiconductor)膜を用いたスプリットゲート型セルがある。
また、ゲート電極の形成方法として、基板上にダミーゲート電極を形成した後、当該ダミーゲート電極をメタルゲート電極などに置換する、いわゆるゲートラストプロセスが知られている。ゲートラストプロセスを用いる場合、ゲート電極と同じ高さに下部電極を形成し、下部電極上に上部電極を設ける容量素子を形成することは困難である。
これに対し、半導体基板を下部電極として用い、ゲート電極と同じ高さに上部電極を形成する容量素子であれば、ゲートラストプロセスを用いて形成する記憶素子などと共に半導体基板上に混載することができる。このような容量素子では、上部電極の一部を半導体基板の主面に形成された溝内に埋め込むことで、上部電極と半導体基板との対向面積を増大させることができ、これにより容量を増大させることができる。
特許文献1(特開2014−154789号公報)には、ゲートラストプロセスを用いて、メモリセルと、メタルゲート電極を有するMISFETとを形成することが記載されている。
特許文献2(特開2003−309182号公報)には、基板と、基板上の電極との間に容量を発生させる容量素子において、当該電極の一部を基板の上面の溝内に埋め込むことが記載されている。
特開2014−154789号公報 特開2003−309182号公報
半導体基板の主面の溝内に電極の一部を埋め込む容量素子と、MONOSメモリと、高耐圧のMISFETとを同一の半導体基板上に形成する場合、容量素子の上部電極および下部電極を隔てる絶縁膜と、高耐圧のMISFETのゲート絶縁膜とのそれぞれを別々の工程で形成すると、半導体装置の製造工程が煩雑になり、半導体装置の製造コストが増大する問題がある。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
一実施の形態である半導体装置の製造方法は、容量素子の電極間の絶縁膜と、高耐圧トランジスタのゲート絶縁膜とを同じ絶縁膜で形成するものである。
一実施の形態によれば、半導体装置の製造コストを低減することができる。
実施の形態1である半導体装置の製造工程中の断面図である。 図1に続く半導体装置の製造工程中の断面図である。 図2に続く半導体装置の製造工程中の断面図である。 図3に続く半導体装置の製造工程中の断面図である。 図4に続く半導体装置の製造工程中の断面図である。 図5に続く半導体装置の製造工程中の断面図である。 図6に続く半導体装置の製造工程中の断面図である。 図7に続く半導体装置の製造工程中の断面図である。 図8に続く半導体装置の製造工程中の断面図である。 図9に続く半導体装置の製造工程中の断面図である。 図10に続く半導体装置の製造工程中の断面図である。 図11に続く半導体装置の製造工程中の断面図である。 図12に続く半導体装置の製造工程中の断面図である。 図13に続く半導体装置の製造工程中の断面図である。 図14に続く半導体装置の製造工程中の断面図である。 図15に続く半導体装置の製造工程中の断面図である。 図16に続く半導体装置の製造工程中の断面図である。 図17に続く半導体装置の製造工程中の断面図である。 図18に続く半導体装置の製造工程中の断面図である。 図19に続く半導体装置の製造工程中の断面図である。 図20に続く半導体装置の製造工程中の断面図である。 実施の形態1である半導体装置の製造工程中の平面図である。 実施の形態1の変形例である半導体装置の製造工程中の平面図である。 「書込」、「消去」および「読出」時における選択メモリセルの各部位への電圧の印加条件の一例を示す表である。 実施の形態2である半導体装置の製造工程中の断面図である。 比較例である半導体装置の製造工程中の断面図である。 図26に続く半導体装置の製造工程中の断面図である。 図27に続く半導体装置の製造工程中の断面図である。 図28に続く半導体装置の製造工程中の断面図である。 図29に続く半導体装置の製造工程中の断面図である。 図30に続く半導体装置の製造工程中の断面図である。 図31に続く半導体装置の製造工程中の断面図である。 比較例である半導体装置の製造工程中の平面図である。
以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
(実施の形態1)
本実施の形態および以下の実施の形態の半導体装置は、不揮発性メモリ(不揮発性記憶素子、フラッシュメモリ、不揮発性半導体記憶装置)と、容量素子と、低耐圧トランジスタと、高耐圧トランジスタとを備えた半導体装置である。本実施の形態および以下の実施の形態では、不揮発性メモリは、nチャネル型MISFET(MISFET:Metal Insulator Semiconductor Field Effect Transistor)を基本としたメモリセルをもとに説明を行う。
また、本実施の形態および以下の実施の形態での極性(書込・消去・読出時の印加電圧の極性およびキャリアの極性)は、nチャネル型MISFETを基本としたメモリセルの場合の動作を説明するためのものであり、pチャネル型MISFETを基本とする場合は、印加電位およびキャリアの導電型等の全ての極性を反転させることで、原理的には同じ動作を得ることができる。
<半導体装置の製造方法について>
本実施の形態の半導体装置の製造方法を、図1〜図22を参照して説明する。
図1〜図21は、本実施の形態の半導体装置の製造工程中の断面図である。図22は、本実施の形態の半導体装置である半導体チップの製造工程中の平面図である。
図1〜図21においては、各図の左側から右側に向かって、順にメモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eの断面を示している。
以下の説明では、メモリセル領域1Aに不揮発性メモリのメモリセルが、容量素子領域1Bにトレンチ型容量素子が、高耐圧トランジスタ領域1Cに高耐圧のMISFETが、低耐圧トランジスタ領域1Eに低耐圧のMISFETが、それぞれ形成される様子を示す。メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eは、図22を用いて後述するように、半導体チップの形成領域における半導体基板の上面に存在している。境界領域1Dは、図22を用いて後述するように、例えばメモリセル領域1A、容量素子領域1Bまたは高耐圧トランジスタ領域1Cと、その他の周辺回路領域(例えば低耐圧トランジスタ領域1E)との間の領域である。以下の説明では、境界領域1Dに、回路を構成しないゲート電極状のパターンが形成される様子を示す。
メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eのそれぞれは、半導体基板の主面に沿って並ぶ領域である。つまり、半導体基板の主面は、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eを有している。
ここでは、メモリセル領域1Aにnチャネル型のMISFET(制御トランジスタおよびメモリトランジスタ)を形成する場合について説明するが、導電型を逆にしてpチャネル型のMISFET(制御トランジスタおよびメモリトランジスタ)をメモリセル領域1Aに形成することもできる。同様に、ここでは、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eにnチャネル型のMISFETを形成する場合について説明するが、導電型を逆にしてpチャネル型のMISFETを形成することもできる。
また、例えば高耐圧トランジスタ領域1Cまたは低耐圧トランジスタ領域1Eに、nチャネル型のMISFETとpチャネル型のMISFETの両方、すなわちCMISFET(Complementary Metal Insulator Semiconductor)を形成することもできる。
また、ここでは、容量素子領域1Bに、半導体基板の主面のn型のウェルを含む下部電極(第1電極)と、半導体基板上に形成されたn型の半導体膜からなる上部電極(第2電極)とを含む容量素子を形成する場合について説明するが、p型のウェルを含む下部電極と、p型の半導体膜からなる上部電極とを含む容量素子を形成してもよい。
半導体装置の製造工程においては、まず、図1に示すように、例えば1〜10Ωcm程度の比抵抗を有するp型の単結晶シリコン(Si)などからなる半導体基板(半導体ウェハ)SBを用意する。続いて、半導体基板SBの主面上に絶縁膜からなるハードマスクを形成し、当該ハードマスクを用いてドライエッチングを行うことで、半導体基板SBの上面の一部を除去する。当該ハードマスクは、例えば、半導体基板SB上に順に形成した酸化シリコン膜および窒化シリコン膜からなる。
これにより、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eのそれぞれの半導体基板SBの上面には、複数の溝(凹部、窪み部)D1が形成される。また、容量素子領域1Bの半導体基板SBの上面には、複数の溝D2が形成される。
各溝D2は、半導体基板SBの主面に沿う第1方向に延在しており、複数の溝D2は、半導体基板SBの主面に沿い、かつ第1方向に対して直交する第2方向において並んで配置されている。つまり複数の溝D2は、平面視においてストライプ状に形成されている。なお、溝D2のレイアウトはストライプ状に限らず、ドット形状または井桁形状などであっても構わない。溝D1およびD2は同一工程で形成された凹部であり、半導体基板SBの途中深さまで達している。
続いて、溝D1、D2のそれぞれの側壁を酸化した後、半導体基板SB上に、例えばCVD法を用いて酸化シリコン膜を形成することで、溝D1、D2のそれぞれの内側を完全に埋め込み、続いて、熱処理を行って当該酸化シリコン膜の焼き締めを行う。その後、CMP(Chemical Mechanical Polishing)法により当該酸化シリコン膜の上面を研磨することで、当該酸化シリコン膜から半導体基板SBの上面および当該上面上の上記ハードマスク(図示しない)を露出させる。これにより、複数の溝D1、D2のそれぞれの内側に埋め込まれた上記酸化シリコン膜は、それぞれ分離される。その後、前記酸化シリコン膜の上面をエッチバックして後退させる。
これにより、溝D1内には、上記酸化シリコン膜からなる素子分離領域EIが形成され、溝D2内には、上記酸化シリコン膜からなるダミー素子分離領域DEIが形成される。ダミー素子分離領域DEIは、後の工程で除去される擬似的な素子分離領域である。メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eでは、半導体基板SBの主面が素子分離領域EIから露出しているのに対し、境界領域1Dでは、半導体基板SBの主面の全体が素子分離領域EIにより覆われている。その後、上記ハードマスクを例えばウェットエッチング法により除去する。
次に、図2に示すように、フォトリソグラフィ技術およびイオン注入法を用いて、メモリセル領域1Aおよび高耐圧トランジスタ領域1Cの半導体基板SBの主面のそれぞれに、p型の半導体領域であるウェルPW1およびPW2をそれぞれ形成する。ウェルPW1、PW2は、ここではp型の不純物(例えばB(ホウ素))を半導体基板SBの主面に比較的低い濃度で打ち込むことで形成する。なお、図示および詳しい説明はしないが、p型のMISFETを形成する領域では、n型の不純物(例えばAs(ヒ素)またはP(リン))を半導体基板SBの主面にイオン注入することで、n型のウェルを形成する。なお、低耐圧トランジスタ領域1Eのウェルは後の工程で形成する。
ウェルPW1、PW2のそれぞれの形成深さは、溝D1、D2よりも深い。ここではウェルPW1、PW2のそれぞれを、フォトリソグラフィ技術を用いて別々のイオン注入工程により形成することで、異なる不純物濃度とする。
続いて、フォトリソグラフィ技術およびイオン注入法を用いて、容量素子領域1Bの半導体基板SBの主面に、n型の半導体領域であるウェルNWを形成する。ウェルNWは、ここではn型の不純物(例えばAs(ヒ素)またはP(リン))を半導体基板SBの主面に比較的低い濃度で打ち込むことで形成する。ウェルNWの形成深さは、溝D1、D2よりも深い。その後、半導体基板SBに対し熱処理を行って、ウェルPW1、PW2およびNW内の不純物を拡散させる。なお、ウェルPW1、PW2およびNWのうち、どのウェルを先に形成してもよい。
次に、図3に示すように、素子分離領域EIを覆い、容量素子領域1Bを露出するフォトレジスト膜(図示しない)をマスクとして用い、ドライエッチングまたはウェットエッチングを行うことで、溝D2内のダミー素子分離領域DEIを除去する。これにより、溝D2の底面および側壁が露出する。
次に、図4に示すように、半導体基板SB上に、比較的膜厚が大きい絶縁膜IF1を形成する。絶縁膜IF1は、少なくともメモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eに形成され、半導体基板SBの上面、溝D2の側壁および底面を覆う。ここでは、絶縁膜IF1は、各領域の素子分離領域EIの上面も覆っているものとして図示する。
絶縁膜IF1は、後に形成する高耐圧トランジスタのゲート絶縁膜および容量素子の電極間の分離絶縁膜(ゲート絶縁膜)となる膜であるため、5〜12V程度の耐圧性能を有する必要がある。したがって、絶縁膜IF1の膜厚は、15〜20nm程度必要である。ここでは、絶縁膜IF1の膜厚は例えば16nmである。
絶縁膜IF1は、例えば酸化シリコン膜からなる。絶縁膜IF1は、例えば、ドライ酸化法、ウェット酸化法またはISSG(In-Situ Steam Generation)酸化法により形成することができる。また、絶縁膜IF1は、例えばCVD(Chemical Vapor Deposition)法により形成してもよく、この場合、絶縁膜IF1は、例えばTEOS(Tetra Ethyl Ortho Silicate)膜またはHTO(High-temperature silicon dioxide)膜からなる。また、絶縁膜IF1は、上記のいずれかの酸化法と、当該CVD法とを組み合わせて形成してもよい。この場合、例えば、まず酸化法により5nmの膜厚の絶縁膜を形成した後、その上にCVD法により10nmの膜厚の絶縁膜を堆積することで、それらの絶縁膜からなる積層構造を有する絶縁膜IF1を形成する。
絶縁膜IF1は、溝D2の側壁および底面を覆っているが、溝D2を完全には覆っていない。つまり、第2方向における溝D2の幅、つまり溝D2の短手方向の幅は、絶縁膜IF1の膜厚の2倍より大きい。
次に、図5に示すように、フォトリソグラフィ技術を用いてフォトレジスト膜PR1からなるパターンを形成し、その後、当該パターンをマスクとしてエッチングを行うことで、メモリセル領域1Aの絶縁膜IF1を除去する。これにより、メモリセル領域1Aの半導体基板SBの主面を露出させる。このとき、低耐圧トランジスタ領域1Eの絶縁膜IF1を除去してもよいが、ここでは、当該エッチング工程において、低耐圧トランジスタ領域1Eの絶縁膜IF1を残す場合について説明する。
次に、図6に示すように、フォトレジスト膜PR1を除去した後、例えば熱酸化などを行うことで、メモリセル領域1Aにおいて露出する半導体基板SBの上面に、比較的膜厚が小さい絶縁膜IF2を形成する。
次に、図7に示すように、半導体基板SBの主面全面上に、例えばCVD法を用いて、ポリシリコン膜PS1を形成する。これにより、絶縁膜IF1、IF2のそれぞれの上面はポリシリコン膜PS1により覆われる。このとき、溝D2の横方向(短手方向)の幅に対し、ポリシリコン膜PS1の膜厚は十分に大きいため、溝D2は絶縁膜IF1およびポリシリコン膜PS1により完全に埋め込まれ、かつ、溝D2の直上において、ポリシリコン膜PS1の上面は殆ど凹まない。つまり、溝D2内は、絶縁膜IF1を介してポリシリコン膜PS1により完全に埋め込まれる。
ここでは、不純物を導入していないポリシリコン膜PS1を形成し、その後イオン注入法を用いて、ポリシリコン膜PS1中にn型の不純物(例えばP(リン))を打ち込む。これにより、ポリシリコン膜PS1はn型の半導体膜となる。その後、ポリシリコン膜PS1上に、例えばCVD法を用いて、窒化シリコン膜からなる絶縁膜IF3を形成する。ポリシリコン膜PS1は、成膜時にアモルファスシリコン膜として形成してから、その後の熱処理で、多結晶化して形成することもできる。
続いて、フォトリソグラフィ技術およびドライエッチング法を用いて、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれの絶縁膜IF3およびポリシリコン膜PS1を加工する。また、これにより、メモリセル領域1Aの絶縁膜IF2を加工し、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれの絶縁膜IF1を加工する。
これにより、メモリセル領域1Aでは、半導体基板SBの主面上に、絶縁膜IF2からなるゲート絶縁膜GI1を介して、ポリシリコン膜PS1からなる制御ゲート電極CGが形成される。また、容量素子領域1Bでは、半導体基板SBの主面上に、絶縁膜IF1からなるゲート絶縁膜GI2を介して、ポリシリコン膜PS1からなる上部電極UEが形成される。また、高耐圧トランジスタ領域1Cでは、絶縁膜IF1からなるゲート絶縁膜GI3を介して、ポリシリコン膜PS1からなるゲート電極G1が形成される。また、境界領域1Dでは、素子分離領域EIの直上において、絶縁膜IF1、ポリシリコン膜PS1および絶縁膜IF3からなる積層膜が終端する。当該積層膜は、低耐圧トランジスタ領域1Eと境界領域1Dとの間で連続的に形成されている。また、当該積層膜は、低耐圧トランジスタ領域1Eの全体を覆っている。
なお、本実施の形態において、高耐圧トランジスタ領域1Cに形成されたゲート電極G1は、後の工程で除去される擬似的なゲート電極、つまりダミーゲート電極である。
次に、図8に示すように、半導体基板SBの主面全面上に、メモリトランジスタのゲート絶縁膜用の積層膜であるONO(oxide-nitride-oxide)膜ONを形成する。ONO膜ONは、メモリセル領域1Aの半導体基板SBの上面と、ゲート絶縁膜GI1、制御ゲート電極CGおよび絶縁膜IF3からなる積層膜の側壁および上面とを覆っている。また、ONO膜ONは、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eを覆っている。ONO膜ONの形成時には、半導体基板SBに高い熱が加わる。
ここでは、図をわかりやすくするため、ONO膜ONを構成する積層膜の積層構造の図示を省略する。つまりここでは、ONO膜ONを構成する各膜同士の境界の図示をしない。ONO膜ONは、内部に電荷蓄積部を有する絶縁膜である。具体的には、ONO膜ONは、半導体基板SB上に形成された第1酸化シリコン膜(ボトム酸化膜)と、第1酸化シリコン膜上に形成された窒化シリコン膜(電荷蓄積部、電荷蓄積膜)と、当該窒化シリコン膜上に形成された第2酸化シリコン膜(トップ酸化膜)との積層膜からなる。
第1、第2酸化シリコン膜は、例えば酸化処理(熱酸化処理)またはCVD法あるいはその組み合わせにより形成することができる。この際の酸化処理には、ISSG酸化を用いることも可能である。上記窒化シリコン膜は、例えばCVD法により形成することができる。第1、第2酸化シリコン膜の厚みは、例えば2〜10nm程度とすることができ、上記窒化シリコン膜の厚みは、例えば5〜15nm程度とすることができる。
続いて、ONO膜ONの表面を覆うように、半導体基板SBの主面全面上に、例えばCVD法を用いてポリシリコン膜PS2を形成する。これにより、メモリセル領域1Aにおいて露出していたONO膜ONの側壁および上面は、ポリシリコン膜PS2により覆われる。つまり、制御ゲート電極CGの側壁には、ONO膜ONを介してポリシリコン膜PS2が形成される。
ポリシリコン膜PS2は、成膜時にアモルファスシリコン膜として形成してから、その後の熱処理で、多結晶化して形成することもできる。ポリシリコン膜PS2は、例えばn型の不純物(例えばリン(P))が比較的高い濃度で導入された膜である。
次に、図9に示すように、ドライエッチング法により、ポリシリコン膜PS2をエッチバックすることで、ONO膜ONの上面を露出させる。当該エッチバック工程では、ポリシリコン膜PS2を異方性エッチング(エッチバック)することにより、ゲート絶縁膜GI1、制御ゲート電極CGおよび絶縁膜IF3からなる積層膜の両方の側壁に、ONO膜ONを介して隣接するように、サイドウォール状のポリシリコン膜PS2を残す。
これにより、メモリセル領域1Aにおいて、上記積層膜の側壁のうち、一方の側壁に、ONO膜ONを介してサイドウォール状に残存したポリシリコン膜PS2からなるメモリゲート電極MGが形成される。上記エッチバックにより、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1D、低耐圧トランジスタ領域1EのそれぞれのONO膜ONの上面が露出する。
続いて、フォトリソグラフィ技術を用いて、制御ゲート電極CGの一方の側壁と隣り合うメモリゲート電極MGを覆い、かつ、制御ゲート電極CGの他方の側壁と隣り合うポリシリコン膜PS2を露出するフォトレジストパターン(図示しない)を半導体基板SB上に形成する。その後、そのフォトレジストパターンをエッチングマスクとしてエッチングを行うことにより、制御ゲート電極CGを挟んでメモリゲート電極MGの反対側に形成されたポリシリコン膜PS2を除去する。その後、当該フォトレジストパターンを除去する。このとき、メモリゲート電極MGは、フォトレジストパターンで覆われているため、エッチングされずに残存する。
続いて、ONO膜ONのうち、メモリゲート電極MGにより覆われずに露出する部分を、エッチング(例えばウェットエッチング)によって除去する。この際、メモリセル領域1Aにおいて、メモリゲート電極MGの直下のONO膜ONは除去されずに残る。同様に、ゲート絶縁膜GI1、制御ゲート電極CGおよび絶縁膜IF3を含む積層膜と、メモリゲート電極MGとの間に位置するONO膜ONは、除去されずに残る。つまり、メモリゲート電極MGと半導体基板SBの主面との間の領域から、当該積層膜とメモリゲート電極MGとの間の領域に亘って連続的に形成されたONO膜ONは、L時型の断面形状を有する。
他の領域のONO膜ONは除去されるため、メモリセル領域1Aの半導体基板SBの上面が露出し、また、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eの絶縁膜IF3の上面および側壁が露出する。また、制御ゲート電極CGの側壁であって、メモリゲート電極MGと隣り合わない方の側壁と、上部電極UEの側壁と、ゲート電極G1の側壁と、ポリシリコン膜PS1の側壁とが露出する。このようにして、制御ゲート電極CGと隣り合う位置において、半導体基板SB上に、内部に電荷蓄積部を有するONO膜ONを介してメモリゲート電極MGが形成される。
次に、図10に示すように、例えばCVD法を用いて、半導体基板SBの主面上に層間絶縁膜IL1を形成する。層間絶縁膜IL1は例えば酸化シリコン膜からなるが、ポリシリコンからなる膜であってもよい。層間絶縁膜IL1の膜厚は、ゲート絶縁膜GI2、ゲート電極G1および絶縁膜IF3からなる積層膜の膜厚より大きい。続いて、層間絶縁膜IL1の上面を、例えばCMP法により研磨することで、絶縁膜IF3の上面を露出させる。当該研磨工程の後、層間絶縁膜IL1は、制御ゲート電極CG、上部電極UEおよびゲート電極G1などのパターンのそれぞれの側壁を覆っている。
次に、図11に示すように、層間絶縁膜IL1および絶縁膜IF3の上に絶縁膜(保護膜)IF4を形成した後、フォトリソグラフィ技術およびエッチング法を用いて、絶縁膜IF4を加工する。これにより形成された絶縁膜IF4のパターンは、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cを覆い、境界領域1Dの一部の層間絶縁膜IL1を覆っている。また、絶縁膜IF4は、低耐圧トランジスタ領域1Eの全体を露出しており、境界領域1Dの絶縁膜IF3およびポリシリコン膜PS1を露出している。絶縁膜IF4は、例えば酸化シリコン膜からなる。
続いて、絶縁膜IF4をマスクとして用いて、境界領域1Dおよび低耐圧トランジスタ領域1Eの絶縁膜IF3、ポリシリコン膜PS1および絶縁膜IF1を除去し、これにより素子分離領域EIの上面および半導体基板SBの主面を露出させる。
次に、図12に示すように、絶縁膜IF4を除去した後、フォトリソグラフィ技術およびイオン注入法を用いて、低耐圧トランジスタ領域1Eの半導体基板SBの主面にp型の不純物(例えばB(ホウ素))を打ち込むことにより、p型のウェルPW3を形成する。ウェルPW3は、境界領域1Dの半導体基板SB中に達して形成される。このように、ウェルPW3をウェルPW1、PW2の後に形成するのは、メモリセル領域1AのONO膜ONの成膜時に生じる熱により、低耐圧トランジスタ領域1Eのp型ウェルが影響を受けることを防ぐためである。
続いて、半導体基板SB上に絶縁膜IF5を形成する。絶縁膜IF5は、例えば酸化シリコン膜または酸窒化シリコン膜からなり、例えば熱酸化法などにより形成することができる。絶縁膜IF5を酸窒化シリコン膜とする場合は、例えば、NOとOとHとを用いた高温短時間酸化法、または、酸化シリコン膜を形成した後にプラズマ中で窒化処理(プラズマ窒化)を行う手法などにより、形成することができる。絶縁膜IF5の物理的膜厚は、下記の絶縁膜HKの物理的膜厚よりも薄く、好ましくは0.5〜2nm、例えば1nm程度とすることができる。
絶縁膜IF5は、例えば熱酸化法などを用いて形成することができる。すなわち、絶縁膜IF5は、低耐圧トランジスタ領域1Eにおいて露出する半導体基板SBの主面を覆うように形成される。なお、酸化法により絶縁膜IF5を形成する場合、素子分離領域EI、絶縁膜IF3および層間絶縁膜IL1のそれぞれの表面上には絶縁膜IF5が形成されない場合が考えられるが、ここでは絶縁膜IF5が半導体基板SBの主面の全面を覆うように形成される場合について説明する。
続いて、半導体基板SB上、つまり絶縁膜IF5上に、絶縁膜HKおよび金属膜ME1を順に形成する。それから、半導体基板SB上、つまり金属膜ME1上に、ポリシリコン膜PS3および絶縁膜IF6を順に形成する。すなわち、ここでは、半導体基板SB上に絶縁膜IF5、絶縁膜HK、金属膜ME1、ポリシリコン膜PS3および絶縁膜IF6を順に形成する。これにより、半導体基板SB上に、絶縁膜IF5、絶縁膜HK、金属膜ME1、ポリシリコン膜PS3および絶縁膜IF6の積層膜が形成される。
絶縁膜IF5および絶縁膜HKは、後にゲート絶縁膜となる絶縁膜であり、金属膜ME1およびポリシリコン膜PS3は、後にゲート電極となる導体膜(導電膜)である。ただし、ポリシリコン膜PS3は、後の工程で除去される擬似的なゲート電極、つまりダミーゲート電極を形成するために用いられる膜である。具体的には、絶縁膜IF5および絶縁膜HKは、低耐圧トランジスタ領域1Eに形成するMISFETのゲート絶縁膜用の絶縁膜であり、金属膜ME1は、低耐圧トランジスタ領域1Eに形成するMISFETのゲート電極用の導体膜である。絶縁膜IF5は、絶縁膜HKと半導体基板SBとの間に形成されるため、界面層とみなすこともできる。
絶縁膜HKは、窒化シリコンよりも誘電率(比誘電率)が高い絶縁材料膜、いわゆるhigh−k膜(高誘電率膜)である。なお、本願でいうhigh−k膜、高誘電率膜または高誘電率ゲート絶縁膜は、窒化シリコンよりも誘電率(比誘電率)が高い膜を意味する。
絶縁膜HKとしては、酸化ハフニウム膜、酸化ジルコニウム膜、酸化アルミニウム膜、酸化タンタル膜または酸化ランタン膜などの金属酸化物膜を用いることができ、また、これらの金属酸化物膜は、窒素(N)およびケイ素(Si)のうち、一方または両方をさらに含有することもできる。絶縁膜HKは、例えば、ALD(Atomic layer Deposition)法またはCVD法により形成することができる。ゲート絶縁膜に高誘電率膜(ここでは絶縁膜HK)を用いた場合は、例えばゲート絶縁膜に酸化シリコン膜のみを用いた場合に比べて、ゲート絶縁膜の物理的膜厚を増加させることができる。このため、後に形成するMISFETにおいて、リーク電流を低減できるという利点を得られる。
また、絶縁膜IF5の形成工程を省略して、高誘電率膜である絶縁膜HKを、低耐圧トランジスタ領域1Eの半導体基板SBの上面(シリコン面)上に直接的に形成することも可能である。ただし、絶縁膜IF5の形成工程を省略せずに、絶縁膜HKと低耐圧トランジスタ領域1Eの半導体基板SBとの界面に、薄い酸化シリコン膜または酸窒化シリコン膜からなる絶縁膜(界面層)IF5を設ければ、より好ましい。すなわち、絶縁膜IF5を形成してから絶縁膜HKを形成すれば、より好ましい。これにより、後で低耐圧トランジスタ領域1Eに形成されるMISFETにおいて、ゲート絶縁膜と半導体基板(のシリコン面)との界面をSiO/Si(またはSiON/Si)構造にし、トラップ準位などの欠陥数を低減して、駆動能力および信頼性を向上させることができる。
金属膜ME1としては、例えば、窒化チタン(TiN)膜、窒化タンタル(TaN)膜、窒化タングステン(WN)膜、炭化チタン(TiC)膜、炭化タンタル(TaC)膜、炭化タングステン(WC)膜、窒化炭化タンタル(TaCN)膜、チタン(Ti)膜、タンタル(Ta)膜またはチタンアルミニウム(TiAl)膜などの、金属膜を用いることができる。なお、ここでいう金属膜とは、金属伝導を示す導体膜を指し、単体の金属膜(純金属膜)および合金膜だけでなく、金属伝導を示す金属化合物膜(窒化金属膜または炭化金属膜など)も含むものとする。金属膜ME1は、例えばスパッタリング法などを用いて形成することができる。
金属膜ME1を用いて、後にゲート電極(低耐圧トランジスタ領域1Eに形成されるMISFETのゲート電極)を形成するため、そのゲート電極をメタルゲート電極とすることができる。ゲート電極をメタルゲート電極により構成することで、ゲート電極の空乏化現象を抑制し、寄生容量をなくすことができるという利点を得られる。また、MISFET素子の小型化(ゲート絶縁膜の薄膜化)も可能になる。
ポリシリコン膜PS3は、多結晶シリコン膜(ポリシリコン膜)からなり、CVD法などを用いて形成することができる。成膜時はポリシリコン膜PS3をアモルファスシリコン膜として形成してから、その後の熱処理でアモルファスシリコン膜を多結晶シリコン膜とすることもできる。また、ポリシリコン膜PS3は、成膜時に不純物を導入するか、あるいは成膜後に不純物をイオン注入することなどにより、低抵抗の半導体膜(ドープトポリシリコン膜)とすることができる。
なお、メモリセル領域1Aのポリシリコン膜PS3は、後で除去するため、n型またはp型の導電型の不純物は、ポリシリコン膜PS3中に導入されていても、導入されていなくてもよい。また、低耐圧トランジスタ領域1Eに形成するポリシリコン膜PS3は、後にダミーゲート電極となる膜であるが、当該ダミーゲート電極は後に除去される膜であるため、ポリシリコン膜PS3には不純物を導入しなくてもよい。絶縁膜IF6は、例えば窒化シリコン膜からなり、例えばCVD法を用いて形成することができる。
次に、図13に示すように、フォトリソグラフィ技術およびエッチング法を用いて、絶縁膜IF6、ポリシリコン膜PS3、金属膜ME1、絶縁膜HKおよびIF5からなる積層膜をパターニングする。これにより、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cでは、層間絶縁膜IL1の上面および絶縁膜IF3の上面が露出する。また、境界領域1Dでは、素子分離領域EIの上面の一部が露出する。
ここでは、低耐圧トランジスタ領域1Eにおいて、当該積層膜をパターニングせずに残す。また、境界領域1Dでは、当該積層膜の一部であって、層間絶縁膜IL1の側壁に接する当該積層膜が、サイドウォール状に残る。以下では、当該サイドウォール状の積層膜を、第1パターンと呼ぶ。また、境界領域1Dでは、低耐圧トランジスタ領域1Eから連続して形成された当該積層膜の一部が素子分離領域EI上に残る。つまり、境界領域1Dにおいて、サイドウォール状の上記積層膜(第1パターン)と、低耐圧トランジスタ領域1Eから連続して形成された当該積層膜とは、互いに離間して形成されている。
次に、図14に示すように、フォトリソグラフィ技術およびエッチング法を用いて、境界領域1Dおよび低耐圧トランジスタ領域1Eの絶縁膜IF6、ポリシリコン膜PS3、金属膜ME1、絶縁膜HKおよびIF5からなる積層膜をパターニングする。これにより、低耐圧トランジスタ領域1Eの半導体基板SBの主面上には、絶縁膜IF5、HKからなるゲート絶縁膜が形成され、当該ゲート絶縁膜上に、金属膜ME1を介して、ポリシリコン膜PS3からなるダミーゲート電極DGが形成される。ダミーゲート電極DGは、後の工程で除去される擬似的なゲート電極である。
また、上記パターニング工程により、境界領域1Dには、ダミーゲート電極DGを構成するポリシリコン膜PS3から分離されたポリシリコン膜PS3を含む上記積層膜の一部(以下、第2パターンと呼ぶ)が、素子分離領域EI上に残る。
続いて、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1Cおよび境界領域1Dの層間絶縁膜IL1を、エッチングにより除去する。その後、イオン注入法を用いて、メモリセル領域1A、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eのそれぞれの半導体基板SBの主面にn型の不純物(例えばAs(ヒ素)またはP(リン))を打ち込むことにより、n型の半導体領域であるエクステンション領域EXを形成する。
メモリセル領域1Aでは、制御ゲート電極CGおよびメモリゲート電極MGを含むパターンを挟むように、半導体基板SBの主面に一対のエクステンション領域EXが形成される。高耐圧トランジスタ領域1Cでは、ゲート電極G1を挟むように、半導体基板SBの主面に一対のエクステンション領域EXが形成される。低耐圧トランジスタ領域1Eでは、ダミーゲート電極DGを挟むように、半導体基板SBの主面に一対のエクステンション領域EXが形成される。
なお、各領域のエクステンション領域EXを1回のイオン注入で形成せず、フォトリソグラフィ技術を用いて複数回のイオン注入工程を行うことで、メモリセル領域1A、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eのそれぞれに異なる注入条件でイオン注入を行ってもよい。つまり、各領域に形成する素子の特性に合わせて、別々の濃度または形成深さを有する各種のエクステンション領域EXを形成してもよい。
加えて、p型の不純物(例えばB(ホウ素))を半導体基板SBの主面に注入して、p型の半導体領域であるHalo領域を形成してもよい。また、不純物拡散を抑制することを目的として、炭素(C)などを半導体基板SBの主面に注入する工程、すなわちco−impla工程を行ってもよい。また、ここでは容量素子領域1Bにエクステンション領域EXを形成していないが、エクステンション領域EXを形成する工程において、n型不純物を容量素子領域1Bの半導体基板SBの主面に打ち込んでもよい。本実施の形態では、予めn型のウェルNWを形成しているため、容量素子領域1Bにn型不純物を打ち込む必要はない。
次に、図15に示すように、メモリセル領域1Aの制御ゲート電極CG、メモリゲート電極MG、ゲート絶縁膜GI1、絶縁膜IF3およびONO膜ONを含むパターンの両側の側壁を覆うサイドウォールSW1を形成する。また、同工程により、容量素子領域1Bにおいて、ゲート絶縁膜GI2、上部電極UEおよび絶縁膜IF3からなる積層膜の両側の側壁を覆うサイドウォールSW1を形成する。また、同工程により、高耐圧トランジスタ領域1Cにおいて、ゲート絶縁膜GI3、ゲート電極G1および絶縁膜IF3を含む積層膜の両側の側壁を覆うサイドウォールSW1を形成する。
また、ここでは、低耐圧トランジスタ領域1Eにおいて、絶縁膜IF5、HK、金属膜ME1、ダミーゲート電極DGおよび絶縁膜IF6を含む積層膜の両側の側壁を覆うサイドウォールSW2を形成する。また、同工程では、境界領域1Dに形成された絶縁膜IF5、HK、金属膜ME1、ポリシリコン膜PS3および絶縁膜IF6を含む2つの積層膜(第1パターンおよび第2パターン)のそれぞれの側壁を覆うサイドウォールSW2を形成する。サイドウォールSW2は、サイドウォールSW1に比べ、半導体基板SBの主面に沿う方向における幅が小さい絶縁膜からなる。
このように、ここでは異なる幅を有する2種類のサイドウォールSW1、SW2を形成する。サイドウォールSW1、SW2は、例えばCVD法を用いて半導体基板SB上に例えば酸化シリコン膜および窒化シリコン膜を順に形成した後、異方性エッチングにより当該酸化シリコン膜および当該窒化シリコン膜を一部除去し、半導体基板SBの上面、絶縁膜IF3およびIF6のそれぞれの上面を露出させることにより、自己整合的に形成することができる。つまり、サイドウォールSW1、SW2は積層膜により形成することが考えられる。ここでは、2種類のサイドウォールSW1、SW2を互いに異なる幅で形成する方法についての説明は省略する。なお、容量素子領域1BでサイドウォールSW1を形成せずに、上部電極UEの側壁に接するように、幅が小さいサイドウォールSW2を形成しても構わない。
続いて、複数のn型半導体領域(不純物拡散領域)である拡散層DFを、イオン注入法などを用いてメモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eに形成する。すなわち、ここでは、n型不純物(例えばヒ素(As)またはリン(P))を、絶縁膜IF3、IF5、制御ゲート電極CG、メモリゲート電極MG、ダミーゲート電極DG、ONO膜ON、上部電極UE、ゲート電極G1、ダミーゲート電極DG、サイドウォールSW1およびSW2などをマスクとして用いて半導体基板SBの主面にイオン注入法で導入する。これにより、n型半導体領域である拡散層DFを複数形成することができる。拡散層DFは、エクステンション領域EXよりも不純物濃度が高く、かつ接合深さ(形成深さ)が深い。なお、拡散層DFをエクステンション領域EXよりも浅い接合深さで形成してもよい。
これにより、メモリセル領域1A、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eにおいて、n型半導体領域であるエクステンション領域EXと、エクステンション領域EXよりも不純物濃度が高いn型半導体領域である拡散層DFとからなり、LDD(Lightly Doped Drain)構造を有するソース・ドレイン領域が形成される。
メモリセル領域1Aに形成されたエクステンション領域EXおよび拡散層DFを含むソース・ドレイン領域と、制御ゲート電極CGとは、制御トランジスタを構成する。また、メモリセル領域1Aに形成された当該ソース・ドレイン領域と、メモリゲート電極MGとは、メモリトランジスタを構成する。つまり、制御トランジスタおよびメモリトランジスタは、互いにソース・ドレイン領域を共有している。ソース・ドレイン領域を共有する制御トランジスタおよびメモリトランジスタは、1つのメモリセルMCを構成する。
各領域の拡散層DFは、1回のイオン注入工程で形成することもできるが、異なるイオン注入工程で形成し、それらの拡散層DFを別々の不純物濃度または別々の深さで形成してもよい。また、メモリセル領域1Aに形成する一対の拡散層DFのうち、メモリゲート電極MG側に形成する拡散層DFと、制御ゲート電極CG側に形成する拡散層DFとのそれぞれを別々のイオン注入工程により形成し、それらの拡散層DFを別々の不純物濃度または別々の深さで形成してもよい。
また、容量素子領域1Bでは、上部電極UEの横において素子分離領域EIから露出する半導体基板SBの主面に、拡散層DFが形成される。当該拡散層DFは、後に形成する容量素子の下部電極である半導体基板SB(ウェルNW)に電圧を印加するために用いられるコンタクトプラグとの接続領域として用いられる。
続いて、ソース・ドレイン領域用の半導体領域(エクステンション領域EXおよび拡散層DF)などに導入された不純物を活性化するための熱処理である活性化アニールを行う。
次に、図16に示すように、シリサイド層S1を形成する。シリサイド層S1は、いわゆるサリサイド(Salicide:Self Aligned Silicide)プロセスを行うことによって、形成することができる。具体的には、次のようにしてシリサイド層S1を形成することができる。
すなわち、まず、拡散層DFの上面上およびメモリゲート電極MGの上面上を含む半導体基板SBの主面全面上に、シリサイド層S1形成用の金属膜を形成(堆積)する。当該金属膜、単体の金属膜(純金属膜)または合金膜を用いることができ、例えば、コバルト(Co)膜、ニッケル(Ni)膜、またはニッケル白金合金膜からなり、スパッタリング法などを用いて形成することができる。
それから、半導体基板SBに対して熱処理(シリサイド層S1形成用の熱処理)を施すことによって、拡散層DFおよびメモリゲート電極MG、ポリシリコン膜PS3の各表層部分であって、露出している部分を、当該金属膜と反応させる。これにより、拡散層DFと、メモリゲート電極MGと、第1パターンを構成するポリシリコン膜PS3とのそれぞれの上部に、シリサイド層S1が形成される。その後、未反応の当該金属膜をウェットエッチングなどにより除去する。サイドウォール状のメモリゲート電極MGの上部は露出しているため、その露出部にはシリサイド層S1が形成される。ただし、メモリゲート電極MG上の当該シリサイド層S1は、後の工程において行うCMP法による研磨工程により、完全に除去される。
シリサイド層S1は、例えばコバルトシリサイド層、ニッケルシリサイド層、または、ニッケル白金シリサイド層とすることができる。なお、制御ゲート電極CG、上部電極UEおよびゲート電極G1のそれぞれの上面はキャップ膜である絶縁膜IF3により覆われている。また、ダミーゲート電極DGと、境界領域1Dの第2パターンを構成するポリシリコン膜PS3とのそれぞれの上面は、キャップ膜である絶縁膜IF6により覆われている。このため、制御ゲート電極CG、上部電極UE、ゲート電極G1、ダミーゲート電極DGおよびポリシリコン膜PS3のそれぞれの上面の上部にシリサイド層S1は形成されない。
続いて、半導体基板SBの主面全面上に、制御ゲート電極CG、メモリゲート電極MG、サイドウォールSW1、SW2、上部電極UE、ゲート電極G1およびダミーゲート電極DGを覆うように、層間絶縁膜IL2を形成する。層間絶縁膜IL2は、例えば酸化シリコン膜の単体膜からなり、例えばCVD法などを用いて形成することができる。ここでは、例えば、ゲート絶縁膜GI1、制御ゲート電極CGおよび絶縁膜IF3からなる積層膜の膜厚よりも厚い膜厚で層間絶縁膜IL2を形成する。
次に、図17に示すように、層間絶縁膜IL2の上面を、CMP法などを用いて研磨する。これにより、制御ゲート電極CG、メモリゲート電極MG、上部電極UE、ゲート電極G1、ポリシリコン膜PS3およびダミーゲート電極DGのそれぞれの上面を露出させる。つまり、この研磨工程では、制御ゲート電極CG、メモリゲート電極MG、上部電極UE、ゲート電極G1、ポリシリコン膜PS3およびダミーゲート電極DGのそれぞれの上面が露出するまで、層間絶縁膜IL2を研磨する。これにより、絶縁膜IF3およびIF6は除去され、各サイドウォールSW1、SW2の上部も一部除去される。
この工程により、メモリゲート電極MG上のシリサイド層S1は、メモリゲート電極MGの上部の一部とともに除去される。同様に、境界領域1Dのポリシリコン膜PS3上のシリサイド層S1は、当該ポリシリコン膜PS3の上部の一部とともに除去される。
また、上記研磨工程より、容量素子領域1Bの上部電極UEの上面を後退させることで、上部電極UEと、上部電極UEの直下の半導体基板SBからなる下部電極と、上部電極UEおよび当該下部電極の間のゲート絶縁膜GI2とを含む容量素子CEを形成する。上部電極UEと半導体基板SBとの間には、ゲート絶縁膜GI2が介在している。よって、上部電極UEと下部電極とは、ゲート絶縁膜GI2により隔てられており、互いに絶縁されている。
続いて、層間絶縁膜IL1上に、フォトレジスト膜PR2を形成する。フォトレジスト膜PR2は、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eと、境界領域1Dの一部とを露出し、メモリセル領域1A、容量素子領域1Bと、境界領域1Dの一部を覆うレジストパターンである。境界領域1Dにおいて、フォトレジスト膜PR2は第2パターンを露出し、第1パターンを覆っている。
続いて、フォトレジスト膜PR2をマスクとして用いてエッチングを行うことにより、ダミーゲート電極であるゲート電極G1と、第2パターンを構成するポリシリコン膜PS3と、ダミーゲート電極DGとを除去する。ここでは、例えばアルカリ水溶液によりウェットエッチングを行うことで、ゲート電極G1、ポリシリコン膜PS3およびダミーゲート電極DGを除去する。ゲート電極G1、ポリシリコン膜PS3およびダミーゲート電極DGが除去されたことにより、高耐圧トランジスタ領域1Cのゲート絶縁膜GI3上の第1溝(凹部、窪み部)と、境界領域1Dにおいて第2パターンを構成するポリシリコン膜PS3が形成されていた位置の第2溝と、低耐圧トランジスタ領域1Eの金属膜ME1上の第3溝とが形成される。
第1溝はゲート電極G1が除去された領域であり、第1溝の両側の側壁はサイドウォールSW1により構成され、第1溝の底面はゲート絶縁膜GI3の上面により構成されている。第2溝は第2パターンを構成するポリシリコン膜PS3が除去された領域であり、第2溝の両側の側壁はサイドウォールSW2により構成され、第2溝の底面は金属膜ME1の上面により構成されている。第3溝はダミーゲート電極DGが除去された領域であり、第3溝の両側の側壁はサイドウォールSW2により構成され、第3溝の底面は金属膜ME1の上面により構成されている。
次に、図18に示すように、フォトレジスト膜PR2を除去した後、半導体基板SB上、つまり、第1〜第3溝のそれぞれの底面および側壁の上を含む層間絶縁膜IL2上に、第1〜第3溝のそれぞれを完全に埋め込むように、ゲート電極用の導体膜として、金属膜ME2およびME3を順に形成する。
金属膜ME2としては例えばチタンアルミニウム(TiAl)膜などを好適に用いることができる。なお、pチャネル型のMISFETを形成する場合は、金属膜ME2としては例えば窒化チタン(TiN)膜などを好適に用いることができる。金属膜ME2は、例えばスパッタリング法などを用いて形成することができる。ME3は、金属伝導を示す導体膜であり、単体の金属膜(純金属膜)または合金膜に限定されず、金属伝導を示す金属化合物膜(窒化金属膜または炭化金属膜など)であってもよい。金属膜ME3には、例えばアルミニウム(Al)膜などを用いることができる。
ここでは、例えば金属膜ME2を、窒化チタン(TiN)膜により形成し、当該窒化チタン膜上の金属膜ME3を、アルミニウム(Al)膜により形成する。この際、窒化チタン膜よりもアルミニウム膜を厚くすることが好ましい。アルミニウム膜は、低抵抗であるため、後で形成するゲート電極の低抵抗化を図ることができる。また、金属膜ME2は、nチャネル型のMISFETと、pチャネル型のMISFETとのそれぞれのゲート電極の仕事関数を調整する役割を有する。なお、図示はしていないが、金属膜ME2と金属膜ME3との間には、金属膜ME2、ME3の相互間の密着性を高める役割を有する導体膜(バリア導体膜)を形成する。当該導体膜は、例えばチタン(Ti)膜からなる。
次に、図19に示すように、第1〜第3溝のそれぞれの外部の不要な金属膜ME2、ME3をCMP法などによって研磨して除去することにより、第1〜第3溝のそれぞれの内側に、金属膜ME2、ME3を残す。これにより、制御ゲート電極CG、メモリゲート電極MG、上部電極UEおよびポリシリコン膜PS3のそれぞれの上面を露出させる。また、当該研磨工程により、高耐圧トランジスタ領域1Cの第1溝内に、金属膜ME2、ME3からなるゲート電極MG1が形成される。また、当該研磨工程により、低耐圧トランジスタ領域1Eの第3溝内に、金属膜ME2およびME3を含むゲート電極MG2が形成される。ゲート電極MG2は、金属膜ME1、ME2およびME3により構成される。また、第2溝内には、金属膜ME2、ME3が残る。
これにより、高耐圧トランジスタ領域1Cには高耐圧のMISFETQ1が形成され、低耐圧トランジスタ領域1Eには低耐圧のMISFETQ2が形成される。MISFETQ1は、ゲート電極MG1と、ゲート電極MG1の横のソース・ドレイン領域とを有する電界効果トランジスタである。MISFETQ2は、ゲート電極MG2と、ゲート電極MG2の横のソース・ドレイン領域とを有する電界効果トランジスタである。ゲート電極MG2の直下の絶縁膜HKおよび絶縁膜IF5は、MISFETQ2のゲート絶縁膜を構成している。
MISFETQ1は、メモリセルMCの駆動、または、半導体装置である半導体チップと、当該半導体チップの外部との間で電力を入出力する回路に用いられる。つまり、MISFETQ1は、制御トランジスタおよびMISFETQ2に比べ、高い電圧で駆動する。このため、MISFETQ1は、制御トランジスタ、および、ロジック回路などに用いられ、高速動作が求められるMISFETQ2などに比べ、高い耐圧が要求される。したがって、MISFETQ1のゲート絶縁膜GI3は、ゲート絶縁膜GI1およびMISFETQ2のゲート絶縁膜に比べて大きい膜厚を有している必要がある。
ゲート電極MG1、MG2のそれぞれはメタルゲート電極である。本実施の形態では、ゲート電極G1を除去してゲート電極MG1に置き換えている。また、ダミーゲート電極DGを除去してゲート電極MG2に置き換えている。このため、ゲート電極G1およびダミーゲート電極DGは、擬似的なゲート電極であり、置換用ゲート電極とみなすことができる。
また、本実施の形態では、金属膜を用いてメタルゲート電極であるゲート電極MG1、MG2を形成している。このため、トランジスタの小型化(ゲート絶縁膜の薄膜化)が可能になるという利点を得ることができる。
次に、図20に示すように、層間絶縁膜IL2上に、例えばCVD法を用いて絶縁膜IF7を形成した後、フォトリソグラフィ技術およびエッチング法を用いて絶縁膜IF7を加工する。これにより、絶縁膜IF7は、境界領域1Dの一部、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eに残る。つまり、絶縁膜IF7は、ゲート電極MG1、MG2、境界領域1Dの金属膜ME2およびME3のそれぞれの上面を覆っている。また、絶縁膜IF7は、制御ゲート電極CG、メモリゲート電極MG、上部電極UEおよび第1パターンのそれぞれの上面を覆っていない。絶縁膜IF7は、酸化シリコン膜または窒化シリコン膜からなる。
続いて、図16を用いて説明した工程と同様のサリサイドプロセスを行うことで、絶縁膜IF7から露出する制御ゲート電極CG、メモリゲート電極MGおよび上部電極UEのそれぞれの上面上に、シリサイド層S2を形成する。また、第1パターンを構成するポリシリコン膜PS3の上面にも、シリサイド層S2が形成される。ここで絶縁膜IF7によりゲート電極MG1、MG2、金属膜ME2およびME3の上面を覆っているのは、当該サリサイドプロセスにおいて、熱処理後に未反応の金属膜を除去する際に、メタルゲート電極であるゲート電極MG1、MG2と、金属膜ME2、ME3とが当該金属膜と共に除去されることを防ぐためである。つまり、絶縁膜IF7は、ゲート電極MG1、MG2、金属膜ME2およびME3の保護膜である。
次に、図21に示すように、層間絶縁膜IL3、複数のコンタクトプラグCPおよび複数の配線M1を形成する。ここではまず、半導体基板SBの上面全体を覆う層間絶縁膜IL3を、例えばCVD法を用いて形成する。層間絶縁膜IL3は、例えば酸化シリコン膜からなり、制御ゲート電極CG、メモリゲート電極MG、ゲート電極MG1、MG2、上部電極UE、絶縁膜IF7および層間絶縁膜IL2のそれぞれの上面を覆っている。
続いて、フォトリソグラフィ技術およびドライエッチング法を用いて、層間絶縁膜IL2、IL3および絶縁膜IF7をパターニングする。これにより、層間絶縁膜IL2、IL3を貫通するコンタクトホール(開口部、貫通孔)と、層間絶縁膜IL2、IL3およびIF7を貫通するコンタクトホールとをそれぞれ複数形成する。各コンタクトホールの底部では、拡散層DFの表面上のシリサイド層S1、制御ゲート電極CGの表面上のシリサイド層S2、メモリゲート電極MGの表面上のシリサイド層S2、ゲート電極MG1、MG2、または上部電極UEの表面上のシリサイド層S2などが露出する。
なお、図21では拡散層DFの上面の直上のコンタクトホールのみを図示しており、制御ゲート電極CG、メモリゲート電極MG、ゲート電極MG1、MG2および上部電極UEのそれぞれの直上のコンタクトホールは、図示していない領域に開口されている。また、境界領域1Dに形成された第1パターンと、金属膜ME2、ME3を含む第2パターンとのそれぞれの直上にはコンタクトホールを形成しない。第1パターンおよび第2パターンはゲート電極状の構造を有しているが、後に完成する半導体装置において、回路を構成しない。つまり第1パターンおよび第2パターンは、ダミーパターンである。
続いて、各コンタクトホール内に、接続用の導電体として、主に例えばタングステン(W)からなる導電性のコンタクトプラグCPを複数形成する。コンタクトプラグCPを形成するには、例えば、コンタクトホールの内部を含む層間絶縁膜IL3上に、バリア導体膜(例えばチタン膜、窒化チタン膜、あるいはそれらの積層膜)を形成する。それから、このバリア導体膜上にタングステン膜などからなる主導体膜を、各コンタクトホール内を完全に埋めるように形成してから、コンタクトホールの外部の不要な主導体膜およびバリア導体膜をCMP法またはエッチバック法などによって除去することにより、コンタクトプラグCPを形成することができる。なお、図面の簡略化のために、図21では、コンタクトプラグCPを構成するバリア導体膜および主導体膜(タングステン膜)を一体化して示している。
拡散層DFには、シリサイド層S1を介してコンタクトプラグCPが電気的に接続されている。制御ゲート電極CG、メモリゲート電極MGおよび上部電極UEのそれぞれには、には、シリサイド層S2を介してコンタクトプラグCPが電気的に接続されている。ゲート電極MG1、MG2のそれぞれの上面には、コンタクトプラグCPが接続されている。
なお、図21の断面図においては、制御ゲート電極CG、メモリゲート電極MG、上部電極UE、ゲート電極MG1およびMG2のそれぞれの直上のコンタクトプラグCPを図示していない。つまり、制御ゲート電極CG、メモリゲート電極MG、上部電極UE、ゲート電極MG1およびMG2のそれぞれのそれぞれに対しては、図示していない領域においてコンタクトプラグCPが接続されている。なお、コンタクトプラグCPの上面と、層間絶縁膜IL3の上面とは、同一面において平坦化されている。
続いて、コンタクトプラグCPが埋め込まれた層間絶縁膜IL3上に、第1層目の配線M1を含む第1配線層を形成する。配線M1は、いわゆるシングルダマシン技術を用いて形成することができる。第1配線層は、層間絶縁膜IL4と、層間絶縁膜IL4を貫通する第1層目の配線M1とを有する。配線M1の底面は、コンタクトプラグCPの上面に接続される。その後の工程の図示は省略するが、第1配線層上に、第2配線層および第3配線層などを順に形成して積層配線層を形成した後、半導体ウェハをダイシング工程により個片化し、複数の半導体チップを得る。
図22に、当該半導体チップの平面図を示す。図22に示すように、半導体チップCHPの主面側には、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eが存在しており、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれは、境界領域1Dに囲まれている。つまり、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれと、低耐圧トランジスタ領域1Eとは、境界領域1Dを介して隔てられている。境界領域1Dでは、メモリセル領域1A側、容量素子領域1B側または高耐圧トランジスタ領域1C側に、上記第1パターンが形成され、低耐圧トランジスタ領域1E側に上記第2パターンが形成されている。
言い換えれば、図21に示す境界領域1Dに形成された素子分離領域EIおよびダミーパターンは、平面視において環状の構造を有しており、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれは、平面視において、境界領域1Dに形成された素子分離領域EIおよびダミーパターンにより囲まれている。
以上のようにして、本実施の形態の半導体装置が製造される。なお、ここではダミーゲート電極の形成前に、図21に示す絶縁膜HKを形成する、いわゆるhigh−kファーストの製造方法を例として説明したが、ダミーゲート電極の除去後に絶縁膜HKを形成する、いわゆるhigh−kラストの製造方法を用いてもよい。high−kラストの製造方法を採用する場合は、例えば、図1〜図6を用いて説明した工程の後、図7を用いて説明した工程において、低耐圧トランジスタ領域1Eにおいて、半導体基板SBの主面上に絶縁膜IF1を介してポリシリコン膜PS1からなるダミーゲート電極を形成する。
その後、図10〜図14を用いて説明した工程中、ウェルPW3の形成工程およびエクステンション領域EXの形成工程以外は行わない。その後、図15〜図17を用いて説明した工程を行った後、半導体基板SBの主面上にhigh−k膜を形成し、続いて、メタルゲート電極となる金属膜を堆積することで、各ゲート絶縁膜上の溝を埋め込む。その後の工程は、図19〜図21を用いて説明した方法と同様に行う。
本実施の形態のメモリセルMCは、書込み・消去動作には高電圧を用いるものであり、その電源発生回路では、電荷蓄積、平滑化のために大規模な容量素子CEおよび高耐圧のMISFETQ1を必要とする。容量素子CEは、溝D2内に上部電極UEの一部を埋め込むことで、単位面積当たりの容量を増大させ、半導体チップを縮小することを可能としている。
本実施の形態の容量素子CEは、複数の溝D2内に上部電極UEの一部を埋め込むことで、上部電極UEと下部電極(半導体基板)との対向面積を増大させることができる。つまり、平坦な半導体基板(下部電極)上に絶縁膜を介して上部電極を形成する場合に比べて、容量素子CEの容量を増大させることができる。
なお、上記図1〜図21では、各領域に1つずつ半導体素子を形成する様子を示したが、実際には、例えばメモリセル領域1Aにおいて、複数のメモリセルMCがアレイ状に並んで形成される。同様に、容量素子領域1B、複数高耐圧トランジスタ領域ICおよび低耐圧トランジスタ領域1Eにおいても、同様に素子が例えばアレイ状に複数並んで形成される。
<不揮発性メモリの動作について>
次に、不揮発性メモリの動作例について、図24を参照して説明する。
図24は、本実施の形態の「書込」、「消去」および「読出」時における選択メモリセルの各部位への電圧の印加条件の一例を示す表である。図24の表には、「書込」、「消去」および「読出」時のそれぞれにおいて、図21に示されるようなメモリセルMCのメモリゲート電極MGに印加する電圧Vmg、ソース領域に印加する電圧Vs、制御ゲート電極CGに印加する電圧Vcg、ドレイン領域に印加する電圧Vd、および半導体基板上面のp型のウェルPW1に印加するベース電圧Vbが記載されている。ここでいう選択メモリセルとは、「書込」、「消去」または「読出」を行う対象として選択されたメモリセルをいう。なお、図21に示す不揮発性メモリの例では、メモリゲート電極MGの右側の活性領域がソース領域、制御ゲート電極CGの左側の活性領域がドレイン領域である。
なお、図24の表に示したものは電圧の印加条件の好適な一例であり、これに限定されるものではなく、必要に応じて種々変更可能である。また、本実施の形態では、メモリトランジスタのONO膜ON(図21参照)中の電荷蓄積部である窒化シリコン膜への電子の注入を「書込」、ホール(hole:正孔)の注入を「消去」と定義する。
また、図24の表において、Aの欄は、書込み方法がSSI方式で、かつ消去方法がBTBT方式の場合に対応し、Bの欄は、書込み方法がSSI方式で、かつ消去方法がFN方式の場合に対応し、Cの欄は、書込み方法がFN方式で、かつ消去方法がBTBT方式の場合に対応し、Dの欄は、書込み方法がFN方式で、かつ消去方法がFN方式の場合に対応している。
SSI方式は、窒化シリコン膜にホットエレクトロンを注入することによってメモリセルの書込みを行う動作法とみなすことができ、BTBT方式は、窒化シリコン膜にホットホールを注入することによってメモリセルの消去を行う動作法とみなすことができ、FN方式は、電子またはホールのトンネリングによって書込みまたは消去を行う動作法とみなすことができる。FN方式について、別の表現で言うと、FN方式の書込みは、窒化シリコン膜にFNトンネル効果により電子を注入することによってメモリセルの書込みを行う動作方式とみなすことができ、FN方式の消去は、窒化シリコン膜にFNトンネル効果によりホールを注入することによってメモリセルの消去を行う動作方式とみなすことができる。以下、具体的に説明する。
書込み方式は、いわゆるSSI(Source Side Injection:ソースサイド注入)方式と呼ばれるソースサイド注入によるホットエレクトロン注入で書込みを行う書込み方式(ホットエレクトロン注入書込み方式)と、いわゆるFN方式と呼ばれるFN(Fowler Nordheim)トンネリングにより書込みを行う書込み方式(トンネリング書込み方式)とがある。
SSI方式の書込みでは、例えば図24の表のAの欄またはBの欄の「書込動作電圧」に示されるような電圧(Vmg=10V、Vs=5V、Vcg=1V、Vd=0.5V、Vb=0V)を、書込みを行う選択メモリセルの各部位に印加し、選択メモリセルのONO膜ON中の窒化シリコン膜中に電子を注入することで書込みを行う。
この際、ホットエレクトロンは、2つのゲート電極(メモリゲート電極MGおよび制御ゲート電極CG)間の下のチャネル領域(ソース、ドレイン間)で発生し、メモリゲート電極MGの下のONO膜ON中の電荷蓄積部である窒化シリコン膜にホットエレクトロンが注入される。注入されたホットエレクトロン(電子)は、ONO膜ON中の窒化シリコン膜中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が上昇する。すなわち、メモリトランジスタは書込み状態となる。
FN方式の書込みでは、例えば図24の表のCの欄またはDの欄の「書込動作電圧」に示されるような電圧(Vmg=−12V、Vs=0V、Vcg=0V、Vd=0V、Vb=0V)を、書込みを行う選択メモリセルの各部位に印加し、選択メモリセルにおいて、メモリゲート電極MGから電子をトンネリングさせてONO膜ON中の窒化シリコン膜に注入することで書込みを行う。この際、電子はメモリゲート電極MGからFNトンネリング(FNトンネル効果)により第2酸化シリコン膜(トップ酸化膜)をトンネリングしてONO膜ON中に注入され、ONO膜ON中の窒化シリコン膜中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が上昇する。すなわち、メモリトランジスタは書込み状態となる。
なお、FN方式の書込みにおいて、半導体基板SBから電子をトンネリングさせてONO膜ON中の窒化シリコン膜に注入することで書込みを行うこともでき、この場合、書込動作電圧は、例えば図24の表のCの欄またはDの欄の「書込動作電圧」の正負を反転させたものとすることができる。
消去方法は、いわゆるBTBT方式と呼ばれるBTBT(Band-To-Band Tunneling:バンド間トンネル現象)によるホットホール注入により消去を行う消去方式(ホットホール注入消去方式)と、いわゆるFN方式と呼ばれるFN(Fowler Nordheim)トンネリングにより消去を行う消去方式(トンネリング消去方式)とがある。
BTBT方式の消去では、BTBTにより発生したホール(正孔)を電荷蓄積部(ONO膜ON中の窒化シリコン膜)に注入することにより消去を行う。例えば図24の表のAの欄またはCの欄の「消去動作電圧」に示されるような電圧(Vmg=−6V、Vs=6V、Vcg=0V、Vd=open、Vb=0V)を、消去を行う選択メモリセルの各部位に印加する。これにより、BTBT現象によりホールを発生させ電界加速することで選択メモリセルのONO膜ON中の窒化シリコン膜中にホールを注入し、それによってメモリトランジスタのしきい値電圧を低下させる。すなわち、メモリトランジスタは消去状態となる。
FN方式の消去では、例えば図24の表のBの欄またはDの欄の「消去動作電圧」に示されるような電圧(Vmg=12V、Vs=0V、Vcg=0V、Vd=0V、Vb=0V)を、消去を行う選択メモリセルの各部位に印加し、選択メモリセルにおいて、メモリゲート電極MGからホールをトンネリングさせてONO膜ON中の窒化シリコン膜に注入することで消去を行う。この際、ホールはメモリゲート電極MGからFNトンネリング(FNトンネル効果)により第2酸化シリコン膜(トップ酸化膜)をトンネリングしてONO膜ON中に注入され、ONO膜ON中の窒化シリコン膜中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が低下する。すなわち、メモリトランジスタは消去状態となる。
なお、FN方式の消去において、半導体基板SBからホールをトンネリングさせてONO膜ON中の窒化シリコン膜に注入することで消去を行うこともでき、この場合、消去動作電圧は、例えば図24の表のBの欄またはDの欄の「消去動作電圧」の正負を反転させたものとすることができる。
読出し時には、例えば図24の表のAの欄、Bの欄、Cの欄またはDの欄の「読出動作電圧」に示されるような電圧を、読出しを行う選択メモリセルの各部位に印加する。読出し時のメモリゲート電極MGに印加する電圧Vmgを、書込み状態におけるメモリトランジスタのしきい値電圧と消去状態におけるしきい値電圧との間の値にすることで、書込み状態と消去状態とを判別することができる。
次に、上記動作における各印加電圧に関して記す。製品チップへの外部からの供給電源の電圧は、例えば、低耐圧MISFET用の1.5Vおよび高耐圧MISFET用の5Vである。メモリ動作において、これら以外の電圧はチップ内の電圧発生回路により生成される。例えば、比較的高い電圧であるSSI書込み時のVmg用の10Vの電圧は、高耐圧MISFETで構成される電圧発生回路において生成される。その電圧発生回路において、電荷蓄積または電圧平滑化などのために、図21の容量素子領域1Bに示すような容量素子が必要となる。
<本実施の形態の効果について>
以下に、比較例の半導体装置、つまり、スプリットゲート型のMONOSメモリ、溝型の容量素子、高抵抗トランジスタおよび低抵抗トランジスタを有する半導体装置であって、溝型容量素子の電極間の絶縁膜と、高耐圧トランジスタのゲート絶縁膜とを別々の工程で形成する場合の問題点を説明し、本実施の形態の効果について説明する。ここでは図26〜図32に、比較例の半導体装置の製造工程中の断面図を示し、図33に、比較例の半導体装置の製造工程中の平面図を示す。
図26〜図32には、図1〜図21に示す各領域に対応する複数の領域(メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1E)の断面を示している。なお、図26〜図32では、高耐圧トランジスタ領域1Cが境界領域1Dの外にあることを示すために、図1〜図21とは異なり、高耐圧トランジスタ領域1Cが境界領域1Dの位置を入れ替えて示す。つまり、図26〜図32では、図の左側から右側に向かって順にメモリセル領域1A、容量素子領域1B、境界領域1D、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eの断面を示している。
比較例の平面図である図33は、実施例の平面図である図22と比べて、高耐圧トランジスタ領域1Cが境界領域1Dの外に配置されている点が相違している。したがって、高耐圧トランジスタ領域1Cの配置においては境界領域1Dが必要なく、レイアウト面積を削減する効果を有するが、一方問題点も有しており、以下にそれらを説明し、本実施の形態の効果について説明する。
本実施の形態および比較例の半導体装置は、図1〜図22を用いて説明したように、高耐圧トランジスタ領域1CのMISFETQ1と、低耐圧トランジスタ領域1EのMISFETQ2とを、ゲートラストプロセスを用いて形成するものである。つまり、本実施の形態および比較例では、ダミーゲート電極を形成し、ダミーゲート電極を層間絶縁膜で覆った後、研磨工程によりダミーゲート電極の上面を露出させ、その後ダミーゲート電極をメタルゲート電極に置き換えている。ゲートラストプロセスを用いれば、メタルゲート電極が受ける熱負荷を低減することができる。
このようなゲートラストプロセスでは、各ゲート電極の上部を研磨する上記研磨工程を行うため、半導体基板上に形成した第1導体膜(下部電極)および第2導体膜(上部電極)の積層膜からなる容量素子を形成することが困難である。これは、第1導体膜上に第2導体膜を形成しても、当該研磨工程により、第2導体膜が除去されるためである。そこで、本実施の形態および下記比較例では、半導体基板を下部電極とし、半導体基板上のポリシリコン膜を上部電極とする容量素子を形成している。
さらに、本実施の形態および下記比較例では、半導体基板の主面にドライエッチング法により溝を形成し、当該溝内に上部電極の一部を埋め込んでいる。これにより、上部電極と半導体基板との対向面積を増大させることで、容量を増大させることを可能としている。本願では、このような素子をトレンチ容量素子と呼ぶ場合がある。
比較例の半導体装置の製造工程では、まず、図1〜図6を用いて上述した工程と同様の工程を行うことで、トレンチ容量素子の2つの電極を絶縁するために用いられる絶縁膜IF1を、溝D2が形成された半導体基板SB上に形成し、メモリセル領域1Aに絶縁膜IF2を形成する。ここで形成する絶縁膜IF1は、後に形成されるトレンチ容量素子の上部電極および下部電極に印加される電圧の相互間の電位差に耐え得るように、高い絶縁性を有している必要がある。このため、後に形成する制御ゲート電極のゲート絶縁膜用の絶縁膜IF2および後に形成する低耐圧トランジスタ用のゲート絶縁膜よりも大きい膜厚を有している。
次に、図26に示すように、絶縁膜IF1、IF2の上に、ポリシリコン膜PS1および絶縁膜IF3を順次形成する。ポリシリコン膜PS1には、n型およびp型の不純物の一方または両方を打ち込む。その後、メモリセル領域1Aの絶縁膜IF3、ポリシリコン膜PS1および絶縁膜IF2からなる積層膜と、容量素子領域1Bの絶縁膜IF3、ポリシリコン膜PS1および絶縁膜IF1からなる積層膜とをパターニングする。
これにより、メモリセル領域1Aに、絶縁膜IF2からなるゲート絶縁膜GI1と、ポリシリコン膜PS1からなる制御ゲート電極CGとを形成し、容量素子領域1Bに、ポリシリコン膜PS1からなる上部電極UEと、絶縁膜IF1からなるゲート絶縁膜GI2とを形成する。境界領域1D、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eの半導体基板SBは、絶縁膜IF3、ポリシリコン膜PS1および絶縁膜IF1からなる積層膜により覆われている。
次に、図27に示すように、図8および図9を用いて説明した工程を行うことで、ONO膜ONおよびメモリゲート電極MGをメモリセル領域1Aに形成する。
次に、図28に示すように、図10を用いて説明した工程と同様の工程を行う。これにより、メモリセル領域1Aのゲート絶縁膜GI1、絶縁膜IF3、制御ゲート電極CGおよびメモリゲート電極MGを含むパターンと、容量素子領域1BのGI2、上部電極UEおよび絶縁膜IF3からなる積層膜と、高耐圧トランジスタ領域1Cなどのポリシリコン膜PS1および絶縁膜IF1、IF3からなる積層膜との間を層間絶縁膜IL1により埋め込む。
次に、図29に示すように、図11を用いて説明した工程と同様の工程を行うことで、境界領域1Dの一部と、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eとの絶縁膜IF3、ポリシリコン膜PS1および絶縁膜IF1からなる積層膜を除去することで、半導体基板SBの主面を露出させる。
次に、図30に示すように、半導体基板SBの主面上に、ゲート絶縁膜GI1に比べて膜厚が大きい絶縁膜IF8を形成した後、フォトリソグラフィ技術およびエッチング法を用いて、高耐圧トランジスタ領域1C以外の絶縁膜IF8を除去する。絶縁膜IF8は、後の工程で形成される高耐圧トランジスタのゲート絶縁膜の一部となる膜である。絶縁膜IF8の膜厚は、例えば16nmである。
次に、図31に示すように、図12を用いて説明した工程と同様の工程を行う。すなわち、半導体基板SBの主面上に、絶縁膜IF5と、high−k膜である絶縁膜HKと、ポリシリコン膜PS3と、金属膜ME1と、絶縁膜IF6とを順に形成する。
次に、図32に示すように、絶縁膜IF6、ポリシリコン膜PS3、金属膜ME1、絶縁膜HKおよびIF5をパターニングすることで、高耐圧トランジスタ領域1Cに、絶縁膜IF8、IF5、HKからなるゲート絶縁膜と、ポリシリコン膜PS3からなるダミーゲート電極であるゲート電極G1とを形成する。また、当該パターニングにより、低耐圧トランジスタ領域1Eの絶縁膜IF5、HKからなるゲート絶縁膜と、ポリシリコン膜PS3からなるダミーゲート電極DGとを形成する。その後の工程は、図14〜図22を用いて説明した工程と同様の工程を行うことで、比較例の半導体装置が完成する。
上記比較例では、最初に、図4〜図6および図28を用いて説明した工程で、ゲート絶縁膜GI2を形成し、その後、図30を用いて説明した工程で、高耐圧トランジスタのゲート絶縁膜の一部となる絶縁膜IF8を形成している。ゲート絶縁膜GI2および絶縁膜IF8は、容量素子および高耐圧トランジスタの耐圧を高めるため、いずれも比較的大きい膜厚が必要である。つまり、後にゲート絶縁膜GI2(図32参照)となる絶縁膜IF1と、絶縁膜IF8とは、制御トランジスタのゲート絶縁膜GI1(図32参照)となる絶縁膜IF2(図6参照)の形成工程と、低耐圧トランジスタのゲート絶縁膜の形成工程とは異なる工程により形成する必要がある。このように、低耐圧のトランジスタと、高耐圧のトランジスタおよび容量素子とでは、ゲート絶縁膜の作り分けが必要である。
ここで、上記比較例のように、高耐圧トランジスタのゲート絶縁膜と容量素子のゲート絶縁膜とを別々に形成すると、絶縁膜の形成工程が増大するため、半導体装置の製造コストが増大する問題が生じる。
また、高耐圧トランジスタと容量素子とでゲート絶縁膜の作り分けを行う場合、高耐圧トランジスタのゲート絶縁膜用の絶縁膜の部分的な除去を行う際、そのようにして加工した当該絶縁膜から露出する素子分離領域の上面は後退する。このため、素子分離領域の上面を含むウェハの主面において段差が生じる。
つまり、図5を用いて説明した絶縁膜IF1の加工工程で、容量素子領域1B、境界領域1D、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1E以外の領域の素子分離領域EIの上面は、1回目のエッチングにより後退する。その後、図29を用いて説明した絶縁膜IF1の除去工程で、メモリセル領域1Aおよび容量素子領域1B以外の領域の全ての素子分離領域EIの上面は、2回目のエッチングにより後退する。さらに、図30を用いて説明した絶縁膜IF8の加工工程で、境界領域1Dの一部、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1Eの素子分離領域EIの上面は3回目のエッチングにより後退する。したがって、厚いゲート絶縁膜の除去のための複数回のエッチングに曝された素子分離領域EIの上面は大きく後退する。
このようにして形成された段差は、ゲートラストプロセスにおいて、図17を用いて説明したように研磨を行うことでウェハの主面側の面内のゲート電極などの上面の高さを揃える際、ゲート電極などの高さに差が生じる原因となり、正常な成膜の妨げとなる。また、チャネル領域の幅が狭い低耐圧トランジスタの特性が変動する悪影響が生じる。
なお、この問題の対策として、厚いゲート絶縁膜の除去のためのエッチングに曝される回数が少ない領域の素子分離領域EIの高さを事前に低くする方法が考えられる。しかしその方法は、比較例のように容量素子領域1Bの高耐圧トランジスタ領域1Cのそれぞれの厚いゲート絶縁膜を別々の工程で作り分ける場合、半導体装置の製造方法を複雑にし、製造コストを増大させ、プロセス制御性を悪化させる。
そこで、本実施の形態では、図21に示す高耐圧のMISFETQ1のゲート絶縁膜GI3と、容量素子CEのゲート絶縁膜GI2とを、同じ絶縁膜IF1(図6参照)により形成し、図7に示すように、1回のエッチング工程でゲート絶縁膜GI2、GI3のそれぞれを加工形成している。すなわち、比較的厚いゲート絶縁膜を形成するためのエッチング工程を、比較例では3回行っていたのに対し、ここでは2回に低減している。つまり、本実施の形態では、比較例の製造工程で行った上記3回目のエッチング工程を省略できる。よって、半導体装置の製造工程を簡略化することができ、半導体装置の製造コストを低減することができる。
また、ウェハの上面の平坦性を保つために、厚いゲート絶縁膜の加工のためのエッチングに曝される回数が少ない素子分離領域EIの上面を予め低く形成する必要がないため、半導体装置の製造工程を簡略化することができ、半導体装置の製造コストを低減することができる。
また、これにより、素子分離領域EIの上面がエッチングにより大きく後退することを防ぐことができる。すなわち、図5を用いて説明した絶縁膜IF1の加工工程により、容量素子領域1B、境界領域1D、高耐圧トランジスタ領域1Cおよび低耐圧トランジスタ領域1E以外の領域では、素子分離領域EIの上面が、1回目のエッチングにより後退する。その後、図11を用いて説明した絶縁膜IF1の加工工程で境界領域1Dの一部と、低耐圧トランジスタ領域1Eとの素子分離領域EIの上面は、2回目のエッチングにより後退する。
比較例では、この後に3回目のエッチング、つまり、図30に示すように、絶縁膜IF8を、高耐圧トランジスタ領域1Cにのみ残すために行うエッチングを行う。しかし、本実施の形態では、図4を用いて説明した工程で形成した絶縁膜IF1を、図7を用いて説明したエッチング工程で加工し、容量素子領域1Bのゲート絶縁膜GI1と容量素子領域1Bのゲート絶縁膜GI3とを同時に形成している。よって、比較例の当該3回目のエッチングを行う必要がない。したがって、本実施の形態では、比較例に比べ、素子分離領域EIが比較的厚い絶縁膜を加工するためのエッチングに曝される回数を低減することができるため、素子分離領域EIの上面が大きく後退することを防ぐことができる。
これにより、ウェハの主面側の面内に、素子分離領域EIの上面と半導体基板SBの主面との間の段差に起因して凹凸が生じることを防ぐことができる。つまり、素子分離領域(分離酸化膜)EIの上面の落ち込み量を減らすことができるため、ゲートラストプロセスでの研磨工程(図17参照)後のゲート電極などの膜厚の一様性を向上する効果を得られる。つまり、半導体基板SBの主面上に形成する膜の上面の平坦性を向上させることができ、当該膜の上に積層する他の膜を正常に形成することができるため、半導体装置の信頼性を向上させることができる。また、素子分離領域EIの上面の後退に起因する低耐圧トランジスタの特性の変動を防ぐことができるため、半導体装置の信頼性を向上させることができる。
ここで、MONOSメモリ、容量素子および高耐圧トランジスタと混載する場合、MONOメモリを構成する制御ゲート電極、ONO膜およびメモリゲート電極を形成した後に、容量素子および高耐圧トランジスタに用いる厚いゲート絶縁膜用の絶縁膜と、当該絶縁膜上の、ゲート電極または上部電極として用いられるシリコン膜を形成することが考えられる。しかし、以下に述べるように、このような製造工程は、半導体装置の性能の低下および製造コストの増大の原因となる場合がある。
すなわち、図7を用いて説明したように、容量素子の上部電極となるポリシリコン膜PS1は、成膜時には不純物が導入されておらず、成膜後にn型不純物が打ち込まれてn型の半導体膜となる。ポリシリコン膜PS1中に不純物を拡散させなければ、容量素子の上部電極(ゲート電極)UEにおいて空乏化が起こり、素子の容量が低下するためである。
ポリシリコン膜PS1に打ち込んだ不純物をポリシリコン膜PS1中に拡散させるためには熱処理を行う必要があるが、上記の方法でONO膜形成後にポリシリコン膜PS1を形成した場合、熱処理工程をさらに追加する必要があるため、半導体装置の製造コストが増大する。しかし、熱処理工程を行わなければ、上記のように上部電極の空乏化により容量素子の性能が低下する問題が生じる。なお、ポリシリコン膜PS1に不純物を注入した後に低耐圧トランジスタのゲート絶縁膜を形成する際、半導体基板SBには熱が加わるが、その温度は、当該不純物をポリシリコン膜PS1中に拡散させるには不十分である。
これに対し、本実施の形態では、後に上部電極UE(図7参照)となるポリシリコン膜PS1を形成し、ポリシリコン膜PS1にn型不純物を注入した後に、図8に示すように高温でONO膜ONを形成している。よって、ONO膜ONの成膜時の熱により、ポリシリコン膜PS1(上部電極UE)中のn型不純物は拡散する。したがって、上記のように熱処理工程を追加する必要がないため、半導体装置の製造コストの増大を防ぐことができ、さらに、上部電極UEの空乏化に起因する容量素子CE(図21参照)の容量の低下を防ぐことができる。
当該効果は、ポリシリコン膜PS1を、成膜時に不純物が導入されている状態で形成する場合、つまりドープトポリシリコン膜を形成する場合には得られないが、本実施の形態のように、ポリシリコン膜PS1の成膜後にポリシリコン膜PS1に不純物を注入する場合には有効である。例えば、半導体基板SB上に複数形成する上部電極UEのうち、一部の上部電極UEをn型半導体膜として形成し、他の一部の上部電極をp型半導体膜として形成する場合には、1回のドープトポリシリコン膜の形成工程により全ての上部電極となる導体膜を形成することはできないため、ポリシリコン膜PS1の形成後、ポリシリコン膜PS1に対して不純物を打ち分ける工程が必要となる。
<変形例について>
以下に、本実施の形態の半導体装置の変形例について、図23を用いて説明する。図23は、本実施の形態の変形例である半導体チップの製造工程中の平面図である。
図22に示す平面図では、メモリセル領域1A、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれが、別々の境界領域1Dにより囲まれている構造について説明した。これに対し、本変形例では、図23に示すように、平面視において、メモリセル領域1Aと一部の高耐圧トランジスタ領域1Cとが第1の境界領域1Dに囲まれており、容量素子領域1Bと他の一部の高耐圧トランジスタ領域1Cとが第2の境界領域1Dに囲まれている。
このように、本変形例では、メモリセル領域1Aおよび高耐圧トランジスタ領域1Cを隣接して配置し、その周囲を共通の第1の境界領域1Dにより囲むことで、境界領域1Dを形成する面積を低減している。同様に、容量素子領域1Bおよび高耐圧トランジスタ領域1Cを隣接して配置し、その周囲を共通の第2の境界領域1Dにより囲むことで、境界領域1Dを形成する面積を低減している。したがって、半導体装置の微細化を実現することができる。なお、例えばメモリセル領域1Aと高耐圧トランジスタ領域1Cとを1つの境界領域1Dにより囲んでもよい。
(実施の形態2)
以下に、実施の形態2の半導体装置の製造工程について、図25を用いて説明する。図25は、本実施の形態である半導体装置の製造工程中の断面図である。図25では、図1〜図21と同様に、メモリセル領域1A、容量素子領域1B、高耐圧トランジスタ領域1C、境界領域1Dおよび低耐圧トランジスタ領域1Eの断面を示している。
前記実施の形態1では、高耐圧トランジスタ領域1Cに形成するゲート電極をメタルゲート電極に置換する製造工程について説明したが、ここでは、高耐圧トランジスタ領域1Cのゲート電極の置換を行わず、ポリシリコン膜からなる高耐圧トランジスタを形成することについて説明する。
本実施の形態では、まず、図1〜図16を用いて説明した工程と同様の工程を行う。ここで、図7を用いて説明した工程では、後の工程で高耐圧トランジスタのゲート電極となるポリシリコン膜PS1を、不純物が導入されていない状態で形成する。続いて、図7に示すn型の高耐圧トランジスタ領域1Cでは、ポリシリコン膜PS1にn型の不純物(例えばP(リン))を打ち込み、他の高耐圧トランジスタ領域1Cの形成領域であって、p型の高耐圧トランジスタの形成領域では、ポリシリコン膜PS1にp型の不純物(例えばB(ホウ素))を打ち込む。
このように、ポリシリコン膜PS1に対しては、例えばフォトマスクを用いて、p型およびn型の不純物の打ち分けを行う。ここでは、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれのポリシリコン膜PS1に対し、同一のイオン注入工程により、n型不純物を注入する。同様に、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれのポリシリコン膜PS1に対し、同一のイオン注入工程により、p型不純物を注入する。
これに対し、上記比較例のように、容量素子の上部電極用のシリコン膜と、高耐圧トランジスタのゲート電極用のシリコン膜とを別々に形成し、それぞれのシリコン膜に別々のイオン注入工程を行って不純物を導入することが考えられる。しかし、その方法ではイオン注入工程で増大するため、半導体装置の製造コストが増大する。そこで、本実施の形態では、1回のイオン注入工程により、容量素子領域1Bおよび高耐圧トランジスタ領域1Cのそれぞれのポリシリコン膜PS1に対し不純物を導入することで、イオン注入工程を行う回数を低減し、これにより半導体装置の製造コストを低減することを可能としている。
その後、図8を用いて説明したONO膜ONの形成工程で発生する熱により、上記のp型およびn型の不純物がポリシリコン膜PS1中に拡散する。
また、図15を用いて説明した工程では、エクステンション領域EXおよび拡散層DFを含むソース・ドレイン領域を形成することで、高耐圧トランジスタ領域1Cにおいて、ソース・ドレイン領域と、ゲート絶縁膜GI3上のゲート電極G1とを有する高耐圧のMISFETQ1を形成する。
次に、図17を用いて説明した工程と同様の工程を行うことで、層間絶縁膜IL2の上面を研磨し、各ゲート電極の上面を露出させた後、ダミーゲート電極DG(図16参照)を除去する。ただし、本実施の形態では、高耐圧トランジスタ領域1Cをフォトレジスト膜PR2により覆った状態でダミーゲート電極DGの除去を行い、高耐圧トランジスタ領域1Cのゲート電極G1を残す。
次に、図18および図19を用いて説明した工程を同様の工程を行う。ただし、ゲート電極G1を除去していないため、高耐圧トランジスタ領域1Cにおいて、第2溝は形成されず、金属膜ME1、ME2は残らない。次に、図20を用いて説明した工程を行う。ただし、絶縁膜IF7は高耐圧トランジスタ領域1Cには形成しない。
次に、図25に示すように、図21を用いて説明した工程と同様の工程を行うことで、本実施の形態の半導体装置が完成する。ここでは、絶縁膜IF7に覆われていないゲート電極G1の上面にもシリサイド層S2が形成される。
本実施の形態では、高耐圧のMISFETQ1のゲート電極G1をメタルゲート電極ではなくポリシリコン膜により構成しているため、メタルゲート電極を形成する場合の利点は得られないが、その点を除き、前記実施の形態1と同様の効果を得ることができる。
また、上記のように、図7を用いて説明した工程と同様の工程を行う際、ポリシリコン膜PS1の形成後にポリシリコン膜PS1に対してp型およびn型の不純物を打ち分ける場合、その後に図8に示すようにONO膜ONを形成すれば、ONO膜ONの形成時に半導体基板SBが加熱されるため、ポリシリコン膜PS1(ゲート電極G1)中のn型不純物は拡散する。したがって、上記不純物を拡散させるための熱処理工程を追加する必要がないため、半導体装置の製造コストの増大を防ぐことができ、さらに、ゲート電極G1の空乏化に起因するMISFETQ1の特性変化を防ぐことができる。
ただし、高耐圧トランジスタ領域1Cに、pチャネル型の高耐圧トランジスタおよびnチャネル型のトランジスタの両方を形成する場合であっても、図7を用いて説明した工程において、ポリシリコン膜PS1を、成膜時に例えばn型不純物が導入されている状態で形成することが考えられ、このような場合には、上記のように熱処理工程を省略する効果は得られない。つまり、容量素子領域1Bの上部電極UEについて不純物の打ち分けを行う必要がなく、かつ、pチャネル型の高耐圧トランジスタのゲート電極をn型のポリシリコン膜PS1により形成することが考えられ、この場合にはポリシリコン膜PS1の形成前にONO膜ONを形成しても問題が生じない。
なお、n型のゲート電極を有するpチャネル型の高耐圧トランジスタは、いわゆるベリットチャネル型のトランジスタとして動作する。ベリットチャネル型のトランジスタでは、p型のゲート電極を有するpチャネル型のトランジスタに比べ、仕事関数を調整する必要があり、半導体装置の製造工程が煩雑になる虞がある。
また、本実施の形態では、高耐圧トランジスタ領域1Cのゲート電極G1をメタルゲート電極に置換しないことにより、そのゲート長、ゲート幅、最大面積および局所的密度に関するデザインルールを緩和することができる。つまり、ゲートラストプロセスを行う場合、図19を用いて説明した工程において研磨を行うと、大きな面積を有するメタルゲート電極が存在すると、ディッシングが生じる。ここでいうディッシングとは、研磨工程において削れやすく、面積が大きいパターンが存在することなどに起因して、研磨した面の平坦性が保たれず、当該面に高低差が生じることを指す。
したがって、ディッシングの発生を防ぐため、研磨されやすいメタルゲート電極は、上記のデザインルールに関し、厳しい制約が必要となる。特に、高耐圧トランジスタのゲート電極は、低耐圧トランジスタのゲート電極に比べてゲート長を大きくする必要があり、大面積となる。つまり、高耐圧トランジスタのゲート電極をメタルゲート電極にすると、ディッシングが生じる虞があり、これを防ぐために厳しいデザインルールを課すと、高耐圧トランジスタのレイアウトの自由度が低下する。
これに対し、本実施の形態では、ゲート電極G1を、研磨工程においてメタルゲート電極よりも削れにくいポリシリコン膜で形成しているため、図19の研磨工程での研磨特性の違いにより、ゲート長、ゲート幅の拡大、最大面積および局所的密度の制限の緩和が可能となる。よって、同一の回路機能をより小さな面積でレイアウトすることが可能となり、半導体装置の微細化、および、半導体装置の製造コストの低減を実現することができる。
また、図26〜図32を用いて説明した比較例では、高耐圧トランジスタおよび低耐圧トランジスタのそれぞれのポリシリコンからなるゲート電極をメタルゲート電極に置換している。ただし、例えば高耐圧トランジスタ領域1Cでは、本実施の形態のように、メタルゲート電極への置換を行わず、ポリシリコンからなるゲート電極G1(図32参照)を、高耐圧トランジスタのゲート電極として残すことが考えられる。この場合、図31を用いて説明した工程においてポリシリコン膜PS3を形成した後、ポリシリコン膜PS3に対し、n型またはp型の不純物の一方または両方を打ち込む必要がある。
このとき、図26を用いて説明したポリシリコン膜PS1の形成工程と、図31を用いて説明したポリシリコン膜PS3の形成工程のそれぞれにおいて、不純物の打ち込み工程を行うこととなるため、イオン注入工程が増加する。また、ポリシリコン膜PS1、PS3のそれぞれの形成工程においてn型およびp型の不純物を打ち分ける場合には、マスクの形成工程も増加する。したがって、半導体装置の製造コストが増大する。
これに対し、本実施の形態では、図21に示す制御ゲート電極CG、上部電極UE、ゲート電極G1を形成するために成膜されるポリシリコン膜PS1(図7参照)を、1回の成膜工程で形成している。このため、図7を用いて説明した工程において、成膜したポリシリコン膜PS1に対して不純物を注入すれば、上記比較例でゲート電極G1を残す場合のように、制御ゲート電極CGおよび上部電極UEを構成するポリシリコン膜PS1(図26参照)と、ゲート電極G1を構成するポリシリコン膜PS3(図31参照)とのそれぞれに対してイオン注入を分けて行う必要がない。
したがって、本実施の形態では、イオン注入工程を低減することができる。また、ポリシリコン膜PS1に対してp型およびn型の不純物の打ち分けを行う場合には、上記比較例に比べ、打ち分けのための用意するマスク(レチクル)の数を低減することができ、フォトレジストパターンの形成工程も省略することができる。よって、半導体装置の製造コストを低減することができる。
以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1A メモリセル領域
1B 容量素子領域
1C 高耐圧トランジスタ領域
1D 境界領域
1E 低耐圧トランジスタ領域
CG 制御ゲート電極
D1、D2 溝
EI 素子分離領域
G1 ゲート電極
IF1〜IF8 絶縁膜
GI1〜GI3 ゲート絶縁膜
NW ウェル
ON ONO膜
PS1〜PS3 ポリシリコン膜
PW1、PW2 ウェル
SB 半導体基板
UE 上部電極

Claims (13)

  1. (a)主面に沿って並ぶ第1領域、第2領域、第3領域および第4領域を有する半導体基板を用意する工程、
    (b)前記第2領域の前記半導体基板の前記主面に第1溝を形成する工程、
    (c)前記第1溝の側壁および底面を含む前記半導体基板の前記主面を、第1絶縁膜により覆う工程、
    (d)前記第1領域の前記第1絶縁膜を除去した後、前記第1領域の前記半導体基板の前記主面上に、前記第1絶縁膜より膜厚が小さい第2絶縁膜を形成する工程、
    (e)前記(d)工程の後、前記半導体基板上に第1導体膜を形成することで、前記第1溝内に前記第1絶縁膜を介して前記第1導体膜を埋め込む工程、
    (f)前記第1領域、前記第2領域および前記第3領域の前記第1導体膜を加工することで、前記第1領域において、前記第2絶縁膜からなる第1ゲート絶縁膜と、前記第1導体膜からなる制御ゲート電極とを形成し、前記第2領域において、前記第1溝を埋め込む前記第1導体膜からなる上部電極を形成し、前記第3領域において、前記第1絶縁膜からなる第2ゲート絶縁膜と、前記第1導体膜からなる第1ダミーゲート電極とを形成し、前記第4領域の前記半導体基板の前記主面上に第2ダミーゲート電極を形成する工程、
    (g)前記制御ゲート電極の側壁に、内部に電荷蓄積部を有する第3絶縁膜を介してメモリゲート電極を形成する工程、
    (h)前記制御ゲート電極と前記メモリゲート電極とを含むパターン、前記第1ダミーゲート電極および前記第2ダミーゲート電極のそれぞれを挟む一対のソース・ドレイン領域を、前記第1領域、前記第3領域および前記第4領域のそれぞれに形成する工程、
    (i)前記(h)工程の後、前記半導体基板の前記主面上に、前記制御ゲート電極、前記上部電極、前記第1ダミーゲート電極および前記第2ダミーゲート電極を覆う第4絶縁膜を形成する工程、
    (j)前記第4絶縁膜の上面を研磨することで、前記第1ダミーゲート電極および前記第2ダミーゲート電極のそれぞれの上面を露出させる工程、
    (k)前記(j)工程の後、前記第1ダミーゲート電極を、第1金属膜を含む第1ゲート電極に置換し、前記第2ダミーゲート電極を、第2金属膜を含む第2ゲート電極に置換する工程、
    を有し、
    前記第1領域の前記制御ゲート電極、前記メモリゲート電極および前記ソース・ドレイン領域は、不揮発性メモリのメモリセルを構成し、前記第2領域の前記半導体基板、前記上部電極および前記第1絶縁膜は、容量素子を構成し、前記第3領域の前記第1ゲート電極および前記ソース・ドレイン領域は、第1トランジスタを構成し、前記第4領域の前記第2ゲート電極および前記ソース・ドレイン領域は、第2トランジスタを構成し、
    前記第1トランジスタは、前記第2トランジスタよりも高い電圧で駆動
    前記(f)工程は、
    (f1)前記第1ゲート絶縁膜、前記制御ゲート電極、前記上部電極、前記第2ゲート絶縁膜および前記第1ダミーゲート電極を形成し、前記第4領域の前記第1導体膜を除去する工程、
    (f2)前記(f1)工程の後、前記第4領域の前記半導体基板の前記主面上に、窒化シリコン膜よりも誘電率が高い第6絶縁膜と、前記第6絶縁膜上の前記第2ダミーゲート電極とを形成する工程、
    を有する、半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    前記(b)工程では、前記第1溝および第2溝を前記半導体基板の前記主面に形成し、
    (b1)前記(c)工程の前に、前記第2溝内に第5絶縁膜を埋め込むことで、前記第2溝内の前記第5絶縁膜を含む素子分離領域を形成する工程をさらに有し、
    前記(d)工程では、前記第1領域および前記第4領域の前記第1絶縁膜を除去することで前記素子分離領域の上面を露出させ、その後、前記第2絶縁膜を形成する、半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、
    (e1)前記(e)工程の後、前記(f)工程の前に、前記第1導体膜に対して第1導電型または第2導電型の不純物を導入する、半導体装置の製造方法。
  4. 請求項3記載の半導体装置の製造方法において、
    前記(g)工程は、
    (g1)前記第3絶縁膜を形成し、その際に生じる熱により、前記不純物を前記第1導体膜中に拡散させる工程、
    (g2)前記(g1)工程の後、前記メモリゲート電極を形成する工程、
    を有する、半導体装置の製造方法。
  5. 請求項3記載の半導体装置の製造方法において、
    前記(e1)工程では、前記第2領域内の第7領域の前記第1導体膜に前記第1導電型の不純物を導入し、前記第2領域内の第8領域の前記第1導体膜に前記第2導電型の不純物を導入する、半導体装置の製造方法。
  6. 請求項2記載の半導体装置の製造方法において、
    前記(a)工程では、主面に沿って並ぶ前記第1領域、前記第2領域、前記第3領域、前記第4領域および第9領域を有する前記半導体基板を用意し、
    前記(b)工程では、前記第1溝と、前記第9領域の前記第2溝とを形成し、
    前記第9領域に形成された前記素子分離領域は、平面視において、前記第1領域、前記第2領域および前記第3領域のうちの複数の領域を囲んでいる、半導体装置の製造方法。
  7. (a)主面に沿って並ぶ第1領域、第2領域、第3領域および第4領域を有する半導体基板を用意する工程、
    (b)前記第2領域の前記半導体基板の前記主面に第1溝を形成する工程、
    (c)前記第1溝の側壁および底面を含む前記半導体基板の前記主面を、第1絶縁膜により覆う工程、
    (d)前記第1領域の前記第1絶縁膜を除去した後、前記第1領域の前記半導体基板の前記主面上に、前記第1絶縁膜より膜厚が小さい第2絶縁膜を形成する工程、
    (e)前記(d)工程の後、前記半導体基板上に第1導体膜を形成することで、前記第1溝内に前記第1絶縁膜を介して前記第1導体膜を埋め込む工程、
    (f)前記第1領域、前記第2領域および前記第3領域の前記第1導体膜を加工することで、前記第1領域において、前記第2絶縁膜からなる第1ゲート絶縁膜と、前記第1導体膜からなる制御ゲート電極とを形成し、前記第2領域において、前記第1溝を埋め込む前記第1導体膜からなる上部電極を形成し、前記第3領域において、前記第1絶縁膜からなる第2ゲート絶縁膜と、前記第1導体膜からなる第1ゲート電極とを形成し、前記第4領域の前記半導体基板の前記主面上に第1ダミーゲート電極を形成する工程、
    (g)前記制御ゲート電極の側壁に、内部に電荷蓄積部を有する第3絶縁膜を介してメモリゲート電極を形成する工程、
    (h)前記制御ゲート電極と前記メモリゲート電極とを含むパターン、前記第1ゲート電極および前記第1ダミーゲート電極のそれぞれを挟む一対のソース・ドレイン領域を、前記第1領域、前記第3領域および前記第4領域のそれぞれに形成する工程、
    (i)前記(g)工程の後、前記半導体基板の前記主面上に、前記制御ゲート電極、前記上部電極、前記第1ゲート電極および前記第1ダミーゲート電極を覆う第4絶縁膜を形成する工程、
    (j)前記第4絶縁膜の上面を研磨することで、前記第1ダミーゲート電極の上面を露出させる工程、
    (k)前記(j)工程の後、前記第1ダミーゲート電極を、金属膜を含む第2ゲート電極に置換する工程、
    を有し、
    前記第1領域の前記制御ゲート電極、前記メモリゲート電極および前記ソース・ドレイン領域は、不揮発性メモリのメモリセルを構成し、前記第2領域の前記半導体基板、前記上部電極および前記第1絶縁膜は、容量素子を構成し、前記第3領域の前記第1ゲート電極および前記ソース・ドレイン領域は、第1トランジスタを構成し、前記第4領域の前記第2ゲート電極および前記ソース・ドレイン領域は、第2トランジスタを構成し、
    前記第1トランジスタは、前記第2トランジスタよりも高い電圧で駆動
    前記(f)工程は、
    (f1)前記第1ゲート絶縁膜、前記制御ゲート電極、前記上部電極、前記第2ゲート絶縁膜および前記第1ゲート電極を形成し、前記第4領域の前記第1導体膜を除去する工程、
    (f2)前記(f1)工程の後、前記第4領域の前記半導体基板の前記主面上に、窒化シリコン膜よりも誘電率が高い第6絶縁膜と、前記第6絶縁膜上の前記第1ダミーゲート電極とを形成する工程、
    を有する、半導体装置の製造方法。
  8. 請求項記載の半導体装置の製造方法において、
    前記(b)工程では、前記第1溝および第2溝を前記半導体基板の前記主面に形成し、
    (b1)前記(c)工程の前に、前記第2溝内に第5絶縁膜を埋め込むことで、前記第2溝内の前記第5絶縁膜を含む素子分離領域を形成する工程をさらに有し、
    前記(d)工程では、前記第1領域および前記第4領域の前記第1絶縁膜を除去することで前記素子分離領域の上面を露出させ、その後、前記第2絶縁膜を形成する、半導体装置の製造方法。
  9. 請求項記載の半導体装置の製造方法において、
    (e1)前記(e)工程の後、前記(f)工程の前に、前記第1導体膜に対して第1導電型または第2導電型の不純物を導入する、半導体装置の製造方法。
  10. 請求項記載の半導体装置の製造方法において、
    前記(g)工程は、
    (g1)前記第3絶縁膜を形成し、その際に生じる熱により、前記不純物を前記第1導体膜中に拡散させる工程、
    (g2)前記(g1)工程の後、前記メモリゲート電極を形成する工程、
    を有する、半導体装置の製造方法。
  11. 請求項記載の半導体装置の製造方法において、
    前記(e1)工程では、前記第3領域内の第5領域の前記第1導体膜に前記第1導電型の不純物を導入し、前記第3領域内の第6領域の前記第1導体膜に前記第2導電型の不純物を導入し、
    前記第5領域の前記第1トランジスタは、前記第1導電型のチャネルを有し、前記第6領域の前記第1トランジスタは、前記第2導電型のチャネルを有する、半導体装置の製造方法。
  12. 請求項記載の半導体装置の製造方法において、
    前記(e1)工程では、同一の注入工程により、前記第2領域および前記第3領域内のそれぞれの前記第1導体膜に前記不純物を導入する、半導体装置の製造方法。
  13. 請求項記載の半導体装置の製造方法において、
    前記(a)工程では、主面に沿って並ぶ前記第1領域、前記第2領域、前記第3領域、前記第4領域および第9領域を有する前記半導体基板を用意し、
    前記(b)工程では、前記第1溝と、前記第9領域の前記第2溝とを形成し、
    前記第9領域に形成された前記素子分離領域は、平面視において、前記第1領域、前記第2領域および前記第3領域のうち、複数の領域を囲んでいる、半導体装置の製造方法。
JP2016056819A 2016-03-22 2016-03-22 半導体装置の製造方法 Expired - Fee Related JP6613183B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016056819A JP6613183B2 (ja) 2016-03-22 2016-03-22 半導体装置の製造方法
US15/417,050 US9947776B2 (en) 2016-03-22 2017-01-26 Method for manufacturing semiconductor device including memory cell of nonvolatile memory, capacitance element, and transistors
US15/951,552 US10205006B2 (en) 2016-03-22 2018-04-12 Method for manufacturing semiconductor device including patterning conductor film disposed on insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056819A JP6613183B2 (ja) 2016-03-22 2016-03-22 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2017174887A JP2017174887A (ja) 2017-09-28
JP6613183B2 true JP6613183B2 (ja) 2019-11-27

Family

ID=59898241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056819A Expired - Fee Related JP6613183B2 (ja) 2016-03-22 2016-03-22 半導体装置の製造方法

Country Status (2)

Country Link
US (2) US9947776B2 (ja)
JP (1) JP6613183B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613183B2 (ja) * 2016-03-22 2019-11-27 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US11152384B2 (en) * 2019-01-15 2021-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Boundary structure for embedded memory
US11456293B2 (en) * 2019-08-23 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Polysilicon resistor structures
CN114823897A (zh) 2021-01-22 2022-07-29 联华电子股份有限公司 高压晶体管元件及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309182A (ja) 2002-04-17 2003-10-31 Hitachi Ltd 半導体装置の製造方法及び半導体装置
JP6026913B2 (ja) * 2013-02-12 2016-11-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6359386B2 (ja) * 2014-08-28 2018-07-18 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2016051745A (ja) * 2014-08-29 2016-04-11 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6466211B2 (ja) * 2015-03-11 2019-02-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6613183B2 (ja) * 2016-03-22 2019-11-27 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
US20170278954A1 (en) 2017-09-28
US9947776B2 (en) 2018-04-17
US20180233587A1 (en) 2018-08-16
JP2017174887A (ja) 2017-09-28
US10205006B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
US9831259B2 (en) Semiconductor device
US10483114B2 (en) Method of manufacturing semiconductor device having a nonvolatile memory and a MISFET
US10211348B2 (en) Semiconductor device and a manufacturing method thereof
CN105390450B (zh) 半导体器件的制造方法和半导体器件
US9349743B2 (en) Method of manufacturing semiconductor device
US20160064507A1 (en) Semiconductor device and method of manufacturing same
JP6311033B2 (ja) 半導体装置の製造方法および半導体装置
US10205006B2 (en) Method for manufacturing semiconductor device including patterning conductor film disposed on insulating film
US20170271162A1 (en) Manufacturing method of semiconductor device and semiconductor device
US20170221917A1 (en) Semiconductor device and method of manufacturing the same
JP6640632B2 (ja) 半導体装置の製造方法
US10229998B2 (en) Semiconductor device and method of manufacturing the same
US10411025B2 (en) Semiconductor device and manufacturing method thereof
JP2019071462A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191101

R150 Certificate of patent or registration of utility model

Ref document number: 6613183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees