JP6869819B2 - トナー、現像装置及び画像形成装置 - Google Patents

トナー、現像装置及び画像形成装置 Download PDF

Info

Publication number
JP6869819B2
JP6869819B2 JP2017114060A JP2017114060A JP6869819B2 JP 6869819 B2 JP6869819 B2 JP 6869819B2 JP 2017114060 A JP2017114060 A JP 2017114060A JP 2017114060 A JP2017114060 A JP 2017114060A JP 6869819 B2 JP6869819 B2 JP 6869819B2
Authority
JP
Japan
Prior art keywords
toner
amorphous polyester
acid
parts
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017114060A
Other languages
English (en)
Other versions
JP2018010286A (ja
Inventor
崇 松井
崇 松井
裕二郎 長島
裕二郎 長島
田中 啓介
啓介 田中
祥平 津田
祥平 津田
岡本 直樹
直樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2018010286A publication Critical patent/JP2018010286A/ja
Application granted granted Critical
Publication of JP6869819B2 publication Critical patent/JP6869819B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/081Preparation methods by mixing the toner components in a liquefied state; melt kneading; reactive mixing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0831Chemical composition of the magnetic components
    • G03G9/0833Oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • G03G9/08711Copolymers of styrene with esters of acrylic or methacrylic acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08724Polyvinylesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0902Inorganic compounds
    • G03G9/0904Carbon black
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)

Description

本発明は、電子写真、静電荷像を顕像化するための画像形成方法及びトナージェットに使用されるトナー、現像装置及び画像形成装置に関する。
従来、プリンターはネットワークにつながり、多人数がそのプリンターで印刷するという使われ方が多かったが、近年は、個人の机にPCとプリンターを置き、手元で印刷すると言う需要も高くなってきた。そのためにはプリンターの省スペース化が必要であり、プリンターへの小型化の要求が強い。
また、プリンターを使用する環境に着目すると低温低湿度環境下から高温高湿度環境下までの広範囲で使用されている。また、昼夜の寒暖差の大きい地域にて、長期休暇中に空調が停止された場合には、長期にわたり高温から低温まで繰り返しさらされる場合(ヒートサイクルと呼ぶこともある)もある。
まず、プリンターの小型化に着目すると、主に定着器の小型化と画像形成装置の小型化が有効である。定着器の小型化のためには、フィルム定着を採用すると熱源及び装置構成の簡易化が容易であり、適用しやすい。このようなフィルム定着では、少ない熱量や低圧で定着できるトナーが必要になってくる。
画像形成装置の小型化のために、画像形成装置は、クリーナーレスシステムを採用することが好ましい。クリーナーレスシステムではクリーニングブレード、クリーナー容器を無くし、転写後に像担持体に残ったトナーを、トナー担持体によって現像器内に回収するため、画像形成装置を大幅に小型化できる。
しかし、クリーナーレスシステムには特有の課題も存在する。クリーナーレスシステムでは、転写残トナーが、帯電工程を通過し、再び現像器内に回収される。そのため、現像工程のみならず帯電工程や回収工程においても、部材間でのストレスが掛るようになり、外添剤の埋め込みやトナーの割れといったトナー劣化が起こるようなる。このようなトナー劣化により、例えば画像形成装置内のトナー規制部にて規制不良が起こりやすくなり、現像ゴーストが発生しやすくなる。
以上をまとめるとトナーとしては、ヒートサイクル後や、クリーナーレスシステムのように耐久時にストレスを受けても、良好な現像性を有しており、かつ少ない熱量や低圧で定着できる必要がある。
特許文献1では、非晶性樹脂による微小なドメイン相を有したトナーを提案している。また、低温定着性と耐熱保管性を改良したトナーとして、特許文献2が挙げられる。特許文献2のトナーでは、ビニル樹脂のマトリクス中に、非晶性ポリエステルセグメントとビニル重合セグメントとが化学的に結合してなる非晶性樹脂中に結晶性ポリエステル樹脂の微粒子が分散されていることを特徴としている。
特開2015−152703号公報 特開2014−235361号公報
確かに特許文献1の発明により定着性の良化は見られるものの、クリーナーレスシステ
ムのように耐久時にストレスを受けた時では、現像性に改善の余地を残した。
また、特許文献2では、保存性、定着性の良化は見られるものの、ヒートサイクル後や、クリーナーレスシステムのように耐久時にストレスを受けた時では、現像性に改善の余地を残した。
以上のように、ヒートサイクル後や、クリーナーレスシステムのように耐久時にストレスを受けても、良好な現像性を有しており、かつ少ない熱量や低圧で定着できるトナーに関しては、未だ検討の余地を残しており、改善の余地があった。
本発明の目的は、ヒートサイクル後や、耐久時を通じて、カブリが抑制され、かつ低温定着性に優れたトナーを提供することである。また、本発明は、上記トナーを有する現像装置及び画像形成装置を提供することにある。
本発明は、
結着樹脂、着色剤、非晶性ポリエステル及び結晶性ポリエステルを含有するトナー粒子を有するトナーであって、
該結着樹脂はビニル樹脂を含み、
該非晶性ポリエステルは、炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットと、ジアルコールに由来するモノマーユニットと、を有し、
該炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットの含有量が、該非晶性ポリエステルのカルボン酸由来の全モノマーユニットに対して10mol%以上50mol%以下であり、
透過型電子顕微鏡(TEM)で観察されるトナー粒子の断面において、
該ビニル樹脂がマトリクスを構成し、該非晶性ポリエステルがドメインを構成し、
該ドメインの内部に該結晶性ポリエステルが存在することを特徴とするトナー
である。
また、本発明は、
像担持体に形成された静電潜像を現像するトナーと、
前記トナーを担持し、前記像担持体にトナーを搬送するトナー担持体と、を有する現像装置であって、
前記トナーが、上記記載のトナーであることを特徴とする現像装置である。
さらに、本発明は、像担持体と、前記像担持体を帯電する帯電部材と、前記像担持体に形成された静電潜像を現像するトナーと、前記像担持体に当接してトナーを搬送するトナー担持体と、を有し、転写後に前記像担持体に残ったトナーを前記トナー担持体により回収する画像形成装置であって、
前記トナーが上記トナーであることを特徴とする画像形成装置である。
本発明によれば、ヒートサイクル後や、耐久時を通じて、カブリが抑制され、かつ低温定着性に優れたトナーを提供することができる。また、本発明によれば、上記トナーを有する現像装置及び画像形成装置を提供することができる。
現像装置の一例を示す模式的断面図 現像装置が組み込まれた画像形成装置の一例を示す模式的断面図 マグネットを有する現像装置の一例を示す模式的断面図 流動曲線の模式図
本発明において、数値範囲を表す「○○以上××以下」や「○○〜××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
本発明のトナーは、
結着樹脂、着色剤、非晶性ポリエステル及び結晶性ポリエステルを含有するトナー粒子を有するトナーであって、
該結着樹脂はビニル樹脂を含み、
該非晶性ポリエステルは、炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットと、ジアルコールに由来するモノマーユニットと、を有し、
該炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットの含有量が、該非晶性ポリエステルのカルボン酸由来の全モノマーユニットに対して10mol%以上50mol%以下であり、
透過型電子顕微鏡(TEM)で観察されるトナー粒子の断面において、
該ビニル樹脂がマトリクスを構成し、該非晶性ポリエステルがドメインを構成し、
該ドメインの内部に該結晶性ポリエステルが存在することを特徴とするトナー
である。
まず、低温定着性について考察する。低温定着性の評価に挙げられる項目としては、こすり性、テープ剥がし、ベタ画像の欠け等が挙げられる。中でもベタ画像欠けの改善が定着温度を決める必須項目になっている。ベタ画像では、紙などのメディア上にトナー層が密に載った状態となっているために、トナー層の下層部(メディア側)や紙などのメディアに熱が伝わりにくい状態となる。さらに、例えばラフ紙のように凹凸が大きいメディアの凹部では、熱が伝わりにくいだけでなく、圧も伝わりにくくなる。そのため、ラフ紙のように凹凸が大きいメディアにベタ画像を形成し定着させる場合に、トナーとメディアとの定着が不十分であると、定着フィルム等の定着器にトナーが持っていかれ、ベタ画像の一部が欠けた画像が得られるようになる。
すなわち、低温定着性の項目であるラフ紙のベタ画像欠けを改善するためには、少ない熱量や低圧で定着できるトナーが必要となってくる。
次に、長期にわたり高温から低温まで繰り返しさらされるヒートサイクル後の現像性について考察する。
トナーが高温から低温まで繰り返しさらされるヒートサイクルを受けると、トナー粒子内部に存在する低分子量成分がトナー粒子表面へ染み出してくるようになる。その結果、例えばトナー粒子表面に存在する荷電制御剤や外添剤などが埋没するために、トナーの流動性や帯電性が低下しやすくなる。そして、現像時の帯電量が不十分になり、非画像部にトナーが現像される、所謂カブリが発生しやすくなる。
特に、ベタ画像を形成した直後の白部でのカブリ(ベタ黒後カブリとも呼ぶ)が発生しやすい。それは、ベタ画像を形成するとトナー担持体付近のトナーが入れ替わるため、ベタ画像を形成した直後の非画像部である白部では、トナー担持体とトナー規制部材で繰り返し摩擦帯電できないため、一度の摩擦帯電でトナーに電荷を付与し、非画像部にトナーが現像されないようにする必要がある。そのため、トナー担持体とトナー規制部材での一度の摩擦帯電でトナーを帯電するためには、ヒートサイクルを受けても、トナー粒子表面に存在する荷電制御剤や外添剤などが埋没せずに、トナーの流動性や帯電性を維持することが重要となる。
すなわち、ヒートサイクルを受けた後のベタ黒後カブリを抑制するためには、トナー粒子内部に存在する低分子量成分のトナー表面への染み出しを抑制することが重要となる。
次に、例えばクリーナーレスシステムのように繰り返し使用時にストレスを受けた際の現像性について考察する。
先述の通り、クリーナーレスシステムのように部材間でのストレスが掛るようになると、外添剤の埋め込みやトナーの割れといったトナー劣化が起こってしまい、トナーの流動性が低下しやすくなる。トナーの流動性が低下したり、トナーの割れといった劣化が起こると、先述のヒートサイクル後の現像性と同様に、ベタ画像を形成した直後の白部でのカ
ブリが発生しやすくなる。
すなわち、例えばクリーナーレスシステムのように繰り返し使用時にストレスを受けた際の現像性を良化させるためには、トナーが繰り返し使用時にストレスを受けても、外添剤の埋め込みやトナーの割れを抑制することが重要となる。
以上のように、ヒートサイクル後や、繰り返し使用時を通じて、カブリ、及びベタ画像の欠けを抑制し、さらに低温定着性を達成するために、本発明者らが詳細に検討したところ、上記本発明の構成が必要であることが分かった。
以下、詳細に本発明を述べていく。
まず、本発明のトナーは、結着樹脂、着色剤、非晶性ポリエステル及び結晶性ポリエステルを含有するトナー粒子を有するトナーであって、結着樹脂はビニル樹脂を含む。ビニル樹脂に加え、本発明の効果を損なわない程度に、結着樹脂として用いられる公知の樹脂を用いてもよい。結着樹脂がビニル樹脂であることが好ましい。
結着樹脂がビニル樹脂を含むと、ベタ黒後カブリを抑制しやすくなる。また、クリーナーレスシステムのように繰り返し使用時にストレスを受けた際に、外添剤の埋め込みやトナーの割れを抑制できるようになる。さらに、トナー担持体とトナー規制部材での摩擦帯電の際にも抵抗が高いために電荷を保持しやすくなる。
ビニル樹脂としては、以下のものが挙げられる。
ポリスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;
スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−アクリル酸ジメチルアミノエチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−メタクリル酸ジメチルアミノエチル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;
ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリビニルブチラール、ポリアクリル酸樹脂を用いることができ、これらは単独で又は複数種を組み合わせて用いることができる。これらの中でも、特にスチレン系共重合体が、現像特性、定着性などの点で好ましい。さらに、スチレン−アクリル酸ブチル共重合体が、分子量とガラス転移温度を制御しやすく、かつ、高抵抗に制御しやすいため、より好ましい。
次に、非晶性ポリエステルが、炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットと、ジアルコールに由来するモノマーユニットを有することが重要である。そして、該炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットの含有量が、該非晶性ポリエステルのカルボン酸由来の全モノマーユニットに対して10mol%以上50mol%以下であることが重要である。
炭素数6以上12以下の直鎖脂肪族ジカルボン酸由来のユニットの含有量が上記範囲であると、非晶性ポリエステルのピーク分子量を高くした状態で、非晶性ポリエステルの軟化点を低下させやすくなる。そのために、ヒートサイクルによる低分子量成分の染み出しや耐久劣化の抑制とベタ画像欠けの抑制を両立しやすくなる。
なお、「モノマーユニット」とは、ポリマー中のモノマー物質の反応した形態をいう。
炭素数6以上12以下の直鎖脂肪族ジカルボン酸由来の構造を有することで、定着時に瞬時に溶融できるようになるため、ベタ画像欠けを抑制しやすくなる。この理由について
、本発明者らは、直鎖脂肪族ジカルボン酸部位が折りたたまって、非晶性ポリエステルが疑似結晶状態のような構造を有しやすくなるからと推測している。
すなわち、擬似結晶状態の形成の観点から、本発明の非晶性ポリエステルに使用される直鎖脂肪族ジカルボン酸の炭素数は6以上12以下であることが重要である。直鎖脂肪族ジカルボン酸の炭素数が6以上であると、直鎖脂肪族ジカルボン酸部位が折りたたまれやすくなるため、疑似結晶状態を形成しやすくなり、定着時に瞬時に溶融できるようになるため、ベタ画像欠けを抑制しやすくなる。直鎖脂肪族ジカルボン酸の炭素数が12以下であると、軟化点とピーク分子量を制御しやすくなるため、ヒートサイクルによる低分子量成分の染み出しの抑制や耐久性とベタ画像欠けの抑制を両立しやすくなる。炭素数は、好ましくは6以上10以下である。
次に、直鎖脂肪族ジカルボン酸由来のモノマーユニットがカルボン酸由来の全モノマーユニットに対して10mol%以上であると、軟化点を低下しやすくなる。一方、50mol%以下であると、非晶性ポリエステルのピーク分子量を低下させにくい。好ましくは30mol%以上50mol%以下である。
非晶性ポリエステルを得るためのカルボン酸成分としては、炭素数6以上12以下の直鎖脂肪族ジカルボン酸とその他のカルボン酸が挙げられる。炭素数6以上12以下の直鎖脂肪族ジカルボン酸としては、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸が挙げられる。炭素数6以上12以下の直鎖脂肪族ジカルボン酸以外のカルボン酸としては、下記のものが挙げられる。
2価のカルボン酸成分としては、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、グルタル酸、n−ドデセニルコハク酸、及びこれらの酸の無水物、又は低級アルキルエステル等が挙げられる。3価以上の多価カルボン酸成分としては、例えば1,2,4−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、ピロメリット酸、エンポール三量体酸及びこれらの酸無水物、低級アルキルエステル等が挙げられる。これらの中で、テレフタル酸がピーク分子量を高く維持でき、耐久性を維持しやすくなるため、好ましい。
非晶性ポリエステルを得るためのアルコール成分としては、ビスフェノールAのプロピレンオキサイド付加物に加え、下記のものが挙げられる。2価のアルコール成分としては、ビスフェノールAのエチレンオキサイド付加物、エチレングリコール、1,3−プロピレングリコール、ネオペンチルグリコール等が挙げられる。3価以上のアルコール成分としては、ソルビトール、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。上記2価のアルコール成分及び3価以上の多価アルコール成分は、単独で、又は複数の化合物を組み合わせて用いることができる。
非晶性ポリエステルは、上記のアルコール成分及びカルボン酸成分を用いて、エステル化反応、又はエステル交換反応によって製造することができる。重縮合の際には、反応を促進させるため、酸化ジブチル錫等の公知のエステル化触媒等を適宜使用してもよい。
非晶性ポリエステルの原料モノマーであるアルコール成分とカルボン酸成分とのモル比(カルボン酸成分/アルコール成分)は、0.60以上1.00以下であることが好ましい。
非晶性ポリエステルのガラス転移温度(Tg)は、定着性及び耐熱保存性の観点から45℃以上75℃以下であることが好ましい。
なお、ガラス転移温度(Tg)は示差走査型熱量計(DSC)で測定できる。
非晶性ポリエステルのピーク分子量(Mp(P))は、8000以上13000以下であり、軟化点が85℃以上105℃以下であることが好ましい。
ピーク分子量(Mp(P))が、8000以上であると、ヒートサイクルによる低分子
量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。また、ピーク分子量(Mp(P))が13000以下であると、定着時に瞬時に溶融できるようになるため、ベタ画像欠けを抑制しやすくなる。Mp(P)は、より好ましくは9000以上12000以下である。
非晶性ポリエステルの軟化点が85℃以上であると、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。また、軟化点が105℃以下であると定着時に瞬時に溶融できるようになるため、ベタ画像欠けを抑制しやすくなる。該軟化点は、より好ましくは90℃以上100℃以下である。
非晶性ポリエステルのピーク分子量及び軟化点を好ましい範囲に制御するためには、炭素数6以上12以下の直鎖脂肪族ジカルボン酸を全カルボン酸成分に対して10mol%以上50mol%以下含有したカルボン酸成分と、ジアルコール成分とを用いることが好ましい。
次に非晶性ポリエステルは、炭素数のピーク値が25以上102以下の脂肪族モノカルボン酸及び炭素数のピーク値が25以上102以下の脂肪族モノアルコール(以下、これら2つを総称して「長鎖モノマー」ともいう)よりなる群から選ばれる少なくとも一方に由来する構造を末端に有することが好ましい。これら長鎖モノマーは、該末端に縮合していることが好ましい。
具体的には、長鎖モノマーが結合する前の非晶性ポリエステルの末端に、カルボキシル基が存在する場合には、モノアルコールとの縮合反応が起こり結合が生じる。また、長鎖モノマーが結合する前の非晶性ポリエステルの末端に、ヒドロキシ基が存在する場合には、モノカルボン酸との縮合反応が起こり結合が生じる。
ここで、「末端」とは、非晶性ポリエステルが分岐鎖を有している場合は、その分岐鎖の末端も含む。本発明において、非晶性ポリエステルが分岐鎖を有しており、分岐鎖の末端に縮合した形態は好ましい態様の一つである。
非晶性ポリエステルの末端に長鎖モノマーを結合することで、非晶性ポリエステルの末端にアルキル部位を導入することができる。アルキル部位の影響により後述する結晶性ポリエステルとの親和性を高めることができ、ラメラ構造を構築しやすくなるため、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
また、上記脂肪族モノカルボン酸、及び、脂肪族モノアルコールの炭素数のピーク値を、25以上102以下にすることで結晶性ポリエステルとの親和性が高まりやすくなるため、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。上記脂肪族モノカルボン酸、及び、脂肪族モノアルコールの炭素数のピーク値は、より好ましくは25以上50以下である。
ここで、“炭素数のピーク値”とは、長鎖モノマーのメインピーク分子量から算出される炭素数のことである。
なお、本発明で用いられる長鎖モノマーは、工業的には原料となる脂肪族炭化水素をアルコール又は酸変性することで得られる。例えば、アルコール変性品に関しては、炭素数が25以上102以下の脂肪族炭化水素を、硼酸、無水硼酸、もしくはメタ硼酸のなどの触媒の存在下に分子状酸素含有ガスで液相酸化することによりアルコールに転化できることが知られている。使用される触媒添加量は、原料脂肪族炭化水素1molに対して0.01〜0.5molが好ましい。
反応系に吹き込む分子状酸素含有ガスとしては、酸素、空気又はそれらを不活性ガスで希釈した広範囲のものが使用可能であるが、酸素濃度3〜20%が好ましい。また、反応温度は、100℃以上200℃以下である。
また、前記長鎖モノマーをアルコール又は酸で変性した際に、各々の未変性成分も発生
する場合がある。ヒートサイクルにより未変性成分がトナー表面に染み出すことを防ぐため、脂肪族炭化水素成分の変性率は、好ましくは、85%以上であり、より好ましくは90%以上である。これにより前記帯電性を改善することができる。
変性率の向上には反応条件の最適化や、変性反応後に精製作業を行う事で、未変性の脂肪族炭化水素成分を除去し、制御することができる。
次に、透過型電子顕微鏡(TEM)で観察されるトナー粒子断面において、ビニル樹脂がマトリクスを構成し、該非晶性ポリエステルがドメインを構成することが重要である。
まず、先述の通り、ビニル樹脂は非晶性ポリエステルに比べ、同等のガラス転移温度(Tg)を得る場合に分子量を大きくしやすくなる。また、摩擦帯電する際にもエステル基のような極性を有しにくくなり、抵抗を高くしやすくなる。そのため、ビニル樹脂がマトリクスを構成することで、ヒートサイクル後や、繰り返し使用を通じて、カブリが抑制された画像を得ることができるようになる。
さらに、ビニル樹脂がマトリクスを構成し、かつ非晶性ポリエステルがドメインを構成することで、カブリの抑制とベタ画像欠けの抑制を両立できるようになることを見出した。
それは非晶性ポリエステルがドメインを構成することで、定着時にドメイン部分が溶融できるようになるためである。非晶性ポリエステルはビニル樹脂に比べて、トナー同士やトナーと紙などのメディアとの接着性が高くなる傾向にある。また、ビニル樹脂に比べて、非晶性ポリエステルは、軟化点を低下しやすい傾向にある。そのため、トナー中のドメインが溶融することで、ベタ画像欠けの抑制が可能になる。
このように、非晶性ポリエステルがドメインを構成するためには、非晶性ポリエステルの酸価及び水酸基価の制御や、非晶性ポリエステルの分子鎖末端に前記長鎖モノマーに由来する親油性部位(アルキル部位)を有することや、非晶性ポリエステルとトナーの軟化点の制御やトナー製造時のアニール条件の制御により調整することができる。
さらに、本発明者らは、非晶性ポリエステルのドメイン内部に結晶性ポリエステル成分が存在することで、飛躍的に低温定着性が向上し、ベタ画像欠けが抑制でき、さらに、ヒートサイクル後や、繰り返し使用を通じて、カブリが抑制可能であることを見出した。
その理由を本発明者らは、次のように考えている。
定着性を良化させるためには、先述の通り、トナー粒子中の非晶性ポリエステルドメインが溶融し、トナー同士やトナーと紙などのメディアとの接着性を向上させることが重要である。その際に、非晶性ポリエステルドメイン中に結晶性ポリエステル成分が存在することで、定着時に熱を受けた際に、瞬時にドメインを溶融させることが可能になる。これは、シャープメルト性が高い結晶性ポリエステル成分が、非晶性ポリエステルドメイン中に存在するために、効果的に非晶性ポリエステルと相溶するためであると本発明者らは考えている。また、結晶性ポリエステルは、従来の可塑性ワックスと比べて、分子量が高い傾向にある。そのため、溶融した結晶性ポリエステルも紙などのメディアとの接着性が高くなるため飛躍的にベタ画像欠けが抑制できたと本発明者らは考えている。
また、非晶性ポリエステルのドメイン内部に結晶性ポリエステル成分が存在することで、ヒートサイクル後や、繰り返し使用を通じて、カブリが抑制できることを見出した。
先述のとおり、ヒートサイクルにさらされると、低分子量成分等がトナー粒子表面に染み出す傾向にある。例えば、結晶性ポリエステルについても、結着樹脂中に存在する場合にはトナー粒子表面に染み出す傾向があり、カブリの原因となる可能性がある。そこで本発明では、結晶性ポリエステルを非晶性ポリエステルのドメイン内部に存在させている。
結晶性ポリエステルがドメイン中に存在することで、ヒートサイクルにさらされた際にも結着樹脂中に染み出しにくくなり、そのためトナー粒子表面に染み出しにくくなる。
次に、本発明では、結晶性ポリエステルが非晶性ポリエステルのドメイン内部に存在し、さらに該非晶性ポリエステルのドメインが、その内部に結晶性ポリエステルに由来するラメラ構造を有することが好ましい。
ここで、ラメラ構造とは、結晶性高分子の分子鎖の折り畳みによる結晶化で生じた層状構造のことであり、エネルギー的に安定な結晶構造の高次構造である。すなわち、非晶性ポリエステル成分によって形成されたドメイン内部に、結晶性高分子が存在していることを意味する。
ラメラ構造を形成させ、結晶化度を高めることでヒートサイクルにさらされた際にも非晶性ポリエステルと相溶しにくくなり、結着樹脂中への染み出しをさらに抑制しやすくなる。
また、ラメラ構造を形成させることで結着樹脂や非晶性ポリエステルへの相溶を抑制しやすくなるため、トナー硬度を向上しやすくなる。そのため、クリーナーレスシステムのように部材間でのストレスが掛るような場合においても、外添剤の埋め込みやトナーの割れといったトナー劣化を抑制しやすくなる。
このような、結晶性ポリエステルを非晶性ポリエステルのドメイン内部に存在させ、さらに、ラメラ構造を形成させるためには、非晶性ポリエステルの分子鎖末端と結晶性ポリエステルの分子鎖末端の構造の制御、結晶性ポリエステルや非晶性ポリエステルの軟化点の制御、及びトナー製造時のアニール条件の制御などの方法が挙げられる。
トナー粒子におけるドメイン中の結晶性ポリエステル成分や、結晶性ポリエステル成分によるラメラ構造は、透過型電子顕微鏡(TEM)を用いた断面観察により確認することができる。具体的には、以下の方法が挙げられる。常温硬化性のエポキシ樹脂中へ観察すべき粒子を十分に分散させた後に、温度40℃の雰囲気中で2日間硬化させて樹脂硬化物を得る。得られた硬化物を、そのまま、又は凍結して、ダイヤモンド刃を備えたミクロトームにより薄片状とする。得られた薄片上の硬化物をサンプルとして、TEMにより観察する。
TEM撮影は50,000倍で行い、写真の焼付けで3倍に引き伸ばして観察を行う。結晶性ポリエステルを原材料として入手できる場合、その結晶構造を上述の透過型電子顕微鏡(TEM)におけるトナー粒子断面の観察方法と同様にして、観察し、結晶のラメラ構造の画像を得る。それらと、トナー粒子の断面におけるドメインのラメラ構造を比較し、ラメラの層間隔が誤差10%以下であった場合、ドメイン中の結晶性ポリエステルを特定することができる。
非晶性ポリエステルと結晶性ポリエステルとを区別して存在を確認する手法としては、非晶性ポリエステルと結晶性ポリエステルそれぞれを原材料として入手し、透過型電子顕微鏡(TEM)におけるトナー粒子断面の観察方法と同様にして、観察し、画像を得る。得られた画像のコントラストや、ラメラ構造の有無から非晶性ポリエステルと結晶性ポリエステルとを区別する。
なお、ドメインの内部に結晶性ポリエステルが存在する、又はドメインが結晶性ポリエステルに由来するラメラ構造を有するとは、透過型電子顕微鏡(TEM)におけるトナー粒子断面におけるドメインの輪郭を描いた際に、輪郭の内側(輪郭上も含む)に、結晶性ポリエステル、又は結晶性ポリエステルに由来するラメラ構造が存在することを指す。
なお、全ドメインのうち50%以上で結晶性ポリエステル、または、結晶性ポリエステルに由来するラメラ構造が内部に存在していれば当該規定を充足すると判断する。
次に、本発明のトナーのピーク分子量(Mp(T))が、15000以上30000以下であることが好ましい。トナーのピーク分子量(Mp(T))が、15000以上であると、長期使用時でのトナー劣化を抑制しやすくなる。また、トナーのピーク分子量(Mp(T))が、30000以下であると定着時の溶融を阻害しにくくなるため好ましい。
非晶性ポリエステルの含有量は、結着樹脂100質量部に対し、5.0質量部以上30.0質量部以下であることが好ましい。より好ましくは、7.0質量部以上20.0質量部以下である。
非晶性ポリエステルの含有量が5.0質量部以上であると、定着時に瞬時に溶融できるようになるため、ベタ画像欠けを抑制しやすくなる。一方、30.0質量部以下であると、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
次に、結晶性ポリエステルについて説明する。
結晶性ポリエステルの原料モノマーに用いられるアルコール成分としては、結晶性を高める観点から、炭素数6〜18の脂肪族ジオールを用いることが好ましい。これらの中でも、定着性及び耐熱安定性の観点から、炭素数6〜12の脂肪族ジオールが好ましい。脂肪族ジオールとしては、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール等が挙げられる。上記脂肪族ジオールの含有量は、ポリエステルの結晶性をより高める観点から、アルコール成分中に80〜100モル%が好ましい。
結晶性ポリエステルを得るためのアルコール成分としては、上記の脂肪族ジオール以外の多価アルコール成分を含有していてもよい。例えば、2,2−ビス(4−ヒドロキシフェニル)プロパンのポリオキシプロピレン付加物、2,2−ビス(4−ヒドロキシフェニル)プロパンのポリオキシエチレン付加物等を含む下記式(1)で表されるビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の3価以上のアルコールが挙げられる。
Figure 0006869819

(式中、Rはエチレン又はプロピレン基であり、x、yはそれぞれ0以上の整数であり、かつ、x+yの平均値は0〜10である。)
結晶性ポリエステルに用いられるカルボン酸成分としては、結晶性を高める観点から、炭素数6〜18の脂肪族ジカルボン酸を用いることが好ましい。これらの中でも、トナーの定着性及び耐熱安定性の観点から、炭素数6〜12の脂肪族ジカルボン酸が好ましい。脂肪族ジカルボン酸化合物としては、オクタン二酸、ノナン二酸、デカン二酸、ウンデカン二酸、ドデカン二酸等が挙げられる。炭素数6〜18の脂肪族ジカルボン酸の含有量は、カルボン酸成分中に80〜100モル%が好ましい。
結晶性ポリエステルを得るためのカルボン酸成分としては、上記脂肪族ジカルボン酸以外のカルボン酸成分を含有していてもよい。例えば、芳香族ジカルボン酸、3価以上の芳香族多価カルボン酸等が挙げられるが、特にこれらに限定されるものではない。芳香族ジカルボン酸には、芳香族ジカルボン酸誘導体も含まれる。芳香族ジカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸及びこれらの酸の無水物、並びにそれらのアルキル(炭素数1〜3)エステルが好ましく挙げられる。該アルキルエステル中のアルキル基としては、メチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。3価以上の多価カルボン酸化合物としては、1,2,4−ベンゼントリカルボン酸(トリメリット酸)、2,5,7−ナフタレントリカルボン酸、ピロメ
リット酸等の芳香族カルボン酸、及びこれらの酸無水物、アルキル(炭素数1〜3)エステル等の誘導体が挙げられる。
結晶性ポリエステルは、示差走査熱量計(DSC)測定において昇温時に観測される吸熱ピークから求められる融点が、トナーの低温定着性の観点から、60℃以上120℃以下であることが好ましく、70℃以上90℃以下であることがより好ましい。
結晶性ポリエステルの酸価は、2mgKOH/g以上40mgKOH/g以下である事が、トナーの良好な帯電特性の観点から好ましい。水酸基価は、定着性及び、保存安定性の観点から2mgKOH/g以上40mgKOH/g以下であることが好ましい。
次に、本発明の結晶性ポリエステルは、末端にラウリン酸、ステアリン酸、ベヘン酸から選ばれる酸モノマー由来の構造(結晶核剤)を持つポリエステルを主成分とすることが好ましい。なお、主成分とは、その含有量が50質量%以上であることを示す。
一般的にトナー中の結晶性ポリエステルの結晶成分は、結晶核ができた後に、結晶が成長することでできる。本発明では、結晶性ポリエステル分子鎖の末端に結晶核剤を有することで、結晶構造をとりうる部位に結晶化を誘発させることができ、結晶性ポリエステルの結晶化、とりわけ結晶核を形成する造核作用を促進させることができる。
結晶核剤部位としては、結晶性ポリエステルよりも結晶化速度が速い部位であることが好ましい。結晶化速度が速い点で主鎖が炭化水素系部位を含んでなり、結晶性ポリエステルの樹脂分子の末端と反応しうる1価以上の官能基を有する化合物由来の構造であることが好ましく、ラウリン酸、ステアリン酸、ベヘン酸から選ばれる酸モノマー由来の構造を持つことがより好ましい。
なお、このような結晶核剤部位を有することで、ラメラ構造を形成しやすくなる。加え、先述の長鎖モノマーに由来する末端を持つ非晶性ポリエステルとの相互作用が強まり、結晶性ポリエステルが非晶性ポリエステルのドメイン中に存在しやすくなる。
また、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
結晶核剤部位の含有量は、結晶化速度を上げるという観点から、結晶性ポリエステル中に、結晶性ポリエステルの全モノマーユニットを基準として、好ましくは0.1mol%以上7.0mol%以下、より好ましくは0.2mol%以上5.0mol%以下である。0.1mol%以上であると、結晶化速度が速くなり、結晶性ポリエステルと非晶性ポリエステルとが相溶しにくく、トナーのガラス転移温度(Tg)が適切であり、トナーの耐久安定性が向上する。一方、7.0mol%以下であると、結晶化度が適切であり、結晶性ポリエステルと非晶性ポリエステルとが定着時に相溶化しやすく、十分な定着性が得られる。
結晶核剤部位が結晶性ポリエステルの分子鎖と結合しているか否かは、以下の分析によって判別する。
サンプルを2mg精秤し、クロロホルム2mlを加えて溶解させてサンプル溶液を作製する。樹脂サンプルとしては結晶性ポリエステルを用いるが、結晶性ポリエステルが入手困難な場合には、結晶性ポリエステルを含有するトナーをサンプルとして代用することも可能である。次に、2,5−ジヒドロキシ安息香酸(DHBA)20mgを精秤し、クロロホルム1mlを添加して溶解させてマトリクス溶液を調整する。また、トリフルオロ酢酸Na(NaTFA)3mgを精秤した後、アセトンを1ml添加して溶解させてイオン化助剤溶液を調整する。
このようにして調整したサンプル溶液25μl、マトリクス溶液50μl、イオン化助剤溶液5μlを混合してMALDI分析用のサンプルプレートに滴下させ、乾燥させることで測定サンプルとする。分析機器として、MALDI−TOFMS(Bruker D
altonics製 Reflex III)を用い、マススペクトルを得る。得られたマススペクトルにおいて、オリゴマー領域(m/Zが2000以下)の各ピークの帰属を行い、分子末端に結晶核剤が結合した組成に対応するピークが存在するか否かを確認する。
結晶性ポリエステルの含有量は、結着樹脂100質量部に対して3.0質量部以上15.0質量部以下であることが好ましく、3.0質量部以上10.0質量部以下であることがより好ましい。3.0質量部以上であると、ベタ画像欠けを抑制しやすくなる。また、15.0質量部以下であると、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
次に、透過型電子顕微鏡(TEM)で観察されるトナー粒子の断面において、該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内の領域に存在する非晶性ポリエステルのドメインの割合が、該非晶性ポリエステルのドメインの総面積を基準として、30面積%以上70面積%以下であることが好ましい。より好ましくは、45面積%以上70面積%以下である。
該トナー粒子断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルのドメインの面積割合(以下、「25%面積率」ともいう)が、30面積%以上70面積%以下であることで、ベタ画像欠けを抑制し、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化の抑制を両立しやすくなるため好ましい。
トナー粒子表面近傍でビニル樹脂がマトリクスを形成することで、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。また、トナー粒子表面近傍に非晶性ポリエステルが複数のドメインを形成することで、定着時に瞬時に溶融できるため、定着尾引きを抑制しやすくなるため好ましい。
以上のことから、25%面積率が30面積%以上であると、定着時に瞬時に溶融できるため、ベタ画像欠けを抑制しやすくなる。また、25%面積率が70面積%以下であると、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなるため好ましい。
次に、該断面の輪郭から、該輪郭と該断面の中心点間の距離の50%以内の領域に存在する非晶性ポリエステルのドメインの割合が、該ドメインの総面積を基準として、80面積%以上100面積%以下であることが好ましい。より好ましくは、90面積%以上100面積%以下である。
該トナー粒子断面の輪郭から、該輪郭と該断面の中心点間の距離の50%以内に存在する非晶性ポリエステルのドメインの面積割合(以下、「50%面積率」ともいう)が、80面積%以上であると、定着時に瞬時に溶融できるため、低温定着性が良好になり、ベタ画像欠けを抑制しやすくなる。また、該ドメインが80面積%以上存在するということは、トナー粒子の中心点からトナー粒子断面の輪郭の50%までの領域にドメインの存在量が20面積%以下と言い換えることができる。このような状態であると、トナーの軟化点を向上しやすくなり、トナーの耐脆性を向上しやすくなる。そのため、繰り返し使用による劣化を抑制できるようになり長期使用時の黒後カブリを抑制しやすくなる。
次に、該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルのドメインの面積が、該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%〜50%に存在する該非晶性ポリエステルのドメインの面積の1.05倍以上であることが好ましい。これは、ドメインがトナー粒子表面により偏在していることを示している。ドメインがトナー粒子表面により偏在することで、定着時に瞬時に溶融できるため、低温定着性が良好になり、ベタ画像欠けを抑制しやすくなる。
(トナー粒子の断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルのドメインの面積/該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%〜50%に存在する該非晶性ポリエステルの面積(以下ドメインの面積比ともいう))は、1.20倍以上であることがより好ましい。一方、上限は特に制限されないが、好ましくは3.00倍以下である。
このように、トナー粒子表面近傍に非晶性ポリエステルがドメインを形成するためには、非晶性ポリエステルの酸価及び水酸基価の制御や、非晶性ポリエステルの分子鎖末端に前記長鎖モノマーに由来する親油性部位(アルキル部位)を有することや、非晶性ポリエステルとトナーの軟化点の制御やトナー製造時のアニール条件の制御により調整することができる。
非晶性ポリエステルによって形成されたドメインの個数平均径は、0.3μm以上3.0μm以下であることが好ましく、0.3μm以上2.0μm以下であることがより好ましい。
ドメインの個数平均径が0.3μm以上であると、結晶性ポリエステルによって形成されたラメラ構造を有する領域を存在させやすくなる。また、3.0μm以下であると、ドメインの存在状態を制御しやすくなる。
ドメイン径の制御は、非晶性ポリエステルの酸価及び水酸基価の制御や、非晶性ポリエステルの分子鎖末端に前記長鎖モノマーに由来する親油性部位を持たせることや、非晶性ポリエステルとトナーの軟化点の制御やトナー製造時のアニール条件の制御により調整することができる。
次に、非晶性ポリエステルの酸価Avが、1.0mgKOH/g以上10.0mgKOH/g以下であることが好ましい。非晶性ポリエステルの酸価Avが上記範囲であると、25%面積率、50%面積率及びドメインの面積比を本発明の好ましい範囲に制御しやすくなる。
次に、非晶性ポリエステルの水酸基価OHvが40.0mgKOH/g以下であることが好ましい。非晶性ポリエステルの水酸基価OHvが40.0mgKOH/g以下であると、トナー表面近傍に非晶性ポリエステルがドメインを形成しやすくなるため好ましい。非晶性ポリエステルの酸価Avを1.0mgKOH/g以上10.0mgKOH/g以下で、かつ水酸基価OHvを40.0mgKOH/g以下に制御するためには、非晶性ポリエステルの分子鎖末端に前記長鎖モノマーに由来する親油性部位(アルキル部位)を有することが好ましい。
非晶性ポリエステルの分子鎖末端に親油性部位を有することで、ビニル樹脂と相互作用しやすくなるために、ドメインの大きさや存在位置を制御しやすくなり、さらに本発明で好ましく用いられる結晶性ポリエステルとの相互作用が高くなるため、ドメイン内部にラメラ構造を構築しやすくなるため好ましい。
次に、飛行時間型二次イオン質量分析(TOF−SIMS)で得られる、トナーのビニル樹脂に由来するピーク強度をS85、非晶性ポリエステルに由来するピーク強度をS211としたとき、下記式(1)を満たすことが好ましい。
式(1) 0.30≦ S211/S85 ≦3.00
飛行時間型二次イオン質量分析(TOF−SIMS)では、トナー粒子表面から数nmの情報を得ることができるため、トナー粒子の最表層の構成材料を特定することができる。非晶性ポリエステルは、アルコール成分としてビスフェノールAに由来するユニットを有することが好ましい構成であり、S211はそのビスフェノールAに由来するピークである。また、ビニル樹脂は、上述の通りスチレン−アクリル酸ブチル共重合体が好ましい構成であり、S85はそのアクリル酸ブチル由来のピークである。
S211/S85が0.30以上であると、トナー粒子最表面側に非晶性ポリエステルを有しているため、定着時にトナーが瞬時に溶融できるようになる。
また、S211/S85が3.00以下であると、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
トナーの重量平均粒径(D4)は5.0μm以上12.0μm以下であることが好ましく、より好ましくは5.5μm以上11.0μm以下である。重量平均粒径(D4)が上記範囲であれば、良好な流動性が得られ、規制部で摩擦帯電されやすくなるため黒後カブリが抑制でき、また潜像に忠実に現像することができる。
トナーの平均円形度が0.950以上であることが好ましい。トナーの平均円形度が0.950以上ではトナーの形状は球形又はこれに近い形になり、流動性に優れ均一な摩擦帯電性を得られやすくなり、黒後カブリを抑制しやすくなり、また、転写性も良化しやすくなる。
トナーのガラス転移温度(Tg)は、40.0℃以上70.0℃以下であることが好ましい。ガラス転移温度が上記範囲であれば、良好な定着性を維持しつつ、トナーの保存安定性や耐久性を向上させることができる。
なお、ガラス転移温度(Tg)は示差走査型熱量計(DSC)で測定できる。
トナーの軟化点は110℃以上140℃以下であることが好ましく、120℃以上140℃以下であることがより好ましい。クリーナーレスシステムのような部材間でトナーにストレスを与えやすいシステムでは、トナー劣化を抑制するためには、トナーの軟化点を制御することが好ましい。トナーの軟化点が110℃以上であると、常温においても、外添剤の埋め込みやトナーの割れといったトナー劣化を抑制できるようになるため好ましい。一方、定着性を考慮すると、トナーの軟化点が140℃以下であることが好ましい。トナーの軟化点が140℃以下であると、定着器からの熱や圧を与えられた際に、変形できるようになるため好ましい。
なお、トナーの軟化点を適正化するためには、トナーの分子量、トナーのTHF不溶分量、ワックスのような可塑剤の種類・量・分散状態を調整することにより、制御可能である。
トナー粒子には、必要に応じて、帯電特性向上のために荷電制御剤を含有させてもよい。荷電制御剤としては各種のものが利用できるが、帯電スピードが速く、かつ、一定の帯電量を安定して維持できる荷電制御剤が特に好ましい。さらに、トナーを後述するような重合法を用いて製造する場合には、重合阻害性が低く、水系分散媒体への可溶化物が実質的にない荷電制御剤が特に好ましい。
荷電制御剤としては、
サリチル酸、アルキルサリチル酸、ジアルキルサリチル酸、ナフトエ酸、ダイカルボン酸などの芳香族カルボン酸の金属化合物;
アゾ染料又はアゾ顔料の金属塩又は金属錯体;
スルフォン酸又はカルボン酸基を側鎖に持つ高分子型化合物;
ホウ素化合物;
尿素化合物;
ケイ素化合物;
カリックスアレーン
などが挙げられる。
これらの荷電制御剤の使用量は、トナー粒子の内部に添加する場合、結着樹脂100質量部に対して、好ましくは0.1質量部以上10.0質量部以下、より好ましくは0.1
質量部以上5.0質量部以下である。また、トナー粒子の外部に添加する場合、トナー母粒子100質量部に対して、好ましくは0.005質量部以上1.000質量部以下、より好ましくは0.010質量部以上0.300質量部以下である。トナー母粒子は、外添剤を添加する前の粒子のことである。
トナー粒子には、定着性向上のため、離型剤を含有させてもよい。トナー粒子中の離型剤の含有量は、結着樹脂100質量部に対して1.0質量部以上30.0質量部以下であることが好ましく、3.0質量部以上25.0質量部以下であることがより好ましい。
離型剤の含有量が1.0質量部以上であれば、ベタ画像欠けを抑制しやすくなる。また、30.0質量部以下であれば、ヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなる。
離型剤としては、
パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタムなどの石油系ワックス及びその誘導体;
モンタンワックス及びその誘導体;
フィッシャートロプシュ法による炭化水素ワックス及びその誘導体;
ポリエチレンなどのポリオレフィンワックス及びその誘導体;
カルナバワックス、キャンデリラワックスなどの天然ワックス及びその誘導体などが挙げられる。誘導体には、酸化物や、ビニルモノマーとのブロック共重合物、グラフト変性物が含まれる。また、高級脂肪族アルコール、ステアリン酸、パルミチン酸などの脂肪酸、酸アミドワックス、エステルワックス、硬化ヒマシ油及びその誘導体、植物系ワックス、動物性ワックスなども離型剤として使用できる。
これらの離型剤の中では、パラフィンワックスが、ベタ画像欠けを抑制し、かつヒートサイクルによる低分子量成分の染み出しや長期使用時でのトナー劣化を抑制しやすくなるため、好ましく用いられる。
また、これら離型剤の示差走査型熱量計(DSC)で測定される昇温時の最大吸熱ピーク温度で規定される融点は、60℃以上140℃以下であることが好ましく、65℃以上120℃以下であることがより好ましい。融点が60℃以上であれば、長期使用時のトナー劣化を抑制しやすくなる。融点が140℃以下であれば、低温定着性が低下しにくい。離型剤の融点は、DSCにて測定した際の最大吸熱ピークのピーク温度とする。測定は、ASTM D 3417−99に準じて行う。これらの測定には、例えば、パーキンエルマー社製DSC−7、TAインストルメント社製DSC2920、TAインストルメント社製Q1000を用いることができる。装置検出部の温度補正は、インジウムと亜鉛の融点を用い、熱量の補正については、インジウムの融解熱を用いる。測定サンプルには、アルミニウム製のパンを用い、対照用に空のパンをセットし、測定する。
次に着色剤について説明する。
黒色着色剤としては、カーボンブラック、磁性体、以下に示すイエロー/マゼンタ/シアン着色剤を用い黒色に調色されたものが利用できる。
プリンターの小型化に有効な一手段としては、一成分現像方式が挙げられる。又、カートリッジ内のトナーをトナー担持体へと供給する供給ローラをなくすことも有効な手段である。このような供給ローラをなくした一成分現像方式としては、磁性一成分現像方式が好ましく、トナーの着色剤としては磁性体を用いた磁性トナーが好ましい。このような磁性トナーを用いることで、高い搬送性と着色性を有することができる。
磁性体は、四三酸化鉄やγ−酸化鉄などの磁性酸化鉄を主成分とするものが好ましく、リン、コバルト、ニッケル、銅、マグネシウム、マンガン、アルミニウム、ケイ素などの元素を含んでもよい。
磁性体の窒素吸着法によるBET比表面積は、2.0m/g以上20.0m/g以下であることが好ましく、3.0m/g以上10.0m/g以下であることがより好ましい。
磁性体の形状としては、多面体、8面体、6面体、球形、針状、鱗片状などがあるが、多面体、8面体、6面体、球形などの異方性の少ないものが、画像濃度を高めるうえで好ましい。磁性体は、トナー中での均一分散性や色味の観点から、個数平均粒径が0.10μm以上0.40μm以下であることが好ましい。
磁性体の個数平均粒径は、透過型電子顕微鏡を用いて測定できる。具体的には、エポキシ樹脂中へ観察すべきトナーを十分に分散させた後、温度40℃の雰囲気中で2日間硬化させて硬化物を得る。得られた硬化物をミクロトームにより薄片状のサンプルとして、透過型電子顕微鏡(TEM)において1万倍〜4万倍の拡大倍率の写真で視野中の100個の磁性体の粒子径を測定する。そして、磁性体の投影面積に等しい円の相当径を基に、個数平均粒径の算出を行う。また、画像解析装置により粒径を測定することも可能である。
トナー粒子内での磁性体の存在状態としては、トナー粒子の表面に磁性体が露出せず、表面より内部に存在していることが好ましい。また、トナー粒子間での磁性体の存在量や存在状態が均一であることが好ましい。このような磁性体の分散状態を有するトナーとしては、例えば、磁性体に所望の疎水化処理を施し、さらに懸濁重合により製造されたトナーが挙げられる。
該磁性体は、例えば下記の方法で製造することができる。
まず、第一鉄塩水溶液に、鉄成分に対して当量又は当量以上の水酸化ナトリウムなどのアルカリを加え、水酸化第一鉄を含む水溶液を調製する。調製された水溶液のpHを7.0以上に維持しながら空気を吹き込み、水溶液を70℃以上に加温しながら水酸化第一鉄の酸化反応を行い、磁性酸化鉄粒子の芯となる種晶を生成する。
次に、種晶を含むスラリーに、前に加えたアルカリの添加量を基準として約1当量の硫酸第一鉄を含む水溶液を加える。そして、得られた混合液のpHを5.0〜10.0に維持し、空気を吹き込みながら水酸化第一鉄の反応を進め、種晶を芯にして磁性酸化鉄粒子を成長させる。この時、任意のpH及び反応温度、撹拌条件を選択することにより、磁性酸化鉄の形状及び磁気特性をコントロールすることが可能である。酸化反応が進むにつれて混合液のpHは酸性側に移行していくが、混合液のpHは5.0未満にしない方が好ましい。
酸化反応終了後、珪酸ソーダなどの珪素源を添加し、混合液のpHを5.0以上8.0以下に調整し、磁性酸化鉄粒子表面に珪素の被覆層を形成する。得られた磁性酸化鉄粒子を定法によりろ過、洗浄、乾燥することにより磁性酸化鉄(磁性体)を得ることができる。
また、懸濁重合法など水系媒体中でトナー母粒子を製造する場合、磁性体表面を疎水化処理することが、トナー粒子中に磁性体を内包化させやすいといった点で好ましい。
乾式にて疎水化処理を実施する場合、洗浄、ろ過、乾燥した磁性酸化鉄にカップリング剤を用いて疎水化処理を行う。
湿式にて疎水化処理を実施する場合、上記得られた磁性酸化鉄を水系媒体中に再分散させるか、又は、上記洗浄及び濾過して得られた磁性酸化鉄を乾燥せずに別の水系媒体中に再分散させて、カップリング剤による処理を行う。
例えば、再分散液を十分撹拌しながらシランカップリング剤又はシラン化合物を添加し、加水分解後温度を上げる、又は、加水分解後に分散液のpHをアルカリ域に調整することでカップリング処理を行う。
該磁性体の疎水化処理に用いられるカップリング剤又はシラン化合物としては、例えば、シランカップリング剤、チタンカップリング剤、シラン化合物などが挙げられる。好ま
しくはシランカップリング剤又はシラン化合物であり、下記一般式(I)で示されるものである。
SiY 式(I)
[式(I)中、Rはアルコキシ基、又は、水酸基を示し、Yはアルキル基、フェニル基又はビニル基を示し、該アルキル基は、置換基として、アミノ基、ヒドロキシ基、エポキシ基、アクリル基、メタクリル基などを有していてもよい。mは1〜3の整数を示し、nは1〜3の整数を示す。但し、m+n=4である。]
該式(I)で示されるシランカップリング剤又はシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、n−プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、n−ブチルトリメトキシシラン、イソブチルトリメトキシシラン、トリメチルメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン、ヒドロキシプロピルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、及びこれらの加水分解物などを挙げることができる。
上記式(I)のYがアルキル基であるものが好ましい。中でも好ましいのは、炭素数3〜6のアルキル基である。
上記シランカップリング剤を用いる場合、単独で、又は複数を併用することができる。複数を併用する場合、それぞれのシランカップリング剤で個別に処理してもよいし、同時に処理してもよい。
該カップリング剤の総処理量は、磁性体100質量部に対して、0.9〜3.0質量部であることが好ましく、磁性体の表面積、シランカップリング剤の反応性などに応じてその量を調整するとよい。
本発明では、磁性体以外に他の着色剤を併用してもよい。磁性体と併用する着色剤としては、各種の顔料及び染料、カーボンブラックなどのいずれも用いることができる。
トナー粒子中の磁性体の含有量は、結着樹脂100質量部に対して、40質量部以上90質量部以下であることが好ましく、50質量部以上70質量部以下であることがより好ましい。40質量部以上であれば、着色力が高くなるため、画像濃度を向上しやすくなる。一方、90質量部以下であれば、ベタ画像欠けを抑制しやすくなる。
トナー粒子中の磁性体の含有量の測定は、パーキンエルマー社製熱分析装置[TGA7]を用いて測定することができる。測定方法は以下のとおりである。
窒素雰囲気下において、昇温速度25℃/分で、常温から900℃までトナーを加熱する。100℃から750℃まで間の減量質量%を結着樹脂の量とし、残存質量を近似的に磁性体の量とする。
イエロー着色剤としては、縮合アゾ化合物,イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が挙げられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、73、74、83、93、94、95、97、109、110、111、120、128、129、138、147、150、151、154、155、168、180、185、214が挙げられる。
マゼンタ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が挙げられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、146、166、169、177、184、185、202、206、220、221、238、254、269、C.I.ピグメントバイオレッド19が挙げられる。
シアン着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物が挙げられる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66が挙げられる。
これらの着色剤は、単独又は混合しさらには固溶体の状態で用いることができる。着色剤は、色相角、彩度、明度、耐光性、OHP透明性、トナー粒子中への分散性の点から選択される。着色剤の含有量は、重合性単量体又は結着樹脂100質量部に対し1〜20質量部が好ましい。
本発明において、トナー母粒子は、公知のいずれの方法によっても製造することが可能である。まず、粉砕法により製造する場合を説明する。
トナー母粒子を粉砕法により製造する場合は、例えば、結着樹脂、着色剤、非晶性ポリエステル及び結晶性ポリエステルなどのトナーの成分並びにその他の添加剤をヘンシェルミキサー、ボールミルなどの混合機により十分混合する。その後、加熱ロール、ニーダー、エクストルーダーのような熱混練機を用いて溶融混練して、上記材料を分散又は溶解させ、冷却固化させ、粉砕した後、分級し、必要に応じて表面処理を行って、トナー母粒子を得ることができる。分級及び表面処理の順序はどちらが先でもよい。分級工程においては、生産効率の観点から、多分割分級機を用いることが好ましい。
トナー母粒子は、上述のように粉砕法によって製造することも可能であるが、非晶性ポリエステルのドメインの存在状態などを制御するためには、分散重合法、会合凝集法、溶解懸濁法、懸濁重合法など、水系媒体中でトナー母粒子を製造することが好ましく、それらの中でも、懸濁重合法がより好ましい。
懸濁重合法では、結着樹脂を生成する重合性単量体及び、非晶性ポリエステル、結晶性ポリエステル、及び着色剤(さらに、必要に応じて、重合開始剤、架橋剤、荷電制御剤、その他の添加剤)を溶解又は分散させて重合性単量体組成物を得る。その後、この重合性単量体組成物を連続相(例えば、水系媒体(必要に応じて、分散安定剤を含有させてもよい。))中に加える。そして、連続相中(水系媒体中)で重合性単量体組成物の粒子を形成し、該粒子に含有される重合性単量体を重合させ、トナー母粒子を得る。懸濁重合法で得られるトナー(以下「重合トナー」ともいう。)は、個々のトナー粒子の形状がほぼ球形に揃っているため、規制部での流動性が向上しやすく、摩擦帯電しやすくなるため、規制不良を抑制しやすくなる。さらに、こういったトナーは、帯電量の分布も比較的均一となるため、画質の向上が期待できる。
重合性単量体としては、
スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−エチルスチレンなどのスチレン系単量体;
アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニルなどのアクリル酸エステル類;
メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、
メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのメタクリル酸エステル類;
などが挙げられる。その他、アクリロニトリル、メタクリロニトリル、アクリルアミドなども挙げられる。これらは単独で又は複数種を組み合わせて用いることができる。
上述の重合性単量体の中でも、スチレン系単量体、アクリル酸エステル系単量体、メタクリル酸エステル系単量体を好適に例示できる。特に、スチレンとアクリル酸n−ブチルとを組み合わせて使用することが、吸湿性を低下させやすく、高温高湿環境下での転写性を良化しやすいため、より好ましい。
また、重合性単量体中、スチレン系単量体の含有量が、60質量%以上90質量%以下であることが好ましく、65質量%以上85質量%以下であることがより好ましい。一方、アクリル酸エステル系単量体、又は、メタクリル酸エステル系単量体の含有量が、10質量%以上40質量%以下であることが好ましく、15質量%以上35質量%以下であることがより好ましい。
重合性単量体組成物には、極性樹脂を含有させることが好ましい。懸濁重合法では、水系媒体中でトナー粒子を製造するため、極性樹脂を含有させることによって、トナー粒子の表面に極性樹脂を含有させることができ、帯電性が向上しやすくなり、黒後カブリを抑制しやすい。
極性樹脂としては、例えば、
ポリスチレン、ポリビニルトルエンなどのスチレンおよびその置換体の単重合体;
スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−アクリル酸ジメチルアミノエチル共重合体、スチレン−メタアクリル酸メチル共重合体、スチレン−メタアクリル酸エチル共重合体、スチレン−メタアクリル酸ブチル共重合体、スチレン−メタクリル酸ジメチルアミノエチル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;
ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリビニルブチラール、シリコーン樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアクリル酸樹脂、テルペン樹脂、フェノール樹脂などが挙げられる。これらは単独でまたは複数種を組み合わせて用いることができる。また、これらポリマー中に、アミノ基、カルボキシル基、水酸基、スルフォン酸基、グリシジル基、ニトリル基などの官能基を導入してもよい。
重合開始剤としては、重合反応時における半減期が0.5時間以上30.0時間以下であるものが好ましい。また、重合性単量体100質量部に対して0.5質量部以上20.0質量部以下の添加量で用いて重合反応を行うと、トナー母粒子に望ましい強度と適当な溶融特性を与えることができる。
具体例としては、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリルなどのアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシカーボネート、クメンヒドロパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、tert−ブチルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシピバレートなどの過酸化物系重合開始剤が挙げられる。
トナー母粒子を重合法により製造する際は、架橋剤を添加してもよく、好ましい添加量としては、重合性単量体100質量部に対して0.01質量部以上5.00質量部以下である。ここで架橋剤としては、主として2個以上の重合可能な二重結合を有する化合物が好ましい。例えば、
ジビニルベンゼン、ジビニルナフタレンなどのような芳香族ジビニル化合物;
エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,3−ブタンジオールジメタクリレートなどのような二重結合を2個有するカルボン酸エステル;ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルホンなどのジビニル化合物;
3個以上のビニル基を有する化合物
が単独で、又は2種以上の混合物として用いられる。
トナーを重合法で製造する方法では、必要に応じて、上述のトナー組成物などを加えて、分散機によって均一に溶解又は分散させて重合性単量体組成物を得る。分散機としては、ホモジナイザー、ボールミル、超音波分散機などが挙げられる。得られた重合性単量体組成物を、分散安定剤を含有する水系媒体中に懸濁する。このとき、高速攪拌機又は超音波分散機のような高速分散機を使用して一気に所望のトナー母粒子のサイズとするほうが、得られるトナー母粒子の粒径がシャープになる。重合開始剤の添加時期としては、重合性単量体中に他の添加剤を添加するときに同時に加えてもよいし、水系媒体中に懸濁する直前に混合してもよい。また、造粒直後、重合反応を開始する前に重合開始剤を加えることもできる。
造粒後は、通常の攪拌機を用いて、粒子状態が維持されかつ粒子の浮遊・沈降が防止される程度の攪拌を行えばよい。
トナーを製造する場合には、分散安定剤として各種の界面活性剤や有機分散剤・無機分散剤が使用できる。中でも無機分散剤は、超微粉を生じにくく、その立体障害性により分散安定性を得ているので好ましく使用できる。こうした無機分散剤の例としては、燐酸三カルシウム、燐酸マグネシウム、燐酸アルミニウム、燐酸亜鉛、ヒドロキシアパタイトなどの燐酸多価金属塩、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウムなどの無機塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの無機化合物が挙げられる。
これらの無機分散剤の添加量は、重合性単量体100質量部に対して0.2質量部以上20.0質量部以下が好ましい。また、上記分散安定剤は単独で用いてもよいし、複数種を併用してもよい。さらに、界面活性剤を併用してもよい。
上記重合性単量体を重合する工程において、重合温度は通常40℃以上、好ましくは50℃以上90℃以下の温度に設定される。
非晶性ポリエステルのドメインを形成させ、さらにドメイン内部に結晶性ポリエステル成分を存在させるためには、以下の工程を実施することが好ましい。
上記重合性単量体の重合を終了して着色粒子を得た後、着色粒子が水系媒体に分散された分散体を、非晶性ポリエステルの軟化点近辺(例えば、非晶性ポリエステルの軟化点〜軟化点+10℃)、具体的には100℃程度まで昇温させ、その温度で、30分以上保持することが好ましい。
該保持時間は、60分以上であることがより好ましく、120分以上であることがさらに好ましい。該保持時間の上限は、製造効率の関係から24時間以下程度である。
その後、分散体を、樹脂粒子のガラス転移温度(Tg)以下まで、冷却速度5.0℃/分以上で冷却することが好ましく、冷却速度20℃/分以上で冷却することがより好ましく、冷却速度100℃/分以上で冷却することがさらに好ましい。該冷却速度の上限は、
製造効率の関係から500℃/分以下程度である。
また、上記冷却速度で冷却した後に、その温度で30分以上保持することが好ましい。該保持時間は、60分以上であることがより好ましく、120分以上であることがさらに好ましい。該保持時間の上限は、製造効率の関係から24時間以下程度である。
なお、ガラス転移温度(Tg)以下とは、ガラス転移温度(Tg)からガラス転移温度−5℃程度が好ましい。
得られた重合体粒子を、濾過し、洗浄し、乾燥させることによりトナー母粒子が得られる。このトナー母粒子はそのままトナーとして用いてもよいし、無機微粒子を必要に応じて混合し、該トナー母粒子の表面に付着させてトナーを得てもよい。また、製造工程(無機微粒子の混合前)に分級工程を入れ、トナー中に含まれる粗粉や微粉をカットすることも可能である。
また、流動化剤として、個数平均一次粒径が好ましくは4nm以上80nm以下、より好ましくは6nm以上40nm以下の無機微粒子がトナー母粒子に添加(外添)されていることが好ましい。無機微粒子は、トナーの流動性改良及びトナーの帯電均一化のために添加されるが、無機微粒子を疎水化処理するなどの処理によってトナーの帯電量の調整、環境安定性の向上などの機能を付与することも好ましい形態である。
本発明において、無機微粒子の個数平均一次粒径の測定法は、走査型電子顕微鏡により拡大撮影したトナー粒子の写真を用いて行う。
無機微粒子としては、シリカ、酸化チタン、アルミナなどの微粒子が使用できる。シリカ微粒子としては、例えば、ケイ素ハロゲン化物の蒸気相酸化により生成されたいわゆる乾式法又はヒュームドシリカと称される乾式シリカ、及び、水ガラスなどから製造されるいわゆる湿式シリカが挙げられる。
しかしながら、表面及びシリカ微粒子の内部にあるシラノール基が少なく、またNaO、SO 2−などの製造残滓の少ない乾式シリカの方が好ましい。また、乾式シリカにおいては、製造工程において、例えば、塩化アルミニウム、塩化チタンなど他の金属ハロゲン化合物をケイ素ハロゲン化合物とともに用いることによって、シリカと他の金属酸化物の複合微粒子を得ることも可能であり、それらも包含する。
無機微粒子の添加量は、トナー母粒子100質量部に対して0.1〜3.0質量部であることが好ましい。無機微粒子の含有量は、蛍光X線分析を用い、標準試料から作成した検量線を用いて定量できる。
本発明において、無機微粒子は、疎水化処理されたものであることが、トナーの環境安定性を向上させることができるため好ましい。無機微粒子の疎水化処理に用いる処理剤としては、シリコーンワニス、各種変性シリコーンワニス、シリコーンオイル、各種変性シリコーンオイル、シラン化合物、シランカップリング剤などが挙げられる。また、その他の有機ケイ素化合物、有機チタン化合物などの処理剤などが挙げられる。これらは、単独で又は複数種を組み合わせて用いることができる。
上記処理剤の中でも、シリコーンオイルにより処理したものが好ましく、無機微粒子をシラン化合物で疎水化処理すると同時に又は処理した後に、シリコーンオイルにより処理したものがより好ましい。このような無機微粒子の処理方法としては、例えば、第一段反応として、シラン化合物でシリル化反応を行い、シラノール基を化学結合により消失させた後、第二段反応としてシリコーンオイルにより、表面に疎水性の薄膜を形成することができる。
上記シリコーンオイルは、25℃における粘度が10mm/s以上200,000mm/s以下のもの好ましく、3,000mm/s以上80,000mm/s以下のものがより好ましい。
使用されるシリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α−メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルなどが特に好ましい。
無機微粒子をシリコーンオイルで処理する方法としては、例えば、シラン化合物で処理された無機微粒子とシリコーンオイルとをヘンシェルミキサーなどの混合機を用いて直接混合する方法や、無機微粒子にシリコーンオイルを噴霧する方法が挙げられる。あるいは、適当な溶剤にシリコーンオイルを溶解又は分散させた後、無機微粒子を加えて混合し、溶剤を除去する方法でもよい。無機微粒子の凝集体の生成が比較的少ない点で噴霧する方法がより好ましい。
シリコーンオイルの処理量は、無機微粒子100質量部に対し、好ましくは1〜40質量部、より好ましくは3〜35質量部である。当該範囲であると、良好な疎水性が得られやすい。
本発明で用いられる無機微粒子は、トナーに良好な流動性を付与させるために、窒素吸着によるBET法で測定した比表面積が20〜350m/g範囲内のものが好ましく、25〜300m/gのものがより好ましい。比表面積は、BET法にしたがって、比表面積測定装置オートソーブ1(湯浅アイオニクス社製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて算出される。
本発明のトナーには、さらに他の添加剤、例えば、
フッ素樹脂粒子、ステアリン酸亜鉛粒子、ポリフッ化ビニリデン粒子のような滑剤粒子;酸化セリウム粒子、炭化ケイ素粒子、チタン酸ストロンチウム粒子などの研磨剤;
酸化チタン粒子、酸化アルミニウム粒子などの流動性付与剤;
ケーキング防止剤;
逆極性の有機微粒子及び無機微粒子
を現像性向上剤として少量用いることもできる。これらの添加剤の表面を疎水化処理して用いることも可能である。
本発明は、像担持体に形成された静電潜像を現像するトナーと、前記トナーを担持し、前記像担持体にトナーを搬送するトナー担持体と、を有する現像装置に関する。
また、本発明は、像担持体と、前記像担持体を帯電する帯電部材と、前記像担持体に形成された静電潜像を現像するトナーと、前記像担持体に当接してトナーを搬送するトナー担持体と、を有し、転写後に前記像担持体に残ったトナーを前記トナー担持体により回収する画像形成装置に関する。本発明に好ましく用いられる現像装置及び画像形成装置について図面を用いて詳細に説明する。
図1は、現像装置の一例を示す模式的断面図である。また、図2は、現像装置が組み込まれた画像形成装置の一例を示す模式的断面図である。
図1又は図2において、静電潜像が形成された像担持体である静電潜像担持体45は、矢印R1方向に回転される。トナー担持体47は矢印R2方向に回転することによって、トナー担持体47と静電潜像担持体45とが対向している現像領域にトナー57を搬送する。また、トナー担持体にはトナー供給部材48が接しており、矢印R3方向に回転することによって、トナー担持体表面にトナー57を供給している。
静電潜像担持体45の周囲には帯電部材(帯電ローラ)46、転写部材(転写ローラ)50、定着器51、ピックアップローラー52等が設けられている。静電潜像担持体45は帯電ローラ46によって帯電される。そして、レーザー発生装置54によりレーザー光を静電潜像担持体45に照射することによって露光が行われ、目的の画像に対応した静電潜像が形成される。静電潜像担持体45上の静電潜像は現像器49内のトナーで現像されてトナー画像を得る。トナー画像は転写材を介して静電潜像担持体45に当接された転写部材(転写ローラ)50により転写材(紙)53上へ転写される。トナー画像を載せた転
写材(紙)53は定着器51へ運ばれ転写材(紙)53上に定着される。
クリーナーレスシステムを採用する場合は、転写部材の下流かつ帯電ローラの上流側に、静電潜像担持体上の転写残トナーを除去するためのクリーニングブレードを備えずに、転写後に静電潜像担持体に残ったトナーをトナー担持体で回収する。
現像装置における帯電工程において、静電潜像担持体と帯電ローラとが当接部を形成して接触し、帯電ローラに所定の帯電バイアスを印加して静電潜像担持体面を所定の極性・電位に帯電させる接触帯電装置を用いることが好ましい。このように接触帯電を行うことで、安定した均一な帯電を行うことができ、さらに、オゾンの発生を低減することが可能である。また、静電潜像担持体との接触を均一に保ち、均一な帯電を行う為に、静電潜像担持体と同方向に回転する帯電ローラを用いることがより好ましい。
次に、トナー規制部材55がトナーを介してトナー担持体に当接することによってトナー担持体上のトナー層厚を規制することが好ましい。このようにすることで規制不良の無い高画質を得ることができる。トナー担持体に当接するトナー規制部材としては、規制ブレードが一般的であり、本発明においても好適に使用できる。
現像工程はトナー担持体に現像バイアスを印加し静電潜像担持体上の静電潜像にトナーを転移させてトナー像を形成する工程であることが好ましく、印加する現像バイアスは直流電圧や直流電圧に交番電界を重畳した電圧でもよい。
交番電界の波形としては、正弦波、矩形波、三角波等適宜使用可能である。また、直流電源を周期的にオン/オフすることによって形成されたパルス波であっても良い。このように交番電界の波形としては周期的にその電圧値が変化するようなバイアスが使用できる。
本発明においてトナー供給部材を用いず磁性によりトナーを搬送する方式を用いた場合、トナー担持体の内部にマグネットを配置してもよい(図3の符号59)。この場合、トナー担持体は内部に多極を有する固定されたマグネットを有していることが好ましく、磁極は3〜10極有することが好ましい。
次に、本発明に係る各物性の測定方法に関して記載する。
<トナー及び非晶性ポリエステルの軟化点の測定方法>
トナー及び非晶性ポリエステルの軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT−500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行なう。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT−500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。なお、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax−Smin)/2)。そして、流動曲線においてピストンの降下量がXとSminの和となるときの流動曲線の温度が、1/2法における溶融温度である(流動曲線の模式図を図4に示す)。
測定試料は、約1.0gのトナー又は非晶性ポリエステルを、25℃の環境下で、錠剤成型圧縮機(例えば、NT−100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT−500Dの測定条件は、以下の通りである。
試験モード:昇温法
開始温度:50℃
到達温度:200℃
測定間隔:1.0℃
昇温速度:4.0℃/min
ピストン断面積:1.000cm
試験荷重(ピストン荷重):10.0kgf(0.9807MPa)
予熱時間:300秒
ダイの穴の直径:1.0mm
ダイの長さ:1.0mm
<重量平均粒径(D4)の測定方法>
トナーの重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行ない、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
なお、測定、解析を行なう前に、以下のように専用ソフトの設定を行なった。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行なう。そして、専用ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)電解水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行なう。
(7)測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「算術径」が重量平均粒径(D4)である。
<トナー平均円形度の測定方法>
トナーの平均円形度は、フロー式粒子像分析装置「FPIA−3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定する。
具体的な測定方法は、以下の通りである。
まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。更に測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。
超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(例えば「VS−150」(ヴェルヴォクリーア社製))を用い、水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。測定には、対物レンズとして「LUCPLFLN」(倍率20倍、開口数0.40)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE−900A」(シスメックス社製)を使用する。前記手順に従い調製した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて2000個のトナーを計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.977μm以上39.54μm未満に限定し、トナーの平均円形度を求める。
測定にあたっては、測定開始前に標準ラテックス粒子(例えば、Duke Scientific社製の「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5100A」をイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.977μm以上、39.54μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。
<トナーのピーク分子量Mp(T)及び非晶性ポリエステルのピーク分子量Mp(P)の測定方法>
トナー及び非晶性ポリエステルのTHF可溶分の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下のようにして測定する。
まず、室温で24時間かけて、トナーをテトラヒドロフラン(THF)に溶解する。そして、得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マエショリディスク」(東ソー社製)で濾過してサンプル溶液を得る。なお、サンプル溶液は、THFに可溶な成分の濃度が約0.8質量%となるように調整する。このサンプル溶液を用いて、以下の条件で測定する。
装置:HLC8120 GPC(検出器:RI)(東ソー社製)
カラム:Shodex KF−801、802、803、804、805、806、807の7連(昭和電工社製)
溶離液:テトラヒドロフラン(THF)
流速:1.0ml/min
オーブン温度:40.0℃
試料注入量:0.10ml
試料の分子量の算出にあたっては、標準ポリスチレン樹脂(例えば、商品名「TSKスタンダード ポリスチレン F−850、F−450、F−288、F−128、F−80、F−40、F−20、F−10、F−4、F−2、F−1、A−5000、A−2500、A−1000、A−500」、東ソー社製)を用いて作成した分子量校正曲線を使用する。
<25%面積率、50%面積率、及びドメインの面積比の測定方法>
(25%面積率)
可視光硬化性樹脂(東亞合成社製アロニックスLCRシリーズD−800)中にトナーを十分に分散させた後、短波長光を照射し硬化させる。得られた硬化物を、ダイアモンドナイフを備えたウルトラミクロトームで切り出し、250nmの薄片状サンプルを作製する。次いで、切り出したサンプルを透過型電子顕微鏡(日本電子社製電子顕微鏡JEM−2800)(TEM―EDX)を用いて40000〜50000倍の倍率で拡大し、トナー粒子の断面を観察し、EDXを用いて元素マッピングを行う。
なお、観察するトナー粒子断面は以下のように選択する。まずトナー粒子断面画像から、トナー粒子の断面積を求め、その断面積と等しい面積を持つ円の直径(円相当径)を求める。この円相当径とトナーの重量平均粒径(D4)との差の絶対値が1.0μm以内のトナー粒子断面画像についてのみ観察する。
マッピング条件としては、保存レート:9000〜13000、積算回数:120回とする。観察画像より確認される樹脂由来の各ドメインの中でC元素に由来するスペクトル強度と、O元素に由来するスペクトル強度を測定し、O元素に対するC元素のスペクトル強度が0.05以上のドメインが非晶性ポリエステルのドメインである。非晶性ポリエステルドメインを特定後、二値化処理により、トナー粒子断面に存在する非晶性ポリエステルドメインの総面積に対する、トナー粒子の断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルドメインの面積比率(面積%)を計算する。なお、二値化処理には、Image Pro PLUS(日本ローパー株式会社製)を用いる。
算出方法は、以下の通りである。上記TEM画像において、トナー粒子断面の輪郭及び中心点を求める。トナー粒子断面の輪郭は、上記TEM画像で観察されるトナー粒子の表面に沿ったものとする。また、トナー粒子断面の中心点は、トナー粒子断面の重心とする。
得られた中心点から、トナー粒子断面の輪郭上の点に対して線を引く。該線上において、輪郭から、該輪郭と該断面の中心点間の距離の25%の位置を特定する。
そして、トナー粒子断面の輪郭に対して一周分、この操作を行い、トナー粒子断面の輪郭から、該輪郭と該断面の中心点間の距離の25%の境界線を明示する。
該25%の境界線が明示されたTEM画像をもとに、トナー粒子の断面の輪郭と、該25%の境界線とで囲まれた領域に存在する非晶性ポリエステルのドメインの面積を計測する。そして、トナー粒子断面に存在する非晶性ポリエステルドメインの総面積を計測し、該総面積を基準とした面積%を算出する。
(50%面積率)
上述の25%面積率の測定と同様にして、トナー粒子断面の輪郭から該輪郭と該断面の中心点間の距離の50%の境界線を明示する。トナー粒子の断面の輪郭と、該50%の境界線とで囲まれた領域に存在する非晶性ポリエステルのドメインの面積を計測し、ドメイン総面積を基準とした面積%を算出する。
(ドメインの面積比)
また、トナー粒子の断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルドメインの面積と、トナー粒子の断面の輪郭から、該輪郭と該断面の中心点間の距離の25%〜50%に存在する非晶性ポリエステルドメインの面積との比(ドメインの面積比)は、上記より得られた計算値を用い、下記式により得られる

ドメインの面積比=
(25%面積率(面積%))/[(50%面積率(面積%))−(25%面積率(面積%))]
<非晶性ポリエステル成分によって形成されたドメインの個数平均径の測定方法>
上記と同様にEDXを用いて元素マッピングを行い、非晶性ポリエステルドメインを特定する。
ドメイン径は、ドメインの面積から円相当径を求めて得られる。測定数は100個とし、100個のドメインの円相当径の算術平均値を、ドメイン径とする。
まずトナー粒子断面画像から、トナー粒子の断面積を求め、その断面積と等しい面積を持つ円の直径(円相当径)を求める。この円相当径とトナーの重量平均粒径(D4)(測定方法は前述のとおり)との差の絶対値が1.0μm以内のトナー粒子断面画像についてのみ、ドメイン径の算出を行う。ドメイン径はトナー粒子の粒径によって変わる場合があるため、この様にすることで、平均的なドメイン径を算出することができる。
<非晶性ポリエステル、結晶性ポリエステルの酸価Avの測定方法>
酸価は試料1gに含まれる酸を中和するために必要な水酸化カリウムのmg数である。非晶性ポリエステル、結晶性ポリエステルの酸価はJIS K 0070−1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
フェノールフタレイン1.0gをエチルアルコール(95体積%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム7gを5mlの水に溶かし、エチルアルコール(95体積%)を加えて1Lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.1モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.1モル/l塩酸は、JIS K 8001−1998に準じて作製されたものを用いる。
(2)操作
(A)本試験
粉砕した非晶性ポリエステル又は結晶性ポリエステルの試料2.0gを200mlの三角フラスコに精秤し、トルエン/エタノール(2:1)の混合溶液100mlを加え、5時間かけて溶解する。次いで、指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液を用いて滴定する。なお、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
試料を用いない(すなわちトルエン/エタノール(2:1)の混合溶液のみとする)以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、酸価を算出する。
A=[(C−B)×f×5.61]/S
ここで、A:酸価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(ml)、C:本試験の水酸化カリウム溶液の添加量(ml)、f:水酸化カリウム溶液のファクター、S:試料(g)である。
<非晶性ポリエステル、結晶性ポリエステル、長鎖モノマーの水酸基価OHvの測定方法>
水酸基価とは,試料1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数である。非晶性ポリエステル、結晶性ポリエステル、及び
長鎖モノマーの水酸基価はJIS K 0070−1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
特級無水酢酸25gをメスフラスコ100mlに入れ、ピリジンを加えて全量を100mlにし、十分に振りまぜてアセチル化試薬を得る。得られたアセチル化試薬は、湿気、炭酸ガス等に触れないように、褐色びんにて保存する。
フェノールフタレイン1.0gをエチルアルコール(95体積%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム35gを20mlの水に溶かし、エチルアルコール(95体積%)を加えて1Lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.5モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.5モル/l塩酸は、JIS K 8001−1998に準じて作製されたものを用いる。(2)操作
(A)本試験
粉砕した長鎖モノマー、非晶性ポリエステル又は結晶性ポリエステルの試料1.0gを200ml丸底フラスコに精秤し、これに前記のアセチル化試薬5.0mlをホールピペットを用いて正確に加える。この際、試料がアセチル化試薬に溶解しにくいときは、特級トルエンを少量加えて溶解する。
フラスコの口に小さな漏斗をのせ、約97℃のグリセリン浴中にフラスコ底部約1cmを浸して加熱する。このときフラスコの首の温度が浴の熱を受けて上昇するのを防ぐため、丸い穴をあけた厚紙をフラスコの首の付根にかぶせることが好ましい。
1時間後、グリセリン浴からフラスコを取り出して放冷する。放冷後、漏斗から水1mlを加えて振り動かして無水酢酸を加水分解する。さらに完全に加水分解するため、再びフラスコをグリセリン浴中で10分間加熱する。放冷後、エチルアルコール5mlで漏斗及びフラスコの壁を洗う。
指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定する。なお、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
非晶性ポリエステル、結晶性ポリエステル、又は長鎖モノマーの試料を用いない以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、水酸基価を算出する。
A=[{(B−C)×28.05×f}/S]+D
ここで、A:水酸基価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(ml)、C:本試験の水酸化カリウム溶液の添加量(ml)、f:水酸化カリウム溶液のファクター、S:試料(g)、D:非晶性ポリエステル、結晶性ポリエステル、又は長鎖モノマーの酸価(mgKOH/g)である。
<飛行時間型二次イオン質量分析(TOF−SIMS)によるビニル樹脂に由来するピーク強度(S85)と非晶性ポリエステルに由来するピーク強度(S211)の強度比(S211/S85)の測定方法>
TOF−SIMSを用いたビニル樹脂に由来するピーク強度(S85)と非晶性ポリエステルに由来するピーク強度(S211)の強度比(S211/S85)の測定は、アルバック・ファイ社製、TRIFT−IVを使用した。分析条件は以下の通り行った。
サンプル調整:トナー粒子をインジウムシートに付着させた。
サンプル前処理:なし
一次イオン:Au+
加速電圧:30kV
電荷中和モード:On
測定モード:Negative
ラスター:100μm
ビニル樹脂に由来するピーク強度(S85)の算出:アルバック・ファイ社標準ソフト(Win Cadense)に従い、質量数84.5〜85.5の合計カウント数をピーク強度(S85)とした。
非晶性ポリエステルに由来するピーク強度(S211)の算出:アルバック・ファイ社標準ソフト(Win Cadense)に従い、質量数210.5〜211.5の合計カウント数をピーク強度(S211)とした。
強度比(S211/S85)の算出:上記のとおり算出したS85、S211を用い、強度比(S211/S85)を算出した。
<長鎖モノマーの炭素数のピーク値の測定>
長鎖モノマーのメインピーク分子量はゲルパーミエーションクロマトグラフィー(GPC)により、以下のようにして測定する。
ゲルクロマトグラフ用のo−ジクロロベンゼンに、特級2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を濃度が0.10質量%となるように添加し、室温で溶解する。サンプルビンにサンプルと上記のBHTを添加したo−ジクロロベンゼンとを入れ、150℃に設定したホットプレート上で加熱し、サンプルを溶解する。サンプルが溶けたら、予め加熱しておいたフィルターユニットに入れ、本体に設置する。フィルターユニットを通過させたものをGPCサンプルとする。
なお、サンプル溶液は、濃度が約0.15質量%となるように調整する。このサンプル溶液を用いて、以下の条件で測定する。
装置:HLC−8121GPC/HT(東ソー社製)
検出器:高温用RI
カラム:TSKgel GMHHR−H HT 2連(東ソー社製)
温度:135.0℃
溶媒:ゲルクロマトグラフ用o−ジクロロベンゼン(BHT 0.10質量%添加)
流速:1.0mL/min
注入量:0.4mL
長鎖モノマーのメインピーク分子量の算出にあたっては、標準ポリスチレン樹脂(商品名「TSKスタンダード ポリスチレン F−850、F−450、F−288、F−128、F−80、F−40、F−20、F−10、F−4、F−2、F−1、A−5000、A−2500、A−1000、A−500」、東ソー社製)を用いて作成した分子量校正曲線を使用する。
以下、本発明を製造例及び実施例により具体的に説明するが、これは本発明をなんら限定するものではない。なお、以下の配合における部数及び%は特に断りがない場合全て質量基準である。
(基体1の用意)
基体1として、SUS304製の直径6mmの芯金にプライマー(商品名、DY35−051;東レダウコーニング社製)を塗布し、焼き付けしたものを用意した。
(弾性ローラの作製)
上記のように用意した基体1を金型に配置し、以下の材料を混合した付加型シリコーンゴム組成物を金型内に形成されたキャビティに注入した。
・液状シリコーンゴム材料(商品名、SE6724A/B;東レ・ダウコーニング社製)100部
・カーボンブラック(商品名、トーカブラック#4300;東海カーボン社製)15部
・耐熱性付与剤としてのシリカ粒子 0.2部
・白金触媒 0.1部
上記材料を混合した付加型シリコーンゴム組成物を金型内に形成されたキャビティに注入した。続いて、金型を加熱してシリコーンゴムを温度150℃で15分間加硫して硬化させた。周面に硬化したシリコーンゴム層が形成された基体を金型から脱型した後、当該基体を、さらに温度180℃で1時間加熱して、シリコーンゴム層の硬化反応を完了させた。こうして、基体1の外周面を被覆するように直径12mmのシリコーンゴム弾性層が形成された弾性ローラD−1を作製した。
(表面層の調製)
(イソシアネート基末端プレポリマーA−1の合成)
窒素雰囲気下、反応容器中でトリレンジイソシアネート(TDI)(商品名:コスモネートT80;三井化学社製)17.7部に対し、ポリプロピレングリコール系ポリオール(商品名:エクセノール4030;旭硝子社製)100.0部を反応容器内の温度を65℃に保持しつつ、徐々に滴下した。滴下終了後、温度65℃で2時間反応させた。得られた反応混合物を室温まで冷却し、イソシアネート基含有量3.8重量%のイソシアネート基末端プレポリマーA−1を得た。
(アミノ化合物B−1の合成)
攪拌装置、温度計、還流管、滴下装置及び温度調整装置を取り付けた反応容器中で、攪拌しながらエチレンジアミン100.0部(1.67mol)、純水100部を40℃まで加温した。次に、反応温度を40℃以下に保持しつつ、プロピレンオキシド425.3部(7.35mol)を30分かけて徐々に滴下した。さらに1時間攪拌して反応を行い、反応混合物を得た。得られた反応混合物を減圧下加熱して水を留去し、アミノ化合物B−1:426部を得た。
<トナー担持体1の作製>
表面層1の材料として、イソシアネート基末端プレポリマーA−1:617.9部に対し、
アミノ化合物B−1:34.2部、
カーボンブラック(商品名、MA230;三菱化学社製):117.4部、及び、
ウレタン樹脂微粒子(商品名、アートパールC−400;根上工業社製):130.4部、
を攪拌し、混合した。
次に、総固形分比が30質量%となるようにメチルエチルケトン(以下「MEK」ともいう。)を加えた後、サンドミルにて混合した。次いで、さらに、MEKで粘度を10cps以上13cps以下に調整して表面層形成用塗料を調製した。
先に作製した弾性ローラD−1を、表面層形成用塗料に浸漬して、弾性ローラD−1の弾性層の表面に当該塗料の塗膜を形成し、乾燥させた。さらに、温度150℃にて1時間加熱処理することで弾性層外周に膜厚15μmの表面層を設け、トナー担持体1を作製した。
<長鎖モノマー1の製造例>
炭素数のピーク値が35の脂肪族炭化水素1200gをガラス製の円筒型反応容器に入れ、硼酸38.5gを温度140℃で添加し、直ちに空気50容量%と窒素50容量%の酸素濃度約10容量%の混合ガスを毎分20リットルの割合で吹き込み、200℃で3.0時間反応させた後、反応液に温水を加え、95℃で2時間加水分解を行い、静置後上層の反応物を取った。変性品を20部をn−ヘキサン100部に加え、未変性成分を溶解除去させた、長鎖モノマー1を得た。得られた長鎖モノマー1の諸物性を表1に示す。
<長鎖モノマー2〜4の製造>
使用する脂肪族炭化水素の炭素数のピーク値と反応時間や温度を表1に示した通りに変更した以外は長鎖モノマー1の製造例と同様にして長鎖モノマー2〜4を製造した。
Figure 0006869819

表中、炭素数は、炭素数のピーク値を示す。
<非晶性ポリエステルAPES1の製造例>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、原料モノマーを、カルボン酸成分とアルコール成分を表2に示すように調整し、入れた後、触媒としてジブチル錫をモノマー総量100部に対して1.5部添加した。次いで、窒素雰囲気下にて常圧で180℃まで素早く昇温した後、180℃から210℃まで10℃/時間の速度で加熱しながら水を留去して重縮合を行った。210℃に到達してから反応槽内を5kPa以下まで減圧し、210℃、5kPa以下の条件下にて重縮合を行い、非晶性ポリエステルAPES1を得た。その際、得られる非晶性ポリエステルAPES1のピーク分子量が表1の値となるように重合時間を調整した。非晶性ポリエステルAPES1の物性を表2に示す。
<非晶性ポリエステルAPES2〜APES21の製造例>
原料モノマー及び使用量を表2に記載の様に変更し、それ以外は、非晶性ポリエステルAPES1と同様にして非晶性ポリエステルAPES2〜APES21を得た。これらの非晶性ポリエステルの物性を表2に示す。
Figure 0006869819

表中のモル比は、アルコール成分の合計(100モル%)とカルボン酸成分の合計(100モル%)とのモル比を示す。
<非晶性ポリエステルAPES22の製造例>
窒素導入管、脱水管、撹拌器及び熱電対を装備した四つ口フラスコに、ビスフェノールAエチレンオキサイド2モル付加物100g、ビスフェノールAプロピレンオキサイド2モル付加物189g、テレフタル酸51g、フマル酸61g、アジピン酸25g及びエステル化触媒(オクチル酸スズ)2gを入れ、230℃で8時間縮重合反応させ、さらに、8kPaで1時間反応させ、160℃まで冷却した後、アクリル酸6g、スチレン70g、n−ブチルアクリレート31g及び重合開始剤(ジ−t−ブチルパーオキサイド)20gの混合物を滴下ロートにより1時間かけて滴下し、滴下後、160℃に保持したまま、1時間付加重合反応を継続させた後、200℃に昇温し、10kPaで1時間保持し、その後、未反応のアクリル酸、スチレン及びブチルアクリレートを除去することにより、ビニル重合セグメントとポリエステル重合セグメントとが結合してなる複合樹脂である非晶性ポリエステルAPES22を得た。
<結晶性ポリエステルCPES1の製造例>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、表3に示す使用量のモノマーを入れた後、触媒としてジオクチル酸錫をモノマー総量100部に対して1部添加し、窒素雰囲気下で140℃に加熱して常圧下で水を留去しながら6時間反応させた。次いで、200℃まで10℃/時間で昇温しつつ反応させ、200℃に到達してから2時間反応させた後、反応槽内を5kPa以下に減圧して200℃で3時間反応させ、結晶性ポリエステルC1を得た。物性を表3に示す。
<結晶性ポリエステルCPES2〜CPES6の製造例>
モノマーを表3に記載の様に変更し、それ以外は、結晶性ポリエステルCPES1と同様にして結晶性ポリエステルCPES2〜CPES6を得た。物性を表3に示す。
Figure 0006869819
<処理磁性体の製造例>
硫酸第一鉄水溶液中に、鉄元素に対して1.00〜1.10当量の苛性ソーダ溶液、鉄元素に対しリン元素換算で0.15質量%となる量のP、鉄元素に対して珪素元素換算で0.50質量%となる量のSiOを混合し、水酸化第一鉄を含む水溶液を調製した。水溶液のpHを8.0とし、空気を吹き込みながら85℃で酸化反応を行い、種晶を有するスラリー液を調製した。
次いで、このスラリー液に当初のアルカリ量(苛性ソーダのナトリウム成分)に対し0.90〜1.20当量となるよう硫酸第一鉄水溶液を加えた後、スラリー液をpH7.6に維持して、空気を吹込みながら酸化反応をすすめ、磁性酸化鉄を含むスラリー液を得た。濾過、洗浄した後、この含水スラリー液を一旦取り出した。この時、含水スラリーを少量採取し、含水量を計っておいた。次に、この含水スラリーを乾燥せずに別の水系媒体中に投入し、撹拌すると共にスラリーを循環させながらピンミルにて再分散させ、再分散液のpHを約4.8に調整する。そして、撹拌しながらn−ヘキシルトリメトキシシランカップリング剤を磁性酸化鉄100部に対し1.6部(磁性酸化鉄の量は含水サンプルから含水量を引いた値として計算した)添加し、加水分解を行った。その後、撹拌を十分行い、分散液のpHを8.6にして表面処理を行った。生成した疎水性磁性体をフィルタープレスにてろ過し、多量の水で洗浄した後に100℃で15分、90℃で30分乾燥し、得られた粒子を解砕処理して体積平均粒径が0.21μmの処理磁性体を得た。
<トナー母粒子1の製造例>
イオン交換水720部に0.1モル/L−NaPO水溶液450部を投入して60
℃に加温した後、1.0モル/L−CaCl水溶液67.7部を添加して、分散安定剤を含む水系媒体を得た。
・スチレン 75.0部
・n−ブチルアクリレート 25.0部
・非晶性ポリエステルAPES1 15.0部
・ジビニルベンゼン 0.6部
・モノアゾ染料の鉄錯体(T−77:保土谷化学社製) 1.5部
・処理磁性体 65.0部
上記処方をアトライター(三井三池化工機(株))を用いて均一に分散混合して単量体組成物を得た。この単量体組成物を63℃に加温し、そこに、結晶性ポリエステルCPES1を5.0部、パラフィンワックス(融点78℃)15部を添加混合し、溶解した。その後重合開始剤tert−ブチルパーオキシピバレート5.0部を溶解した。
上記水系媒体中に上記単量体組成物を投入し、60℃、N雰囲気下においてTK式ホモミキサー(特殊機化工業(株))にて12000rpmで10分間撹拌し、造粒した。その後パドル撹拌翼で撹拌しつつ70℃で4時間反応させた。反応終了後、ここで得られた水系媒体中には、着色粒子が分散しており、着色粒子表面には無機分散剤として、リン酸カルシウムが付着していることを確認した。
この時点で、水系媒体に、塩酸を加えてリン酸カルシウムを洗浄して除去した後に濾過・乾燥して着色粒子を分析した。その結果、結着樹脂のガラス転移温度Tgは55℃であった。
続いて、着色粒子が分散した水系媒体を100℃まで昇温させ、120分保持した。その後、水系媒体に5℃水を投入し、100℃/分の冷却速度で100℃から50℃に冷却した。続いて、水系媒体を50℃で120分、保持を行った。
その後、水系媒体に、塩酸を加えてリン酸カルシウムを洗浄して除去した後に濾過・乾燥してトナー母粒子1を得た。トナー母粒子1の製造条件を表4に示す。
<トナー母粒子2〜30、トナー母粒子32、比較用トナー母粒子1〜3の製造例>
トナー母粒子1の製造において、非晶性ポリエステル、着色剤、製造条件を変更すること以外は同様にして、トナー母粒子2〜30、トナー母粒子32、比較用トナー母粒子1〜3の製造を行った。得られたトナー母粒子、比較トナー母粒子の製造条件を表4に示す。
<トナー母粒子31の製造例>
《各分散液の調製》
−樹脂粒子分散液(1)−
・スチレン(和光純薬社製):325部
・nブチルアクリレート(和光純薬社製):100部
・アクリル酸(ローディア日華社製):13部
・1,10−デカンジオールジアクリレート(新中村化学社製):1.5部
・ドデカンチオール(和光純薬社製):3.0部
上記成分を予め混合し、溶解して溶液を調製しておき、アニオン性界面活性剤(ダウケミカル社製、ダウファックスA211)9部をイオン交換水580部に溶解した界面活性剤溶液をフラスコに収容し、上記の溶液のうち400部を投入して分散し乳化して10分間ゆっくりと撹拌・混合しながら、過硫酸アンモニウム6部を溶解したイオン交換水50部を投入した。
次いで、フラスコ内を窒素で十分に置換した後、フラスコを撹拌しながらオイルバスでフラスコ内が75℃になるまで加熱し、5時間そのまま乳化重合を継続して樹脂粒子分散液(1)を得た。
樹脂粒子分散液(1)から樹脂粒子を分離して物性を調べたところ、個数平均粒径は195nm、分散液中の固形分量は42%、ガラス転移点は51.5℃、重量平均分子量M
wは32000であった。
−樹脂粒子分散液(2)−
前記非晶性ポリエステル(APES1)を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。具体的には、イオン交換水79%、アニオン系界面活性剤(第一工業製薬(株):ネオゲンRK)が1%(有効成分として)、非晶性ポリエステル(APES1)の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、個数平均粒径が450nmの樹脂微粒子分散液(2)を得た。
−樹脂粒子分散液(3)−
前記結晶性ポリエステル(CPES1)を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。具体的には、イオン交換水79%、アニオン系界面活性剤(第一工業製薬(株):ネオゲンRK)が1%(有効成分として)、結晶性ポリエステル(CPES1)の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、個数平均粒径が100nmの樹脂微粒子分散液(3)を得た。
−着色剤分散液−
・カーボンブラック 20部
・アニオン系界面活性剤(第一工業製薬社製、ネオゲンR) 2部
・イオン交換水 78部
上記成分をホモジナイザー(IKA社製、ウルトラタラックスT50)を用いて、3000rpmで2分間、顔料を水になじませ、さらに5000回転で10分間分散後、通常の撹拌器で1昼夜撹拌させて脱泡した後、高圧衝撃式分散機アルティマイザー((株)スギノマシン社製、HJP30006)を用いて、圧力240MPaで約1時間分散させて着色剤分散液(1)を得た。さらに分散液のpHを6.5に調節した。
−離型剤分散液−
・炭化水素系ワックス 45部
(フィッシャートロプシュワックス、最大吸熱ピーク=78℃、Mw=750)
・アニオン性界面活性剤(ネオゲンRK、第一工業製薬) 5部
・イオン交換水 200部
上記成分を95℃に加熱して、ホモジナイザー(IKA製、ウルトラタラックスT50)にて十分に分散後、圧力吐出型ゴーリンホモジナイザーで分散処理し、個数平均径190nm、固形分量25%の離型剤分散液を得た。
《トナー母粒子の製造例》
・イオン交換水 400部
・樹脂粒子分散液(1)620部(樹脂粒子濃度:42%)
・樹脂粒子分散液(2)209部(樹脂粒子濃度:20%)
・樹脂粒子分散液(3)70部(樹脂粒子濃度:20%)
・アニオン性界面活性剤(第一工業製薬(株)、ネオゲンRK、有効成分量:60%)
1.5部(有効成分として0.9部)
以上の成分を、温度計、pH計、撹拌機を具備した3リットルの反応容器に入れ、外部からマントルヒーターで温度制御しながら、温度30℃、撹拌回転数150rpmにて、30分間保持した。その後、着色剤分散液88部、離型剤分散液60部を投入し、5分間保持した。そのまま、1.0%硝酸水溶液を添加し、pHを3.0に調整した。次いで、
撹拌機、マントルヒーターをはずし、ホモジナイザー(IKAジャパン社製:ウルトラタラクスT50)にて、3000rpmで分散しながら、ポリ塩化アルミニウム0.33部、0.1%硝酸水溶液37.5部の混合溶液を、そのうちの1/2を添加した後、分散回転数を5000rpmにして、残りの1/2を1分間かけて添加し、分散回転数を6500rpmにして、6分間分散した。
反応容器に、撹拌機、マントルヒーターを設置し、スラリーが充分に撹拌するように撹拌機の回転数を適宜調整しながら、42℃まで、0.5℃/分で昇温し、42℃で15分保持した後、0.05℃/分で昇温しながら、10分ごとに、コールターマルチサイザーにて粒径を測定し、重量平均粒径が8.1μmとなったところで、5%水酸化ナトリウム水溶液を用いてpHを9.0にした。その後、5℃ごとにpHを9.0に調整しながら、昇温速度1℃/分で96℃まで昇温し、96℃で120分保持した。その後、水系媒体に5℃水を投入し、100℃/分の冷却速度で100℃から50℃に冷却した。続いて、水系媒体を50℃で120分、保持を行った。その後、1℃/分で20℃まで降温して粒子を固化させた。
その後、反応生成物をろ過し、イオン交換水で通水洗浄し、ろ液の伝導度が50mS以下となったところで、ケーキ状になった粒子を取り出し、粒子重量の10倍量のイオン交換水中投入し、スリーワンモータで撹拌し充分に粒子がほぐれたところで、1.0%硝酸水溶液でpHを3.8に調整して10分間保持した。その後再度ろ過、通水洗浄し、ろ液の伝導度が10mS以下となったところで、通水を停止し、固液分離した。得られたケーキ状になった粒子をサンプルミルで解砕して、40℃のオーブン中で24時間乾燥した。さらに得られた粉体をサンプルミルで解砕した後、40℃のオーブン中で5時間追加真空乾燥して、トナー母粒子31を得た。
<比較用トナー母粒子4の製造例>
《各分散液の調製》
−樹脂粒子分散液(4)−
前記非晶性ポリエステル(APES21)を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。具体的には、イオン交換水79%、アニオン系界面活性剤(第一工業製薬(株):ネオゲンRK)が1%(有効成分として)、非晶性ポリエステル(APES21)の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、個数平均粒径が450nmの樹脂微粒子分散液(4)を得た。
−樹脂粒子分散液(5)−
前記結晶性ポリエステル(CPES6)を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。具体的には、イオン交換水79%、アニオン系界面活性剤(第一工業製薬(株):ネオゲンRK)が1%(有効成分として)、結晶性ポリエステル(CPES6)の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、個数平均粒径が110nmの樹脂微粒子分散液(5)を得た。
《トナー母粒子の製造例》
・イオン交換水 400部
・樹脂粒子分散液(1)620部(樹脂粒子濃度:42%)
・樹脂粒子分散液(4)209部(樹脂粒子濃度:20%)
・樹脂粒子分散液(5)70部(樹脂粒子濃度:20%)
・アニオン性界面活性剤(第一工業製薬(株)、ネオゲンRK、有効成分量:60%)
1.5部(有効成分として0.9部)
以上の成分を、温度計、pH計、撹拌機を具備した3リットルの反応容器に入れ、外部からマントルヒーターで温度制御しながら、温度30℃、撹拌回転数150rpmにて、
30分間保持した。その後、着色剤分散液88部、離型剤分散液60部を投入し、5分間保持した。そのまま、1.0%硝酸水溶液を添加し、pHを3.0に調整した。次いで、撹拌機、マントルヒーターをはずし、ホモジナイザー(IKAジャパン社製:ウルトラタラクスT50)にて、3000rpmで分散しながら、ポリ塩化アルミニウム0.33部、0.1%硝酸水溶液37.5部の混合溶液を、そのうちの1/2を添加した後、分散回転数を5000rpmにして、残りの1/2を1分間かけて添加し、分散回転数を6500rpmにして、6分間分散した。
反応容器に、撹拌機、マントルヒーターを設置し、スラリーが充分に撹拌するように撹拌機の回転数を適宜調整しながら、42℃まで、0.5℃/分で昇温し、42℃で15分保持した後、0.05℃/分で昇温しながら、10分ごとに、コールターマルチサイザーにて粒径を測定し、重量平均粒径が8.2μmとなったところで、5%水酸化ナトリウム水溶液を用いてpHを9.0にした。その後、5℃ごとにpHを9.0に調整しながら、昇温速度1℃/分で96℃まで昇温し120分保持した。その後、水系媒体に5℃水を投入し、100℃/分の冷却速度で100℃から50℃に冷却した。続いて、水系媒体を50℃で120分、保持を行った。その後、1℃/分で20℃まで降温して粒子を固化させた。
その後、反応生成物をろ過し、イオン交換水で通水洗浄し、ろ液の伝導度が50mS以下となったところで、ケーキ状になった粒子を取り出し、粒子重量の10倍量のイオン交換水中投入し、スリーワンモータで撹拌し充分に粒子がほぐれたところで、1.0%硝酸水溶液でpHを3.8に調整して10分間保持した。その後再度ろ過、通水洗浄し、ろ液の伝導度が10mS以下となったところで、通水を停止し、固液分離した。得られたケーキ状になった粒子をサンプルミルで解砕して、40℃のオーブン中で24時間乾燥した。さらに得られた粉体をサンプルミルで解砕した後、40℃のオーブン中で5時間追加真空乾燥して、比較用トナー母粒子4を得た。
<比較用トナー母粒子5の製造例>
《各分散液の調製》
−樹脂粒子分散液(6)−
前記非晶性ポリエステル(APES22)を、キャビトロンCD1010(株式会社ユーロテック製)を高温高圧型に改造した分散機を用いて分散した。具体的には、イオン交換水79%、アニオン系界面活性剤(第一工業製薬(株):ネオゲンRK)が1%(有効成分として)、非晶性ポリエステル(APES22)の濃度が20%の組成比で、アンモニアによりpHを8.5に調整し、回転子の回転速度が60Hz、圧力が5kg/cm、熱交換器による加熱140℃、の条件でキャビトロンを運転し、個数平均粒径が200nmの樹脂微粒子分散液(6)を得た。
《トナー母粒子の製造例》
・イオン交換水 400部
・樹脂粒子分散液(1)620部(樹脂粒子濃度:42%)
・樹脂粒子分散液(6)279部(樹脂粒子濃度:20%)
・アニオン性界面活性剤(第一工業製薬(株)、ネオゲンRK、有効成分量:60%)
1.5部(有効成分として0.9部)
以上の成分を、温度計、pH計、撹拌機を具備した3リットルの反応容器に入れ、外部からマントルヒーターで温度制御しながら、温度30℃、撹拌回転数150rpmにて、30分間保持した。その後、着色剤分散液88部、離型剤分散液60部を投入し、5分間保持した。そのまま、1.0%硝酸水溶液を添加し、pHを3.0に調整した。次いで、撹拌機、マントルヒーターをはずし、ホモジナイザー(IKAジャパン社製:ウルトラタラクスT50)にて、3000rpmで分散しながら、ポリ塩化アルミニウム0.33部、0.1%硝酸水溶液37.5部の混合溶液を、そのうちの1/2を添加した後、分散回転数を5000rpmにして、残りの1/2を1分間かけて添加し、分散回転数を6500rpmにして、6分間分散した。
反応容器に、撹拌機、マントルヒーターを設置し、スラリーが充分に撹拌するように撹拌機の回転数を適宜調整しながら、42℃まで、0.5℃/分で昇温し、42℃で15分保持した後、0.05℃/分で昇温しながら、10分ごとに、コールターマルチサイザーにて粒径を測定し、重量平均粒径が8.2μmとなったところで、5%水酸化ナトリウム水溶液を用いてpHを9.0にした。その後、5℃ごとにpHを9.0に調整しながら、昇温速度1℃/分で96℃まで昇温した。その後、1℃/分で20℃まで降温して粒子を固化させた。
その後、反応生成物をろ過し、イオン交換水で通水洗浄し、ろ液の伝導度が50mS以下となったところで、ケーキ状になった粒子を取り出し、粒子重量の10倍量のイオン交換水中投入し、スリーワンモータで撹拌し充分に粒子がほぐれたところで、1.0%硝酸水溶液でpHを3.8に調整して10分間保持した。その後再度ろ過、通水洗浄し、ろ液の伝導度が10mS以下となったところで、通水を停止し、固液分離した。得られたケーキ状になった粒子をサンプルミルで解砕して、40℃のオーブン中で24時間乾燥した。さらに得られた粉体をサンプルミルで解砕した後、40℃のオーブン中で5時間追加真空乾燥して、比較用トナー母粒子5を得た。
Figure 0006869819
<トナー1の製造例>
トナー母粒子1を100部と、一次粒径115nmのゾルゲルシリカ微粒子を0.3部添加し、ヘンシェルミキサー(三井三池化工機(株))を用い混合する。その後、さらに一次粒径12nmのシリカにヘキサメチルジシラザンで処理をした後シリコーンオイルで処理し、処理後のBET比表面積値が120m/gの疎水性シリカ微粒子0.9部を添加し、同様にヘンシェルミキサー(三井三池化工機(株))を用い混合し、トナー1を調製した。トナー1の物性を表5に示す。
<トナー2〜32、比較用トナー1〜5の製造例>
トナー1の製造において、表5に示すようにトナー母粒子を変更し、トナー2〜32、比較用トナー1〜5を得た。物性を表5に示す。
Figure 0006869819
<実施例1>
キヤノン製プリンターLBP7700Cを改造して画像出力評価に用いた。改造点としては、トナー担持体を上記トナー担持体1に変更し、現像装置のトナー供給部材を図1に示すように、トナー担持体と逆回転するようにするとともに、トナー供給部材への電圧印加をオフにした。なお、トナー担持体と静電潜像担持体の当接部の幅が1.1mmとなるように当接圧を調整した。
さらにトナー担持体への印加電圧を製品条件と製品条件より200V高くできるように改造した。(例えば、製品のトナー担持体への印加電圧が−600Vであるとき、製品条件より200V高い条件は、−400Vである。)
また、図2に示すとおり、クリーニングブレードを外し、さらに、プロセススピードを25ppm及び30ppmになるように改造した。
このようにすることで、厳しい画像形成条件とする。
上記のように改造した現像装置にトナー1を100g充填し、低温低湿環境下(15.0℃/10%RH)にて画像評価を行った。
さらに、評価において、印字率が1%となるような横線画像を、2枚間欠通紙にて印字
した。なお、評価には、転写紙(XEROX社製、坪量75g/cm)を用いた。
本発明の、実施例、及び比較例で行った各評価の評価方法とその判断基準について、以下に述べる。
[べた黒後ドラム上カブリ]
カブリの測定は、東京電色社製のREFLECTMETER MODEL TC−6DSを使用して測定した。フィルターは、グリーンフィルターを用いた。
静電潜像担持体上のカブリは、未使用の紙上に貼ったマイラーテープの反射率(%)から、べた黒画像出力直後のベタ白画像(非画像部)転写前の静電潜像担持体上をマイラーテープでテーピングし、紙上にマイラーテープを貼ったものの反射率(%)を差し引いて算出した。
なお、評価タイミングは、画像形成10枚目と2000枚目のドラム上カブリを評価する。本発明ではC以上を良好と判断した。
A:5.0%未満
B:5.0%以上10.0%未満
C:10.0%以上15.0%未満
D:15.0%以上
[ヒートサイクル後のドラム上カブリ]
トナー1の一部をヒートサイクル環境下に放置した。ヒートサイクルの条件を以下に示す。
(1)25℃で1時間保持
(2)11時間かけて45℃まで一定の昇温速度で温度を上げる
(3)45℃で1時間保持
(4)11時間かけて25℃まで一定の降温速度で温度を下げる
上記(1)〜(4)までを1サイクルとして、計20サイクル行った。
その後、上記[黒後ドラム上カブリ]と同様の手法でカブリを評価した。なお、評価タイミングは、画像形成100枚目とした。
[ベタ画像欠け(白抜け)]
評価紙として、FOX RIVER BOND紙(75g/m)を用いた。ベタ画像の定着性は、190℃の設定温度でFOX RIVER BOND紙に印字比率100%のベタ黒画像を印字し、画出しを行う。その後定着器の設定温度を190℃から5℃ずつ低下させて画出しを行った。
ベタ画像欠け(白抜け)は目視で評価した。
A:165℃以下で白抜けが発生。
B:170〜175℃で白抜けが発生。
C:180〜185℃で白抜けが発生。
D:190℃で白抜けが発生。
<実施例2〜32>
表6に従いトナーを変更し、実施例1と同様に画出し評価を行った。その結果、その結果、画像欠陥の少ない良好な画像を得ることができた。評価結果を表6に示す。
<比較例1〜5>
表6に従いトナーを変更し、実施例1と同様に画出し評価を行った。その結果、画像欠陥が発生していた。評価結果を表6に示す。
Figure 0006869819
45静電潜像担持体、46帯電ローラー、47トナー担持体、48トナー供給部材、49現像器、50転写部材(転写ローラー)、51定着器、52ピックアップローラー、53転写材(紙)、54レーザー発生装置、55トナー規制部材、57トナー、59マグネット






Claims (14)

  1. 結着樹脂、着色剤、非晶性ポリエステル及び結晶性ポリエステルを含有するトナー粒子を有するトナーであって、
    該結着樹脂はビニル樹脂を含み、
    該非晶性ポリエステルは、炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットと、ジアルコールに由来するモノマーユニットと、を有し、
    該炭素数6以上12以下の直鎖脂肪族ジカルボン酸に由来するモノマーユニットの含有量が、該非晶性ポリエステルのカルボン酸由来の全モノマーユニットに対して10mol%以上50mol%以下であり、
    透過型電子顕微鏡で観察されるトナー粒子の断面において、
    該ビニル樹脂がマトリクスを構成し、該非晶性ポリエステルがドメインを構成し、
    該ドメインの内部に該結晶性ポリエステルが存在することを特徴とするトナー。
  2. 前記非晶性ポリエステルのドメインが、その内部に該結晶性ポリエステルに由来するラメラ構造を有する請求項1に記載のトナー。
  3. 前記非晶性ポリエステルのピーク分子量Mp(P)が、8000以上13000以下であり、
    前記非晶性ポリエステルの軟化点が、85℃以上105℃以下である請求項1又は2に記載のトナー。
  4. 前記非晶性ポリエステルは、炭素数のピーク値が25以上102以下の脂肪族モノカルボン酸、及び炭素数のピーク値が25以上102以下の脂肪族モノアルコールよりなる群から選ばれる少なくとも一方に由来する構造を末端に有する請求項1〜3のいずれか一項に記載のトナー。
  5. 前記非晶性ポリエステルの含有量が、前記結着樹脂100質量部に対して5.0質量部以上30.0質量部以下である請求項1〜4のいずれか一項に記載のトナー。
  6. 前記結晶性ポリエステルは、末端にラウリン酸、ステアリン酸、ベヘン酸から選ばれる酸モノマー由来の構造を持つポリエステルを主成分とする請求項1〜5のいずれか一項に記載のトナー。
  7. 前記結晶性ポリエステルの含有量が、前記結着樹脂100質量部に対して3.0質量部以上15.0質量部以下である請求項1〜6のいずれか一項に記載のトナー。
  8. 透過型電子顕微鏡で観察される前記トナー粒子の断面において、
    該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内の領域に存在する前記非晶性ポリエステルのドメインの割合が、該非晶性ポリエステルのドメインの総面積を基準として、30面積%以上70面積%以下である請求項1〜7のいずれか一項に記載のトナー。
  9. 透過型電子顕微鏡で観察される前記トナー粒子の断面において、
    該断面の輪郭から、該輪郭と該断面の中心点間の距離の50%以内の領域に存在する前記非晶性ポリエステルのドメインの割合が、該非晶性ポリエステルのドメインの総面積を基準として、80面積%以上100面積%以下である請求項1〜8のいずれか一項に記載のトナー。
  10. 透過型電子顕微鏡で観察される前記トナー粒子の断面において、
    該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%以内に存在する非晶性ポリエステルのドメインの面積が、該断面の輪郭から、該輪郭と該断面の中心点間の距離の25%〜50%に存在する非晶性ポリエステルのドメインの面積に対して、1.05倍以上である請求項1〜9のいずれか一項に記載のトナー。
  11. 前記ドメインの個数平均径が、0.3μm以上3.0μm以下である請求項1〜10のいずれか一項に記載のトナー。
  12. 前記トナーの軟化点が、110℃以上140℃以下である請求項1〜11のいずれか1項に記載のトナー。
  13. 像担持体に形成された静電潜像を現像するトナーと、
    前記トナーを担持し、前記像担持体にトナーを搬送するトナー担持体と、を有する現像装置であって、
    前記トナーが、請求項1〜12のいずれか1項に記載のトナーであることを特徴とする現像装置。
  14. 像担持体と、前記像担持体を帯電する帯電部材と、前記像担持体に形成された静電潜像を現像するトナーと、前記像担持体に当接してトナーを搬送するトナー担持体と、を有し、転写後に前記像担持体に残ったトナーを前記トナー担持体により回収する画像形成装置であって、
    前記トナーが請求項1〜12のいずれか1項に記載のトナーであることを特徴とする画像形成装置。
JP2017114060A 2016-06-30 2017-06-09 トナー、現像装置及び画像形成装置 Active JP6869819B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016130177 2016-06-30
JP2016130177 2016-06-30

Publications (2)

Publication Number Publication Date
JP2018010286A JP2018010286A (ja) 2018-01-18
JP6869819B2 true JP6869819B2 (ja) 2021-05-12

Family

ID=60662462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114060A Active JP6869819B2 (ja) 2016-06-30 2017-06-09 トナー、現像装置及び画像形成装置

Country Status (4)

Country Link
US (1) US10012919B2 (ja)
JP (1) JP6869819B2 (ja)
CN (1) CN107561883B (ja)
DE (1) DE102017114307B4 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869819B2 (ja) * 2016-06-30 2021-05-12 キヤノン株式会社 トナー、現像装置及び画像形成装置
US10303075B2 (en) 2017-02-28 2019-05-28 Canon Kabushiki Kaisha Toner
US10295920B2 (en) 2017-02-28 2019-05-21 Canon Kabushiki Kaisha Toner
US10241430B2 (en) 2017-05-10 2019-03-26 Canon Kabushiki Kaisha Toner, and external additive for toner
CN110998458A (zh) 2017-08-04 2020-04-10 佳能株式会社 调色剂
JP7091033B2 (ja) 2017-08-04 2022-06-27 キヤノン株式会社 トナー
JP2019032365A (ja) 2017-08-04 2019-02-28 キヤノン株式会社 トナー
EP3582015B1 (en) 2018-06-13 2024-02-21 Canon Kabushiki Kaisha Toner
US10732529B2 (en) 2018-06-13 2020-08-04 Canon Kabushiki Kaisha Positive-charging toner
EP3582020B1 (en) 2018-06-13 2023-08-30 Canon Kabushiki Kaisha Toner
EP3582014B1 (en) 2018-06-13 2023-08-30 Canon Kabushiki Kaisha Toner and toner manufacturing method
CN110597033A (zh) 2018-06-13 2019-12-20 佳能株式会社 调色剂和调色剂的生产方法
EP3582019B1 (en) 2018-06-13 2023-09-06 Canon Kabushiki Kaisha Magnetic toner and method for manufacturing magnetic toner
US10732530B2 (en) 2018-06-13 2020-08-04 Canon Kabushiki Kaisha Toner and method for producing toner
EP3582016B1 (en) 2018-06-13 2023-10-18 Canon Kabushiki Kaisha Toner and two-component developer
CN110597034B (zh) 2018-06-13 2024-03-19 佳能株式会社 双组分显影剂
JP7089437B2 (ja) * 2018-08-20 2022-06-22 花王株式会社 トナー用結着樹脂組成物
JP7391640B2 (ja) 2018-12-28 2023-12-05 キヤノン株式会社 トナー
JP7443048B2 (ja) 2018-12-28 2024-03-05 キヤノン株式会社 トナー
JP7207998B2 (ja) 2018-12-28 2023-01-18 キヤノン株式会社 トナー
JP7433872B2 (ja) 2018-12-28 2024-02-20 キヤノン株式会社 トナー
JP2020109499A (ja) 2018-12-28 2020-07-16 キヤノン株式会社 トナー及びトナーの製造方法
US11112712B2 (en) 2019-03-15 2021-09-07 Canon Kabushiki Kaisha Toner
JP7306008B2 (ja) 2019-03-26 2023-07-11 富士フイルムビジネスイノベーション株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP7467219B2 (ja) 2019-05-14 2024-04-15 キヤノン株式会社 トナー
JP7292978B2 (ja) 2019-05-28 2023-06-19 キヤノン株式会社 トナーおよびトナーの製造方法
JP7309481B2 (ja) 2019-07-02 2023-07-18 キヤノン株式会社 トナー
JP7379121B2 (ja) 2019-11-29 2023-11-14 キヤノン株式会社 電子写真画像形成方法および電子写真画像形成装置
JP7463086B2 (ja) 2019-12-12 2024-04-08 キヤノン株式会社 トナー
JP7475907B2 (ja) 2020-03-16 2024-04-30 キヤノン株式会社 トナー
US11809132B2 (en) 2020-03-16 2023-11-07 Canon Kabushiki Kaisha Toner
JP7415701B2 (ja) 2020-03-18 2024-01-17 コニカミノルタ株式会社 静電荷像現像用トナー
JP7435094B2 (ja) 2020-03-18 2024-02-21 コニカミノルタ株式会社 静電荷像現像用トナー

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178952B1 (en) 1984-10-19 1992-04-01 Canon Kabushiki Kaisha Toner, charge-imparting material and composition containing positively chargeable compound
US4673631A (en) 1984-12-15 1987-06-16 Canon Kabushiki Kaisha Toner, charge-imparting material and composition containing metal complex
US4886725A (en) 1984-12-19 1989-12-12 Canon Kabushiki Kaisha Toner composition containing organotin oxide
US4710443A (en) 1985-03-19 1987-12-01 Canon Kabushiki Kaisha Toner, charge-imparting material and composition containing triazine type compound
US4657838A (en) 1985-04-03 1987-04-14 Canon Kabushiki Kaisha Toner, charge-imparting material and composition containing organotin alkoxide
US4737432A (en) 1985-09-17 1988-04-12 Canon Kabushiki Kaisha Positively chargeable toner and developer for developing electrostatic images contains di-organo tin borate charge controller
US4839255A (en) 1987-03-31 1989-06-13 Canon Kabushiki Kaisha Process for producing toner for developing electrostatic images
JPH0692357B2 (ja) 1989-10-18 1994-11-16 キヤノン株式会社 グアニジン化合物およびグアニジン化合物を含有する静電荷像現像用トナー
JP2814158B2 (ja) 1990-11-30 1998-10-22 キヤノン株式会社 静電荷像現像用現像剤、画像形成装置、装置ユニット及びファクシミリ装置
US5306588A (en) 1991-03-19 1994-04-26 Canon Kabushiki Kaisha Treated silica fine powder and toner for developing electrostatic images
US5508139A (en) 1993-03-25 1996-04-16 Canon Kabushiki Kaisha Magnetic toner for developing electrostatic image
DE60301084T2 (de) 2002-05-07 2006-05-24 Canon K.K. Entwicklerträger, Entwicklungsapparatur worin dieser Entwicklerträger eingesetzt ist und Verfahrenskassette worin dieser Entwicklerträger eingesetzt ist
US7396629B2 (en) 2004-04-26 2008-07-08 Canon Kabushiki Kaisha Image forming method and image forming apparatus
WO2005106598A1 (ja) 2004-04-28 2005-11-10 Canon Kabushiki Kaisha トナー
EP1635225B1 (en) 2004-09-13 2011-04-13 Canon Kabushiki Kaisha Toner
JP4603959B2 (ja) * 2004-09-13 2010-12-22 キヤノン株式会社 トナー
EP1950614A4 (en) 2005-11-08 2013-01-09 Canon Kk TONER AND PICTURE PRODUCTION PROCESS
WO2007138912A1 (ja) 2006-05-25 2007-12-06 Canon Kabushiki Kaisha トナー
WO2008093833A1 (ja) 2007-02-02 2008-08-07 Canon Kabushiki Kaisha 二成分系現像剤、補給用現像剤及び画像形成方法
EP2157482B1 (en) 2007-06-08 2016-12-14 Canon Kabushiki Kaisha Magnetic toner
EP2071406B1 (en) 2007-06-08 2013-04-03 Canon Kabushiki Kaisha Image forming method and process unit
JP5268325B2 (ja) 2007-10-31 2013-08-21 キヤノン株式会社 画像形成方法
WO2009057807A1 (ja) 2007-10-31 2009-05-07 Canon Kabushiki Kaisha 磁性トナー
JP5284049B2 (ja) 2007-11-21 2013-09-11 キヤノン株式会社 磁性トナー
JP4739316B2 (ja) 2007-12-20 2011-08-03 キヤノン株式会社 電子写真用キャリアの製造方法及び該製造方法を用いて製造した電子写真用キャリア
JP5106308B2 (ja) 2008-03-06 2012-12-26 キヤノン株式会社 磁性キャリア及び二成分系現像剤
JP5517471B2 (ja) 2008-03-11 2014-06-11 キヤノン株式会社 二成分系現像剤
BRPI0912260A2 (pt) 2008-05-28 2015-10-06 Canon Kk tonalizador.
US8426094B2 (en) 2010-05-31 2013-04-23 Canon Kabushiki Kaisha Magnetic toner
US8614044B2 (en) 2010-06-16 2013-12-24 Canon Kabushiki Kaisha Toner
CA2807017C (en) 2010-08-05 2014-09-30 Mitsui Chemicals, Inc. Binder resin for toner, toner and method for producing the same
EP2616884B1 (en) 2010-09-16 2017-12-13 Canon Kabushiki Kaisha Toner
US9046800B2 (en) 2011-05-12 2015-06-02 Canon Kabushiki Kaisha Magnetic carrier
JP2013109135A (ja) * 2011-11-21 2013-06-06 Ricoh Co Ltd トナー及び現像剤
JP5361985B2 (ja) 2011-12-27 2013-12-04 キヤノン株式会社 磁性トナー
JP5868165B2 (ja) 2011-12-27 2016-02-24 キヤノン株式会社 現像装置及び現像方法
JP5436590B2 (ja) 2012-02-01 2014-03-05 キヤノン株式会社 磁性トナー
JP5442045B2 (ja) 2012-02-01 2014-03-12 キヤノン株式会社 磁性トナー
JP5436591B2 (ja) 2012-02-01 2014-03-05 キヤノン株式会社 磁性トナー
JP6184191B2 (ja) 2012-06-27 2017-08-23 キヤノン株式会社 トナー
JP5849992B2 (ja) * 2013-06-04 2016-02-03 コニカミノルタ株式会社 静電荷像現像用トナーおよびその製造方法
JP6102530B2 (ja) * 2013-06-04 2017-03-29 コニカミノルタ株式会社 静電荷像現像用トナーおよびその製造方法
JP6399804B2 (ja) 2013-06-24 2018-10-03 キヤノン株式会社 トナー
WO2015015791A1 (ja) 2013-07-31 2015-02-05 キヤノン株式会社 磁性トナー
CN105378566B (zh) 2013-07-31 2019-09-06 佳能株式会社 磁性调色剂
US9575425B2 (en) 2013-07-31 2017-02-21 Canon Kabushiki Kaisha Toner
CN105452965B (zh) 2013-07-31 2020-01-10 佳能株式会社 调色剂
US9285697B2 (en) 2013-08-01 2016-03-15 Canon Kabushiki Kaisha Toner
US9261806B2 (en) 2013-08-01 2016-02-16 Canon Kabushiki Kaisha Toner
JP5884796B2 (ja) 2013-09-05 2016-03-15 コニカミノルタ株式会社 静電潜像現像用トナー
JP2015121580A (ja) * 2013-12-20 2015-07-02 キヤノン株式会社 トナー
JP6231875B2 (ja) 2013-12-26 2017-11-15 キヤノン株式会社 現像装置、現像方法、画像形成装置、および画像形成方法
US9442416B2 (en) 2013-12-26 2016-09-13 Canon Kabushiki Kaisha Image-forming apparatus, image-forming method, developing apparatus, and developing method
US9348246B2 (en) 2013-12-26 2016-05-24 Canon Kabushiki Kaisha Developing apparatus, developing method, image forming apparatus and image forming method
JP6341660B2 (ja) 2013-12-26 2018-06-13 キヤノン株式会社 磁性トナー
JP6410593B2 (ja) 2013-12-26 2018-10-24 キヤノン株式会社 磁性トナー
US9304422B2 (en) 2013-12-26 2016-04-05 Canon Kabushiki Kaisha Magnetic toner
JP6391458B2 (ja) 2013-12-26 2018-09-19 キヤノン株式会社 現像装置、現像方法、画像形成装置、および画像形成方法
US9354545B2 (en) 2013-12-26 2016-05-31 Canon Kabushiki Kaisha Developing apparatus, developing method, image-forming apparatus, and image-forming method
JP5983650B2 (ja) 2014-02-13 2016-09-06 コニカミノルタ株式会社 静電荷像現像用トナー
TWI536129B (zh) * 2014-03-04 2016-06-01 Fuji Xerox Co Ltd Electrostatic charge developing toner, electrostatic charge developer, toner cartridge, processing cartridge
JP6137004B2 (ja) * 2014-03-18 2017-05-31 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6331640B2 (ja) * 2014-04-18 2018-05-30 コニカミノルタ株式会社 画像形成方法
US9470993B2 (en) 2014-08-07 2016-10-18 Canon Kabushiki Kaisha Magnetic toner
US9778583B2 (en) 2014-08-07 2017-10-03 Canon Kabushiki Kaisha Toner and imaging method
US9772570B2 (en) 2014-08-07 2017-09-26 Canon Kabushiki Kaisha Magnetic toner
US9606462B2 (en) 2014-08-07 2017-03-28 Canon Kabushiki Kaisha Toner and method for manufacturing toner
JP6123762B2 (ja) 2014-09-08 2017-05-10 コニカミノルタ株式会社 静電荷像現像用トナーおよびその製造方法
US9857707B2 (en) 2014-11-14 2018-01-02 Canon Kabushiki Kaisha Toner
JP6486181B2 (ja) * 2014-11-28 2019-03-20 キヤノン株式会社 画像形成装置、プロセスカートリッジおよび画像形成方法
US9658546B2 (en) 2014-11-28 2017-05-23 Canon Kabushiki Kaisha Toner and method of producing toner
JP6716273B2 (ja) 2015-03-09 2020-07-01 キヤノン株式会社 トナー
US20160378003A1 (en) 2015-06-29 2016-12-29 Canon Kabushiki Kaisha Magnetic toner, image forming apparatus, and image forming method
US20170123333A1 (en) 2015-10-28 2017-05-04 Canon Kabushiki Kaisha Toner
JP6991701B2 (ja) 2015-12-04 2022-01-12 キヤノン株式会社 トナー
JP6768423B2 (ja) 2015-12-04 2020-10-14 キヤノン株式会社 トナーの製造方法
DE102016116610B4 (de) 2015-12-04 2021-05-20 Canon Kabushiki Kaisha Toner
US10228627B2 (en) 2015-12-04 2019-03-12 Canon Kabushiki Kaisha Toner
JP6869819B2 (ja) * 2016-06-30 2021-05-12 キヤノン株式会社 トナー、現像装置及び画像形成装置

Also Published As

Publication number Publication date
JP2018010286A (ja) 2018-01-18
DE102017114307A1 (de) 2018-01-04
US20180004106A1 (en) 2018-01-04
CN107561883B (zh) 2021-04-20
US10012919B2 (en) 2018-07-03
CN107561883A (zh) 2018-01-09
DE102017114307B4 (de) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6869819B2 (ja) トナー、現像装置及び画像形成装置
JP7102580B2 (ja) トナー、該トナーを備えた現像装置、画像形成装置およびトナーの製造方法
JP6891051B2 (ja) トナー、現像装置、及び画像形成装置
JP7005220B2 (ja) トナー
US10578990B2 (en) Toner
KR101665508B1 (ko) 전자사진용 토너 및 그의 제조방법
US20060292473A1 (en) Electrostatic latent image developing toner
JP5495685B2 (ja) トナー
JP2008015230A (ja) トナー
JP4533061B2 (ja) トナー
JP6794154B2 (ja) トナー、及び該トナーを備えた現像装置
JP2010282146A (ja) トナー
JP6762780B2 (ja) トナー、及び現像装置
JP2009271173A (ja) 静電荷像現像用トナー及びその製造方法、静電荷像現像剤、画像形成方法、並びに、画像形成装置
JP6896545B2 (ja) トナー
JP2019032465A (ja) 磁性トナー
JP2018004877A (ja) トナー、及び該トナーを備えた現像装置
JP6987614B2 (ja) トナー、現像装置および画像形成装置
JP6827862B2 (ja) トナー
JP2018004894A (ja) トナー、現像装置
JP6921682B2 (ja) トナー
JP5317663B2 (ja) トナー
JP6929759B2 (ja) トナー
JP2018004893A (ja) トナー、現像装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210414

R151 Written notification of patent or utility model registration

Ref document number: 6869819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151