JP6681400B2 - オプトエレクトロニクス部品 - Google Patents

オプトエレクトロニクス部品 Download PDF

Info

Publication number
JP6681400B2
JP6681400B2 JP2017531552A JP2017531552A JP6681400B2 JP 6681400 B2 JP6681400 B2 JP 6681400B2 JP 2017531552 A JP2017531552 A JP 2017531552A JP 2017531552 A JP2017531552 A JP 2017531552A JP 6681400 B2 JP6681400 B2 JP 6681400B2
Authority
JP
Japan
Prior art keywords
barrier layer
layer
indium
optoelectronic component
quantum film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017531552A
Other languages
English (en)
Other versions
JP2018500762A (ja
Inventor
クリストフ アイヒラー
クリストフ アイヒラー
アドリアン シュテファン アヴラメスク
アドリアン シュテファン アヴラメスク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of JP2018500762A publication Critical patent/JP2018500762A/ja
Application granted granted Critical
Publication of JP6681400B2 publication Critical patent/JP6681400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、特許請求項1に記載のオプトエレクトロニクス部品に関する。
この特許出願は、独国特許出願第10 2015 100 029.6号の優先権を主張し、その開示は、参照により本明細書に組み込まれている。
先行技術は、電磁放射を生成するための能動ゾーンを備えるオプトエレクトロニクス部品を開示しており、ここでは、能動ゾーンが、障壁層により互いに離間している量子膜を含む。
本発明の目的は、改善したオプトエレクトロニクス部品を提供することである。
本発明の目的は、特許請求項1に記載の部品により達成される。
さらなる実施形態を、従属請求項において特定する。
説明する部品の利点は、電子および正孔でより均一に満たされた量子膜が得られるという事実にある。結果として、光波のより大きな増幅を実現することができる。さらに、ポンピングされていない量子膜による吸収が減少する。結果として、レーザしきい値が低下する、ここでは、レーザ特性の勾配を改善する。さらに、動作電流が減少し、オプトエレクトロニクス部品の効率が向上する。これが、より高い出力パワーおよびより長い使用可能寿命を容易にする。
これらの利点は、電磁放射を生成するための能動ゾーンを構成したオプトエレクトロニクス部品により得られ、ここでは、能動ゾーンが少なくとも2つの量子膜を含み、第1の量子膜が第1の障壁層と第2の障壁層との間に配置され、第2の量子膜が第2の障壁層と最後の障壁層との間に配置され、各障壁層がバンドギャップを有し、第1の障壁層および第2の障壁層のバンドギャップが第2の障壁層および第3の障壁層のバンドギャップとは互いに異なるように関係する。
さらなる実施形態では、第1の障壁層のバンドギャップおよび第2の障壁層のバンドギャップが、ほぼ等しい大きさのものであり、特に、最後の障壁層が、第2の障壁層よりも大きなバンドギャップを有する。これが、電気光学特性のさらなる改善を実現する。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも大きなバンドギャップを有し、第2の障壁層が、最後の障壁層よりも小さなバンドギャップを有し、第1の障壁層が、最後の障壁層よりも小さなバンドギャップを有する。これもまた、オプトエレクトロニクス特性の改善を実現する。
さらなる実施形態では、第2の障壁層が、第1の障壁層および最後の障壁層よりも高いドーピングを含み、特に、第1の障壁層が、最後の障壁層よりも高いドーピングを含む。これは、オプトエレクトロニクス特性のさらなる改善を実現できる。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも大きなバンドギャップを有し、第2の障壁層が、最後の障壁層よりも小さなバンドギャップを有し、第1の障壁層のバンドギャップが、最後の障壁層のバンドギャップ以上の大きさである。これが、オプトエレクトロニクス特性の改善を実現する。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも小さなバンドギャップを有し、第2の障壁層が、最後の障壁層よりも小さなバンドギャップを有する。これが、オプトエレクトロニクス特性の改善を実現する。
さらなる実施形態では、第1の障壁層および/または第2の障壁層が、最後の障壁層よりも高いドーピングを含み、特に、第1の障壁層のドーピングおよび第2の障壁層のドーピングが、ほぼ等しい大きさのものである。これが、オプトエレクトロニクス特性のさらなる改善を実現する。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも小さなバンドギャップを有する。
さらなる実施形態では、第2の障壁層が、最後の障壁層よりも小さなバンドギャップを有する。
さらなる実施形態では、第1の障壁層が、nコンタクト側に配置され、第2の障壁層よりも小さなバンドギャップを有する。第2の障壁層が、2つの量子膜の間に配置される。最後の障壁層が、第2の量子膜に隣接するpコンタクト側に配置される。
1つの実施形態では、第2の障壁層が、第1の障壁層よりも小さなバンドギャップを有する。これが、オプトエレクトロニクス特性の改善を実現する。
さらなる実施形態では、第2の障壁層のバンドギャップおよび最後の障壁層のバンドギャップが、ほぼ等しい大きさのものである。これもまた、優れたオプトエレクトロニクス特性を容易にする。
さらなる実施形態では、最後の障壁層が、第2の障壁層以下のバンドギャップを有する。これが、オプトエレクトロニクス特性のさらなる改善を実現する。
さらなる実施形態では、障壁層内のバンドギャップが、障壁層の厚さに沿って階段状にまたは増加する値で構成される。これは、オプトエレクトロニクス特性のさらなる最適化を実現させることができる。
さらなる実施形態では、障壁層内のバンドギャップが、障壁層の厚さに沿って階段状にまたは減少する値もしくは増加する値で構成される。これは、オプトエレクトロニクス特性のさらなる改善を実現させることができる。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも低い電気的ドーピングを含む。これが、オプトエレクトロニクス特性のさらなる改善に役立つ。
さらなる実施形態では、第2の障壁層が、最後の障壁層よりも高い電気的ドーピングを含む。これもまた、部品のオプトエレクトロニクス特性を改善する。
さらなる実施形態では、第1の障壁層が、第2の障壁層以下の電気的ドーピングを含む。これもまた、部品のオプトエレクトロニクス特性のさらなる改善を実現させることができる。
さらなる実施形態では、第2の障壁層が、最後の障壁層以上の電気的ドーピングを含む。これは、オプトエレクトロニクス特性のさらなる改善を実現させることができる。
さらなる実施形態では、障壁層内の電気的ドーピングが、障壁層の厚さに沿って階段状にまたは増加する値で構成される。これは、オプトエレクトロニクス特性のさらなる最適化に役立つことができる。
さらなる実施形態では、電気的ドーピングが、障壁層の端部領域の方向に減少する曲線の形態で、障壁層の中心に対して対称に構成される。これは、部品のオプトエレクトロニクス特性のさらなる最適化を実現させることができる。
さらなる実施形態では、第1の障壁層が、第1の導波路層と第1の量子膜との間に配置される。さらに、最後の障壁層が、第2の量子膜と第2の導波路層との間に配置される。さらに、第1の導波路層が、第2の導波路層よりも小さなバンドギャップを有する。これもまた、オプトエレクトロニクス特性のさらなる改善を実現する。
さらなる実施形態では、第1の障壁層が、第2の障壁層よりも大きなバンドギャップを有し、第2の導波路層が、最後の障壁層よりも小さなバンドギャップを有する。これもまた、オプトエレクトロニクス特性のさらなる改善を実現させることができる。
さらなる実施形態では、第2の障壁層が、第1の障壁層および/または最後の障壁層よりも大きな厚さを有する。これもまた、オプトエレクトロニクス特性のさらなる改善を実現させることができる。
さらなる実施形態では、第2の量子膜と最後の障壁層との間の少なくとも1つのさらなる量子膜が提供される。第2の量子膜とさらなる量子膜との間のさらなる第2の障壁層が提供される。最後の障壁層が、さらなる量子膜に隣接する。このようにして、複数の量子膜を有する能動ゾーンもまた、改善したオプトエレクトロニクス特性を有することができる。
さらなる第2の障壁層を、第2の障壁層にしたがってまたは最後の障壁層にしたがって構成することができる。さらに、さらなる第2の障壁層は、第2の障壁層の値と最後の障壁層の値との間になるバンドギャップおよび/または電気的ドーピングに関する値を含むことができる。
さらに、複数の第2の障壁層を、選択する実施形態に応じて設けることができ、前記複数の第2の障壁層が、第2の障壁層もしくは最後の障壁層にしたがって構成される、または前記複数の第2の障壁層が、第2の障壁層の値と最後の障壁層の値との間になるバンドギャップおよび/もしくは電気的ドーピングに関する値を含む。
この発明の上記の特性、特徴および利点ならびにこれらを実現する方法は、例示的な実施形態の下記の説明に関連してより明らかになり、さらに容易に理解できるようになり、これらの例示的な実施形態を、図面に関連してより詳細に説明する。
2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品の様々な実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaN材料系から形成され、インジウム濃度および電気的ドーピングを、オプトエレクトロニクス部品の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaAlN材料系から形成され、インジウム濃度およびアルミニウム濃度ならびに電気的ドーピングを、オプトエレクトロニクス部品の一部分の厚さにわたってプロットしている。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図であり、ここでは、部品の少なくとも一部分が、InGaAlN材料系から形成され、インジウム濃度およびアルミニウム濃度ならびに電気的ドーピングを、オプトエレクトロニクス部品の一部分の厚さにわたってプロットしている。 オプトエレクトロニクス部品のさらなる実施形態の図である。 3つの量子膜を備えるオプトエレクトロニクス部品のインジウム濃度および電気的ドーピングの曲線の概略図である。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図である。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図である。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図である。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図である。 2つの量子膜を備えるオプトエレクトロニクス部品のさらなる実施形態の図である。 オプトエレクトロニクス部品の部分断面のさらなる実施形態の図であり、ここでは、第1の障壁層のバンドギャップおよび第2の障壁層のバンドギャップがほぼ等しい大きさのものである。 部品のさらなる実施形態の図であり、ここでは、第2の障壁層が、第1の障壁層および最後の障壁層よりも小さなバンドギャップを有する。 オプトエレクトロニクス部品のさらなる実施形態の図であり、ここでは、第1の障壁層のドーピングおよび第2の障壁層のドーピングがほぼ等しい大きさのものである。 オプトエレクトロニクス部品のさらなる実施形態の図であり、ここでは、最後の障壁が第2の障壁よりも小さいバンドギャップを有し、第2の障壁が第1の障壁よりも小さいバンドギャップを有する。
下記の説明は、少なくとも一部が半導体材料から構成されているオプトエレクトロニクス部品に関する。InGaN材料系およびInGaAlN材料系に関する例を下記に説明する。しかしながら、説明するオプトエレクトロニクス部品の利点は、これらの材料系に限定されず、代わりに、これらの利点を、他の半導体材料を使用して実現することもできる。インジウム濃度またはアルミニウム濃度8を実線により描いている。正または負の電気的ドーピング9を、破線の形態で描いている。
図1は、特に、半導体レーザとしてまたは半導体ダイオードとして構成されたオプトエレクトロニクス部品の層構造の部分断面の概略図を示している。部品の描かれた部分断面は、部品の厚さにわたってIn含有量が変化するInGaN材料系から形成されている。
層構造の厚さにわたって、図1は、実線によりインジウム含有量の濃度8を、および破線により電気的ドーピング9の濃度を特定している。インジウム含有量をパーセントとして特定し、電気的ドーピングを1×1018/cmの単位で特定している。InGaN材料系またはAlInGaN材料系では、負の電気的ドーピングが、例えば、シリコンを用いて得られる。InGaN材料系またはAlInGaN材料系では、正の電気的ドーピングが、例えば、マグネシウムを用いて得られる。InGaN材料系の価電子帯と伝導帯との間のバンドギャップは、インジウム含有量が増加するにつれて小さくなる。AlInGaN材料系の価電子帯と伝導帯との間のバンドギャップは、アルミニウム含有量が増加するにつれて大きくなる。
層構造の図を概略的に再現する:すなわち、さらなる層または追加の層を、個々の描かれた層の間に設けることができる。さらに、オプトエレクトロニクス部品の一部分だけが描かれ、そのためさらなる層を、描かれた積層体の両側に設けることができる。これらの説明は、さらなる図2から図19にもまた関係する。
オプトエレクトロニクス部品は、第1の導波路層1を含む。第1の導波路層1をnコンタクト側に配置する。第1の障壁層2が第1の導波路層1の後に続く。第1の量子膜3が第1の障壁層2に続く。第2の障壁層4が第1の量子膜3に続く。第2の量子膜5が第2の障壁層4に続く。最後の障壁層6が第2の量子膜5に続く。p側に配置される第2の導波路層7が最後の障壁層6に続く。選択する実施形態に応じて、描かれた層は、互いに直接隣接することがある、またはさらなる層を描かれた層の間に配置することもできる。層をオプトエレクトロニクス部品の層厚さdにわたってプロットし、ここでは、相互の関係で層の厚さを実際の正確な縮尺では描いていない。さらに、層が互いの上に成長する成長方向が第1の導波路層1から第2の導波路層7の方向に延びるように、層を配置する。
本発明の発想は、少なくとも2つの量子膜3、5が電子および正孔でより均一に満たされるように非対称的に、能動ゾーン、すなわち能動ゾーンの障壁層2、4、6を設計することにある。光波のより大きな増幅を、電子および正孔で量子膜をより均一に満たすことにより促進し、ここでは、ポンピングされていない量子膜による吸収が減少する。結果として、レーザしきい値を低くすることおよびレーザ特性の勾配の改善を実現する。さらに、動作電流を減少させ、オプトエレクトロニクス部品の効率を高める。さらに、より大きな出力パワーが可能であり、同時に、使用可能寿命の延長を伴う。第1の障壁層2は、低電気的ドーピングからドーピングなしでもよい。ここで、例えば、第1の障壁層2の電気的ドーピングを、6×1018/cm未満、例えば、2×1018/cm未満、または1×1018/cm未満とすることができる。さらに、第1の障壁層2は、小さなバンドギャップ、すなわち、3%と20%との間、好ましくは5%と12%との間、特に好ましくは7%と10%との間である高インジウム濃度とすることができる。さらに、第1の障壁層2の厚さが、0.5nmと20nmとの間、例えば、2nmと15nmとの間の範囲内になることがある。さらに、第1の障壁層の厚さは、4nmと10nmとの間になることもある。
2つの量子膜3、5の間に配置されている第2の障壁層4の電気的ドーピングも同様に高くすることができる。ここで、電気的ドーピングは、1×1018/cmと3×1019/cmとの間になることがある。さらに、電気的ドーピングは、4×1018/cmと20×1018/cmとの間になることがある。特に好ましくは、第2の障壁層4の電気的ドーピングは、5×1018/cmと10×1018/cmとの間になることがある。第2の障壁層4は、第1の障壁層2よりも大きなバンドギャップ、すなわち少ないインジウムを有することがある。さらに、第2の障壁層4は、それどころかより大きなバンドギャップを有することがある、すなわち、インジウムがほとんどないまたはなくてもよい。例として、第2の障壁層4のインジウム含有量は、6%よりも少なくなる、好ましくは3%よりも少なくなる、特に好ましくは0.5%よりも少なくなる。さらに、それどころか、インジウムが第2の障壁層4内に全く存在しないことがある。
第1の障壁層2、第2の障壁層4、および最後の障壁層6を、インジウム含有量が対応する障壁層内でどれだけ高いかに応じて、窒化インジウムガリウムまたは窒化ガリウムから形成する。第2の障壁層4の厚さは、0.5nmと20nmとの間、好ましくは4nmと15nmとの間、特に好ましくは6nmと11nmとの間の範囲内であってもよい。
最後の障壁層6内では。電気的ドーピングを、2×1019/cm未満、好ましくは4×1018/cm未満、特に好ましくは1×1018/cm未満の近くにすることができる、または最後の障壁層をアンドープとすることができる。さらに、最後の障壁層6のバンドギャップは大きい、すなわちインジウムがほとんどないからインジウムがないまでであり、ここでは、インジウム濃度は、6%よりも低い、好ましくは3%よりも低い、特に好ましくは5%よりも低く0%になってもよく、その結果、最後の障壁層6を窒化ガリウムから構成することができる。最後の障壁層の厚さは、0.5nmと20nmとの間、好ましくは4nmと12nmとの間、特に好ましくは6nmと10nmとの間の範囲内になってもよい。
第1の障壁層2、第2の障壁層4、および最後の障壁層6の電気的ドーピングは、n伝導性であり、ここでは、例えば、シリコン、酸素またはゲルマニウムをドーパントとして使用することができる。優れたオプトエレクトロニクス特性を、相対的に小さなバンドギャップ、すなわち、相対的に高いインジウム濃度を有する第1の障壁層2により実現し、ここでは、第2の障壁層4および最後の障壁層6が、より大きなバンドギャップ、すなわち、より低いインジウム濃度またはゼロインジウム濃度を有する。さらに、第1の障壁層2の電気的ドーピングを、第2の障壁層4の電気的ドーピング以下とすることができる。さらに、第3の障壁層の電気的ドーピングは、第2の障壁層の電気的ドーピングおよび/または第1の障壁層の電気的ドーピング未満である。さらに、第2の障壁層4は、厚さに関して、第1の障壁層2よりも厚い構成であってもよい。2つよりも多くの量子膜3、5が提供される場合には、追加の障壁層を、選択する実施形態に応じた方法で第2の障壁層4にしたがって構成することができる。
さらに、インジウム濃度に関連して、電気的ドーピング、層厚さ、および/またはアルミニウム濃度に関連して、さらなる障壁層を、第2の障壁層4の対応する値と最後の障壁層6の対応する値との間の値にしたがって構成することができる。
第1の導波路層1は、インジウムを含まない。例として、第1の障壁層2のインジウム濃度は、10%の近くである。第1の量子膜3のインジウム濃度は、20%の近くである。第2の障壁層4のインジウム濃度は、5%の近くになる。第2の量子膜5のインジウム濃度は、20%の近くになる。最後の障壁層6のインジウム濃度は、2から4%の範囲内になる。第2の導波路層7のインジウム濃度は、ゼロである。第1の導波路層1の電気的ドーピングは、2×1018/cmの近くになる。第1の障壁層2の電気的ドーピングは、5×1018/cmの近くになる。第1の量子膜3は、電気的ドーピングを含まない。第2の障壁層4の電気的ドーピングは、5×1018/cmの近くになる。第2の量子膜5は、電気的ドーピングを含まない。最後の障壁層6は、電気的ドーピングを含まない。第2の導波路層7は、同様にアンドープである。量子膜3、5中への電荷キャリアの注入の改善を、n側のインジウム濃度がp側の障壁のインジウム濃度と比較してより高いことの結果として実現する。特に、注入はより均一である。
図2は、図1と同じ層構造を示し、しかしながら、第1の導波路層1のインジウム濃度8は、図1の層構造とは対照的に、4%の近くである。さらに、最後の障壁層6のインジウム濃度8は、0%の近くになる。さらに、第2の導波路層7のインジウム濃度8は、4%の近くになる。インジウム濃度8を、実線を使用して描いている。電気的ドーピング9を、破線の形態で描いている。導波の改善を、インジウムの提供により、または窒化インジウムガリウムの形態の第1の導波路層1および第2の導波路層7の構成により実現する。さらなる層は、図1にしたがった対応する構造および電気的ドーピングを有する。
電荷キャリアの注入の改善、特に第1の量子膜3中へのおよび第2の量子膜5中への電荷キャリアのより均一な注入を、第2の障壁層4および第3の障壁層6と比較して第1の障壁層2内のより小さなバンドギャップ、すなわちより高いインジウム濃度の結果としてこの実施形態でも実現している。
図3は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、層の電気的ドーピング9を、図1および図2にしたがって構成する、しかしながら、第1の導波路層1のインジウム濃度8は、図2と比較して、2%の近くである。さらに、第2の障壁層4は、インジウムを含まない。同様に、最後の障壁層6は、インジウムを含まない。第1の障壁層2のインジウム濃度8は、8%の近くになる。さらに、第2の導波路層7のインジウム濃度8は、同様に2%の近くになる。この実施形態では、第1の障壁層2を、窒化インジウムガリウムから形成し、第2の障壁層4および最後の障壁層6を、窒化ガリウムから形成する。これもまた、量子膜3、5中への電荷キャリアの注入の改善またはより均一な注入を実現する。窒化インジウムガリウムを用いて導波路1、7を構成することの結果として、光モードの導波の改善を容易にする。
図4は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の障壁層2、第1の量子膜3、第2の障壁層4、および最後の障壁層6のインジウム濃度8を図3にしたがって構成する。図3とは対照的に、第1の導波路層1および第2の導波路層7は、インジウムを含まない。さらに、図3の実施形態に関連して電気的ドーピング9は、第1の障壁層に関しては低い構成であり、2×1018/cmから3×1018/cmの近くになる。さらに、第2の障壁層4のドーピング9は、5×1018/cm〜6×1018/cmになる。したがって、より低いドーピングが第1の障壁層2には存在し、ここでは、第2の障壁層4は、より高いまたは高ドーピングを含む。これが、量子膜3、5間の電荷キャリア分布の改善を実現する。
図5は、図4の実施形態に実質的に対応するオプトエレクトロニクス部品の実施形態を示す、しかしながら、第1の導波路層1および第2の導波路層7を、図4の実施形態とは対照的に窒化インジウムガリウムで構成し、第1の導波路層内のインジウム濃度8は、4%の近くになり、第2の導波路層のインジウム濃度8は、同様に4%の近くになる。第1の導波路層1および第2の導波路層7の電気的ドーピング9は、図4の実施形態の電気的ドーピング9に対応する。さらに、第2の障壁層4の電気的ドーピング9は、図4の実施形態よりも高く、8×1018/cmの近くになる。さらに、2×1018/cmの近くの第1の障壁層2の低電気的ドーピング9が、もう一度存在し、ここでは、第2の障壁層4は、8×1018/cmの近くの非常に高い電気的ドーピングを含む。結果として、量子膜3、5間の電荷キャリア分布のさらなる改善を実現する。
図6は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の障壁層2が、低電気的ドーピングを含むまたは電気的ドーピング9を含まない。電気的ドーピングは、1×1018/cmよりも低くなる。第2の障壁層4の電気的ドーピングは、7×1018/cmよりも高くなる。描かれた例では、第2の障壁層4の電気的ドーピング9は、8×1018/cmの近くになる。第1の導波路層1および第2の導波路層7は、窒化インジウムガリウムで構成され、2%の近くのインジウム濃度8を含む。さらに、第2の障壁層4の構成は、第1の障壁層2および/または最後の障壁層6よりも厚い。例として、第2の障壁層4は、5%だけ、好ましくは10%だけ、特に20%以上第1の障壁層および/または最後の障壁層よりも厚い厚さを含むことができる。部品の高温特性の改善を、このようにして実現する。
図7は、描かれた部分断面ではAlInGaN材料系から構築されているオプトエレクトロニクス部品の概略図を示し、ここでは、個々の層がインジウムおよび/またはアルミニウムを含む。インジウム濃度またはアルミニウム濃度を、実線8により、値0から出て、インジウム含有量を上向き方向に描き、そして値0から出て、アルミニウム含有量を下向き方向に描くように描いている。さらに、個々の層についての電気的ドーピング9を特定している。
第1の障壁層2は、10%の近くの高インジウム濃度を有する。第2の障壁層4および最後の障壁層6のアルミニウム濃度は、2.5%の近くである。言い換えれば、第2の障壁層4および最後の障壁層6を、窒化アルミニウムガリウムから形成する。これが、電荷キャリア注入の改善を実現する。第1の導波路層1は、インジウムを含まず、窒化ガリウムから構成される。第1の量子膜3のインジウム濃度は、20%の近くである。第2の量子膜5のインジウム濃度は、20%の近くである。第2の導波路層7は、アルミニウムもインジウムも含まない。第1の導波路層のドーピングは、3×1018/cmの近くである。第1の障壁層および第1の量子膜3は、事実上電気的ドーピングがない。第2の障壁層4のドーピングは、6×1018/cmの近くである。第2の量子膜5、最後の障壁層6および第2の導波路層7は、低電気的ドーピングであるまたは電気的ドーピングがない。
図8は、描かれた部分断面ではAlInGaN材料系から形成されているオプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の導波路層1が窒化アルミニウムガリウムから構成され、20%アルミニウムの濃度を有する。第1の障壁層2は、同様に窒化アルミニウムガリウムから構成され、10%アルミニウムの濃度を有する。第1の量子膜3を、窒化ガリウムから形成する。第2の量子膜5を、同様に窒化ガリウムから形成する。第2の障壁層4は、窒化アルミニウムガリウムを含み、ここでは、アルミニウム含有量が20%の近くになる。最後の障壁層6は、同様に窒化アルミニウムガリウムを含み、ここでは、アルミニウム含有量が20%になる。第2の導波路層7は、同様に窒化アルミニウムガリウムを含み、ここでは、アルミニウム含有量が19%の近くになる。第1の導波路層1の電気的ドーピングは、8×1018/cmの近くである。第1の障壁層2のドーピングは低く、1×1018/cmの近くまたはこれよりも低くなる。第1の量子膜3および第2の量子膜5は、実質的に電気的ドーピングを含まない。第2の障壁層4の電気的ドーピングは、10×1018/cmの近くになる。最後の障壁層6および第2の導波路層7は、低電気的ドーピングであるまたは電気的ドーピングがない。例として、この実施形態は、窒化ガリウム量子膜を有する紫外線半導体レーザを構成するために適している。n側の第1の障壁層2は、ほとんどアルミニウムを含まず;第2の障壁層4および最後の障壁層6は、より高いアルミニウム濃度を有する。これが、第1の量子膜および第2の量子膜への電荷キャリアの注入の改善、特に電荷キャリアの均一な注入を容易にする。さらに、量子膜3、5内の電荷キャリア分布の改善を、第1の障壁層2の低ドーピングからドーピングなしにより、そして第2の障壁層4内の高ドーピングにより実現する。
図9は、例えば、窒化インジウムガリウム障壁を有する緑色半導体レーザを構成するために適しているオプトエレクトロニクス部品のさらなる実施形態を示している。第1の導波路層1は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が5%の近くになる。第1の障壁層2は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が15%になる。第1の量子膜3は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が30%になる。第2の障壁層4は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が5%になる。第2の量子膜5は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が30%になる。最後の障壁層6は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が5%になる。第2の導波路層7は、窒化インジウムガリウムを含み、ここでは、インジウム含有量が6%になる。さらに、第1の導波路層1の電気的ドーピングは、3×1018/cmの近くであり、あたかも第1の量子膜3のように、第1の障壁層2は低ドーピングを含む、または、ドーピングを含まない。第2の障壁層4の電気的ドーピングは、7×1018/cmの近くである。第2の量子膜5、最後の障壁層6および第2の導波路層7は、低電気的ドーピングである、または、電気的ドーピングがない。高いインジウム含有量を有するn側第1の障壁層2ならびに第1の障壁層2よりも低いインジウム含有量を有する窒化インジウムガリウムを用いて中央障壁層4および最後の障壁層6を構成する結果として、電荷キャリアの注入の改善を容易にする。さらに、第1の障壁層2の低ドーピングからドーピングなし、および、第2の障壁層4のより高いドーピングから高ドーピングが、量子膜3、5間の電荷キャリア分布の改善を確実にする。
図10は、図9の実施形態と実質的に同じ構成を有するオプトエレクトロニクス部品のさらなる実施形態を示す、しかしながら、さらに、第2の障壁層10および第3の量子膜11が提供される。さらなる第2の障壁層10を、第2の量子膜5と第3の量子膜11との間に配置する。最後の障壁層6が第3の量子膜11に続く。さらなる第2の障壁層10は、第2の障壁層4と実質的に同じ構成を有する。選択する実施形態に応じて、さらなる第2の障壁層10の構成もまた、第2の障壁層4とは異なることがある。インジウム濃度および/もしくはアルミニウム濃度ならびに/または電気的ドーピングに関する限りでは、さらなる第2の障壁層10は、第2の障壁層4と同様の値または第2の障壁層4の値と最後の障壁層6の値との間の値を有することができる。第1の導波路層1のインジウム含有量は、あたかも第2の導波路層7のインジウム含有量のように、1%の近くになる。第1の障壁層2のインジウム含有量は、10%の近くになる。第2の障壁層4、さらなる第2の障壁層10および最後の障壁層6のインジウム含有量は、0%の近くになる。n側第1の障壁層2を多くのインジウムで、そして残りの障壁層をほとんどインジウムなしで、特に窒化ガリウムだけで構成することは、電荷キャリアの注入の改善を確実にする。さらに、第1の障壁層2の低ドーピングからドーピングなし、ならびに、第2の障壁層4、および、さらなる第2の障壁層10のより高いドーピング、特に高ドーピングは、量子膜3、5、11間の電荷キャリア分布の改善をもたらす。窒化インジウムガリウムを用いて第1の導波路層および第2の導波路層を構成することは、導波の改善を確実にする。
図10にしたがった対応する配置は、3つよりも多くの量子膜およびさらなる第2の障壁層を含むこともできる。ここで、さらなる第2の障壁層を、さらなる第2の障壁層10にしたがって構成することができる。
図11は、さらなる実施形態を示し、ここでは、第1の導波路層1のインジウム濃度8が1%の近くであり、第1の障壁層2のインジウム濃度が9%の近くであり、第1の量子膜3のインジウム濃度が20%の近くであり、第2の障壁層4のインジウム濃度が0%であり、第2の量子膜5のインジウム濃度が20%であり、最後の障壁層6のインジウム濃度が0%であり、そして第2の導波路層7のインジウム濃度が1%である。さらに、第1の導波路層1の電気的ドーピングは、3×1018/cmの近くであり、そして第1の量子膜3、第2の量子膜5、最後の障壁層6、および第2の導波路層7は、低電気的ドーピング9を含む、または、電気的ドーピング9を含まない。さらに、第1の障壁層2の電気的ドーピングは、2×1018/cmの近くであり、ここでは、電気的ドーピングが、第1の障壁層2の中心に対して中心対称に配置され、第1の障壁層2の端部領域から所定の距離のところで値0まで低下する。第2の障壁層4のドーピングは、8×1018/cmの近くである。
この実施形態では、第2の障壁層4内の電気的ドーピングを、第2の障壁層4の中心に対して中心対称に配置し、ここでは、電気的ドーピングが、第2の障壁層4の端部領域から設定した距離のところで値0まで低下する。電気的ドーピングの階段状低下の代わりに、第1の障壁層2または第2の障壁層4の端部領域の方向に電気的ドーピングが減少する曲線が提供されてもよい。高インジウム濃度を有するn側第1の障壁層2の構成ならびに窒化ガリウムを用いた第2の障壁層4および最後の障壁層6の構成により、電荷キャリアの注入の改善がもたらされる。さらに、第1の障壁層2の低ドーピングからドーピングなし、ドーピングの中心対称曲線分布を有する第2の障壁層4の高ドーピングは、電荷キャリア分布の改善を確実にする。さらに、第2の障壁層4の厚さを、第1の障壁層および/または最後の障壁層6よりも厚くすることができる。これが、部品の高温特性の改善に役立つ。
図12は、オプトエレクトロニクス部品のさらなる実施形態を示す。第1の導波路層1は、1%の近くの低インジウム濃度8を有する。第1の障壁層2のインジウム濃度は、8%の近くから10%まで第1の量子膜3の方向に階段状に増加する。第1の量子膜3のインジウム濃度は、20%である。第2の障壁層4および最後の障壁層6は、インジウムを含まないが、代わりに窒化ガリウムから形成される。第2の量子膜5のインジウム濃度は、20%の近くである。第2の導波路層7は、1%の近くの低インジウム濃度を有する。さらに、第1の導波路層1の電気的ドーピング9は、2×1018/cmの近くである。第1の障壁層2は、低電気的ドーピングである、または、電気的ドーピングがない。同じことが第1の量子膜3および第2の量子膜5にも当てはまる。第2の障壁層4の電気的ドーピングは、8×1018/cmの近くになる。n側第1の障壁層2が高インジウム濃度を有する多段構成を有し、第2の障壁層4および最後の障壁層6が窒化ガリウムから構成されるので、電荷キャリアの注入の改善がもたらされる。電荷キャリア分布の改善を、第1の障壁層2の低ドーピングからドーピングなしにより、そして第2の障壁層4内の高電気的ドーピングにより容易にする。さらに、部品の高温特性の改善を、第1の障壁層および最後の障壁層6と比較して第2の障壁層4のより厚い構成により容易にする。
図13は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の導波路層1が、1%の近くの低インジウム濃度8を含み、窒化インジウムガリウムから形成される。第1の障壁層2は、同様に窒化インジウムガリウムから形成され、ここではインジウム含有量が9%の近くになる。量子膜3、5は、窒化インジウムガリウムを各々含み、インジウム含有量が20%の近くになる。第2の障壁層4のインジウム含有量8は、3%から8%の近くであり、ここでは、インジウム含有量が第2の量子膜5の方向に階段状に増加する。最後の障壁層6は、低インジウム含有量である、または、インジウム含有量がない、例えば、窒化ガリウムから形成される。第2の導波路層7を、1%の低インジウム成分を有する窒化インジウムガリウムから形成する。第1の導波路層1の電気的ドーピングは、5×1018/cmの近くである。第1の障壁層2の電気的ドーピング9は、2×1018/cmの近くである。電気的ドーピング9は、第1の障壁層2の中心軸に関して中心対称を有する曲線の形に構成され、ここでは、電気的ドーピングが、第1の障壁層2の端部領域から設定した距離のところで値0まで低下する。第1の量子膜3および第2の量子膜5は、電気的ドーピングを含まない。第2の障壁層4の電気的ドーピングは、3×1018/cmの近くになる。
描かれた実施形態では、第2の障壁層4の電気的ドーピングは、同様に、第2の障壁層4の中心軸に関して中心対称である構成を有し、ここでは、電気的ドーピング9が第2の障壁層4の端部領域の方向に端部領域に達する前に値0まで低下する。最後の障壁層6および第2の導波路層7は、低電気的ドーピングを含む、または、電気的ドーピングを含まない。n側第1の障壁層2が9%の近くの高インジウム濃度を有し、第2の障壁層4がより低いインジウム濃度を有するが、第2の量子膜5の方向に少なくとも1段階で、または多段で増加するインジウム濃度を有するので、そして最後の障壁層6が窒化ガリウムから構成されるので、電荷キャリアの注入の改善を容易にする。さらに、第1の障壁層2の領域内の低電気的ドーピング9または電気的ドーピング9がないこと、および第2の障壁層4の領域内のより高い電気的ドーピング9は、電荷キャリア分布の改善に役立つ。
図14は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の障壁層2および第2の障壁層4がp側の方向に減少するインジウム含有量8を有する。さらに、p側最後の障壁層6を、窒化ガリウムから形成する。描かれた例示的な実施形態では、インジウム含有量は、第1の障壁層2および/または第2の障壁層4内で少なくとも1段階で、または多段階で低下する。選択する実施形態に応じて、インジウム含有量は、p側の方向に障壁層2、4内で連続的に減少することもある。これが、電荷キャリアの注入の改善を容易にする。さらに、第2の障壁層4と比較して、第1の障壁層2は、2×1018/cmの近くのより低い電気的ドーピング9を含む。第2の障壁層4は、6×1018/cmの近くの電気的ドーピングを含む。結果として、量子膜3、5間の電荷キャリア分布の改善を実現する。インジウム含有量は、第1の障壁層2内で12%から8%へと低下する。インジウム含有量は、第2の障壁層4内で5%から1%または0%まで低下する。第2の障壁層4の電気的ドーピングは、6×1018/cmの近くになる。第1の障壁層2の電気的ドーピングは、2×1018/cmの近くになる。
図15は、オプトエレクトロニクス部品のさらなる実施形態を示し、ここでは、第1の障壁層2内のインジウム含有量8が、第1の導波路層1から続いて第1の量子膜3の方向に連続的に増加する。インジウム含有量は、描かれた例示的な実施形態では2%から10%まで増加する。同時に、電気的ドーピング9は、第1の障壁層2内で3×1018/cmから0の値まで低下する。描かれた例示的な実施形態では、第2の障壁層4内のインジウム濃度は、2%以下、特に0%である。同様に、最後の障壁層6内のインジウム濃度は、2%よりも小さい、特に0%である。したがって、第2の障壁層4および最後の障壁層6を、窒化ガリウムから好ましくは形成する。第1の導波路層1の電気的ドーピングは、3×1018/cmの近くになる。第1の量子膜3、第2の量子膜5、最後の障壁層6および第2の導波路層7の電気的ドーピングは、0の近くになる。
選択する実施形態に応じて、インジウム濃度、アルミニウム濃度、導電率は、段階的に増加するもしくは減少することがある、または1つの層内で連続的な曲線の形態で増加するもしくは減少することがある。
本発明を、好ましい例示的な実施形態によってより綿密に図説し、詳細に説明しているとはいえ、本発明は、開示した例によっては限定されず、他の変形形態を、本発明の保護の範囲から逸脱せずに当業者なら本開示から導き出すことができる。
概略的な図において、図16は、電磁放射を生成するための能動ゾーンを含む半導体材料から、特に描かれた部分断面ではInGaNまたはAlInGaNから構成されるオプトエレクトロニクス部品のさらなる実施形態の部分断面を示し、ここでは、能動ゾーンが第1の導波路層1を含み、第1の障壁層2が第1の導波路層1に隣接する。さらに、第2の障壁層4および最後の障壁層6が提供される。第1の量子膜3を、第1の障壁層2と第2の障壁層4との間に配置する。第2の量子膜5を、第2の障壁層4と最後の障壁層6との間に配置する。第2の導波路層7は、最後の障壁層6に隣接する。オプトエレクトロニクス部品の描かれた領域を、窒化インジウムガリウムまたは窒化ガリウムから形成する。描かれた図では、インジウム含有量8を、部品の厚さにわたり実線としてプロットしている。さらに、電気的ドーピング9を、破線により部品の厚さにわたりプロットしている。第1の導波路層1を、部品のnドープ側に割り当てる。第2の導波路層7を、部品のpドープ側に割り当てる。描かれた例示的な実施形態では、第1の障壁層2および第2の障壁層4は、8%の近くの高インジウム濃度を含み、ここでは、第1の導波路層1および第2の導波路層7のインジウム濃度がほぼ同じ大きさのものである。結果として、第1の障壁層2および第2の障壁層4では、伝導帯と価電子帯との間のバンドギャップが比較的小さい。p側障壁を構成する最後の障壁層6は、より低いインジウム濃度を含み、したがって、第2の障壁層4および/または第1の障壁層2よりも大きなバンドギャップを有する。選択する実施形態に応じて、最後の障壁層6を、図16に描いたように、窒化ガリウムから形成することもできる。電荷キャリア注入の改善を、バンドギャップのこの選択により実現する。選択する実施形態に応じて、第2の障壁層4は、第1の障壁層2よりも高いインジウム濃度を含むこともできる、言い換えれば、第1の障壁層2よりも小さなバンドギャップを有する。これが、荷電キャリアの注入の改善をその上に実現する。さらに、第1の導波路層1および/または第2の導波路層7は、インジウム濃度を含み、窒化インジウムガリウムから形成される。結果として、第1の導波路層1および/または第2の導波路層7は、窒化ガリウムよりも小さなバンドギャップで構成され、したがって、電磁放射の導波の改善をもたらすことができる。描かれた例示的な実施形態では、第1の導波路層1のドーピングは、1×1018/cmの近くである。第1の障壁層2のドーピングは、2×1018/cmの近くである。第1の量子膜3および第2の量子膜5は、実質的にアンドープである。第2の障壁層4のドーピングは、4×1018/cmの近くである。最後の障壁層6および第2の導波路層7は、アンドープである。
図17は、半導体材料から、特にInGaNまたはAlInGaNから形成されているオプトエレクトロニクス部品のさらなる実施形態の部分断面を示している。部品は、第1の導波路層1、第1の障壁層2、第1の量子膜3、第2の障壁層4、第2の量子膜5、最後の障壁層6、および第2の導波路層7の積層体を含む。描かれた例示的な実施形態では、中央障壁層4、すなわち、第2の障壁層4のバンドギャップは、第1の障壁層2または最後の障壁層6よりも小さい。これを、第1の障壁層2内または最後の障壁層6内よりも第2の障壁層4内で大きくなるインジウム濃度により実現する。さらに、例示的な実施形態は、第1の障壁層2が最後の障壁層6よりも小さなバンドギャップを有するように選択される。これを、最後の障壁層6のインジウム含有量よりも大きくなる第1の障壁層2のインジウム含有量により実現する。さらに、第1の導波路層1および第2の導波路層7を、描かれた例示的な実施形態では窒化インジウムガリウムから形成する。第1の導波路層1のインジウム濃度は、1%の近くである。第1の障壁層2のインジウム濃度は、6%の近くである。第2の障壁層4のインジウム濃度は、8%の近くである。第3の障壁層6のインジウム濃度は、4%の近くである。第2の導波路層7のインジウム濃度は、1%の近くである。第1の量子膜3および第2の量子膜5のインジウム濃度は、20%の近くである。全体として、障壁層2、4、6内のバンドギャップのこの選択の結果として、注入の改善がもたらされる。さらに、窒化インジウムガリウムから構成される導波路により、導波路の導波を改善する。
第1の導波路層1の電気的ドーピングは、1×1018/cmの近くである。第1の障壁層2のドーピングは、2×1018/cmの近くである。第2の障壁層4のドーピングは、4×1018/cmの近くである。第1の量子膜3、第2の量子膜5、最後の障壁層6および第2の導波路層7は、描かれた例示的な実施形態ではアンドープである。
図18は、半導体材料から、特にInGaNまたはAlInGaNから形成されたオプトエレクトロニクス部品のさらなる実施形態における概略的断面を示している。部品は、下記の層構造:第1の導波路層1、第1の障壁層2、第1の量子膜3、第2の障壁層4、第2の量子膜5、最後の障壁層6、および第2の導波路層7を含む。描かれた例示的な実施形態では、第2の障壁層4のバンドギャップは、第1の障壁層2および最後の障壁層6よりも小さい。第1の障壁層2のバンドギャップと最後の障壁層6のバンドギャップとは、ほぼ等しい大きさのものである。障壁層を、窒化インジウムガリウムから形成し、ここでは、第2の障壁層4のインジウム濃度が、5%の近くになる。第1の障壁層2および最後の障壁層6のインジウム濃度は、4%の近くになる。量子膜3、5のインジウム濃度は、20%の近くである。量子膜を、やはり窒化インジウムガリウムから形成する。さらに、第1および第2の導波路層1、7を、窒化インジウムガリウムから形成し、ここでは、インジウム含有量が1%になる。さらに、第1の導波路層1のドーピングは、1×1018/cmの近くである。第1の障壁層2および第2の障壁層4のドーピングは、4×1018/cmの近くである。第1の量子膜3、第2の量子膜5、最後の障壁層6、および第2の導波路層7は、実質的にアンドープである。
図19は、半導体材料から、特にInGaNまたはAlInGaNから形成されたオプトエレクトロニクス部品のさらなる実施形態のさらなる断面を示している。部品は、電磁放射を生成するための能動ゾーンを含む。ここで、部品は、下記の層構造:第1の導波路層1、第1の障壁層2、第1の量子膜3、第2の障壁層4、第2の量子膜5、最後の障壁層6、および第2の導波路層7を含む。この実施形態の特色は、第2の障壁層4よりも小さなバンドギャップを有する最後の障壁層6にある。さらに、第2の障壁層4のバンドギャップは、第1の障壁層2よりも小さい。描かれた実施形態では、層構造を、様々なインジウム濃度を有する窒化インジウムガリウムから形成する。第1の導波路層1のインジウム濃度は、1%である。第1の障壁層2のインジウム濃度は、2%である。第2の障壁層4のインジウム濃度は、4%である。最後の障壁層6のインジウム濃度は、6%である。第2の導波路層7のインジウム濃度は、1%である。第1の量子膜3および第2の量子膜5のインジウム濃度は、20%である。さらに、第1の導波路層1のドーピングは、1×1018/cmの近くである。第1の障壁層2のドーピングは、4×1018/cmの近くである。第2の障壁層4のドーピングは、4×1018/cmの近くである。第1の量子膜3、第2の量子膜5、最後の障壁層6、および第2の導波路層7は、アンドープである。この実施形態もまた、電荷キャリアの注入の改善を実現する。さらに、導波の改善を、窒化インジウムガリウムを有する導波路層の構成により容易にする。
障壁層の材料に応じて、例えば、窒化インジウムガリウムのケースではインジウム濃度を増加させることにより、または窒化アルミニウムガリウムを用いる構成のケースではアルミニウム濃度を減少させることにより、障壁層のバンドギャップを小さくすることができる。
図において説明した例示的な実施形態を、窒化インジウムガリウム材料系もしくは窒化アルミニウムガリウム材料系から、または窒化インジウムアルミニウムガリウム材料系から形成することができる。インジウム含有量またはアルミニウム含有量を、したがって、障壁層および導波路層についての1つまたは複数の所望のバンドギャップに応じて設定することができる。
ドーピングに関する値およびインジウム含有量またはバンドギャップに関する値を、選択する実施形態に応じて変えることができる。
1 第1の導波路層
2 第1の障壁層
3 第1の量子膜
4 第2の障壁層
5 第2の量子膜
6 最後の障壁層
7 第2の導波路層
8 インジウム濃度
9 ドーピング
10 さらなる第2の障壁層
11 第3の量子膜

Claims (12)

  1. 電磁放射を生成するための能動ゾーンを挟む、p側の半導体およびn側の半導体を備えるオプトエレクトロニクス部品であって、前記能動ゾーンが少なくとも2つの量子膜(3、5)を含み、第1の量子膜(3)が第1の障壁層(2)と第2の障壁層(4)との間に配置され、第2の量子膜(5)が前記第2の障壁層(4)と第3の障壁層(6)との間に配置され、
    記第1の障壁層(2)のバンドギャップおよび前記第2の障壁層(4)のバンドギャップが、しい大きさのものであり、
    前記第1の障壁層(2)および記第2の障壁層(4)が、前記第3の障壁層(6)よりも高い電気的ドーピングを含み、
    前記第2の障壁層(4)が、前記第1の障壁層(2)および前記第3の障壁層(6)よりも高い電気的ドーピングを含み、
    前記第1の障壁層(2)および前記第2の障壁層(4)内の電気的ドーピング(9)が、前記第1の障壁層(2)および前記第2の障壁層(4)の中心に対して対称構成で前記第1の障壁層(2)および前記第2の障壁層(4)の厚さに沿ったプロファイルを有し、前記電気的ドーピング(9)が、前記第1の障壁層(2)および前記第2の障壁層(4)の端部領域の方向に減少し、
    前記第1の障壁層(2)は、前記n側の半導体に隣接し、
    前記第3の障壁層(6)は、前記p側の半導体に隣接する、
    オプトエレクトロニクス部品。
  2. 前記第3の障壁層(6)が、前記第2の障壁層(4)よりも大きなバンドギャップを有する、請求項1に記載のオプトエレクトロニクス部品。
  3. 前記第2の障壁層(4)が、前記第3の障壁層(6)よりも小さなバンドギャップを有する、請求項1に記載のオプトエレクトロニクス部品。
  4. 前記第2の障壁層(4)の前記バンドギャップおよび前記第3の障壁層(6)の前記バンドギャップが、等しい大きさのものである、請求項1に記載のオプトエレクトロニクス部品。
  5. 少なくとも1つの障壁層(2、4、6)内の前記バンドギャップが、前記n側の半導体から前記p側の半導体への方向に増加する階段状に構成され、または、少なくとも1つの障壁層(2、4、6)内の前記バンドギャップが、前記n側の半導体から前記p側の半導体への方向に前記障壁層(2、4、6)の厚さ(d)に沿って少なくとも一部が連続的に増加する、請求項1〜のいずれか一項に記載のオプトエレクトロニクス部品。
  6. 少なくとも1つの障壁層(2、4、6)内の前記バンドギャップが、前記p側の半導体から前記n側の半導体への方向に増加する階段状に構成され、または、少なくとも1つの障壁層(2、4、6)内の前記バンドギャップが、前記p側の半導体から前記n側の半導体への方向に前記障壁層(2、4、6)の厚さ(d)に沿って少なくとも一部が連続的に増加する、請求項1〜のいずれか一項に記載のオプトエレクトロニクス部品。
  7. 前記第1の障壁層(2)が、第1の導波路層(1)と前記第1の量子膜(3)との間に配置され、前記第3の障壁層(6)が、前記第2の量子膜(5)と第2の導波路層(7)との間に配置され、前記第1の導波路層(1)が、前記第2の導波路層(7)よりも小さなバンドギャップ(8)を有する、請求項1〜のいずれか一項に記載のオプトエレクトロニクス部品。
  8. 前記第2の障壁層(4)が、前記第1の障壁層(2)および/または前記第3の障壁層(6)よりも大きな厚さ(d)を有する、請求項1〜のいずれか一項に記載のオプトエレクトロニクス部品。
  9. 前記第2の量子膜(5)と前記第3の障壁層(6)との間に、さらなる量子膜(11)が配置され、前記第2の量子膜(5)と前記さらなる量子膜(11)との間に、さらなる第2の障壁層(10)が配置され、前記第3の障壁層(6)が、前記さらなる量子膜(11)に隣接する、
    請求項1〜のいずれか一項に記載のオプトエレクトロニクス部品。
  10. 前記さらなる第2の障壁層(10)が、前記第2の障壁層(4)と実質的に同じ構成を有し、または、前記さらなる第2の障壁層(10)が、前記第3の障壁層(6)と実質的に同じ構成を有する
    請求項に記載のオプトエレクトロニクス部品。
  11. 前記さらなる第2の障壁層(10)が、前記第2の障壁層(4)の値と前記第3の障壁層(6)の値との間になる、または、前記第2の障壁層(4)もしくは前記第3の障壁層(6)の値に等しい前記バンドギャップ関する値を含む請求項に記載のオプトエレクトロニクス部品。
  12. 前記さらなる第2の障壁層(10)が、前記第2の障壁層(4)の値と前記第3の障壁層(6)の値との間になる、または、前記第2の障壁層(4)もしくは前記第3の障壁層(6)の値に等しい前記電気的ドーピング(9)に関する値を含む、請求項9に記載のオプトエレクトロニクス部品。
JP2017531552A 2015-01-05 2015-12-29 オプトエレクトロニクス部品 Active JP6681400B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015100029.6 2015-01-05
DE102015100029.6A DE102015100029A1 (de) 2015-01-05 2015-01-05 Optoelektronisches Bauelement
PCT/EP2015/081362 WO2016110433A1 (de) 2015-01-05 2015-12-29 Optoelektronisches bauelement

Publications (2)

Publication Number Publication Date
JP2018500762A JP2018500762A (ja) 2018-01-11
JP6681400B2 true JP6681400B2 (ja) 2020-04-15

Family

ID=55068999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017531552A Active JP6681400B2 (ja) 2015-01-05 2015-12-29 オプトエレクトロニクス部品

Country Status (5)

Country Link
US (1) US10020421B2 (ja)
JP (1) JP6681400B2 (ja)
CN (1) CN107112387B (ja)
DE (2) DE102015100029A1 (ja)
WO (1) WO2016110433A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387978B2 (ja) * 2016-02-09 2018-09-12 日亜化学工業株式会社 窒化物半導体発光素子
JP6392960B1 (ja) 2017-09-12 2018-09-19 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2019054236A (ja) * 2018-08-23 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP6968122B2 (ja) * 2019-06-06 2021-11-17 日機装株式会社 窒化物半導体発光素子
JP7328558B2 (ja) * 2020-05-27 2023-08-17 日亜化学工業株式会社 発光素子及び発光素子の製造方法
JP7194720B2 (ja) * 2020-10-30 2022-12-22 日機装株式会社 窒化物半導体発光素子
JP7260807B2 (ja) * 2020-12-24 2023-04-19 日亜化学工業株式会社 窒化物半導体発光素子およびその製造方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839899A (en) * 1988-03-09 1989-06-13 Xerox Corporation Wavelength tuning of multiple quantum well (MQW) heterostructure lasers
JP2616532B2 (ja) * 1991-10-08 1997-06-04 松下電器産業株式会社 半導体レーザおよびその製造方法
JPH05102604A (ja) * 1991-10-11 1993-04-23 Fuji Xerox Co Ltd 半導体レーザ装置
JP2785167B2 (ja) * 1992-06-29 1998-08-13 国際電信電話株式会社 多重量子井戸構造および多重量子井戸構造を用いた半導体素子
JPH06268315A (ja) * 1993-03-12 1994-09-22 Fujitsu Ltd 半導体レーザ
JPH07122812A (ja) * 1993-10-27 1995-05-12 Fujitsu Ltd 半導体レーザ
JPH07170022A (ja) * 1993-12-16 1995-07-04 Mitsubishi Electric Corp 半導体レーザ装置
JP3217004B2 (ja) * 1997-01-16 2001-10-09 日本電気株式会社 p型ドーパント材料拡散防止層付き窒化ガリウム系発光素子
US6240114B1 (en) * 1998-08-07 2001-05-29 Agere Systems Optoelectronics Guardian Corp. Multi-quantum well lasers with selectively doped barriers
JP2000261106A (ja) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 半導体発光素子、その製造方法及び光ディスク装置
WO2000042685A1 (fr) * 1999-01-11 2000-07-20 The Furukawa Electric Co., Ltd. Laser a semi-conducteur, a puits quantiques multiples, a dopage module de type n
JP3719047B2 (ja) * 1999-06-07 2005-11-24 日亜化学工業株式会社 窒化物半導体素子
JP3460641B2 (ja) * 1999-09-28 2003-10-27 日亜化学工業株式会社 窒化物半導体素子
JP2001210910A (ja) * 1999-11-17 2001-08-03 Mitsubishi Electric Corp 半導体レーザ
US6504171B1 (en) 2000-01-24 2003-01-07 Lumileds Lighting, U.S., Llc Chirped multi-well active region LED
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP4342134B2 (ja) * 2000-12-28 2009-10-14 日亜化学工業株式会社 窒化物半導体レーザ素子
JP2002270894A (ja) * 2001-03-08 2002-09-20 Mitsubishi Cable Ind Ltd 半導体発光素子
JP4061040B2 (ja) * 2001-07-31 2008-03-12 アンリツ株式会社 多重量子井戸半導体素子
JP2003273473A (ja) * 2001-11-05 2003-09-26 Nichia Chem Ind Ltd 半導体素子
JP2003229645A (ja) * 2002-01-31 2003-08-15 Nec Corp 量子井戸構造およびそれを用いた半導体素子ならびに半導体素子の製造方法
JP4285949B2 (ja) * 2002-06-27 2009-06-24 シャープ株式会社 窒化物半導体発光素子
JP2004087908A (ja) * 2002-08-28 2004-03-18 Sharp Corp 窒化物半導体発光素子、その製造方法、それを搭載した光学装置
KR100476567B1 (ko) * 2003-09-26 2005-03-17 삼성전기주식회사 질화물 반도체 소자
US7067838B1 (en) * 2004-04-16 2006-06-27 Nitride Semiconductors Co., Ltd. Gallium-nitride-based light-emitting apparatus
US7751455B2 (en) * 2004-12-14 2010-07-06 Palo Alto Research Center Incorporated Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
US7577172B2 (en) 2005-06-01 2009-08-18 Agilent Technologies, Inc. Active region of a light emitting device optimized for increased modulation speed operation
KR100649749B1 (ko) * 2005-10-25 2006-11-27 삼성전기주식회사 질화물 반도체 발광 소자
JP4720522B2 (ja) * 2006-01-27 2011-07-13 住友電気工業株式会社 半導体レーザ
KR20080035865A (ko) * 2006-10-20 2008-04-24 삼성전자주식회사 반도체 발광 소자
KR100862497B1 (ko) * 2006-12-26 2008-10-08 삼성전기주식회사 질화물 반도체 소자
JP5349849B2 (ja) * 2007-06-12 2013-11-20 ソウル オプト デバイス カンパニー リミテッド 多重量子ウェル構造の活性領域を有する発光ダイオード
KR100905877B1 (ko) * 2007-11-19 2009-07-03 삼성전기주식회사 질화물 반도체 소자
JP2009224370A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 窒化物半導体デバイス
KR101479623B1 (ko) * 2008-07-22 2015-01-08 삼성전자주식회사 질화물 반도체 발광소자
JP5191843B2 (ja) * 2008-09-09 2013-05-08 株式会社東芝 半導体発光素子及びウェーハ
JP2010067927A (ja) * 2008-09-12 2010-03-25 Toshiba Corp 窒化物半導体発光素子
JP5315899B2 (ja) * 2008-09-30 2013-10-16 信越半導体株式会社 発光素子
US8704252B2 (en) * 2008-10-23 2014-04-22 Epistar Corporation Light emitting device
JP5407359B2 (ja) * 2009-01-23 2014-02-05 信越半導体株式会社 発光ダイオード
WO2011027417A1 (ja) * 2009-09-01 2011-03-10 株式会社 東芝 半導体発光素子
JP2011159771A (ja) * 2010-01-29 2011-08-18 Nec Corp 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、および電子装置
US20120107991A1 (en) * 2010-10-21 2012-05-03 The Regents Of The University Of California Magnesium doping in barriers in multiple quantum well structures of iii-nitride-based light emitting devices
KR101125026B1 (ko) * 2010-11-19 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 발광 소자의 제조 방법
JP5139555B2 (ja) * 2011-04-22 2013-02-06 住友電気工業株式会社 窒化物半導体レーザ、及びエピタキシャル基板
JP5651077B2 (ja) * 2011-06-29 2015-01-07 住友電気工業株式会社 窒化ガリウム系半導体レーザ素子、及び、窒化ガリウム系半導体レーザ素子の製造方法
JP2013012684A (ja) * 2011-06-30 2013-01-17 Sharp Corp 窒化物半導体発光素子
KR101990095B1 (ko) * 2011-07-11 2019-06-18 엘지이노텍 주식회사 발광소자, 발광 소자 제조방법 및 발광 소자 패키지
JP5238865B2 (ja) * 2011-10-11 2013-07-17 株式会社東芝 半導体発光素子
JP2012023406A (ja) * 2011-10-28 2012-02-02 Sharp Corp 窒化物半導体発光素子とその窒化物半導体発光素子を備える窒化ガリウム系化合物半導体レーザ素子
CN104094419A (zh) 2012-01-31 2014-10-08 索泰克公司 具有电荷载流子的改进分布的光敏器件及其形成方法
US20130320296A1 (en) 2012-06-05 2013-12-05 Epistar Corporation Light emitting device with qcse-reversed and qcse-free multi quantum well structure
US8975616B2 (en) * 2012-07-03 2015-03-10 Liang Wang Quantum efficiency of multiple quantum wells
DE102012217681A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil und Verfahren zum Betreiben eines optoelektronischen Bauteils
DE102013104351B4 (de) 2013-04-29 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterschichtenfolge und Verfahren zum Betreiben eines optoelektronischen Halbleiterchips
JPWO2014178248A1 (ja) * 2013-04-30 2017-02-23 シャープ株式会社 窒化物半導体発光素子
CN103337573B (zh) * 2013-07-05 2016-12-28 华灿光电股份有限公司 半导体发光二极管的外延片及其制造方法

Also Published As

Publication number Publication date
US10020421B2 (en) 2018-07-10
CN107112387A (zh) 2017-08-29
CN107112387B (zh) 2019-12-24
US20170373220A1 (en) 2017-12-28
DE112015005885A5 (de) 2017-09-28
DE102015100029A1 (de) 2016-07-07
DE112015005885B4 (de) 2023-11-23
JP2018500762A (ja) 2018-01-11
WO2016110433A1 (de) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6681400B2 (ja) オプトエレクトロニクス部品
JP5156290B2 (ja) オプトエレクトロニクスデバイス
US9048631B2 (en) Laser light source
JP6192378B2 (ja) 窒化物半導体発光素子
KR102233927B1 (ko) 반도체 층 시퀀스
JP2016111353A (ja) n−クラッド層に工学的不均一合金組成を有する窒化物レーザーダイオード
US8855161B2 (en) Semiconductor laser device, method of manufacturing semiconductor laser device, and semiconductor laser array
KR20130099099A (ko) 3족 질화물계 녹색-레이저 다이오드 및 그 도파로 구조체
US11594861B2 (en) Semiconductor laser element
EP2919282B1 (en) Nitride semiconductor stacked body and semiconductor light emitting device comprising the same
JP2007109922A (ja) 半導体レーザ装置およびその製造方法
JP7116291B2 (ja) 半導体レーザ素子
JP2001094208A (ja) 面発光レーザ
JP6807691B2 (ja) 半導体光素子、及びその製造方法
US7135710B2 (en) Semiconductor light-emitting device
WO2022180942A1 (ja) 発光ダイオード素子
KR101055695B1 (ko) 발광 다이오드 제조방법
JP2016066670A (ja) 半導体レーザ
US20220271192A1 (en) Optoelectronic semiconductor chip
CN111108658B (zh) 激光二极管
JP5395887B2 (ja) 半導体発光素子
JP4786202B2 (ja) 半導体発光素子
JP5840893B2 (ja) 半導体レーザ装置
JP2008047688A (ja) 窒化物系半導体レーザ装置
JP5429153B2 (ja) 窒化ガリウム系半導体発光素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250