JP6566275B2 - 非水電解質二次電池用負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極及び非水電解質二次電池 Download PDF

Info

Publication number
JP6566275B2
JP6566275B2 JP2017511472A JP2017511472A JP6566275B2 JP 6566275 B2 JP6566275 B2 JP 6566275B2 JP 2017511472 A JP2017511472 A JP 2017511472A JP 2017511472 A JP2017511472 A JP 2017511472A JP 6566275 B2 JP6566275 B2 JP 6566275B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017511472A
Other languages
English (en)
Other versions
JPWO2016163115A1 (ja
Inventor
斉藤 淳志
淳志 斉藤
達哉 江口
達哉 江口
三好 学
学 三好
金田 潤
潤 金田
友邦 阿部
友邦 阿部
弘樹 大島
弘樹 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Publication of JPWO2016163115A1 publication Critical patent/JPWO2016163115A1/ja
Application granted granted Critical
Publication of JP6566275B2 publication Critical patent/JP6566275B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池など非水電解質二次電池に用いられる負極と、その負極を用いた非水電解質二次電池に関する。
リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。リチウムイオン二次電池は、リチウム(Li)を挿入及び脱離することができる活物質を正極及び負極にそれぞれ有する。そして、リチウムイオン二次電池は、両極間に設けられた電解液内をリチウムイオンが移動することによって動作する。
リチウムイオン二次電池の安全性を高めるために、活物質層の表面に保護層を設けて内部短絡の防止を図ることが検討されている。例えば、特許文献1(特開2008−159385号公報)には、電極表面にセラミックコート層を設けることによって、過充電時の電池温度の上昇を抑制できることが開示されている。特許文献1には、セラミックコート層におけるバインダーとして融点が110℃〜150℃の熱可塑性高分子を用いること、そのバインダーがセラミック表面の30%〜90%を被覆すること及び110℃以上の高温下でセラミックコート層における熱可塑性高分子が溶融して活物質層の表面を被覆し活物質と電解液との接触を抑制することが開示されている。
また特許文献2(国際公開2010/050507号公報)には、充放電時の電池膨れを抑制するために、負極活物質層の表面に電気絶縁性の材料を有する多孔質層を配置することが開示されている。特許文献2には、電気絶縁性の材料として粒径のそろった粒子を使用することで多孔質層の厚みを小さくできることも開示されている。
基本的に保護層が厚くなるほど、電池の内部抵抗が増大して、電池の充放電容量が低下する。また電池のエネルギー密度を維持するためには保護層の厚みはより薄い方が好ましい。しかしながら電池の安全性を確保するためには、保護層はある程度の厚みが必要である。
また活物質層の表面の粗さが大きい場合、活物質層の表面に保護層を設けようとすると、保護層の厚みは、活物質層の表面の粗さ以上であることが好ましい。そのため結果として保護層の厚みは、電池の充放電容量が極端に低下する厚みになるおそれがある。
このことから、充放電容量を大きく下げることなく安全性を高める保護層が配置された非水電解質二次電池用電極が望まれている。
特開2008−159385号公報 国際公開2010/050507号公報
本発明は、このような事情に鑑みて為されたものであり、充放電容量を大きく下げることなく安全性を高める保護層、特に厚みムラの少ない保護層が配置された非水電解質二次電池用負極及びその負極を用いた非水電解質二次電池を提供することを目的とする。
そこで本発明者等が、負極活物質層が、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下である第一負極活物質を含むことで負極活物質層の表面の粗さを小さくできること、そして活物質層の表面の粗さが小さくなれば保護層の厚みムラを少なくすることができること、さらにそのような保護層によって安全性が確保されることを見いだした。
すなわち本発明の非水電解質二次電池用負極は、集電体と、集電体の表面に配置された負極活物質層と、負極活物質層の表面に配置された保護層とからなり、負極活物質層は、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下である第一負極活物質を含み、保護層はセラミックス粉末を含むことを特徴とする。
第一負極活物質はSiを含むことが好ましい。
負極活物質層はアスペクト比が1以上2未満の第二負極活物質をさらに含むことが好ましい。
第二負極活物質は黒鉛を含むことが好ましい。
第一負極活物質のアスペクト比の平均値は、第二負極活物質のアスペクト比の平均値を超えることが好ましい。
第一負極活物質の平均粒径D50は0.3μm以上20μm以下であることが好ましい。
第一負極活物質は板状シリコン体が厚さ方向に積層された構造を有するシリコン材料を含むことが好ましい。
第二負極活物質の平均粒径D50は0.1μm以上20μm以下であることが好ましい。
負極活物質層の質量を100質量部としたときに第一負極活物質の質量は50質量部以上であることが好ましい。
負極活物質層の表面の最大高さは2μm以下であることが好ましい。ここで最大高さは、活物質層の断面の走査型電子顕微鏡画像において、活物質層の断面の集電体側の表面と反対側の表面における曲線の厚み方向の山頂点(最上点)を通り集電体の表面に対して平行な平行線(山頂線)と、曲線の厚み方向の谷底点(最下点)を通り集電体の表面に対して平行な平行線(谷底線)との間の距離である。
セラミックス粉末の平均粒径D50は0.1μm以上2μm以下であることが好ましい。
保護層の厚みは1μm以上6μm以下であることが好ましい。
保護層は水系バインダーを含むことが好ましい。
水系バインダーは水溶性バインダーであることが好ましい。
水溶性バインダーはポリビニルアルコール又はポリアクリル酸であることが好ましい。
本発明の非水電解質二次電池は、上記非水電解質二次電池用負極を有することを特徴とする。
本発明の非水電解質二次電池用負極は、負極活物質層に含まれる負極活物質の形態を規定することで負極活物質層上に設けた保護層の厚みムラを小さくすることができる。さらにその非水電解質二次電池用負極を有する非水電解質二次電池は安全性が高い。
本実施形態の非水電解質二次電池用負極を説明する模式図である。 実施例1の負極及び比較例1の負極の断面の表面粗さを比較した模式図である。
<非水電解質二次電池用負極>
本発明の非水電解質二次電池用負極は、集電体と、集電体の表面に配置された負極活物質層と、負極活物質層の表面に配置された保護層とからなる。本発明の非水電解質二次電池はリチウムイオン二次電池であることが好ましい。以下にリチウムイオン二次電池を例にとって説明する。
(集電体)
集電体は、非水電解質二次電池において電気の取り出しを担うもので、高い電子伝導性を有し、充放電時に電気化学的に不活性である材料が用いられる。集電体の材料として、例えば、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。特に、電気伝導性、加工性、価格の面から、集電体の材料としては、アルミニウムまたは銅が好ましい。集電体の形態としては、箔、シート、フィルム、線状、棒状、メッシュなどが好ましい。集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が、箔、シートまたはフィルムの場合は、集電体の厚みは10μm〜50μmであることが好ましい。集電体に高い強度を保持しつつ電池容量を高くする点から、集電体の厚みは、15μm〜30μmであることが特に好ましい。
(負極活物質層)
負極活物質層は、第一負極活物質を含む。また必要に応じて、負極活物質層は、負極活物質層用バインダー及び導電助剤を含む。
第一負極活物質は、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下である。アスペクト比が8より大きいと、電極作製時にプレスすると第一負極活物質が破壊されるおそれがある。ここで第一負極活物質の最長径を長軸の長さとし、第一負極活物質の最短径を短軸の長さとする。本発明において、アスペクト比が2以上8以下の形状を扁平状と称す。またアスペクト比が1以上2未満の形状を球状と称す。
アスペクト比の測定は例えば以下のようにして行うことができる。
第一負極活物質を走査型電子顕微鏡で写真撮影し、任意に選んだ領域内の10個の粒子について、個々の粒子の最長径を長軸の長さa、最短径を短軸の長さbとしてa/bをそれぞれ求める。10個のa/bをその試料のアスペクト比とし、10個のa/bの平均値をその試料のアスペクト比の平均値とする。第一負極活物質は、形状に大きなばらつきはないので、10個の粒子のアスペクト比で試料全体のアスペクト比を代表する。
扁平状の第一負極活物質を含むことにより、負極活物質層の表面粗さが小さくなる。扁平状の第一負極活物質は、負極活物質層の作成時に負極活物質層の表面で扁平状の面が集電体の表面と平行になるように配向する傾向にある。そのため扁平状の第一負極活物質が負極活物質層に含まれることで、負極活物質層の表面粗さが小さくなる傾向にある。
負極活物質層の表面粗さは最大高さで表すことができる。最大高さは例えば以下のように測定することができる。
まず、少なくとも集電体と負極活物質層とを有する負極の断面を走査型電子顕微鏡で例えば倍率1000倍で観察し、画像を取得する。この負極は保護層を有していてもよい。
取得した画像を画像処理し、集電体側の表面と反対側の表面における負極活物質層の断面曲線を取得する。
上記断面曲線の長手方向において大きな違いはないので、任意の長手方向100μmの箇所を特定して、この領域における最大高さを求める。
特定された箇所の断面曲線の厚み方向の山頂点(最上点)を通り集電体の表面に対して平行な平行線(山頂線)と、断面曲線の厚み方向の谷底点(最下点)を通り集電体の表面に対して平行な平行線(谷底線)との間の距離を計測し、その距離、すなわち山頂点と谷底点との高低差を最大高さとする。
上記方法で計測された負極活物質層の表面の最大高さは4μm未満であることが好ましく、2μm以下であることがより好ましい。
第一負極活物質の長軸の長さaは、2μm以上24μm以下の範囲であることが好ましく、4μm以上16μm以下の範囲であることがより好ましい。第一負極活物質の短軸の長さbは1μm以上3μm以下の範囲であることが好ましく、1μm以上2μm以下の範囲であることがより好ましい。
第一負極活物質の平均粒径D50は0.3μm以上20μm以下であることが好ましく、4μm以上10μm以下であることがより好ましい。
平均粒径D50は、粒度分布測定法によって計測できる。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径のことである。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。
負極活物質層の質量を100質量部としたときに第一負極活物質の質量は50質量部以上であることが好ましく、58質量部以上であることがより好ましい。
上記扁平状の第一負極活物質の材質として、例えば炭素系材料、Si系材料が挙げられる。炭素系材料としては、天然黒鉛が挙げられる。
この扁平状の第一負極活物質は、Si系材料であることが好ましい。Si系材料はSiを含む。Siは充放電容量が高い。そのため、第一負極活物質がSi系材料であれば、高容量の非水電解質二次電池を作製しやすい。
扁平状のSi系材料として、本発明者等が特に研究したシリコン材料について以下に説明する。
シリコン材料として、国際公開2014/080608号に開示される、CaSiから脱カルシウム化反応を経て得られるシリコン材料を用いることもできる。上記シリコン材料は、例えば、CaSiを、例えば、塩酸やフッ化水素などの酸で処理して得られる生成物を、例えば、300℃〜1000℃での加熱処理(焼成とも称す。)して得られる。
上記シリコン材料は、板状シリコン体が厚さ方向に積層された構造を有するシリコン材料である。板状シリコン体が厚さ方向に積層されてなる構造を有するシリコン材料の構造は、走査型電子顕微鏡などによる観察で確認できる。板状シリコン体は厚さが10nm〜100nmの範囲内のものが好ましく、20nm〜50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm〜50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2〜1000の範囲内であるのが好ましい。
シリコン材料は、粉砕や分級を経て、一定の粒度分布の粒子としてもよい。シリコン材料の好ましい粒度分布としては、一般的なレーザー回折式粒度分布測定装置で測定した場合に、D50が1μm〜30μmの範囲内を例示できる。
上記シリコン材料は、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下となる。上記シリコン材料は脱カルシウム化反応を経て得られる。脱カルシウム化反応時にCaSiからカルシウムが引き抜かれる面が決まっているため、上記シリコン材料はa/bで表されるアスペクト比が2以上8以下となる。
上記シリコン材料をリチウムイオン二次電池などの非水電解質二次電池の負極活物質として使用する場合は、シリコン材料を炭素で被覆して用いるのが好ましい。以下、炭素で被覆されたシリコン材料をSi/C複合体と称し、Si系材料の一つとして挙げる。
(Si/C複合体)
Si/C複合体において炭素層が少なくともSi又はSi化合物の表面を覆っている。なお炭素層を構成する炭素は、非晶質の炭素のみであってもよいし、結晶質の炭素のみであってもよいし、非晶質の炭素と結晶質の炭素とが混在していてもよい。
炭素化の工程は特に限定するものではないが、炭素化工程としては、炭素粉末とSi又はSi化合物粉末を混合(例えばメカニカルミリング)する工程、樹脂とSi又はSi化合物の複合化から得られる混合物を加熱処理する工程、Si又はSi化合物を非酸化性雰囲気下にて有機物ガスと接触させ加熱して有機物ガスを炭素化する工程などが挙げられる。
負極活物質層はアスペクト比が1以上2未満の第二負極活物質をさらに含むことが好ましい。第二負極活物質のアスペクト比の平均値は、第一負極活物質のアスペクト比の平均値より小さいことが好ましい。
第二負極活物質としては、球状の形状を有する負極活物質が挙げられる。球状形状の第二負極活物質と扁平形状の第一負極活物質とを組み合わせることによって、負極活物質層の表面粗さを更に小さくできる。
第二負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを用いることができる。
炭素系材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。
リチウムと合金化可能な元素としては、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが挙げられる。中でも、リチウムと合金化可能な元素は、珪素(Si)または錫(Sn)であるとよく、珪素(Si)が特に好ましい。
リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOが挙げられる。リチウムと合金化可能な元素を有する化合物としては、珪素化合物または錫化合物が好ましい。珪素化合物としては、SiO(0.3≦x≦1.6)が好ましい。錫化合物としては、スズ合金(Cu−Sn合金、Co−Sn合金等)を例示できる。
高分子材料としては、ポリアセチレン、ポリピロールを例示できる。
第二負極活物質の平均粒径D50は、第一負極活物質の平均粒径D50の0.5倍以上10倍以下であることが好ましく、1倍以上5倍以下であることが好ましい。
第二負極活物質の平均粒径D50は0.1μm以上20μm以下であることが好ましく、5μm以上18μm以下であることがより好ましく、10μm以上17μm以下であることがさらに好ましい。
第一負極活物質と第二負極活物質の質量の合計を100質量%としたときに第一負極活物質の質量は65質量%以上100質量%以下であることが好ましく、68質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましい。
第一負極活物質としてSi系材料を用いた場合は、第二負極活物質として黒鉛を用いると好ましい。黒鉛は導電助剤としても機能し得る。
導電助剤は、電極の導電性を高めるために必要に応じて活物質層に添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(略称AB)、ケッチェンブラック(登録商標)(略称KB)、気相法炭素繊維(略称VGCF)等を単独でまたは二種以上組み合わせて使用することができる。導電助剤の使用量については、特に限定的ではないが、例えば、電極に含有される活物質100質量部に対して、1質量部〜30質量部程度とすることができる。
負極活物質層用バインダーは、上記負極活物質及び導電助剤を集電体に繋ぎ止める役割を果たす。
負極活物質層用バインダーとして、例えば、ポリフッ化ビニリデン(略称PVDF)、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリロニトリルを例示することができる。負極活物質層用バインダーとしては、PVDF、ポリアミドイミドが好ましい。
負極活物質層中の負極活物質層用バインダーの配合割合は、質量比で、負極活物質:負極活物質層用バインダー=1:0.001〜1:0.3であるのが好ましい。負極活物質:負極活物質層用バインダー=1:0.005〜1:0.2であるのがより好ましく、1:0.01〜1:0.15であるのがさらに好ましい。負極活物質層用バインダーが少なすぎると電極の成形性が低下するおそれがあり、また、負極活物質層用バインダーが多すぎると電極のエネルギー密度が低くなるおそれがある。
負極活物質層を集電体の表面に配置するには、負極活物質及び負極活物質層用バインダー、並びに必要に応じて導電助剤を含む負極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥すればよい。乾燥は、常圧条件で行ってもよいし、真空乾燥機を用いた減圧条件下で行ってもよい。乾燥温度は適宜設定すればよい。なお、必要に応じて電極密度を高めるべく負極活物質層が配置された集電体を圧縮してもよい。
負極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法、リップコート法、コンマコート法、ダイコート法などの従来から公知の方法を用いればよい。
粘度調整のための溶剤としては、水、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ−ブチロラクトン、アセトンなどが使用可能である。
(保護層)
保護層は、負極活物質層の表面に配置され、セラミックス粉末を含む。保護層は、必要に応じて保護層用バインダーを含む。
保護層には多数のセラミックス粉末が含まれる。
セラミックス粉末として、溶剤に溶解しないものが使用できる。つまりセラミックス粉末としては、酸化物、窒化物及び炭化物が望ましい。具体的にはセラミックス粉末として、例えば、Al、SiO、TiO、ZrO、MgO、SiC、AlN、BN、タルク、マイカ、カオリナイト、CaO、ZnO及びゼオライトが挙げられる。セラミックス粉末としては、入手の容易さの点から、Al、SiO、TiOが好ましく、特にAlが好ましい。
セラミックス粉末の平均粒径D50は100nm以上2μm以下であることが好ましく、100nm以上1μm以下であることがより好ましく、200nm以上800nm以下であることがさらに好ましく、300nm以上600nm以下であることが特に好ましい。セラミックス粉末の平均粒径D50が大きすぎると、保護層の厚みが所望の厚みより大きくなってしまうおそれがある。また、保護層形成時にセラミックス粉末がスラリー中で沈降しやすくなり、分散しにくくなるおそれがある。セラミックス粉末の平均粒径D50が小さすぎると、保護層作成時にセラミックス粉末が負極活物質層の中に入り込むおそれがある。
セラミックス粉末の平均粒径D50は第一負極活物質の平均粒径D50の1/20倍以上1倍以下であることが好ましく、1/15倍以上1倍以下であることがより好ましく、1/10倍以上1倍以下であることがさらに好ましい。セラミックス粉末の平均粒径D50が第一負極活物質の平均粒径D50に対して小さすぎると、保護層作成時にセラミックス粉末が負極活物質層の中に入り込むおそれがある。
セラミックス粉末は、導電性が低く、耐熱性が高いため、負極活物質層の表面に絶縁性と耐熱性を兼ね備えた保護層が配置されることとなる。そのため高温下でも非水電解質二次電池における内部短絡を抑制することができる。
また負極活物質層の表面が保護層によって被覆されるので、負極活物質は非水電解液と直接接触しにくい。そのため、負極活物質による非水電解液の分解反応が抑制され、非水電解質二次電池のサイクル特性が悪化するのを抑制できる。また非水電解液中に含まれる金属成分の溶出物や非水電解液の分解物を保護層で物理的にトラップできるので、負極活物質の表面に分解物等が堆積するのを抑制できる。その結果として非水電解質二次電池のサイクル特性が悪化するのを抑制できる。
セラミックス粉末を含む保護層において、セラミックス粉末間に細孔が形成される。保護層は細孔を有するので、保護層はイオン伝導性を有する。そのため非水電解質二次電池において保護層は大きな抵抗とはならず、保護層は非水電解質二次電池の著しい電池容量の低下を招かない。
保護層用バインダーは、活物質層と保護層とを結着し、かつ保護層中のセラミックス粉末間を結着する。
なお、負極活物質層に有機溶剤系バインダーを用い、保護層にも有機溶剤系バインダーを用いると、保護層を形成する際に用いる有機溶剤に負極活物質層の有機溶剤系バインダーが部分的に溶解してしまうおそれがあるので好ましくない。
負極活物質層には有機溶剤系バインダーを用いた場合は、保護層用バインダーとしては、水系バインダーが好ましい。水系バインダーとは、水系溶剤に溶解もしくは分散する樹脂または水系溶剤に溶解もしくは分散するゴムをさす。水系バインダーとして、水溶性バインダー、水分散系バインダーが挙げられる。ここで、水系溶剤とは、水又は水とアルコールとの混合物である。アルコールとしては、例えば、エタノール、メタノール、イソプロパノール、ブタノールが挙げられる。水とアルコールの混合物の配合比は、質量比で水:アルコール=50:50〜99:1であることが好ましい。
水系バインダーとしては、ガラス転移点が60℃以上であるものが好ましく、ガラス転移点が80℃以上であるものがより好ましい。非水電解質二次電池の実使用温度範囲が60℃程度以下であるため、水系バインダーは60℃程度まで軟化しないことが望ましい。水系バインダーのガラス転移点が60℃以上であれば、水系バインダーは60℃程度の高温でも軟化しない。そのため、高温での非水電解質二次電池の寿命及び安全性を確保できる。また水系バインダーのガラス転移点が60℃以上であれば、水系バインダーのポリマーの骨格が硬いか、分子間の凝集力が高いといえる。ガラス転移点が60℃以上の水系バインダーを用いれば、強度が高い保護層を形成できる。そのため、Liの吸蔵及び放出に伴って膨張及び収縮する負極活物質を用いても、保護層が活物質層中の負極活物質の膨張及び収縮を抑制できる。
水溶性バインダーとしては、例えば、メチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸スチレン共重合体、メチルビニルエーテル/無水マレイン酸コポリマー、ポリアクリルアミド、ポリエチレンオキサイド、ポリビニルアルコール、アクリル酸/マレイン酸共重合体、アクリル酸/スルホン酸系モノマー、ヒドロキシエチルセルロース、アクリルアミド−ジアリルジメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライド、ポリ(メタクリル酸トリメチルアミノエチル・メチル硫酸塩)、イソブチル・無水マレイン酸、キトサン、ポリビニルブチラール、ポリエチレングリコール、ゼラチン、ポリビニルエチルエーテル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリプロピレンオキサイドが挙げられる。
上記水溶性バインダーの中で、ガラス転移点が60℃以上であるものがより好ましい。ガラス転移点が60℃以上である水溶性バインダーとして、重合度や共重合体の組成比率によっても異なるが、例えば、メチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸スチレン共重合体、メチルビニルエーテル/無水マレイン酸コポリマー、ポリアクリルアミド、ポリビニルアルコール、アクリル酸/マレイン酸共重合体、アクリル酸/スルホン酸系モノマー、ヒドロキシエチルセルロース、アクリルアミド−ジアリルジメチルアンモニウムクロライド、イソブチル・無水マレイン酸、キトサン、ポリビニルブチラール、ゼラチン、ポリビニルピロリドンが挙げられる。
水溶性バインダーは、ポリビニルアルコール又はポリアクリル酸であることが好ましい。
水分散系バインダーとしては、例えば、アクリル系ポリマー、メタクリル系ポリマー、ポリウレタン、エポキシポリマー、スチレンポリマー、ビニルポリマーが挙げられる。これらの水分散系バインダーは単独で用いられてもよいが、2種類以上の組み合わせや共重合体として用いられてもよい。
保護層用バインダーとして有機溶剤系バインダーを用いる場合は、有機溶剤系バインダーとして、例えば、ポリフッ化ビニリデン(略称PVDF)、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(略称FEP)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂が挙げられる。
なお保護層は、必要に応じてさらに分散剤を含んでもよい。分散剤は市販のものを適宜使用することができる。
保護層におけるセラミックス粉末と保護層用バインダーとの好ましい質量比は86:14〜99:1であり、より好ましくは87:13〜98:2であり、さらに好ましくは88:12〜97:3である。保護層において保護層用バインダーの含有量が少なすぎると、負極活物質層に対する保護層の結着力が低下したり、または、保護層中のセラミックス粉末間の結着力が低下することで保護層の崩壊のおそれがある。加えて、保護層全体の柔軟性が失われ、電極に加わる圧力で保護層が割れるおそれがある。保護層において保護層用バインダーの含有量が多すぎると、保護層の耐熱性が低下する懸念がある。
また保護層におけるセラミックス粉末の量は、セラミックス粉末間に細孔が残る程度の量が好ましい。セラミックス粉末間に細孔が少なくなると、保護層のイオン伝導性が低下して、電池容量を確保しにくくなるおそれがある。
保護層の厚みは、1μm以上12μm以下が好ましく、1μm以上9μm以下がより好ましく、1μm以上6μm以下が特に好ましい。保護層の厚みが小さすぎると、非水電解質二次電池の短絡防止の効果を発揮できないおそれがある。保護層の厚みが大きすぎると、非水電解質二次電池の充放電容量が低下するおそれがある。ここで保護層の厚みは、保護層を有する電極の厚みから保護層を形成する前の電極の厚みを引くことで求める。各電極の厚みは、各電極を5mm間隔で10点測定した結果の平均値とする。
負極活物質層へ保護層を配置する方法は、特に限定されない。例えば、以下の方法で負極活物質層へ保護層を配置できる。保護層の材料を溶剤に分散させて保護層用スラリーを作成し、その保護層用スラリーを負極活物質層上に塗布し、塗布後に乾燥することによって負極活物質層に保護層を配置することができる。塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。
保護層用スラリー中における固形分濃度は20質量%以上70質量%以下が好ましく、30質量%以上60質量%以下がさらに好ましい。固形分濃度が上記範囲にあれば、保護層用スラリー中に固形分が分散しやすい。
図1に本実施形態の非水電解質二次電池用負極を説明する模式図を示す。図1において、集電体1の上に負極活物質層5が配置され、負極活物質層5の上に保護層6が配置されている。負極活物質層5は、第一負極活物質2と第二負極活物質3と活物質層用バインダー4とからなる。保護層6はセラミックス粉末61と保護層用バインダー62とからなる。
負極活物質層5において、扁平形状の第一負極活物質2がその扁平面が集電体1の表面に対して平行になるように配置している。そのため、負極活物質層5の表面は凹凸が少ない。
図1の保護層6において、複数のセラミックス粉末61は負極活物質層5の表面の凹凸に沿って配置され、保護層用バインダー62はセラミックス粉末61同士の間及びセラミックス粉末61と負極活物質層5との間に配置されている。
負極活物質層5の表面の凹凸が少ないため、保護層6の厚みを厚くしなくても、保護層6は負極活物質層5の表面を被覆することができる。また負極活物質層5の表面の凹凸が少ないため、保護層6の厚みムラは少ない。
保護層6において、保護層用バインダー62によって、複数のセラミックス粉末61同士またセラミックス粉末61と負極活物質層5とが結着されている。保護層6において、セラミックス粉末61同士の間及び負極活物質層5とセラミックス粉末61の間及びセラミックス粉末61と保護層用バインダー62との間に、細孔7が形成される。
(非水電解質二次電池)
本発明の非水電解質二次電池は、上記非水電解質二次電池用負極を含み、さらに特に限定されない正極、セパレータ、非水電解液を含む。
正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤及びその他の添加剤を含んでもよい。正極活物質、導電助剤及びバインダーは、特に限定はなく、非水電解質二次電池で使用可能なものであればよい。導電助剤及びバインダーは負極で説明したものと同様のものが使用できる。
正極活物質としては、リチウム含有化合物あるいは他の金属化合物よりなるものを用いることができる。リチウム含有化合物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式: LiCoNiMn (Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPOで示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMPOFで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)、一般式:LiMSiOで示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiのうちの少なくとも一種)を用いることができる。また他の金属化合物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンなどの酸化物、または硫化チタン若しくは硫化モリブデンなどの硫化物が挙げられる。
非水電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。非水電解液にはさらに添加剤を加えても良い。
溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンが使用できる。
また上記非水電解液に溶解させる電解質として、例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。
非水電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。
セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えばポリテトラフルオロエチレン、ポリプロピレン、もしくはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。セパレータは積層された複数の多孔質膜で構成されていてもよい。
上記非水電解質二次電池は車両に搭載することができる。車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。
以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下、実施例を挙げて本発明を更に詳しく説明する。
<負極活物質の準備>
負極活物質として、下記に示すSi/C複合体粉末、平均粒径D50が4μmのSiO、平均粒径D50が15μmの天然黒鉛粉末を準備した。
(Si/C複合体粉末の製造)
濃度46質量%のHF水溶液7mlと、濃度36質量%のHCl水溶液56mlとの混合溶液を氷浴中で0℃とし、アルゴンガス気流中にてそこへ3.3gのCaSiを加えて撹拌した。発泡が完了したのを確認した後に混合溶液を室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに10分間撹拌した。このとき黄色粉末が浮遊した。
得られた混合溶液を濾過し、得られた残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄した。洗浄後の残渣を真空乾燥して2.5gの層状ポリシランを得た。
この層状ポリシランを1g秤量し、Oを1体積%以下の量で含むアルゴンガス中にて500℃で1時間保持する熱処理を行い、シリコン材料を得た。
得られたシリコン材料をロータリーキルン型の反応器に入れ、プロパンガス通気下にて850℃、滞留時間5分間の条件で熱CVDによる炭素化工程を行った。反応器の炉芯管は水平方向に配設されており、炉心管の回転速度は1rpmとした。炉心管の内周壁には邪魔板が配設されており、炉心管の回転に伴って邪魔板上に堆積した内容物が所定の高さで邪魔板から落下するように構成されているため、反応中に内容物が撹拌される。
この炭素化工程で得られたSi/C複合体粉末を、試験例1の負極活物質とする。
このSi/C複合体粉末の平均粒径D50をレーザー回折散乱式粒度分布測定法によって計測した。Si/C複合体粉末の平均粒径D50は5μmであった。
<アスペクト比の測定>
上記Si/C複合体粉末をSEM観察し、任意に選んだ10個の長軸の長さaと、短軸の長さbを測定した。長軸の長さaは4μm〜16μm、短軸の長さbは2μmであった。a/bで表されるアスペクト比は、それぞれ2〜8の範囲であり、アスペクト比の平均値は5であった。
同様の方法でSiOの長軸の長さと短軸の長さを測定した。SiOの長軸の長さは5μm、短軸の長さは3.5μm〜5μm、各アスペクト比は1〜1.43の範囲内であり、アスペクト比の平均値は1.2であった。
同様の方法で天然黒鉛粉末の長軸の長さと短軸の長さを測定した。天然黒鉛粉末の長軸の長さは15μm〜20μm、短軸の長さは15〜20μm、それぞれのアスペクト比は1〜1.3であり、アスペクト比の平均値は1.2であった。
<負極の作製>
(保護層用スラリーの作製)
保護層のセラミックス粉末として、平均粒径D50=540nmのAl粉末(住友化学株式会社製)を準備し、保護層用バインダーとしてポリビニルアルコール(以下PVAと称す。)(質量平均分子量(以下、Mwと称す。)=2200、ガラス転移点(Tg)85℃)と、ポリアクリル酸(以下、PAAと称す。ガラス転移点(Tg)106℃)を準備した。
水にPVAを溶解し、Al粉末を添加し、ディスパーで30分、混合して、保護層用スラリーIを得た。水とPVAとAlの質量比は、百分率で、水/PVA/Al=70/3.3/26.7とした。保護層用スラリーIの固形分濃度は30質量%であった。保護層用スラリーIにおいて、PVAとAlの質量の合計を100とした場合のPVA/Alの配合質量比はPVA/Al=11/89であった。
水とPVAとAlの質量比を、百分率で、水/PVA/Al=70/1.5/28.5とした以外は保護層用スラリーIと同様にして保護層用スラリーIIを作製した。保護層用スラリーIIの固形分濃度は30質量%であった。保護層用スラリーIIにおいて、PVAとAlの質量の合計を100とした場合のPVA/Alの配合質量比はPVA/Al=5/95であった。
PVAをPAAに変えた以外は、保護層用スラリーIと同様にして保護層用スラリーIIIを製造した。保護層用スラリーIIIの固形分濃度は30質量%であった。保護層用スラリーIIIにおいて、PAAとAlの質量の合計を100とした場合のPAA/Alの配合質量比はPAA/Al=11/89であった。
(実施例1の負極)
試験例1の負極活物質であるSi/C複合体粉末と、天然黒鉛粉末と、導電助剤としてアセチレンブラック(以下、ABと称す。)と、結着剤としてポリアミドイミド樹脂(以下、PAIと称す。)とを、それぞれ58質量部、24.5質量部、7.5質量部、10質量部の割合で混合し、この混合物を適量のN−メチル−2−ピロリドン(以下、NMPと称す。)に分散させて、負極活物質層用スラリーを作製した。
このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布した。スラリーを塗布した集電体を乾燥後プレスし、接合物を得た。このとき負極活物質層の密度は1.2g/cmとなるようにした。ここでいう負極活物質層の密度は、負極活物質層の質量(g)÷((負極活物質層の厚み(cm))×(負極活物質層の面積(cm)))の式から算出した。接合物を200℃で2時間、真空乾燥機で加熱乾燥して、負極活物質層が形成された銅箔を得た。この負極活物質層が形成された銅箔を負極Aとした。負極Aの負極活物質層の厚みは50μm程度であった。
負極Aにおいて、Si/C複合体粉末の質量と天然黒鉛粉末の質量の合計を100とした場合に、Si/C複合体粉末と天然黒鉛粉末の質量配合比は、Si/C複合体粉末/天然黒鉛粉末=70.3/29.7であった。
上記負極Aに保護層用スラリーIをアプリケーターを用いて塗布した。保護層用スラリーIを塗布した負極Aを200℃で2時間、加熱乾燥して、実施例1の負極とした。実施例1の負極の保護層の厚みは5μmであった。ここで保護層の厚みは、実施例1の負極の厚みから負極Aの厚みを引くことで求めた。各負極の厚みは、各負極を5mm間隔で10点測定した結果の平均値とした。
(実施例2の負極)
保護層用スラリーIを薄く塗布した以外は実施例1の負極と同様にして実施例2の負極を作製した。実施例2の負極の保護層の厚みは1.5μmであった。
(実施例3の負極)
上記試験例1の負極活物質であるSi/C複合体粉末と、天然黒鉛粉末と、ABと、PAIとを、それぞれ70質量部、12.5質量部、7.5質量部、10質量部の割合で混合し、この混合物を適量のNMPに分散させて、負極活物質層用スラリーを作製した以外は負極Aと同様にして負極Bを作製した。負極Bにおいて、Si/C複合体粉末の質量と天然黒鉛粉末の質量の合計を100とした場合に、Si/C複合体粉末と天然黒鉛粉末の質量配合比は、Si/C複合体粉末/天然黒鉛粉末=84.8/15.2であった。
この負極Bに保護層用スラリーIをアプリケーターを用いて塗布した。保護層用スラリーIを塗布した負極Bを200℃で2時間、加熱乾燥して、実施例3の負極とした。実施例3の負極の保護層の厚みは5μmであった。
(実施例4の負極)
上記試験例1の負極活物質であるSi/C複合体粉末と、ABと、PAIとを、それぞれ80質量部、10質量部、10質量部の割合で混合し、この混合物を適量のNMPに分散させて、負極活物質層用スラリーを作製した以外は負極Aと同様にして負極Cを作製した。負極Cにおいて、Si/C複合体粉末の質量と天然黒鉛粉末の質量の合計を100とした場合に、Si/C複合体粉末と天然黒鉛粉末の質量配合比は、Si/C複合体粉末/天然黒鉛粉末=100/0であった。
この負極Cに保護層用スラリーIをアプリケーターを用いて塗布した。保護層用スラリーIを塗布した負極Cを200℃で2時間、加熱乾燥して、実施例4の負極とした。実施例4の負極の保護層の厚みは5μmであった。
(実施例5の負極)
保護膜用スラリーIIを用いた以外は実施例1の負極と同様にして実施例5の負極を作製した。実施例5の負極の保護層の厚みは5μmであった。
(実施例6の負極)
保護膜用スラリーIIIを用いた以外は実施例1の負極と同様にして実施例6の負極を作製した。実施例6の負極の保護層の厚みは5μmであった。
(比較例1の負極)
SiOと、天然黒鉛粉末と、ABと、PAIと、をそれぞれ70質量部、12.5質量部、7.5質量部、10質量部の割合で混合し、この混合物を適量のNMPに分散させて、負極活物質層用スラリーを作製した以外は負極Aと同様にして負極Dを作製した。負極Dにおいて、SiOの質量と天然黒鉛粉末の質量の合計を100とした場合に、SiOと天然黒鉛粉末の質量配合比は、SiO/天然黒鉛粉末=84.8/15.2であった。
この負極Dに保護層用スラリーIをアプリケーターを用いて塗布した。保護層用スラリーIを塗布した負極Dを200℃で2時間、加熱乾燥して、比較例1の負極とした。比較例1の負極の保護層の厚みは5μmであった。
(走査型電子顕微鏡(以下、SEMと称す。)観察)
実施例1の負極及び比較例1の負極の断面をSEMで倍率1000倍で観察し、画像を取得した。
取得した画像を画像処理し、集電体側の表面と反対側の表面における負極活物質層の断面曲線を取得した。
上記断面曲線の長手方向において大きな違いがなかったので、任意の長手方向100μmの箇所を特定し、これを代表として全体を表した。
特定された箇所の断面曲線の厚み方向の山頂点を通り集電体の表面に対して平行な平行線(山頂線)と、断面曲線の厚み方向の谷底点を通り集電体の表面に対して平行な平行線(谷底線)の間の距離を計測し、その距離を最大高さとした。
実施例1の負極及び比較例1の負極の断面曲線を比較した模式図を図2に示す。図2において、矢印に挟まれた箇所の距離を最大高さとして計測した。実施例1の負極の負極活物質層の最大高さは2μm、比較例1の負極の負極活物質層の最大高さは4μmであった。
実施例1の負極では扁平形状の第一負極活物質を用いている。比較例1の負極では球状の負極活物質を用いている。実施例1の負極で用いた第一負極活物質と比較例1の負極で用いた負極活物質の平均粒径D50は5μmと4μmであり、それほど大きさに違いはなかった。しかしながら実施例1の負極の負極活物質層の最大高さは比較例1の負極の負極活物質層の最大高さに比べて著しく小さかった。実施例1の負極の断面観察では、扁平形状の第一負極活物質の扁平面が集電体に対して平行になるように第一負極活物質が配置されていることが観察された。SEM観察結果から扁平形状の第一負極活物質が負極活物質層に含まれることによって負極活物質層の表面粗さが小さくなることがわかった。
また実施例1の負極及び比較例1の負極の保護層の厚みはどちらも5μmであったが、実施例1の負極の負極活物質層の最大高さと比較例1の負極の負極活物質層の最大高さは異なる。そのため、負極活物質層の最大高さの大きな比較例1の負極では、負極活物質層の表面の高さが高い箇所では保護層の厚みが大変薄くなっており、比較例1の負極の保護層の厚みムラが大きかった。なお、実施例2〜6の負極の負極活物質層の最大高さも同様にして測定した。実施例2〜6の負極の負極活物質層の最大高さは2μmであった。
<ラミネート型リチウムイオン二次電池の作製>
(実施例1のラミネート型リチウムイオン二次電池)
実施例1の負極を所定の形状(負極活物質層面積26mm×31mmの矩形状)に切り取り負極として用いた実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。
正極は以下のように作製した。正極活物質として平均粒径D50が5μmのLiNi0.5Co0.2Mn0.3と導電助剤としてABと、結着剤としてポリフッ化ビニリデン(PVDFとを、それぞれ94質量部、3質量部、3質量部として混合し混合物とした。この混合物を適量のNMPに分散させて、スラリーを作製した。
集電体として厚み15μmのアルミニウム箔を準備した。集電体にスラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。得られたシートを80℃で20分間乾燥してNMPを揮発させて除去した。その後、ロ−ルプレス機により、集電体と集電体上の塗布物を強固に密着接合させた。この時正極活物質層の密度は2.9g/cmとなるようにした。ここでいう正極活物質層の密度は、正極活物質層の質量(g)÷((正極活物質層の厚み(cm))×(正極活物質層の面積(cm)))の式より算出した。接合物を120℃で6時間、真空乾燥機で加熱した。加熱後の接合物を、所定の形状(25mm×30mmの矩形状)に切り取り、正極とした。正極活物質層の厚みは90μm程度であった。
上記正極及び実施例1の負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極及び実施例1の負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚み25μm)を挟装して極板群とした。
この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに非水電解液を注入した。非水電解液としてフルオロエチレンカーボネート(FEC)、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をFEC:EC:EMC:DMC=4:26:30:40(体積比)で混合した溶媒にLiPF6を1mol/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び非水電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。
(実施例2のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を実施例2の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。
(実施例3のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を実施例3の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。
(実施例4のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を実施例4の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例4のラミネート型リチウムイオン二次電池を作製した。
(実施例5のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を実施例5の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例5のラミネート型リチウムイオン二次電池を作製した。
(実施例6のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を実施例6の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして実施例6のラミネート型リチウムイオン二次電池を作製した。
(比較例1のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池における実施例1の負極を比較例1の負極に変更した以外は実施例1のラミネート型リチウムイオン二次電池と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。
<リチウムイオン二次電池の安全性評価>
<釘刺し試験>
実施例1〜6及び比較例1のラミネート型リチウムイオン二次電池について、釘刺し試験による安全性の評価をおこなった。詳しくは、各電池を電流値3.0Aで4.5Vに達するまで定電流(CC)充電した。その後、4.5V±0.02V以内に電圧を維持するようにひきつづき充電を続け、全充電時間が5時間になったら充電を停止した。なお、各ラミネート型リチウムイオン二次電池の容量は6Ahであった。
上記の充電処理をおこなった各ラミネート型リチウムイオン二次電池を、径20mmの孔を有する拘束板上に配置した。上部に釘が取り付けられたプレス機に拘束板を配置した。釘が拘束板上のラミネート型リチウムイオン二次電池を貫通して、釘の先端部が拘束板の孔内部に位置するまで、釘を上部から下部に20mm/秒の速度で移動させた。ラミネート型リチウムイオン二次電池には、表面温度を測定可能な温度測定装置を取り付けた。釘はステンレススチール(JIS G 4051で規定するS45C)製、直径φ8mmかつ釘の先端角度60°であった。釘にかかる荷重、電流、電圧を測定した。釘刺し試験は、室温かつ大気中でラミネート型リチウムイオン二次電池の表面温度を測定しつつ行った。この釘刺し試験によって、ラミネート型リチウムイオン二次電池の正極と負極とが短絡した。電圧が急降下したところを短絡時とした。
短絡時の短絡抵抗を電圧降下量から以下の式を用いて計算した。
短絡抵抗(Ω)=((セル電圧(V)−電圧降下量(V))/電圧降下量(V))×セル内部抵抗(Ω)−セル内部抵抗(Ω)
ここで、セル内部抵抗は釘刺し試験に先立って予め測定しておいた値であり、セル電圧は、電池の外部端子の正負極間の電圧の実測値であり、電圧降下量は、釘刺し試験の開始前と開始後の電圧の変動値である。例えば、4.5Vから3Vに下がったら電圧降下量を1.5Vとした。
実施例1〜4及び比較例1のラミネート型リチウムイオン二次電池の短絡抵抗及び短絡時の表面温度を測定した結果をあわせて表1に記載する。短絡時の表面温度はセル発熱温度として表1に記載した。
Figure 0006566275
表1の結果から、実施例1〜実施例4のラミネート型リチウムイオン二次電池と比較例1のラミネート型リチウムイオン二次電池との短絡抵抗及びセル発熱温度を比べると、比較例1のラミネート型リチウムイオン二次電池の短絡抵抗が大幅に低く、セル発熱温度が大幅に高いことがわかった。このことからアスペクト比が2〜8の第一負極活物質を用いることで、短絡抵抗を上げ、セル発熱温度を下げて安全性を高めることができることがわかった。
実施例1、実施例3及び実施例4のラミネート型リチウムイオン二次電池の短絡抵抗及びセル発熱温度を比べると、どちらもほとんど変わらないことがわかった。このことから扁平形状の第一負極活物質が負極活物質層中に50質量部以上含まれれば、安全性が高くなることがわかった。また実施例4のラミネート型リチウムイオン二次電池は第二負極活物質を含まないものである。このことから、第二負極活物質は含まれなくても扁平形状の第一負極活物質が負極活物質層中に50質量部以上含まれれば、安全性が高くなることがわかった。
実施例1と実施例2のラミネート型リチウムイオン二次電池の負極活物質層の表面の最大高さから、扁平形状の第一負極活物質が含まれる負極活物質層を有すれば、負極活物質層の最大高さを小さくできることがわかった。
また保護層の厚みが1.5μmの実施例2のラミネート型リチウムイオン二次電池の短絡抵抗及びセル発熱温度は、保護層の厚みが5μmの実施例1のラミネート型リチウムイオン二次電池の短絡抵抗及びセル発熱温度と同等であり、実施例2のラミネート型リチウムイオン二次電池も、安全性が高いことが確認された。このことから、実施例2のラミネート型リチウムイオン二次電池の負極活物質層の最大高さが小さいため、保護層の厚みが小さくても保護層が厚みムラなく形成されて安全性が確保されたことがわかった。
実施例1、実施例5、実施例6のラミネート型リチウムイオン二次電池の短絡抵抗及び短絡時の表面温度を測定した結果をあわせて表2に記載する。
Figure 0006566275
表2の結果から、実施例5、実施例6のラミネート型リチウムイオン二次電池と実施例1のラミネート型リチウムイオン二次電池との短絡抵抗及びセル発熱温度を比べると、ほとんど変わらないことが分かった。ことのことから、扁平形状の第一負極活物質の含有量による負極活物質層の表面状態が重要であり、保護層用バインダーの種類の影響は少なく、保護層用バインダーとセラミックス粉末との配合比の影響は少ないことが分かった。
1:集電体、2:第一負極活物質、3:第二負極活物質、4:負極活物質層用バインダー、5:負極活物質層、6:保護層、61:セラミックス粉末、62:保護層用バインダー、7:細孔。

Claims (15)

  1. 集電体と、該集電体の表面に配置された負極活物質層と、該負極活物質層の表面に配置された保護層とからなり、
    前記負極活物質層は、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下である第一負極活物質を含み、
    前記保護層はセラミックス粉末を含み、
    前記負極活物質層は前記アスペクト比が1以上2未満の第二負極活物質をさらに含み、
    前記負極活物質層の質量を100質量部としたときに前記第一負極活物質の質量は58質量部以上であることを特徴とする非水電解質二次電池用負極。
  2. 前記第一負極活物質はSiを含む請求項1に記載の非水電解質二次電池用負極。
  3. 前記第二負極活物質は黒鉛を含む請求項1又は2に記載の非水電解質二次電池用負極。
  4. 前記第一負極活物質のアスペクト比の平均値は、前記第二負極活物質のアスペクト比の平均値を超える請求項1〜3のいずれか一項に記載の非水電解質二次電池用負極。
  5. 前記第一負極活物質の平均粒径D50は0.3μm以上20μm以下である請求項1〜のいずれか一項に記載の非水電解質二次電池用負極。
  6. 前記第一負極活物質は板状シリコン体が厚さ方向に積層された構造を有するシリコン材料を含む請求項1〜のいずれか一項に記載の非水電解質二次電池用負極。
  7. 前記第二負極活物質の平均粒径D50は0.1μm以上20μm以下である請求項1〜6のいずれか一項に記載の非水電解質二次電池用負極。
  8. 前記負極活物質層の表面の最大高さは2μm以下であり、
    前記最大高さは、該活物質層の断面の走査型電子顕微鏡画像において、該活物質層の断面の集電体側の表面と反対側の表面における曲線の厚み方向の山頂点を通り該集電体の表面に対して平行な平行線と、前記曲線の厚み方向の谷底点を通り該集電体の表面に対して平行な平行線との間の距離である請求項1〜のいずれか一項に記載の非水電解質二次電池用負極。
  9. 前記セラミックス粉末の平均粒径D50は0.1μm以上2μm以下である請求項1〜のいずれか一項に記載の非水電解質二次電池用負極。
  10. 前記保護層の厚みは1μm以上6μm以下である請求項1〜のいずれか一項に記載の非水電解質二次電池用負極。
  11. 前記保護層は水系バインダーを含む請求項1〜10のいずれか一項に記載の非水電解質二次電池用負極。
  12. 前記水系バインダーは水溶性バインダーである請求項11に記載の非水電解質二次電池用負極。
  13. 前記水溶性バインダーはポリビニルアルコール又はポリアクリル酸である請求項12に記載の非水電解質二次電池用負極。
  14. 集電体と、該集電体の表面に配置された負極活物質層と、該負極活物質層の表面に配置された保護層とからなり、
    前記負極活物質層は、長軸の長さをa、短軸の長さをbとしたときに、a/bで表されるアスペクト比が2以上8以下である第一負極活物質を含み、
    前記保護層はセラミックス粉末を含み、
    前記負極活物質層の表面の最大高さは2μm以下であり、
    前記最大高さは、該活物質層の断面の走査型電子顕微鏡画像において、該活物質層の断面の集電体側の表面と反対側の表面における曲線の厚み方向の山頂点を通り該集電体の表面に対して平行な平行線と、前記曲線の厚み方向の谷底点を通り該集電体の表面に対して平行な平行線との間の距離である非水電解質二次電池用負極。
  15. 請求項1〜14のいずれか一項に記載の非水電解質二次電池用負極を有することを特徴とする非水電解質二次電池。
JP2017511472A 2015-04-10 2016-04-05 非水電解質二次電池用負極及び非水電解質二次電池 Active JP6566275B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015080926 2015-04-10
JP2015080926 2015-04-10
PCT/JP2016/001915 WO2016163115A1 (ja) 2015-04-10 2016-04-05 非水電解質二次電池用負極及び非水電解質二次電池

Publications (2)

Publication Number Publication Date
JPWO2016163115A1 JPWO2016163115A1 (ja) 2017-11-02
JP6566275B2 true JP6566275B2 (ja) 2019-08-28

Family

ID=57071909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017511472A Active JP6566275B2 (ja) 2015-04-10 2016-04-05 非水電解質二次電池用負極及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US10559813B2 (ja)
JP (1) JP6566275B2 (ja)
DE (1) DE112016001667T5 (ja)
WO (1) WO2016163115A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696692B2 (ja) * 2016-09-20 2020-05-20 株式会社東芝 電極、非水電解質電池、電池パック及び車両
CN107275572A (zh) * 2017-06-16 2017-10-20 力神电池(苏州)有限公司 一种新型负极极片及其应用的锂离子电池
KR102553116B1 (ko) * 2018-01-25 2023-07-07 주식회사 엘지에너지솔루션 음극 및 상기 음극을 포함하는 이차 전지
EP3761428A4 (en) * 2018-02-28 2021-04-07 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
US20210155766A1 (en) * 2018-04-13 2021-05-27 Navitas Systems, Llc Compositions and methods for electrode fabrication
JP2020119887A (ja) * 2019-01-25 2020-08-06 株式会社リコー 電極及びその製造方法、電極素子、電気化学素子
CN110364734A (zh) * 2019-06-06 2019-10-22 华南理工大学 高性能水性复配锂离子电池负极粘结剂及制备方法与应用
CN111564661A (zh) * 2020-06-24 2020-08-21 天能帅福得能源股份有限公司 一种高安全性的锂离子电池
JP7280913B2 (ja) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池および電池モジュール
CN114497440B (zh) * 2022-01-07 2024-01-12 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159385A (ja) * 2006-12-22 2008-07-10 Hitachi Maxell Ltd リチウム二次電池
WO2010050507A1 (ja) * 2008-10-31 2010-05-06 日立マクセル株式会社 非水二次電池
JP5316905B2 (ja) * 2009-02-09 2013-10-16 トヨタ自動車株式会社 リチウム二次電池
JP5359444B2 (ja) * 2009-03-25 2013-12-04 Tdk株式会社 リチウムイオン二次電池
JP5247657B2 (ja) * 2009-11-05 2013-07-24 株式会社日立製作所 非水電解液電池
JP2012186119A (ja) * 2011-03-08 2012-09-27 Toyota Industries Corp 二次電池用負極合材、二次電池用負極、二次電池及びこれを用いた車両
JP5525630B2 (ja) * 2012-03-13 2014-06-18 株式会社日立製作所 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
US20140127564A1 (en) 2012-11-07 2014-05-08 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP5935684B2 (ja) * 2012-12-25 2016-06-15 株式会社豊田自動織機 蓄電装置の製造方法
WO2015033827A1 (ja) * 2013-09-03 2015-03-12 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池

Also Published As

Publication number Publication date
US10559813B2 (en) 2020-02-11
JPWO2016163115A1 (ja) 2017-11-02
DE112016001667T5 (de) 2017-12-28
US20180097223A1 (en) 2018-04-05
WO2016163115A1 (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6566275B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6388186B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6094840B2 (ja) リチウムイオン二次電池
CN107925058B (zh) 二次电池用负极、其制造方法及包含其的二次电池
JP7214299B2 (ja) 二次電池用正極活物質、この製造方法、これを含む二次電池用正極
JPWO2018186017A1 (ja) 二次電池用電極の製造方法および二次電池の製造方法
CN109075291A (zh) 包括多孔粘合层的隔板和使用该隔板的锂二次电池
JP6743596B2 (ja) リチウムイオン二次電池
JP5861896B2 (ja) 第1正極活物質、第2正極活物質、分散剤及び溶剤を含む組成物
JP2017068958A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6699444B2 (ja) 正極及びリチウムイオン二次電池
JP7026433B2 (ja) 正極及びリチウムイオン二次電池
WO2016072090A1 (ja) リチウムイオン二次電池用集電体、その製造方法及び非水電解質二次電池
JP2015060803A (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017033871A (ja) 負極及びリチウムイオン二次電池並びにその製造方法
JP5114857B2 (ja) 非水電解液二次電池用電極板及びその製造方法並びに非水電解液二次電池
WO2015132845A1 (ja) 全固体電池
JP7103234B2 (ja) 二次電池
JP2017027772A (ja) リチウムイオン二次電池及びその製造方法
JP5557067B1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6562380B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6202191B2 (ja) 第1正極活物質及び第2正極活物質を有する正極活物質層、並びに該正極活物質層を具備する正極の製造方法
JP6187824B2 (ja) 第1正極活物質、第2正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法
JP7127638B2 (ja) 二次電池およびその製造方法
JP5999430B2 (ja) リチウムイオン二次電池用正極活物質およびそれを有するリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190717

R151 Written notification of patent or utility model registration

Ref document number: 6566275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151