JP6432715B1 - フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法 - Google Patents

フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法 Download PDF

Info

Publication number
JP6432715B1
JP6432715B1 JP2018533287A JP2018533287A JP6432715B1 JP 6432715 B1 JP6432715 B1 JP 6432715B1 JP 2018533287 A JP2018533287 A JP 2018533287A JP 2018533287 A JP2018533287 A JP 2018533287A JP 6432715 B1 JP6432715 B1 JP 6432715B1
Authority
JP
Japan
Prior art keywords
flux
content
cored wire
wire
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533287A
Other languages
English (en)
Other versions
JPWO2019186797A1 (ja
Inventor
裕治 橋場
裕治 橋場
直樹 坂林
直樹 坂林
力也 高山
力也 高山
笹木 聖人
聖人 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6432715B1 publication Critical patent/JP6432715B1/ja
Publication of JPWO2019186797A1 publication Critical patent/JPWO2019186797A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/404Coated rods; Coated electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

本発明の一態様に係るフラックス入りワイヤの製造方法は、鋼板を円形に成形しながら、前記鋼板の内部にフラックスを充填する工程と、前記鋼板の両端を接合して鋼管とする工程と、前記鋼管に圧延及び焼鈍を施して、前記フラックス入りワイヤを得る工程と、を備え、前記フラックス入りワイヤが所定の化学組成を有し、Sn含有量、Sb含有量、W含有量、及びMo含有量が以下の式1を満たす。
Sn+Sb>Mo+W :式1

Description

本発明は、フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法に関する。
長期間使用することによって大気腐食環境中に暴露されている耐候性鋼材は、一般的には、その表面に保護性のあるさび層が形成される。このさび層が外界からの腐食性物質より耐食性鋼材を遮蔽することで、さび層形成以降の耐候性鋼材の腐食が抑制されて、その耐候性が発揮される。そのため、耐候性鋼材は、塗装せずに裸材のまま使用可能な鋼材として、橋梁等の構造物に用いられている。
しかしながら、飛来塩分量が多い環境、例えば海浜地域、及び融雪剤が散布される地域等では、耐候性鋼材の表面に保護性のあるさび層が形成されにくく、腐食を抑制する効果が発揮されにくい。そのため、これらの地域では、裸材のままの耐候性鋼材を用いることができず、塗装をして用いる必要がある。
さらに、前述の飛来塩分量が多い環境下では、塗膜劣化によって塗膜傷が生じ、塗膜傷部直下の鋼材が直接的に腐食環境にさらされるために、塗装鋼材は、傷部を中心としてコブ状に塗膜が膨れ上がる腐食形態を示す。このような腐食形態の進行によってさらに塗膜傷部が累進的に拡大することで、構造物の腐食が進展し続けるので、飛来塩分量が多い環境下では構造物の寿命延長を目的として約10年毎に塗装鋼材に再塗装を実施することが多い。このような補修工程には多大な工数がかかるので、塗装寿命を延長し、補修塗装間隔を大きく延ばすことで維持管理費用の低減を可能とする耐食性鋼材について、いくつかの技術提案がなされている。
例えば、特許文献1には、海浜地域や融雪塩が散布される地域等で飛来塩分量が多い環境下でもミニマムメンテナンス材料として使用することができる、耐候性および耐塗装剥離性に優れた橋梁用鋼材が開示されている。
特許文献2には、塗膜が機械的に傷つけられ易く、かつSO 2−とClの両方の影響を受け易い腐食環境であっても、塗膜の寿命延長と塗膜が剥がれた後の腐食抑制を図ることができる、石炭・鉱石運搬船ホールド用の耐食性鋼材が開示されている。
また、鋼材自体の耐食性に加え、上記特許文献1及び特許文献2に開示されるような耐候性鋼又は耐食鋼を溶接した場合の溶接金属にも、優れた耐候性及び塗装耐食性を付与させることが求められている。
特に、溶接継手において余盛の耐候性及び塗装耐食性が問題となる。余盛は溶接金属の最表層であり、余盛の領域に施された塗膜は、その周囲の平滑な母材に施された塗膜表面に比較して、溶接継手使用中に、他の物体との衝突や機械的摩擦を相対的により頻回に、強く受け易い。また、余盛自体が凸形で複雑な形状を呈するので、塗装施工において、周囲の母材の塗膜の膜厚よりも余盛の塗膜の膜厚が薄くなる傾向がある。これらの理由から余盛表面は、塗膜の剥離が生じ易いので、鋼構造物の使用開始から早期に、累進的な塗膜破壊が進行する腐食形態の起点となりやすい。
そのため、継手の溶接金属に母材と同等、あるいは、それ以上の優れた耐候性及び塗装耐食性を付与させることができる新規な溶接材料が求められている。
上記課題に対し、例えば特許文献3には、高Ni系高耐候性鋼の溶接に適し、良好な溶接作業性、特に良好なスラグ剥離性が得られ、母材の耐食性を損なうことなく海塩に対する耐食性を溶接金属に付与するガスシールドアーク溶接用ワイヤが提案されている。しかし、特許文献3で提案された技術では、溶接金属を含めた構造物の塗装寿命延長の効果を得ることは難しい。
特に橋梁の溶接においては、リブといわれる補強材の水平すみ肉溶接が行われる場合が多い。そのため、橋梁の溶接においては、水平すみ肉溶接における溶接作業性、ビード形状、ビード外観及び耐欠陥性に優れたガスシールドアーク溶接用フラックス入りワイヤが求められる。さらに、ガスシールドアーク溶接用ワイヤは、ワイヤ中にNiを比較的多く含有するため、溶接時に高温割れが発生し易いという問題もある。
一方、耐食性に優れたガスシールドアーク溶接用フラックス入りワイヤとして、例えば特許文献4、特許文献5及び特許文献6が提案されている。
しかし、特許文献4、特許文献5及び特許文献6に提案されているガスシールドアーク溶接用フラックス入りワイヤを水平すみ肉溶接に適用した場合には、ピットが生じるとともに、ビード形状、ビード外観、スラグ剥離性等の溶接作業性が不良であるという問題がある。また、Cu、CrおよびNiを含有させるような、従来の化学成分の検討で溶接金属の耐食性を向上させる効果は得られているが、溶接金属を含めた構造物の塗装寿命延長の効果は得られていない。
さらに、特許文献3〜6に記載の溶接材料によって得られた溶接金属においても、塗膜の剥離を誘引しやすく、飛来塩分量の多い環境下では、腐食形態の起点となるという問題があった。溶接継手の最表層である余盛に施された塗膜の厚さは、余盛の凸状の複雑な形状に起因して、その周囲の平坦な母材に施された塗膜の厚さに比較して薄くなる傾向にあるからである。
日本国特開2008−163374号公報 日本国特開2007−262555号公報 日本国特開2003−311471号公報 日本国特開2000−102893号公報 日本国特開2000−288781号公報 日本国特開2004−230456号公報
本発明は、橋梁、港湾構造物及び海浜地域などの飛来塩分量が多い環境下で使用される耐食鋼を水平すみ肉溶接する場合においても溶接作業性、溶接性及び溶接部の耐候性及び塗装耐食性に優れ、且つ機械的性能に優れた溶接金属が得られるフラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法を提供することを目的とする。なお、本明細書において溶接作業性に優れるとは、スパッタ発生量が少なく、ビード形状、ビード外観及びスラグ剥離性に優れることを意味する。同様に、溶接性に優れるとは、ピットの発生が無く、高温割れが発生しないことを意味する。また、機械的性能に優れるとは、引張強さ及び靱性に優れることを意味する。
本発明の要旨は以下の通りである。
[1] 本発明の一態様に係るフラックス入りワイヤの製造方法は、鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤの製造方法であって、
鋼板を円形に成形しながら、前記鋼板の内部にフラックスを充填する工程と、
前記鋼板の両端を接合して鋼管とする工程と、
前記鋼管に圧延及び焼鈍を施して、前記フラックス入りワイヤを得る工程と、
を備え、
前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの全質量に対する質量%で、
C:0.03〜0.10%、
Si:0.40〜0.85%、
Mn:1.5〜3.5%、
P:0.020%以下、
S:0.020%以下、
Cu:0.03〜0.70%、
Sn:0.05〜0.30%、
Mg:0.05〜0.50%、
Al:0.05〜0.50%、
Ti酸化物:TiO換算値で1.50〜4.60%未満、
Si酸化物:SiO換算値で0.30〜1.00%、
Zr酸化物:ZrO換算値で0.10〜0.50%、
Fe酸化物:FeO換算値で0.10〜1.00%、
Al酸化物:Al換算値で0.05〜0.50%、
Na化合物及びK化合物の合計:NaO換算値及びKO換算値の合計で0.050〜0.200%、
弗素化合物:F換算値で0.02〜0.20%、
Bi及びBi酸化物の合計:Bi換算値で0〜0.035%、
Ni:0〜2.50%、
Ti:0〜0.30%、
B:0〜0.010%、
Mo:0〜0.400%、
W:0〜0.200%、
Cr:0〜0.500%、
Nb:0〜0.300%、
V:0〜0.300%、
N:0〜0.0080%、
Ca:0〜0.0050%、
REM:0〜0.0050%、
Sb:0〜0.0050%、
残部:Fe及び不純物であり、
Sn含有量、Sb含有量、W含有量、及びMo含有量が以下の式1を満たす。
Sn+Sb>Mo+W :式1
ただし、前記式1における元素記号は、各元素記号に係る元素の含有量を、前記フラックス入りワイヤの前記全質量に対する質量%で示すものである。
[2] 上記[1]に記載のフラックス入りワイヤの製造方法では、前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、
Mo:0〜0.040%
W:0〜0.010%、
であってもよい。
[3] 上記[1]または[2]に記載のフラックス入りワイヤの製造方法では、前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、
Cu:0.05〜0.70%、
であってもよい。
[4] 上記[1]〜[3]のいずれか一項に記載のフラックス入りワイヤの製造方法では、前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、少なくとも下記のいずれかひとつを満たしてもよい。
Ni:0.10〜2.50%
Ti:0.03〜0.30%
B:0.002〜0.010%
[5] 上記[1]〜[4]のいずれか一項に記載のフラックス入りワイヤの製造方法では、前記接合がかしめであってもよい。
[6] 上記[1]〜[4]のいずれか一項に記載のフラックス入りワイヤの製造方法では、前記接合が溶接であってもよい。
] 本発明の別の態様に係る溶接継手の製造方法は、上記[1]〜[6]のいずれか一項に記載のフラックス入りワイヤの製造方法によって製造されるフラックス入りワイヤを用いて溶接する工程を備える。
本発明に係るフラックス入りワイヤの製造方法によって得られるフラックス入りワイヤ、及びこれを用いた溶接継手によれば、橋梁、港湾構造物及び海浜地域などの飛来塩分量が多い環境下で使用される耐食鋼を水平すみ肉溶接する場合においても溶接作業性、溶接性及び溶接部の耐候性及び塗装耐食性に優れ、且つ機械的性能に優れた溶接金属が得られる。
溶接部の耐食性評価のための腐食試験片用の試料の採取位置を示した図である。 溶接部の塗装耐食性評価のための腐食試験片の形状、及び、クロスカットの概略を示した図である。 腐食試験方法(SAE J2334試験、1サイクルあたりの実施条件)の概略を示した図である。 フラックス入りワイヤの製造段階での断面図である。 かしめによって製造されたフラックス入りワイヤの断面図である。 溶接によって製造されたフラックス入りワイヤの断面図である。
本発明者らは、前記課題を解決するために種々のフラックス入りワイヤ(以下、「ワイヤ」と略する場合がある)を試作して、詳細を検討した。
先ず、本発明者らは、飛散塩分量が多い腐食環境での耐食性について、ワイヤ中の化学組成(以下、「化学成分」という場合もある。)の影響を調査した。この結果、フラックス入りワイヤの化学成分として、Cu及びSnを添加することにより、飛散塩分量が多い腐食環境での耐食性を向上させることが可能であるという知見を得た。
さらに、本発明者らは、ビード形状及びビード外観は、ワイヤ中のTi酸化物、Si酸化物、Zr酸化物、Al、Fe酸化物、Al酸化物及び弗素化合物量を調整することで良好になり、スラグ剥離性は、ワイヤ中のSi酸化物、Zr酸化物、Al、Fe酸化物並びにNa化合物及びK化合物の合計量を調整することで良好になることを知見した。さらに、耐ピット性及びスパッタ発生量の低減は、ワイヤ中のTi酸化物、Si酸化物、Mg含有量を調整することで良好になり、機械的性能は、ワイヤ中のC、Si及びMn含有量を調整することで良好になることを知見した。
しかしながら本発明者らは、飛散塩分量が多い腐食環境で溶接金属の耐食性を向上させるためには、上述の要素の相互作用も考慮する必要があることを知見した。具体的には、本発明者らは、Sn(及びSb)と、Mo及びWとの合金成分としての含有量比を所定の範囲内としなければ、特に飛来塩分量が多い環境下においては、前述の塗膜劣化によって塗膜傷が生じた場合、塗膜傷部直下の腐食深さの抑制が困難であり、耐塗装剥離性が低下することを知見した。
以下に、本実施形態に係るフラックス入りワイヤ10の製造方法について、図面を参照して説明する。図4は、フラックス入りワイヤ10の製造段階での断面図であり、図5は、かしめによって製造されたフラックス入りワイヤ10の断面図である。鋼製外皮11の内部にフラックス12が充填された本実施形態に係るワイヤ10の製造方法は、鋼板13を円形に成形しながら、鋼板の内部にフラックス12を充填する工程(図4参照)と、鋼板13の両端を接合して鋼管とする工程と、鋼管に圧延及び焼鈍を施して、ワイヤ10を得る工程と、を含む。圧延及び焼鈍は、溶接材料として使用可能な程度にワイヤ10の径を細くし、且つワイヤ10を軟化させるために行われる。鋼板13の化学組成は、鋼製外皮11の化学組成と実質的に同一である。
接合の手段は特に限定されないが、例えばかしめ、又は溶接である。図5に示される、かしめによって製造されたワイヤ10は、継ぎ目14を有する。一方、図6に示される溶接によって製造されたフラックス入りワイヤ10は、溶接部15を有するが継ぎ目14を有しない、いわゆるシームレスワイヤである。シームレスワイヤは、ワイヤ中の水素量を低減することを目的としたさらなる熱処理に供することができ、かつ製造後の吸湿量が少ないので、溶接金属の拡散性水素を低減でき、耐割れ性を向上させることができるので好ましい。なお、図6は、溶接によって製造されたフラックス入りワイヤ10の断面図である。
溶接中のワイヤの送給性を向上させる等の目的で、本実施形態に係るフラックス入りワイヤ10の製造方法は、鋼製外皮11の外表面にめっきする工程、及び/又は鋼製外皮11の外表面に潤滑剤を塗布する工程をさらに含んでも良い。めっきは、例えば銅めっき等である。潤滑剤は、例えば植物油、又はPTFE油等である。
本実施形態に係るフラックス入りワイヤ10の製造方法では、鋼製外皮11及びフラックス12の化学組成が所定の範囲内に制御される。なお、鋼製外皮11及びフラックス12に含まれる成分は、溶接中に溶融して、溶接金属を形成するとともに、一部は酸化されてスラグとして溶接金属外に排出される。従って、以下に説明される成分は、鋼製外皮11及びフラックス12の何れに含まれた場合であっても同じ効果を奏すると考えられる。以上の理由により、本実施形態に係る製造方法では、鋼製外皮11の化学組成とフラックス12の化学組成とを区別する必要はない。
以下、特に断りが無い限り酸化物又は弗化物の形態で存在する化学組成(成分)をスラグ成分と定義し、それ以外の単体金属又は合金として存在する化学組成(成分)を合金成分と定義する。
C、P及びSは金属元素ではないが、便宜上、本実施形態においては合金成分に含まれるものとする。また、Al及びBiに関しては、その酸化物の作用が、合金成分としてのAl及びBiの作用と同じであると考えられるので、その酸化物は実質的に合金成分として取り扱われる。スラグ成分であるとの断りが特に無い限り、以下に説明される元素の含有量は、合金成分として存在する元素の含有量である。合金成分は鋼製外皮11及びフラックス12のいずれにも含まれ得るが、スラグ成分は、通常、フラックス12にのみ含まれる。
本実施形態に係るフラックス入りワイヤ10を製造しようとする際には、製造しようとするフラックス入りワイヤ10の径、充填率(フラックス入りワイヤ10の全質量に対するフラックス12の質量の割合のことをいう。)およびフラックス入りワイヤ10の化学組成の設計値(目標値)が予め決定される。鋼製外皮の原材料となる鋼板13には、通常、特定の化学組成のものが使用される。その化学組成を示した書類(例えば、鋼板13の化学組成の分析結果、鉄鋼メーカーの検査証明書またはカタログなど)から鋼製外皮11の化学組成を把握することができる。このため、充填率、鋼製外皮11の化学組成およびフラックス入りワイヤ10の化学組成の設計値(目標値)から、フラックス12の化学組成の設計値(目標値)を決定することができる。決定されたフラックス12の化学組成の設計値(目標値)に加え、フラックス12の原料(スラグ成分の原料および金属成分の原料の双方をいう。)の化学組成を示した書類(例えば、原料メーカーなどの報告書、証明書またはカタログなど)から、フラックス12の原料が選定され、その原料の配合比率が決定される。
つまり、上記の手順で選定されたフラックス12の原料を、上記の手順で決定された配合比率で配合して、フラックス12を製造する。このようにして製造されたフラックス12および前記の鋼板13を用いて、設計値の化学組成のフラックス入りワイヤ10を製造することができる。なお、フラックス入りワイヤ10にめっきが施される場合、めっきの化学組成とめっきの厚さとに応じて、鋼製外皮11およびフラックス12の化学組成を制御する必要がある。
以下の説明における、化学組成についての単位「%」は、特に断りが無い限り、フラックス入りワイヤ10の全質量(鋼製外皮11とフラックス12の合計質量)に対する質量%を示す。ここで、フラックス入りワイヤ10の全質量とは、鋼製外皮11及びフラックス12の合計質量であり、鋼製外皮11の表面にめっきがされている場合は、そのめっきの質量は鋼製外皮11の質量に含まれる。ただし、鋼製外皮11の外表面に塗布された潤滑剤の質量は、フラックス入りワイヤ10の全質量に含まれないものとする。
[C:0.03〜0.10%]
Cは、溶接構造物に要求される溶接金属の強度及び靭性を得るためにワイヤ中に含有される元素である。Cは、鋼製外皮11に含まれる成分の他、フラックス12中のFe−Si、Fe−Mn及びFe−Si−Mn等の鉄合金が微量含有する金属粉に含まれ得る。C含有量が0.03%未満では、溶接金属の強度及び靭性が低下する。一方、C含有量が0.10%を超えると、溶接金属の強度が高くなることにより、溶接金属の靭性が低下する。従って、C含有量は0.03〜0.10%とする。好ましくは、C含有量の下限値は0.04%、又は0.05%である。好ましくは、C含有量の上限値は0.09%、又は0.08%である。 なお、Cは、鋼製外皮11の成分、及びフラックス12中の金属粉及び合金粉の成分として存在し得る。つまり、鋼製外皮11のC含有量およびフラックス12のC含有量を制御することにより、前記のC含有量のフラックス入りワイヤ10を製造することができる。
[Si:0.40〜0.85%]
Siは、脱酸剤として作用する元素であり、且つ溶接金属の強度及び靭性を確保するためにワイヤ中に含有される元素である。Siは、鋼製外皮11に含まれる成分の他、フラックス12中の金属Si、Fe-Si及びFe-Si-Mn等に含まれ得る。Si含有量が0.40%未満では、脱酸不足によりピットが発生する。また、Si含有量が0.40%未満では、溶接金属の強度及び靭性が低下する。一方、Si含有量が0.85%を超えると、溶接金属の強度が高くなることにより、溶接金属の靭性が低下する。従って、Si含有量は0.40〜0.85%とする。好ましくは、Si含有量の下限値は0.55%、又は0.65%である。好ましくは、Si含有量の上限値は0.75%、又は0.70%である。
なお、Siは、鋼製外皮11の成分、及びフラックス12中の金属Si、Fe−Si、Fe−Si−Mn等の合金粉の成分として存在し得る。つまり、鋼製外皮11のSi含有量およびフラックス12のSi含有量を制御することにより、前記のSi含有量のフラックス入りワイヤ10を製造することができる。
[Mn:1.5〜3.5%]
Mnは、脱酸剤として作用する元素であるとともに、溶接金属の強度及び靭性を確保するためにワイヤ中に含有される元素である。Mn含有量が1.5%未満では、脱酸不足となり、ピットが発生する。また、Mn含有量が1.5%未満では、溶接金属の強度及び靭性も低下する。一方、Mn含有量が3.5%を超えると、溶接金属の強度が高くなることにより、溶接金属の靭性が低下する。従って、Mn含有量は、1.5〜3.5%とする。好ましくは、Mn含有量の下限値は2.4%、又は2.6%である。好ましくは、Mn含有量の上限値は3.0%、又は2.8%である。
なお、Mnは、鋼製外皮11の成分、及びフラックス12中の金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉の成分として存在し得る。つまり、鋼製外皮11のMn含有量およびフラックス12のMn含有量を制御することにより、前記のMn含有量のフラックス入りワイヤ10を製造することができる。
[P:0.020%以下]
[S:0.020%以下]
P及びSは、溶接金属の機械的特性に悪影響を与え、また、溶接金属の耐食性を損なう場合がある元素であるので、ワイヤに一切含まれないことが最も好ましい。従って、P及びSの含有量の下限値は0%である。しかしながら、P及びSをワイヤの材料から完全に除去するためには多くの費用を必要とするので、溶接金属の諸特性を損なわない範囲内でP及びSが含有されてもよい。本実施形態に係るフラックス入りワイヤ10では、0.020%以下のP、及び0.020%以下のSが許容される。P又はSの上限値を0.015%、0.010%、又は0.005%としてもよい。P又はSの下限値を0.001%、0.002%、又は0.005%としてもよい。
前記のCおよびSiと同様に、鋼製外皮11のP含有量およびS含有量並びにフラックス12のP含有量およびS含有量を制御することにより、前記のP含有量およびS含有量のフラックス入りワイヤ10を製造することができる。
[Cu:0.03〜0.70%]
Cuは、溶接金属の耐食性を向上させる作用を有する元素である。Cu含有量が0.03%未満では、溶接金属の耐食性が劣る。一方、Cu含有量が0.70%を超えると、溶接金属の耐食性が向上される効果は飽和する。また、Cu含有量が0.70%を超えると、溶接金属の靭性が低下する。従って、Cu含有量は、0.03〜0.70%とする。好ましくは、Cu含有量の下限値は0.05%、0.15%、0.17%、又は0.20%である。好ましくは、Cu含有量の上限値は0.35%、0.32%、又は0.30%である。
Cuが溶接金属の耐候性および耐塗装剥離性を向上させる理由は、Cuが、Cuを含有した溶接金属そのものの溶解反応(腐食反応)の反応速度を低減するため、及び、Cuを含有する溶接金属では、表面(余盛部など)に生成する腐食生成物(錆)が、特徴的な微細かつ緻密な構造を呈することにより、水、酸素、塩化物イオン等の透過を抑制する防食性の高い錆層を形成するためである。
なお、Cuは、鋼製外皮11自体の成分、鋼製外皮11のめっき成分、又はフラックス12中の金属Cu等として存在し得る。つまり、鋼製外皮11のCu含有量、めっきのCu含有量およびフラックス12のCu含有量を制御することにより、前記のCu含有量のフラックス入りワイヤ10を製造することができる。
[Sn:0.05〜0.30%]
Snは、溶接金属の耐食性を向上させる効果を有する元素である。Sn含有量が0.05%未満では、耐食性が劣る。一方、Sn含有量が0.30%を超えると、高温割れが生じ易くなる。従って、Sn含有量は、0.05〜0.30%とする。好ましくは、Sn含有量の下限値は0.10%、又は0.12%である。好ましくは、Sn含有量の上限値は0.25%、0.20%、又は0.18%である。
なお、Snは、鋼製外皮11の成分として含有されてもよいし、フラックス12中の金属Sn又はSn化合物として含有されてもよい。主に、鋼製外皮11のSn含有量およびフラックス12のSn含有量を制御することにより、前記のSn含有量のフラックス入りワイヤ10を製造することができる。
Snが溶接金属の耐候性及び耐塗装剥離性を向上させる理由は、溶接金属中の金属Snがスズイオン(II)(Sn2+)として溶出し、環境中に暴露されている部位、すなわち、酸性塩化物溶液中でインヒビター作用を示し、pHが低下したアノードでの腐食を抑制するからである。また、溶接金属中の金属Snは、鉄(III)イオン(Fe3+)を還元させる作用(2Fe3++Sn2+→2Fe2++Sn4+)も持つため、Fe3+の腐食促進作用を抑制し、飛来塩分の多い環境での耐候性を向上させるからである。
[Mg:0.05〜0.50%]
Mgは、強脱酸剤として作用することによって、ピット発生を防止する効果を有する元素である。Mg含有量が0.05%未満であると、脱酸剤としての効果が無く、ピットが発生する。一方、Mg含有量が0.50%を超えると、アークが荒くなりスパッタ発生量が多くなる。従って、Mg含有量は、0.05〜0.50%とする。好ましくは、Mg含有量の下限値は0.15%、0.18%、又は0.20%である。好ましくは、Mg含有量の上限値は0.35%、0.30%、又は0.25%である。
一般的な鋼製外皮11のMg含有量は殆ど0%である。このため、Mgは、フラックス12中の金属Mg、Al−Mg等の合金粉末としてワイヤに存在することが多い。つまり、主にフラックス12のMg含有量を制御することにより、前記のMg含有量のフラックス入りワイヤ10を製造することができる。
[Al:0.05〜0.50%]
Alは、脱酸剤として作用する元素であるとともに、溶融スラグ中でAl酸化物となることによってスラグの粘性を高めて、水平すみ肉溶接時に溶融プールの後退を抑制して十分なスラグ被包性を保持する作用を有する元素である。Al含有量が0.05%未満では、ビード形状が凸状になり、上脚部にアンダーカットが発生する。一方、Al含有量が0.50%を超えると、ビード形状に滑らかさがなくなることにより、ビードの止端部が膨らんだ形状となる。また、Al含有量が0.50%を超えると、溶融スラグの凝固むらが生じてスラグ剥離性が不良となる。従って、Al含有量は、0.05〜0.50%とする。好ましくは、Al含有量の下限値は0.07%、0.10%、又は0.15%である。好ましくは、Al含有量の上限値は0.25%、又は0.20%である。
なお、Alは、鋼製外皮11の成分、又はフラックス12中の金属Al粉、Fe−Al合金粉、Al−Mg合金粉などとして存在し得る。つまり、主に、鋼製外皮11のAl含有量およびフラックス12のAl含有量を制御することにより、前記のAl含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のAl含有量を上記範囲内とするため、前記のAl含有量の鋼製外皮11および前記のAl含有量のフラックス12を使用してもよい。
[Ti酸化物:TiO換算値で1.50〜4.60%未満]
スラグ成分であるTi酸化物は、ビード全体を均一にスラグで被包させる作用を有する。また、Ti酸化物は、アークの持続を安定させ、スパッタ発生量を低減させる効果を有する。
Ti酸化物のTiO換算値が1.50%未満であると、スラグ生成量が不足してビードを均一に被包できないので、スラグがビード表面に焼き付くことによってビード外観が不良になる。また、Ti酸化物のTiO換算値が1.50%未満であると、アークを安定させる効果が無くなり、スパッタ発生量も増加する。一方、Ti酸化物のTiO換算値が4.60%以上であると、アークが安定することによってスパッタ発生量は減少するが、スラグの粘性が高まることによって、スラグが厚くなり、ビードの止端部が膨らんだ形状となる。また、Ti酸化物のTiO換算値が4.60%以上であると、ピットが発生しやすくなる。従って、Ti酸化物のTiO換算値は、1.50〜4.60%未満とする。好ましくは、Ti酸化物のTiO換算値の下限値は2.50%、2.80%、又は3.00%である。好ましくは、Ti酸化物のTiO換算値の上限値は4.30%、4.00%、3.70%、又は3.50%である。
なお、Ti酸化物は、主に、フラックス12中のルチル、酸化チタン、チタンスラグ、イルミナイト、チタン酸ソーダ、チタン酸カリ等として存在し得る。このため、主に、フラックス12のTi酸化物の含有量を制御することにより、前記のTi酸化物の含有量のフラックス入りワイヤ10を製造することができる。
ここで、換算値の計算の仕方について、Ti酸化物のTiO換算値を例にとって説明する。Ti酸化物のTiO換算値とは、ワイヤ中に含まれている全てのTi酸化物(例えば、TiO2、Ti、Ti、チタン酸ソーダ、チタン酸カリ等)をTiOとしてみなした場合の、TiOのワイヤ全質量に対する質量%である。従って、TiOの換算値は、Ti酸化物の質量からOを除外して得られる、Tiのみの質量の総和を測定し、この総Ti量を以下の式に代入することにより得られる。
(TiO換算値)=(Ti酸化物を形成するTiのワイヤ全質量に対する質量%)×(TiOの式量)/(Tiの原子量)
なお、Si酸化物のSiO換算値、Zr酸化物のZrO換算値、FeO酸化物のFe換算値、Al酸化物のAl換算値も、同様の計算により得られる。
[Si酸化物:SiO換算値で0.30〜1.00%]
スラグ成分であるSi酸化物は、溶融スラグの粘性を高め、スラグ剥離性を改善する作用を有する。Si酸化物のSiO換算値が0.30%未満では、スラグ被包状態が悪くスラグ剥離性が不良になり、ビード形状及びビード外観も不良になる。一方、Si酸化物のSiO換算値が1.00%を超えると、スパッタ発生量が多くなる。さらに、Si酸化物のSiO換算値が1.00%を超えると、ピット及びガス溝等が発生し易くなる。従って、Si酸化物のSiO換算値は、0.30〜1.00%とする。好ましくは、Si酸化物のSiO換算値の下限値は0.50%、又は0.60%である。好ましくは、Si酸化物のSiO換算値の上限値は0.90%、又は0.80%である。
なお、Si酸化物は、主に、フラックス12中の珪砂、ジルコンサンド、長石、珪酸ソーダ、珪酸カリ等として存在し得る。このため、主に、フラックス12のSi酸化物の含有量を制御することにより、前記のSi酸化物の含有量(SiO換算値で0.30〜1.00%)のフラックス入りワイヤ10を製造することができる。
[Zr酸化物:ZrO換算値で0.10〜0.50%]
スラグ成分であるZr酸化物は、水平すみ肉溶接でスラグ被包性を高めてビード形状を平滑にする作用を有する。Zr酸化物のZrO換算値が0.10%未満では、ビード形状が平滑にならず、凸状のビード形状となり、スラグ剥離性が不良となる。一方、Zr酸化物のZrO換算値が0.50%を超えると、ビード形状が凸状になりやすい。従って、Zr酸化物のZrO換算値は、0.10〜0.50%とする。好ましくは、Zr酸化物のZrO換算値の下限値は0.15%、又は0.20%である。好ましくは、Zr酸化物のZrO換算値の上限値は0.40%、又は0.30%である。
なお、Zr酸化物は、主に、フラックス12中のジルコンサンド、酸化ジルコニウム等として存在し得るものであり、また、上述のTi酸化物に微量含有される場合もある。このため、主に、フラックス12のZr酸化物の含有量を制御することにより、前記のZr酸化物の含有量(ZrO換算値で0.10〜0.50%)のフラックス入りワイヤ10を製造することができる。
[Fe酸化物:FeO換算値で0.10〜1.00%]
FeO、Fe等のFe酸化物は、溶融スラグの粘性及び凝固温度を調整する作用を有し、ビード止端部の膨らみを無くし、下板とのなじみ性を良好にする作用を有する。Fe酸化物のFeO換算値が0.10%未満であると、ビード止端部が膨らむことによって、ビード止端部の形状が不良になる。一方、Fe酸化物のFeO換算値が1.00%を超えると、スラグ被包状態が悪くなり、スラグ剥離性が不良でビード止端部が膨らみ、ビード形状及びビード外観も不良となる。従って、Fe酸化物のFeO換算値は、0.10〜1.00%とする。好ましくは、Fe酸化物のFeO換算値の下限値は0.20%、0.30%、又は0.40%である。好ましくは、Fe酸化物のFeO換算値の上限値は0.80%、0.70%、又は0.60%である。
なお、Fe酸化物は主にフラックス12に存在する場合が多く、主に、フラックス12のFe酸化物の含有量を制御することにより、前記のFe酸化物の含有量(FeO換算値で0.10〜1.00%)のフラックス入りワイヤ10を製造することができる。
[Al酸化物:Al換算値で0.05〜0.50%]
Al酸化物は、溶融スラグを構成した場合、スラグ被包性を良好にすることにより、すみ肉ビードの上脚側のアンダーカットを防止する作用を有する。Al酸化物のAl換算値が0.05%未満では、すみ肉ビードの上脚側にアンダーカットが生じやすくなる。一方、Al酸化物のAl換算値が0.50%を超えると、すみ肉ビードの下脚側のビード止端部が膨らんだビード形状となる。従って、Al酸化物のAl換算値は、0.05〜0.50%とする。好ましくは、Al酸化物のAl換算値の下限値は0.10%、0.15%、又は0.20%である。好ましくは、Al酸化物のAl換算値の上限値は0.35%、0.30%、又は0.25%である。
なお、Al酸化物は、主にフラックス12中のアルミナ、長石等の成分として存在する場合が多い。このため、主に、フラックス12のAl酸化物の含有量を制御することにより、前記のAl酸化物の含有量(Al換算値で0.05〜0.50%)のフラックス入りワイヤ10を製造することができる。
[Na化合物及びK化合物の合計:NaO換算値及びKO換算値の合計で0.050〜0.200%]
Na化合物及びK化合物には、アーク安定剤としての作用だけではなく、スラグ形成剤として溶融スラグの凝固過程の急激な粘性増加を抑えて耐ピット性を高めることによって、平滑なビード形状にする作用がある。Na化合物及びK化合物は、フラックス中の珪酸ソーダ及び珪酸カリ等からなる水ガラスの固質成分、弗化ソーダや珪弗化カリ等の弗素化合物として存在し得る。
Na化合物及びK化合物のNaO換算値及びKO換算値の合計が0.050%未満では、大粒のスパッタが多発し、ピット及びガス溝等も発生しやすく、ビードはごつごつした表面となり、ビード形状及びビード外観が不良になる。一方、Na化合物及びK化合物のNaO換算値及びKO換算値の合計が0.200%を超えると、スラグ剥離性、ビード形状及びビード外観が不良となり、スパッタ発生量も多くなる。従って、Na化合物及びK化合物のNaO換算値及びKO換算値の合計は、0.050〜0.200%とする。好ましくは、Na化合物及びK化合物のNaO換算値及びKO換算値の合計の下限値は0.080%、又は0.100%である。好ましくは、Na化合物及びK化合物のNaO換算値及びKO換算値の合計の上限値は0.150%、又は0.120%である。
通常の鋼製外皮11のNa化合物及びK化合物の含有量はほぼ0%である。このため、主にフラックス12のNa化合物及びK化合物の含有量を制御することにより、前記のNa化合物及びK化合物の含有量(NaO換算値及びKO換算値の合計で0.050〜0.200%)のフラックス入りワイヤ10を製造することができる。
Na化合物のNaO換算値とは、ワイヤ中に含まれているすべてのNa化合物がNaOであるとみなした場合の、NaOのワイヤ全質量に対する質量%である。K化合物のKO換算値とは、ワイヤ中に含まれているすべてのK化合物がKOであるとみなした場合の、KOのワイヤ全質量に対する質量%である。Na化合物のNaO換算値及びK化合物のKO換算値は、上述されたTi酸化物のTiO換算値と同様の手段により算出される。
[弗素化合物:F換算値で0.02〜0.20%]
スラグ成分である弗素化合物は、アークの指向性を高めて安定した溶融プールにする作用を有するとともに、スラグの粘性を調整してビード形状を平滑にする作用並びに耐ピット性を良好にする作用を有する。弗素化合物は、フラックス12中の弗化マグネシウム、氷晶石、弗化ソーダや珪弗化カリ等として存在し得る。通常の鋼製外皮11の弗素化合物の含有量はほぼ0%である。このため、主にフラックス12の弗素化合物の含有量を制御することにより、前記の弗素化合物の含有量(F換算値で0.02〜0.20%)のフラックス入りワイヤ10を製造することができる。
弗素化合物のF換算値が0.02%未満では、アークが不安定になり、下板側下脚部のなじみ性が不良となる。また、弗素化合物のF換算値が0.02%未満では、ピットが発生しやすくなる。一方、弗素化合物のF換算値が0.20%を超えると、スラグの粘性が低下してビード上脚部に除去しにくい薄いスラグが残り、スラグ剥離性が不良となり、ビード形状が凸状になる。従って、弗素化合物のF換算値は、0.02〜0.20%とする。好ましくは、弗素化合物のF換算値の下限値は0.03%、又は0.05%である。好ましくは、弗素化合物のF換算値の上限値は0.15%、0.10%、又は0.07%である。
なお、弗素化合物のF換算値とは、ワイヤ中のすべての弗素化合物に含まれるFの、ワイヤ全質量に対する質量%での含有量の総量である。
本実施形態に係るフラックス入りワイヤ10の製造方法において、鋼製外皮11及びフラックス12は以上の元素及び化合物を含有することを必須要件とするが、さらに以下に記載する元素や化合物を必要に応じて含有できる。但し、以下に挙げられる任意成分が含まれない場合でも、本実施形態に係るフラックス入りワイヤ10の製造方法はその課題を達成することができるので、任意成分の含有量の下限値は0%である。
[金属Bi及びBi酸化物:Bi換算値の合計で0〜0.035%]
Biは、スラグ剥離性を向上させ、ビード表面に光沢を出し、ビード外観を良好にする作用を有するので、ワイヤ10に含まれても良い。Biは、鋼製外皮に含まれる成分の他、フラックス12中の金属Biや酸化Bi等として存在し得る。しかし、金属Bi及びBi酸化物のBi換算値の合計が0.035%を超えると、ビード上部のスラグが流れて、ビード全面をスラグで被包することができなくなり、ビード外観が不良となる。従って、フラックス12中の金属Bi及びBi酸化物のBi換算値の合計は、0.035%以下とする。好ましくは、金属Bi及びBi酸化物のBi換算値の合計の上限値は0.030%、又は0.025%である。なお、スラグ剥離性を向上させる効果を得るためには金属Bi及びBi酸化物のBi換算値の合計の下限値は、0.005%、0.010%、又は0.015%とすることが好ましい。
Biを含有した鋼板13は非常に高価である。このため、主に、フラックス12のBi含有量およびBi酸化物の含有量を制御することにより、前記のBi含有量およびBi酸化物の含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のBi含有量及びBi酸化物の含有量を上記範囲内とするため、前記の化学組成(Bi及びBi酸化物:Bi換算値の合計で0〜0.035%)の鋼製外皮11および前記の化学組成(Bi及びBi酸化物:Bi換算値の合計で0〜0.035%)のフラックス12を使用してもよい。
Bi換算値とは、金属又は合金として存在するBiのワイヤ全質量に対する質量%と、Bi酸化物(例えばBi)中のBiのワイヤ全質量に対する質量%との合計値である。金属又は合金として存在するBiと、Bi酸化物とは同様の効果を奏するので、本実施形態に係るフラックス入りワイヤ10の製造方法では、金属又は合金として存在するBiの含有量、及びBi酸化物の含有量の両方をBi換算値として制御する。
[Ni:0〜2.50%]
[Ti:0〜0.30%]
[B:0〜0.010%]
Ni、Ti及びBは、溶接金属の低温における靭性を確保するためにワイヤ10中に含有させてもよい。しかし、Ni含有量が2.50%を超えると、高温割れが生じやすくなる。従って、Ni含有量は、2.50%以下とする。好ましくは、Ni含有量の上限値は2.30%、2.00%、又は1.50%である。なお、溶接金属の低温における靭性を確保するためには、Ni含有量の下限値を0.10%、又は0.20%とすることが好ましい。
Ti含有量が0.30%を超えると、スラグがビード表面に焼き付き、ビード外観が不良になり、スパッタ発生量も多くなる。さらに、Ti含有量が0.30%を超えると、溶接金属の靭性も低下する。また、B含有量が0.010%を超えると、高温割れが生じ易くなる。従って、Ti含有量を0.30%以下とし、B含有量を、0.010%以下とする。好ましくは、Ti含有量の上限値は0.25%、又は0.20%である。好ましくは、B含有量の上限値は0.008%、又は0.005%である。
Niは、鋼製外皮11の成分、フラックス12中の金属Ni及びFe−Ni等に含まれ得る。TiおよびBは、溶接金属の低温における靭性を確保するためにワイヤ10中に含有されてもよい。Tiは、鋼製外皮11の成分、フラックス12中の金属TiやFe−Tiの成分として存在し得る。Bは、鋼製外皮11の成分、フラックス12中のFe−BやFe−Mn−B等の成分として存在し得る。つまり、主に、鋼製外皮11のNi含有量、Ti含有量およびB含有量、並びにフラックス12のNi含有量、Ti含有量およびB含有量を制御することにより、前記のNi含有量、Ti含有量およびB含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のNi含有量、Ti含有量およびB含有量を前記範囲内とするため、前記の化学組成(Ni:0〜2.50%、Ti:0〜0.30%、B:0〜0.010%)の鋼製外皮11および前記の化学組成(Ni:0〜2.50%、Ti:0〜0.30%、B:0〜0.010%)のフラックス12を使用してもよい。
なお、溶接金属の低温靭性を向上させるためには、0.10%以上のNi、0.03%以上のTi、及び0.002%以上のBからなる群から選択される1種又は2種以上をワイヤ10に含有させることが好ましい。特に、−40℃でのシャルピー吸収エネルギーを向上させるためには、少なくとも下記のいずれかひとつを満たす必要がある。
Ni:0.10〜2.50%
Ti:0.03〜0.30%
B:0.002%〜0.010%
[Mo:0〜0.400%]
Moは溶接金属の強度を向上させる効果を有するので、ワイヤ10中に含まれてもよい。しかし、Mo含有量が0.400%を超えると、特に飛来塩分量が多い環境下において塗膜傷が生じた場合、Snのイオン化と競合することで塗膜傷部直下の平均腐食深さが抑制できなくなる。したがって、Mo含有量の上限は0.400%とすることが好ましい。また、溶接金属の強度を向上させる効果を得るためには、Mo含有量の下限を0.010%とすることが好ましい。好ましいMo含有量の上限値は、0.300%、0.100%、又は0.040%である。
なお、Moは、鋼製外皮11の成分、フラックス12中の金属Mo、Fe−Mo等の合金粉末としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のMo含有量およびフラックス12のMo含有量を制御することにより、前記のMo含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のMo含有量を前記範囲内とするため、前記のMo含有量(つまり、0〜0.400%)の鋼製外皮11および前記のMo含有量(つまり、0〜0.400%)のフラックス12を使用してもよい。
[W:0〜0.200%]
Wは、溶接金属の強度向上に寄与することからワイヤ10中に含まれても良い。しかし、W含有量が0.200%を超えると、特に飛来塩分量が多い環境下において塗膜傷が生じた場合、Snのイオン化と競合することで塗膜傷部直下の平均腐食深さが抑制できなくなる。したがって、W含有量の上限は0.200%とする。好ましいW含有量の上限値は、0.150%、0.100%、又は0.010%である。
なお、Wは、鋼製外皮11の成分として、または、フラックス12中の金属W等の合金粉末としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のW含有量およびフラックス12のW含有量を制御することにより、前記のW含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のW含有量を前記範囲内とするため、前記のW含有量(つまり、0〜0.200%)の鋼製外皮11および前記のW含有量(つまり、0〜0.200%)のフラックス12を使用してもよい。
[Cr:0〜0.500%]
Crは、溶接金属の強度向上に寄与することからワイヤ中に含まれても良い。しかし、Cr含有量が0.500%を超えると、特に飛来塩分量が多い環境下において塗膜傷が生じた場合、Snのイオン化と競合することで塗膜傷部直下の腐食深さが抑制できなくなる。したがって、Cr含有量の上限は0.500%とすることが好ましい。好ましいCr含有量の上限値は、0.100%、又は0.050%である。
なお、Crは、鋼製外皮11の成分として、または、フラックス12中の金属Cr、Fe−Cr等の合金粉末の合金粉末としてワイヤに存在し得る。つまり、主に、鋼製外皮11のCr含有量およびフラックス12のCr含有量を制御することにより、前記のCr含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のCr有量を前記範囲内とするため、前記のCr含有量(つまり、0〜0.500%)の鋼製外皮11および前記のCr含有量(つまり、0〜0.500%)のフラックス12を使用してもよい。
[Nb:0〜0.300%]
Nbは、析出強化により溶接金属の強度向上に寄与することからワイヤ10中に含まれても良い。しかし、Nb含有量が0.300%を超えると、Nbが粗大な析出物を形成して溶接金属の靭性が低下する。したがって、Nb含有量の上限値は0.300%とする。Nb含有量の上限値を0.250%、又は0.200%としてもよい。上述の効果を得るために、Nb含有量の下限値を0.050%、又は0.100%としてもよい。
なお、Nbは、鋼製外皮11の成分として、または、フラックス12中の金属Nb、Fe−Nb等の合金粉末の合金粉末としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のNb含有量およびフラックス12のNb含有量を制御することにより、前記のNb含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のNb含有量を前記範囲内とするため、前記のNb含有量(つまり、0〜0.300%)の鋼製外皮11および前記のNb含有量(つまり、0〜0.300%)のフラックス12を使用してもよい。
[V:0〜0.300%]
Vは、溶接金属の強度向上に寄与することからワイヤ10中に含まれても良い。しかし、V含有量が0.300%を超えると、溶接金属の強度が過剰に高くなり、溶接金属の靭性が低下する。したがって、V含有量は0.300%以下とする。溶接金属の強度を向上させる効果を得るためには、V含有量を0.010%以上とすることが好ましい。好ましいV含有量の上限値は、0.200%、又は0.100%である。
なお、Vは、鋼製外皮11の成分として、または、フラックス12中の金属V、Fe−V等の合金粉末の合金粉末としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のV含有量およびフラックス12のV含有量を制御することにより、前記のV含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のV含有量を前記範囲内とするため、前記のV含有量(つまり、0〜0.300%)の鋼製外皮11および前記のV含有量(つまり、0〜0.300%)のフラックス12を使用してもよい。
[N:0〜0.0080%]
Nは、溶接金属の靱性等を損なわせる元素であるので、ワイヤ10に一切含まれないことが最も好ましい。従って、N含有量の下限値は0%である。しかしながら、Nをワイヤの材料から完全に除去するためには多くの費用が必要とされるので、溶接金属の諸特性を損なわない範囲内でNが含有されてもよい。本実施形態に係るフラックス入りワイヤ10では、0.0080%以下のNが許容される。N含有量の上限値を0.0070%、0.0060%、又は0.0050%としてもよい。フラックス入りワイヤ10のN含有量を前記範囲内とするため、前記のN含有量(つまり、0〜0.0080%)の鋼製外皮11および前記のV含有量(つまり、0〜0.0080%)のフラックス12を使用してもよい。
[Ca:0〜0.0050%]
[REM:0〜0.0050%]
Ca及びREMは、硫化物及び酸化物の形態を変化させることで溶接金属の延性及び靭性を向上させる効果を有する。この効果を得るために、Ca含有量を0.0002%以上としてもよく、REM含有量を0.0002%以上としてもよい。一方、Ca及びREMは、スパッタ量を増大させ、溶接性を損なう元素でもある。従って、Ca含有量の上限値は0.0050%であり、REM含有量の上限値は0.0050%である。Ca含有量の上限値を0.0040%、又は0.0030%としてもよい。REM含有量の上限値を0.0040%、又は0.0030%としてもよい。
なお、CaおよびREMは、鋼製外皮11の成分として、または、フラックス12中のCa化合物またはREM化合物としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のCa含有量およびREM含有量並びにフラックス12のCa含有量およびREM含有量を制御することにより、前記のCa含有量およびREM含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のCa含有量およびREM含有量を前記範囲内とするため、前記のCa含有量(つまり、0〜0.0050%)およびREM含有量(つまり、0〜0.0050%)の鋼製外皮11および前記のCa含有量(つまり、0〜0.0050%)およびREM含有量(つまり、0〜0.0050%)のフラックス12を使用してもよい。
[Sb:0〜0.0050%]
Sbは、Snと同様に耐候性及び耐塗装剥離性を溶接金属に付与する元素である。従って、Sb含有量を0.0010%、又は0.0020%としてもよい。しかしながら、Sb含有量が0.0050%を超えると、溶接金属の粒界へのSbの偏析により、溶接金属の靭性が低下する。従って、Sb含有量の上限値は0.0050%とする。Sb含有量の上限値を0.0040%、又は0.0030%としてもよい。
なお、Sbは、鋼製外皮11の成分として、または、フラックス12中の金属SbまたはSb化合物等の合金粉末の合金粉末としてワイヤ10に存在し得る。つまり、主に、鋼製外皮11のSb含有量およびフラックス12のSb含有量を制御することにより、前記のSb含有量のフラックス入りワイヤ10を製造することができる。また、フラックス入りワイヤ10のSb有量を前記範囲内とするため、前記のSb含有量(つまり、0〜0.0050%)の鋼製外皮11および前記のSb含有量(つまり、0〜0.0050%)のフラックス12を使用してもよい。
[Sn+Sb>Mo+W :式1]
本実施形態に係るフラックス入りワイヤ10の製造方法において、Sn及びSbの合計含有量は、Mo及びWの合計含有量を超える必要がある。Sn及びSbの合計含有量がMo及びWの合計含有量以下である場合、特に飛来塩分量が多い環境下においては、塗膜劣化によって塗膜傷が生じた場合に、塗膜傷部直下の平均腐食深さの抑制が困難であり、耐塗装剥離性が低下するからである。なお、上述の要件は、Sn、Sb、Mo、及びWの含有量を以下の式に代入して得られる指数Xが0超である、と換言することができる。この指数Xが0.05以上、0.08以上、又は0.10以上となるように、フラックス入りワイヤ10の成分が制御されることが好ましい。
指数X=(Sn+Sb)−(Mo+W)
本実施形態に係るフラックス入りワイヤ10の製造方法において、ワイヤ10の化学組成の残部は、Fe及び不純物である。Feは、鋼製外皮11の成分およびフラックス12中の成分(Fe粉、Fe合金粉(例えば、Fe−Mn合金粉、Fe−Si合金粉など))として存在する。Fe粉は、Fe以外の成分の調整のために用いられるものであり、必要がなければその含有量をワイヤ全質量に対して0%としてもよい。Fe粉含有量が過剰である場合、Fe粉の表面の酸化鉄によって溶接金属の靱性が劣化する場合がある。従って、Fe粉の含有量の上限値を、ワイヤ全質量に対して10.0%以下としても良い。不純物とは、ワイヤを工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係るワイヤの製造方法に悪影響を与えない範囲で許容されるものを意味する。例えば、本実施形態に係るワイヤには酸化物を構成するO以外にも不純物としてOが含有され得るが、このようなOは、含有量が0〜0.080%であれば許容される。また、上述されたTi酸化物、Si酸化物、Zr酸化物、Fe酸化物、Al酸化物、Na化合物、K化合物、弗素化合物、及びBi酸化物を構成するOを含む、全てのOの含有量は0.5〜6.0%となることが通常である。
本実施形態に係るフラックス入りワイヤ10の製造方法において、充填率(ワイヤ全質量に対するフラックス全質量の割合)は特に制限されないが、生産性の観点から、ワイヤ全質量に対して8〜20%とするのが好ましい。また、ワイヤの径は特に限定されないが、溶接時の利便性を考慮して、1.0〜2.0mmとすることが好ましい。
次に、本発明の別の態様に係るフラックス入りワイヤ10、及び本発明の別の態様に係る溶接継手の製造方法について説明する。
本発明の別の態様に係るフラックス入りワイヤ10は、上述された本実施形態に係るフラックス入りワイヤ10の製造方法によって得られるフラックス入りワイヤ10である。本発明の別の態様に係る溶接継手の製造方法は、上述された本実施形態に係るフラックス入りワイヤ10の製造方法によって製造されるフラックス入りワイヤ10を用いて溶接する工程を含む溶接継手の製造方法である。
本実施形態に係るフラックス入りワイヤ10は、Cu及びSnを含有し、且つSn含有量、Sb含有量、W含有量、及びMo含有量が上述の式1を満たすので、本実施形態に係るフラックス入りワイヤ10及び溶接継手の製造方法は、飛来塩分量が多いなど腐食性物質が存在する環境下等に使用される耐食鋼の溶接において、優れた耐食性及び機械的性能を備えた溶接金属が得られる。また、本実施形態に係るフラックス入りワイヤ10は、合金成分が上述の所定範囲内にあるので、本実施形態に係るフラックス入りワイヤ10及び溶接継手によれば、優れた耐ピット性が得られるとともに、スパッタ発生量が少なく、溶接時に割れが発生せず、ビード形状、ビード外観及びスラグ剥離性が優れるなど溶接作業性が良好で溶接の高能率化及び溶接部の品質向上を図ることができる。
本実施形態に係るフラックス入りワイヤ10及び溶接継手の製造方法の用途は特に限定されないが、溶接金属の耐食性が要求される構造用鋼材、特に、港湾施設、橋梁、建築・土木構造物やタンク、船舶・海洋構造物、鉄道、コンテナなどの鋼構造物の製造に適用されることが特に好適である。また、本実施形態に係るフラックス入りワイヤ10及び溶接継手の製造方法が適用される鋼材の材質は特に限定されず、炭素鋼、低合金鋼等の普通鋼材でよい。耐候性鋼、又はNi、及びSn等を含有する低合金鋼は、耐候性及び塗装耐食性の観点から一層有利である。本実施形態に係るフラックス入りワイヤ10が供される溶接の形態、及び本実施形態に係る溶接継手の製造方法に含まれる溶接の形態は特に限定されないが、ガスシールドアーク溶接とされることが好ましく、また、ピットが生じず、ビード形状、ビード外観及びスラグ剥離性等の溶接作業性が良好であり、溶接金属を含めた構造物の塗装寿命が延長されるため、水平すみ肉溶接とされることが好ましい。
なお、本実施形態に係るフラックス入りワイヤ10の製造方法によって得られたフラックス入りワイヤ10の化学組成を分析によって特定することは困難である。フラックス入りワイヤ10に含まれるTi、Si、Na、及びCa等の元素が、フラックス入りワイヤ10中に金属又は合金の形態、酸化物の形態、弗化物の形態、及び炭酸塩の形態のいずれとして存在するのかを判別することは容易では無いからである。例えば、金属又は合金として存在するSi(金属Si)、及び酸化物(SiO)として存在するSiとを分離することは困難である。金属Siのみを選択的に溶解させて湿式分析する方法が確立されていないからである。また、フラックス12に弗化物が含まれる場合、フラックス12から遊離した弗素が分析機器を損傷する場合もある。さらに、フラックス入りワイヤ10の製造方法は、フラックス12が封入された鋼線を焼鈍する工程を含み、この焼鈍が、フラックス12の非金属物質の組成を予期せぬものに変化させる場合があるからである。
以下、実施例により本発明の効果をさらに詳細に説明する。
JIS G 3141:2011で規定されるSPCCを鋼製外皮として使用してフラックスを充填後、縮径して(外皮の軟化および脱水素のため中間焼鈍を1回実施)、表1−1〜表1−4に示す成分(数値はワイヤの全質量に対する質量%で示す)を有し、充填率13.5%、ワイヤ径1.2mmの鋼製外皮に貫通した隙間が無いシームレスタイプのフラックス入りワイヤを各種試作した。ただし、A21はかしめによって製造した。なお、表1−1〜表1−4に記載の値は、設計値であり、フラックス入りワイヤの全質量(鋼製外皮とフラックスとの合計の質量)に対する質量%を示す。また、フラックス入りワイヤの製造の際には、フラックスの原料の化学組成の分析報告書、証明書またはカタログなどに基づいて、各化合物の含有量を制御した。なお、表1−1〜表1−4中の残部「bal.」は、化学組成の残部がFe及び不純物であることを示す。
Figure 0006432715
Figure 0006432715
Figure 0006432715
Figure 0006432715
はじめに溶接作業性の調査を実施した。表1−1〜表1−4に示す試作ワイヤを用いて、T字すみ肉試験体を用いて自動溶接機で水平すみ肉溶接試験を行った。試験体は、JIS G 3106:2008に規定された鋼種SM490B、板厚12mm、試験体長さ600mmで、ピットの発生を助長するために鋼板表面に無機ジンクプライマを膜厚が20〜25μmになるように塗装した。溶接条件は、表2に示す溶接条件で、両側同時溶接を2回行い、ビード形状、ビード外観、スラグ剥離性、ピット発生数、スパッタ発生量を調べた。
ビード形状は、目視により、ビード表面が平坦であるか、ふくらみが大きすぎないかを確認し、ビード形状の膨らみが大きすぎる場合を「不良」とした。
ビード外観は、目視により、アーク不安定に起因したビード切れ、ビードくびれ、ボイドによる穴あきが生じたか否かを判断し、これらビード切れ等が生じた場合を「不良」とした。これらビード切れ等が生じなかった場合を「良好」とした。
スラグ剥離性は、たがねによる打撃によらずスラグが剥離した場合を「非常に良好」とし、(たがねによる打撃なしではスラグが剥離せず)たがねによる打撃によりスラグが剥離した場合を「良好」とし、たがねによる打撃の後もビード上にスラグが残留した場合を「不良」とした。
耐ピット性は、ピット発生量が1個/m以下の場合を「良好」とし、1個/m超の場合を「不良」とした。
溶接中に飛散するスパッタを捕集し、スパッタの質量を測定した。スパッタ発生量は、1分間の時間あたりのスパッタ質量が1.5g以上の場合を「多い」とし、1.0〜1.5g(1.0g以上、1.5g未満)の場合を「やや多い」とし、1.0g未満の場合を「少ない」とした。
Figure 0006432715
次いで、溶着金属の機械的性質および耐食性を評価した。これらの評価では、JIS Z 3111:2005に準じて溶着金属試験を実施し、X線透過試験を実施した後、引張試験、衝撃試験及び耐食性評価試験を実施した。使用した母材は、C:0.11%、Si:0.18%、Mn:1.44%、P:0.011%、S:0.002%、Sn:0.12%の化学組成を有する耐食鋼の鋼板である。溶接条件は、表2に示す条件とした。
X線透過試験は、スラグ巻き込み、ブローホール、溶け込み不良、クレータ割れが認められた場合、その欠陥の種類を表記し、継手溶接長500mmにおいて上記欠陥が認められない場合、欠陥無しと判定した。
衝撃試験の温度は0℃とした。ただし、Ni、Ti、及びBの1種以上を含有するワイヤから得られた溶着金属については、0℃及び−40℃での衝撃試験を実施した。
溶着金属の機械的性質の合格判定基準は、引張試験における引張強さが510〜660MPa、衝撃試験は、試験温度0℃における吸収エネルギーが60J以上を合格とした。また、低温靭性確保のため、Ti、B、Niの1種以上を含有するワイヤ(ワイヤNo.6〜16、およびワイヤNo.18〜23)から得られた溶着金属については、試験温度−40℃の吸収エネルギーが60J以上の場合を合格とした。また、X線透過試験において、スラグ巻き込み、ブローホール、溶け込み不良、クレータ割れが観察されない場合を合格とした。
耐食性の評価では、まず、図1に示すように、腐食試験片作製用の試料(厚さ3mm×幅60mm×長さ150mm)を溶着金属2が中心となるように母材1表面から深さ1mmの採取位置3から採取し、その表面をショットブラスト処理した後、炉内温度80℃で加熱乾燥させて腐食試験片素材とした。次に、腐食試験片素材の両面に、塗料A(中国塗料(株)製バンノー#200)または塗料B(神東塗料(株)製ネオゴーセイプライマーHB)のいずれかの塗料を鋼材表面に膜厚200〜350μmの厚さで塗装し腐食試験片を作製した。この腐食試験片に、図2に示すように溶着金属2を跨ぐようにクロスカット4を施すことで塗膜傷を模擬した腐食試験片5を作製した。クロスカット4は、クロスカットを対角線とする長方形の寸法が長辺100mm×短辺40mmとなるよう塗膜の上から下地の鋼表面まで達するスクラッチ疵をカッターナイフで施した。その後、得られた腐食試験片5をSAE(Society of Automotive Engineers) J2334試験に従い、耐食性を評価した。
ここで、SAE J2334試験について説明する。SAE J2334試験とは、湿潤(50℃、100%RH、6時間)、塩付着(室温、0.25時間の水溶液浸漬(pH8、0.5質量%NaCl、0.1質量%CaCl、0.075質量%NaHCO))、乾燥(60℃、50%RH、17.75時間)の3過程を1サイクル(合計24時間)とする乾湿繰り返しの条件で行う加速試験である。SAE J2334試験の1サイクルの概略を図3に示す。
この腐食試験は、飛来塩分量が1mddを超えるような厳しい腐食環境を模擬する試験である。
SAE J2334試験の80サイクル後に、各試験片の塗膜剥離及び膨れの面積率を計測した。また、実構造物の長期にわたる塗装耐食性能を反映する試験として塗膜密着性の評価を行った。クロスカットを対角線とする長方形に相当する領域の全面に対し、長方形の長辺長さ100mmに切りだした幅20mmの透明付着テープをお互いに重ならないように2列貼付け、テープ付着後5分以内に60°に近い角度にて4.0〜8.0秒で引き離した。テープによる引き剥がし操作にて剥離した塗膜面積を、SAE J2334試験の80サイクル直後に残存していた塗膜面積にて除して得られたテープ剥離率を求めた。その後、表面の残存塗膜と生成した錆層を除去し、塗装被膜疵部の腐食深さを測定後、平均腐食深さを算出した。
耐候性・耐塗装剥離性の評価は、塗膜剥離及び膨れ面積率が50%未満、かつ、塗膜傷部の平均腐食深さが0.50mm未満の場合を合格とした。また、塗膜密着性の評価は、テープ剥離率が0〜20%未満を「非常に良好」とし、20%以上40%未満を「良好」とし、40%以上を「不良」と判定した。
上記試験において、主要な4種類の評価項目(溶接作業性、X線透過試験、溶着金属試験および溶接部の耐食性評価試験)が以下のi〜ivに示す各条件をすべて満たした場合に総合評価「Good」と判定し、それ以外の場合を総合評価「Bad」と判定した。
i)溶接作業性の各評価項目にて「不良」の評価がないこと(スパッタ発生量については「多い」を「不良」とし、「やや多い」および「少ない」は「不良」としない。)。
ii)X線透過試験は「欠陥なし」の評価であること。
iii)溶着金属試験で「合格」の判定であること。
iv)溶接部の耐食性評価試験において「合格」の判定であること。(ただし、「塗膜密着性」の評価は、溶着金属の耐食性のみならず鋼材の塗装耐食性の影響も受ける可能性があることから、総合評価の判断に含めないこととした。)
これらの結果を表3−1および表3−2に示す。
Figure 0006432715
Figure 0006432715
表1−1〜表1−4、表3−1、および表3−2中のワイヤNo.1〜23は、本発明例であり、ワイヤNo.24〜41は、比較例である。
本発明例であるワイヤNo.1〜24は、TiO換算値、SiO換算値、ZrO換算値、FeO換算値、Al換算値、C、Si、Mn、Cu、Al、Sn、Mg、NaO換算値とKO換算値の合計及びF換算値が適量であるので、ビード形状、ビード外観及びスラグ剥離性が「不良」ではなく、ピットの発生が少なく、スパッタ発生量が「多い」ではなく、X線透過試験で欠陥(クレータ割れ)が無く、溶着金属の引張強さ及び吸収エネルギーも合格判定基準値以上であった。また、耐食性評価試験結果も良好であり、合格判定基準値以上であった。なお、本発明例であるワイヤNo.1〜23は、酸化物等の化合物を構成するO以外のO含有量が0〜0.080%であり、酸化物等の化合物を含めた、全てのOの含有量は0.5〜6.0%であった。
Biを適量含むワイヤNo.3〜5、12、13、15〜22は、スラグ剥離性が非常に良好であった。
また、Ti及びBの1種又は2種を適量含むワイヤNo.6〜8、Niを適量含むワイヤNo.9〜13、および19〜23及びTi及びBの1種又は2種とNiを適量含むワイヤNo.14〜16および18は、−40℃における溶着金属の吸収エネルギーが60J以上と良好であった。
これに対し、比較例中、ワイヤNo.24は、TiO換算値が小さいので、スラグ生成量が不足してビードを均一に被包できなく、スラグが焼き付き、ビード外観が「不良」であった。また、スパッタ発生量が多かった。さらに、ZrO換算値が小さいので、ビード形状が平滑にならず、凸状のビード形状となり、スラグ剥離性も「不良」であった。
ワイヤNo.25は、TiO換算値が大きいので、スラグが厚くピットが発生し、スラグの粘性が高まり、ビードの止端部が膨らんだ形状になった。また、Cが少ないので、溶着金属の引張強さ及び0℃での吸収エネルギーが低値であった。
ワイヤNo.26は、TiO換算値が大きく、SiO換算値が小さいので、スラグ被包状態が悪くなり、スラグ剥離性、ビード形状及びビード外観が不良であった。また、C量が多いので、溶着金属の引張強さが過度に高くなることで延性低下を招いたことから0℃での吸収エネルギーが低値であった。
ワイヤNo.27は、SiO換算値が大きいので、スパッタ発生量が多くなり、ピットも発生した。また、ZrO換算値が大きいので、ビード形状が凸状であった。
ワイヤNo.28は、FeO換算値が小さいので、ビード止端部の形状が不良であった。また、Si量が少ないので、ピットが発生し、溶着金属の引張強さ及び0℃での吸収エネルギーが低値であった。
ワイヤNo.29は、FeO換算値が大きいので、スラグ被包状態が悪くスラグ剥離性が不良となり、ビード止端部が膨らみビード形状及びビード外観も「不良」であった。また、Sn量が多いのでクレータ割れが発生した。
ワイヤNo.30は、Al換算値が小さいので、上脚側にアンダーカットが生じ、ビード形状が「不良」であった。また、Si量が過剰であり、溶着金属の引張強さが高く、延性低下に起因して0℃での吸収エネルギーが低値であった。
ワイヤNo.31は、Al換算値が大きいので、ビード止端部が膨らみ、なじみ性が悪くなり、ビード形状が「不良」であった。また、Mg量が少ないのでピットが発生した。
ワイヤNo.32は、Cu量が過剰であり、溶着金属の0℃での吸収エネルギーが低値であった。また、Al量が少ないので、ビードが凸状になり、上脚部にアンダーカットが生じた。
ワイヤNo.33は、Al量が多いので、ビード形状に滑らかさがなくなり、止端部が膨らんだ形状となり、溶融スラグにおいても凝固むらが生じてスラグ剥離性が「不良」であった。また、Mg量が多いので、アークが荒くなり、スパッタ発生量も多かった。さらに、Mn量が多いので、溶着金属の引張強さが高く、延性低下に起因して0℃での吸収エネルギーが低値であった。
ワイヤNo.34は、Sn量が少ないので、溶着金属の塗膜剥離及び膨れの面積率が大きく、塗膜傷部の平均腐食深さも深かった。また、Bi換算値が大きいので、ビード外観が「不良」となった。
ワイヤNo.35は、NaO換算値とKO換算値の合計が大きいので、スパッタ発生量が多く、スラグ剥離性、ビード形状及びビード外観が「不良」であった。また、Mn量が少ないので、ピットが発生し、溶着金属の引張強さ及び0℃での吸収エネルギーが低値であった。
ワイヤNo.36は、Cu量が少ないので、溶着金属の塗膜剥離及び膨れの面積率が大きく、塗膜傷部の平均腐食深さも深かった。また、F換算値が小さいので、下板側下脚部のなじみ性が悪く、ビード形状が「不良」で、ピットも発生した。さらに、B量が多いので、クレータ割れが生じた。
ワイヤNo.37は、Sn量が少ないので、溶着金属の塗膜剥離及び膨れの面積率が大きく、塗膜傷部の平均腐食深さも深かった。また、F換算値が大きいので、スラグの粘性が低下し、ビード形状が凸状で、スラグ剥離性も「不良」であった。
ワイヤNo.38は、Mg量が少ないのでピットが発生した。また、Ti量が多いので、スパッタ発生量が多く、ビード表面にスラグが焼き付き、ビード外観が「不良」であった。
ワイヤNo.39は、NaO換算値とKO換算値の合計が少ないので、アークが不安定になり大粒のスパッタ発生量が多く、ビード形状及びビード外観が「不良」となり、ピットも発生した。また、Ni量が多いので、クレータ割れが生じた。
ワイヤNo.40は、指数Xが0以下となり、溶着金属の塗膜傷部直下の平均腐食深さが深く、塗膜密着性も「不良」であった。
ワイヤNo.41は、指数Xが0以下となり、溶着金属の塗膜剥離及び膨れの面積率が大であるとともに、塗膜傷部直下の平均腐食深さが深く、塗膜密着性も「不良」であった。
1 母材(鋼材)
2 溶着金属
3 腐食試験片の採取位置
4 クロスカット
5 腐食試験片
10 フラックス入りワイヤ
11 鋼製外皮
12 フラックス
13 鋼板
14 継ぎ目
15 溶接部

Claims (7)

  1. 鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤの製造方法であって、
    鋼板を円形に成形しながら、前記鋼板の内部にフラックスを充填する工程と、
    前記鋼板の両端を接合して鋼管とする工程と、
    前記鋼管に圧延及び焼鈍を施して、前記フラックス入りワイヤを得る工程と、
    を備え、
    前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの全質量に対する質量%で、
    C:0.03〜0.10%、
    Si:0.40〜0.85%、
    Mn:1.5〜3.5%、
    P:0.020%以下、
    S:0.020%以下、
    Cu:0.03〜0.70%、
    Sn:0.05〜0.30%、
    Mg:0.05〜0.50%、
    Al:0.05〜0.50%、
    Ti酸化物:TiO換算値で1.50〜4.60%未満、
    Si酸化物:SiO換算値で0.30〜1.00%、
    Zr酸化物:ZrO換算値で0.10〜0.50%、
    Fe酸化物:FeO換算値で0.10〜1.00%、
    Al酸化物:Al換算値で0.05〜0.50%、
    Na化合物及びK化合物の合計:NaO換算値及びKO換算値の合計で0.050〜0.200%、
    弗素化合物:F換算値で0.02〜0.20%、
    Bi及びBi酸化物の合計:Bi換算値で0〜0.035%、
    Ni:0〜2.50%、
    Ti:0〜0.30%、
    B:0〜0.010%、
    Mo:0〜0.400%、
    W:0〜0.200%、
    Cr:0〜0.500%、
    Nb:0〜0.300%、
    V:0〜0.300%、
    N:0〜0.0080%、
    Ca:0〜0.0050%、
    REM:0〜0.0050%、
    Sb:0〜0.0050%、
    残部:Fe及び不純物であり、
    Sn含有量、Sb含有量、W含有量、及びMo含有量が以下の式1を満たす
    ことを特徴とするフラックス入りワイヤの製造方法。
    Sn+Sb>Mo+W :式1
    ただし、前記式1における元素記号は、各元素記号に係る元素の含有量を、前記フラックス入りワイヤの前記全質量に対する質量%で示すものである。
  2. 前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、
    Mo:0〜0.040%、
    W:0〜0.010%
    であることを特徴とする請求項1に記載のフラックス入りワイヤの製造方法。
  3. 前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、
    Cu:0.05〜0.70%、
    であることを特徴とする請求項1又は2に記載のフラックス入りワイヤの製造方法。
  4. 前記フラックス入りワイヤの化学組成が、前記フラックス入りワイヤの前記全質量に対する質量%で、少なくとも下記のいずれかひとつを満たすことを特徴とする請求項1〜3のいずれか一項に記載のフラックス入りワイヤの製造方法。
    Ni:0.10〜2.50%
    Ti:0.03〜0.30%
    B:0.002〜0.010%
  5. 前記接合がかしめであることを特徴とする請求項1〜4のいずれか一項に記載のフラックス入りワイヤの製造方法。
  6. 前記接合が溶接であることを特徴とする請求項1〜4のいずれか一項に記載のフラックス入りワイヤの製造方法。
  7. 請求項1〜6のいずれか一項に記載のフラックス入りワイヤの製造方法によって製造されるフラックス入りワイヤを用いて溶接する工程を備える溶接継手の製造方法。
JP2018533287A 2018-03-28 2018-03-28 フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法 Active JP6432715B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012872 WO2019186797A1 (ja) 2018-03-28 2018-03-28 フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP6432715B1 true JP6432715B1 (ja) 2018-12-05
JPWO2019186797A1 JPWO2019186797A1 (ja) 2020-04-30

Family

ID=64560777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533287A Active JP6432715B1 (ja) 2018-03-28 2018-03-28 フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法

Country Status (5)

Country Link
EP (1) EP3753670B1 (ja)
JP (1) JP6432715B1 (ja)
KR (1) KR102246519B1 (ja)
CN (1) CN111819030B (ja)
WO (1) WO2019186797A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393342B (zh) * 2022-01-11 2022-12-09 西安理工大学 多元过渡金属碳化物混杂强化的铜基堆焊层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199693A (ja) * 1982-05-17 1983-11-21 Kobe Steel Ltd フラツクス入りワイヤの製造方法
JP2011020154A (ja) * 2009-07-16 2011-02-03 Nippon Steel Corp ガスシールド溶接用フラックス入りワイヤ
JP2013226578A (ja) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd 原油油槽鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP2017042787A (ja) * 2015-08-26 2017-03-02 日鐵住金溶接工業株式会社 原油油槽鋼の2電極水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP2018047486A (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 耐食鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942787B2 (ja) * 1991-04-11 1999-08-30 日東電工株式会社 複合膜及びそれを用いる液体混合物の分離方法
JP3657127B2 (ja) 1998-09-25 2005-06-08 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP2000288781A (ja) 1999-04-09 2000-10-17 Nippon Steel Corp Cu−Ni−Ti系高耐候性鋼用フラックス入りワイヤ
JP2003311471A (ja) 2002-04-19 2003-11-05 Nippon Steel Corp 高Ni系耐候性鋼のガスシールドアーク溶接用ソリッドワイヤ
JP4259887B2 (ja) 2003-01-31 2009-04-30 株式会社神戸製鋼所 耐食性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP4518036B2 (ja) 2006-03-30 2010-08-04 住友金属工業株式会社 石炭・鉱石運搬船ホールド用耐食性鋼材
JP4656054B2 (ja) 2006-12-27 2011-03-23 住友金属工業株式会社 橋梁用鋼材
JP5644984B1 (ja) * 2013-01-31 2014-12-24 新日鐵住金株式会社 フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手
WO2015068261A1 (ja) * 2013-11-08 2015-05-14 新日鐵住金株式会社 溶接継手の製造方法
JP6901868B2 (ja) * 2016-09-13 2021-07-14 株式会社神戸製鋼所 エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199693A (ja) * 1982-05-17 1983-11-21 Kobe Steel Ltd フラツクス入りワイヤの製造方法
JP2011020154A (ja) * 2009-07-16 2011-02-03 Nippon Steel Corp ガスシールド溶接用フラックス入りワイヤ
JP2013226578A (ja) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd 原油油槽鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP2017042787A (ja) * 2015-08-26 2017-03-02 日鐵住金溶接工業株式会社 原油油槽鋼の2電極水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP2018047486A (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 耐食鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ

Also Published As

Publication number Publication date
JPWO2019186797A1 (ja) 2020-04-30
CN111819030B (zh) 2021-09-07
EP3753670B1 (en) 2022-05-04
WO2019186797A1 (ja) 2019-10-03
CN111819030A (zh) 2020-10-23
EP3753670A4 (en) 2021-09-08
KR20200108909A (ko) 2020-09-21
KR102246519B1 (ko) 2021-04-30
EP3753670A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP5704573B2 (ja) 原油油槽鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP5194586B2 (ja) 亜鉛めっき鋼板溶接用ステンレス鋼フラックス入り溶接ワイヤ
JP5384312B2 (ja) 耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP5717688B2 (ja) 原油油槽鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP4303655B2 (ja) 溶接部の耐食性および耐亜鉛脆化割れ性に優れた亜鉛めっき鋼板の溶接方法
JP6432714B1 (ja) フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法
JP6658423B2 (ja) 耐食鋼の水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP6939508B2 (ja) 耐食鋼のガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6658424B2 (ja) 耐食鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP4980294B2 (ja) 亜鉛めっき鋼板用被覆アーク溶接棒
JP4838100B2 (ja) 耐候性鋼用水平すみガスシールドアーク溶接用フラックス入りワイヤ
JP6432715B1 (ja) フラックス入りワイヤの製造方法、フラックス入りワイヤ、及び溶接継手の製造方法
JPWO2019186686A1 (ja) 被覆アーク溶接棒用のNi基合金心線、被覆アーク溶接棒、及び被覆アーク溶接棒の製造方法
JP6848479B2 (ja) 耐食鋼の溶接金属及びサブマージアーク溶接用ソリッドワイヤ
JP7308657B2 (ja) 原油油槽鋼の低水素系被覆アーク溶接棒
JP6984743B2 (ja) 溶接金属及びサブマージアーク溶接用ソリッドワイヤ
JP7304829B2 (ja) 亜鉛めっき鋼板溶接用フラックス入りワイヤ
JP6463234B2 (ja) 原油油槽鋼の2電極水平すみ肉ガスシールドアーク溶接用フラックス入りワイヤ
JP6787171B2 (ja) 耐食鋼のガスシールドアーク溶接用ソリッドワイヤ
JP2003112287A (ja) 海浜耐候性鋼溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180622

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R151 Written notification of patent or utility model registration

Ref document number: 6432715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350