JP6391009B2 - 抵抗変化型不揮発性記憶素子の製造方法 - Google Patents

抵抗変化型不揮発性記憶素子の製造方法 Download PDF

Info

Publication number
JP6391009B2
JP6391009B2 JP2014232103A JP2014232103A JP6391009B2 JP 6391009 B2 JP6391009 B2 JP 6391009B2 JP 2014232103 A JP2014232103 A JP 2014232103A JP 2014232103 A JP2014232103 A JP 2014232103A JP 6391009 B2 JP6391009 B2 JP 6391009B2
Authority
JP
Japan
Prior art keywords
layer
variable resistance
nonvolatile memory
forming
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232103A
Other languages
English (en)
Other versions
JP2015195339A (ja
Inventor
早川 幸夫
幸夫 早川
川島 良男
良男 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014232103A priority Critical patent/JP6391009B2/ja
Priority to US14/642,957 priority patent/US9444044B2/en
Publication of JP2015195339A publication Critical patent/JP2015195339A/ja
Application granted granted Critical
Publication of JP6391009B2 publication Critical patent/JP6391009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Description

本開示は、電気パルスの印加により抵抗値が変化する抵抗変化型不揮発性記憶素子の製造方法に関する。
近年、デジタル技術の進展に伴って携帯情報機器及び情報家電等の電子機器が、より一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性メモリの用途が急速に拡大している。さらに、このフラッシュメモリに置き換わる次世代の新型不揮発性メモリとして、抵抗変化型不揮発性記憶素子を用いた抵抗変化型メモリ(ReRAM:Resistive Random Access Memory)の研究開発が進んでいる。ここで、抵抗変化型不揮発性記憶素子とは、電気的信号によって抵抗値が可逆的に変化する性質を有し、さらにはこの抵抗値に対応した情報を、不揮発的に記憶することが可能な素子のことをいう。
この抵抗変化型メモリは、抵抗値が変化する抵抗変化層を記憶素子として用い、電気的パルス(例えば電圧パルス)を当該抵抗変化層に印加することによって、その抵抗値を高抵抗状態から低抵抗状態へ、又は低抵抗状態から高抵抗状態へと変化させる。この際、例えば、低抵抗状態を「1」に、高抵抗状態を「0」に対応づけてデータの記憶を行なえば、抵抗変化型メモリを、二値のメモリとして機能させることができる。この場合、低抵抗状態及び高抵抗状態の二値を明確に区別し、また低抵抗状態と高抵抗状態との間を高速に安定して変化させ、また、これらの二値が不揮発的に保持されることが望まれる。
このような抵抗変化型不揮発性記憶素子の一例として、酸素含有率の異なる遷移金属酸化物を積層した抵抗変化層を用いた抵抗変化型不揮発性記憶素子が提案されている。例えば、特許文献1には、酸素含有率の高い遷移金属酸化層とこれに接触する電極との界面に、酸化反応と還元反応とを選択的に発生させることで、抵抗変化現象を安定化することが開示されている。
国際公開第2008/149484号
従来の抵抗変化型不揮発性記憶素子では、多数の抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、メモリアレイの端部で抵抗変化型不揮発性記憶素子の特性ばらつきが大となり、当該端部で不良ビット数が増加するという課題があった。
本開示は、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置にした場合に、メモリアレイの端部で発生する抵抗変化型不揮発性記憶素子の特性ばらつきを低減させた抵抗変化型不揮発性記憶素子の製造方法を提供する。
本開示の抵抗変化型不揮発性記憶素子の製造方法の一態様は、上部電極、抵抗変化層、および下部電極にて構成される抵抗変化素子を備えた抵抗変化型不揮発性記憶素子の製造方法であって、基板の上方に第1の層間絶縁層を形成する工程と、前記第1の層間絶縁層にコンタクトホールを開口する工程と、前記コンタクトホールの側壁、底面および前記第1の層間絶縁層の上面を覆う密着層を形成する工程と、前記コンタクトホールの側壁、底面および前記第1の層間絶縁層の上面に形成された密着層上に導電層を堆積する工程と、前記導電層を研磨して前記第1の層間絶縁層の上面に形成された前記密着層の上面を露出させるとともに、前記コンタクトホール内に前記導電層の上面を露出させる工程と、前記露出された密着層上、及び前記コンタクトホール内の前記導電層からなるコンタクトプラグ上に下部電極層を形成する工程と、前記下部電極層を形成した後に、当該下部電極層の上面を研磨することで、前記下部電極層の膜厚を前記密着層上より前記コンタクトプラグ上の方を厚くし、かつ前記下部電極層の前記抵抗変化層と接する面を平坦化する工程と、前記平坦化した下部電極層の上に抵抗変化薄膜を形成する工程と、前記抵抗変化薄膜の上に上部電極層を形成する工程と、前記上部電極層、前記抵抗変化薄膜、前記下部電極層、および前記密着層を同時に加工し、前記上部電極、前記抵抗変化層、前記下部電極、および前記密着層の側面が同一面内になるように、前記抵抗変化素子を形成する工程とを有する。
本開示の一態様にかかる抵抗変化型不揮発性記憶素子によれば、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、コンタクトプラグの形成時にプラグ材料を構成する導電膜の表面研磨を行っても、メモリアレイ領域の端部において表面の凹凸を抑制できる。これによって、抵抗変化型不揮発性記憶素子を多数用いた大容量の抵抗変化型不揮発性記憶装置において、個々の抵抗変化型不揮発性記憶素子の特性ばらつきを低減することができる。
図1は、第1実施形態に係る抵抗変化型不揮発性記憶素子の概略構成の一例を示す断面図である。 図2は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図3は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図4は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図5は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図6は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図7は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図8は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図9は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図10は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図11は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図12は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図13は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図14は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図15は、第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法の一例を示す工程断面図である。 図16Aは、第1実施形態の変形例に係る抵抗変化型不揮発性記憶素子の上面図である。 図16Bは、図16Aにおける断面指示線16Bにおける断面図である。 図16Cは、図16Aにおける断面指示線16Cにおける断面図である。 図17は、第2実施形態に係る抵抗変化型不揮発性記憶装置の一構成例を示すブロック図である。 図18は、図17に示される抵抗変化型不揮発性記憶装置におけるA部の一構成例(4ビット分の構成)を示す斜視図である。 図19は、図18に示される抵抗変化型不揮発性記憶装置における抵抗変化型不揮発性記憶素子の一構成例を示す断面図である。 図20は、図17に示される抵抗変化型不揮発性記憶装置を多層化した構造におけるメモリセルアレイの一構成例を示す斜視図である。 図21は、第3実施形態に係る抵抗変化型不揮発性記憶装置の一構成例を示すブロック図である。 図22は、図21に示される抵抗変化型不揮発性記憶装置におけるC部の構成(2ビット分の構成)を示す断面図である。 図23は、従来の抵抗変化型不揮発性記憶装置をメモリアレイ状に配置した場合における不良ビットの配置依存を示す特性図である。 図24は、実施形態に係る抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合における不良ビットの配置依存を示す特性図である。 図25は、CMP研磨前後の段差の測定結果を示す特性図である。
[本開示に至った知見]
本発明者らは、大容量の抵抗変化型不揮発性記憶装置の特性ばらつきを低減するべく、鋭意検討を行った。その結果、以下の知見を得た。なお、以下に述べる知見は、後述の実施形態を理解するための一助とするものである。したがって、本開示はこれらの説明に限定されるものではない。
抵抗変化型不揮発性記憶装置の大容量化を実現するためには、多数の抵抗変化型不揮発性記憶素子からなる抵抗変化型不揮発性記憶装置を最小面積で配置できるメモリアレイが不可欠である。そして、メモリアレイ内に配置された抵抗変化型不揮発性記憶素子は、個々の素子特性のみならず、抵抗変化型不揮発性記憶素子同士の特性ばらつきの低減が求められる。メモリアレイが大容量化するに従い、抵抗変化型不揮発性記憶素子の各々の特性ばらつきが、メモリアレイ全体の特性に大きく影響を与えるためである。
しかしながら、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合、下記に示すような新たな特性ばらつきが生じるという課題が生じる。
図23は、従来の抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合における不良ビットの配置依存を示す特性図である。図23において、横軸は、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合の抵抗変化型不揮発性記憶素子のメモリアレイ領域内での配置位置を示している。縦軸はその配置位置での抵抗変化型不揮発性記憶素子に流れる電流を示している。図23の横軸の左端はメモリアレイ領域の境界部(メモリアレイ領域としての端部)に相当し、右方向へいくにしたがってメモリアレイ領域の境界部から遠ざかる位置(メモリアレイ領域の中央へ向かう方向への位置)を示している。縦軸は、抵抗変化型不揮発性記憶素子を高抵抗化(HR化)と低抵抗化(LR化)したときに抵抗変化型不揮発性記憶素子に流れる電流(相対値としてA.U.で表示)を示しており(図23の上方の図)、さらに、LR化したときに抵抗変化型不揮発性記憶素子に流れる電流を拡大して示している(図23の下方の図)。図23から、メモリアレイ領域の境界部(図23の左端部)では抵抗変化型不揮発性記憶素子のLR化時の電流が増加しており、このことから、このメモリアレイ領域の境界において抵抗変化型不揮発性記憶素子の特性ばらつきが増加していることがわかる。例えば、抵抗変化型不揮発性記憶素子の寸法を維持しつつメモリ容量を増加させた場合、メモリアレイ領域の面積は増加する。従って、メモリアレイ領域の境界部も増大することとなり、上述したメモリアレイ領域の境界部の特性ばらつきは、より顕著に現れることとなる。
図25は、上述したメモリアレイ領域に存在するコンタクトプラグならびに当該コンタクトプラグを包囲して形成されている層間絶縁膜の表面について、CMP(Chemical Mechanical Polishing)研磨する前とCMP研磨した後の表面凹凸を測定した結果を示す特性図である。凹凸の測定には、接触型段差測定機を用いた。図25において、横軸は、メモリアレイ領域と、当該メモリアレイ領域に隣接配置されている周辺回路領域(メモリセルの制御回路等)を示している。縦軸は、各領域での表面凹凸(段差高さ)を示している。図25の「CMP研磨後」に示されているように、メモリアレイ領域の表面高さはこれに隣接する周辺回路領域の表面高さに比べて凹形状(以下、グローバル段差と記載することがある)となっている。特にメモリアレイ領域の境界部で急激に凹みが観測されている。これは、コンタクトプラグのCMP研磨量がコンタクトプラグの露出している面積(いわゆるパターン密度)に依存する現象のためである。例えば、抵抗変化型不揮発性記憶素子の寸法を縮小してメモリ容量を増加させた場合、メモリアレイ領域のパターン密度は更に増大することとなり、研磨時におけるパターン密度の影響は、より顕著となる。
例えば、コンタクトプラグが密集しているメモリアレイ領域内においては、メモリアレイ領域に占める金属(コンタクトプラグ)の露出率が大きくなる。一方、メモリアレイ領域以外においては、メモリアレイ領域に占める金属(コンタクトプラグ)の露出率は小さく、層間絶縁膜の露出率が高い。このような金属の露出割合(コンタクトプラグの占有率)の高いメモリアレイ領域では、メモリアレイ領域以外に比べて、CMPの研磨レートが速くなる。そして、異なる研磨レートの境界部(メモリアレイ領域の端部)で特に大きな段差(表面位置の高低差)が生じる。また、メモリアレイ領域内のコンタクトプラグ上及び層間絶縁膜上に下部電極層を形成した上で下部電極層の表面をCMP研磨したとしても、メモリアレイ領域の境界部から遠ざかり、メモリアレイ領域内に向かう方向にしたがって、層間絶縁膜上の凹部は解消されにくくなる。上記した段差や凹部は、抵抗変化型不揮発性記憶素子の抵抗変化動作時において、抵抗変化型不揮発性記憶素子内の電界分布をばらつかせる主要因となり、メモリアレイ全体の特性ばらつきの増大を招く。特性ばらつきの増大は、不良ビットの増加につながる。
しかしながら、大容量の抵抗変化型不揮発性記憶装置の製造プロセスにおいては、CMP研磨は必要不可欠な技術であることから、CMP研磨を行ってもメモリアレイ領域の端部の段差や、層間絶縁膜の表面の凹部(グローバル段差)を低減できるプロセス技術が求められる。
本開示は、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置にした場合に、メモリアレイ領域の端部で発生する不良ビットを低減させ、抵抗変化型不揮発性記憶素子を多数用いた大容量の抵抗変化型不揮発性記憶装置を提供する。
以下、図面を参照しながら、本開示の実施形態に係る抵抗変化型不揮発性記憶装置について説明をする。
以下で説明する実施形態は、いずれも本開示の一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、あくまで一例であり、本開示を限定するものではない。また、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、実施形態を構成する任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状及び寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等を変更でき、かつ、他の公知の工程を追加できる。
(第1実施形態)
第1実施形態に係る抵抗変化型不揮発性記憶素子は、基板の上方に形成された第1の層間絶縁層と、第1の層間絶縁層を貫通したコンタクトホールと、コンタクトホールの側壁、底面および第1の層間絶縁層の上面の一部を覆う密着層と、コンタクトホール内に充填され、密着層の上面より下方にあるコンタクトプラグと、コンタクトプラグ上及び第1の層間絶縁層の上面の一部を覆う密着層上に形成された下部電極と、下部電極上に形成された抵抗変化層と、抵抗変化層上に形成された上部電極とを備える。
かかる構成によれば、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、コンタクトプラグの形成時にプラグ材料を構成する導電層の研磨(例えばCMP)を行っても、コンタクトプラグが形成された層間絶縁層の上面の一部を覆う密着層を残した状態で導電層が研磨される。したがって、層間絶縁層は研磨されず、メモリアレイ領域の端部における層間絶縁層の表面の凹凸(グローバル段差)を抑制できる。これによって、抵抗変化型不揮発性記憶素子を多数用いた大容量の抵抗変化型不揮発性記憶装置の特性ばらつきを低減することができる。
上記抵抗変化型不揮発性記憶素子は、さらに、基板と第1の層間絶縁層との間に形成された第2の層間絶縁層と、第2の層間絶縁層内にかつ表面が露出して形成された第1の配線と、上部電極に接続された第2の配線とを備え、第1の配線は、密着層の底面に接していてもよい。
第1の層間絶縁層の上面の一部を覆っている密着層、下部電極、抵抗変化層、上部電極の各々の側面が同一面内にあってもよい。
コンタクトプラグは銅で構成されていてもよい。
下部電極の膜厚は、密着層上よりコンタクトプラグ上の方が厚く、かつ下部電極の抵抗変化層と接する面は低端であってもよい。
密着層と下部電極は、各々が窒化物で構成されていてもよい。
密着層と下部電極は、同じ遷移金属の窒化物で構成されていてもよい。
下部電極は、積層構造であってもよい。
抵抗変化層は、金属酸化物で構成されていてもよい。
抵抗変化層は、酸素含有率が異なる複数の層からなる金属酸化物で構成されていてもよい。
酸素含有率の異なる複数の層は、異なる金属酸化物で構成されていてもよい。
酸素含有率の異なる複数の層は、同一金属の金属酸化物で構成されていてもよい。
抵抗変化層は、酸素不足型の遷移金属酸化物で構成されていてもよい。
抵抗変化層は、酸素含有率の異なる2層以上の積層構造であってもよい。
抵抗変化層はタンタル酸化物で構成されていてもよい。
下部電極には第1の配線が接続され、上部電極には第2の配線が接続されていてもよい。
第1実施形態に係る抵抗変化型不揮発性記憶素子の製造方法は、上部電極、抵抗変化層、および下部電極にて構成される抵抗変化素子を備えた抵抗変化型不揮発性記憶素子の製造方法であって、基板の上方に第1の層間絶縁層を形成する工程と、第1の層間絶縁層にコンタクトホールを開口する工程と、コンタクトホールの側壁、底面および第1の層間絶縁層の上面を覆う密着層を形成する工程と、コンタクトホールの側壁、底面および第1の層間絶縁層の上面に形成された密着層上に導電層を堆積する工程と、導電層を研磨して第1の層間絶縁層の上面に形成された密着層の上面を露出させるとともに、コンタクトホール内に導電層の上面を露出させる工程と、露出された密着層上、及びコンタクトホール内の導電層からなるコンタクトプラグ上に下部電極層を形成する工程と、下部電極層を形成した後に、当該下部電極層の上面を研磨することで、下部電極層の膜厚を密着層上よりコンタクトプラグ上の方を厚くし、かつ下部電極層の抵抗変化層と接する面を平坦化する工程と、平坦化した下部電極層の上に抵抗変化薄膜を形成する工程と、抵抗変化薄膜の上に上部電極層を形成する工程と、上部電極層、抵抗変化薄膜、下部電極層、および密着層を同時に加工し、上部電極、抵抗変化層、下部電極、および密着層の側面が同一面内になるように、抵抗変化素子を形成する工程とを有する。
かかる構成によれば、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、コンタクトプラグの形成時にプラグ材料を構成する導電層の研磨(例えばCMP)を行っても、コンタクトプラグが形成された層間絶縁層の上面の一部を覆う密着層を残した状態で導電層が研磨される。したがって、層間絶縁層は研磨されず、メモリアレイ領域の端部における層間絶縁層の表面の凹凸(グローバル段差)を抑制できる。これによって、抵抗変化型不揮発性記憶素子を多数用いた大容量の抵抗変化型不揮発性記憶装置の特性ばらつきを低減することができる。
上記抵抗変化型不揮発性記憶素子の製造方法は、第1の層間絶縁層を形成する前に、さらに、基板上に第2の層間絶縁層を形成する工程と、第2の層間絶縁層内にかつ表面を露出させた第1の配線を形成する工程とを有し、抵抗変化素子を形成する工程の後に、さらに、上部電極に接続された第2の配線を形成する工程を有し、密着層を形成する工程では、第1の配線が密着層の底面と接するように、密着層を形成してもよい。
下部電極層を形成する工程は、第1の下部電極層を密着層と導電層の上に堆積する工程と、第1の下部電極層の表面を研磨して表面を平坦化する工程と、平坦化された第1の下部電極層上に第2の下部電極層を堆積する工程と、を含んでもよい。
上記した上部電極層、抵抗変化薄膜、下部電極層、密着層を同時に加工する工程は、密着層が第1の層間絶縁層の上面の一部のみを覆うように、上部電極層、抵抗変化薄膜、下部電極層、密着層を同時にエッチングで加工してもよい。
抵抗変化層を形成する工程は、酸素不足型の金属酸化物からなる第1の金属酸化物を形成する工程と、第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層を形成する工程と、を有してもよい。
第1の配線を形成する工程は、第2の層間絶縁層に第1の配線溝を形成する工程と、第1の配線溝に第1の配線材料を埋め込む工程を有し、第2の配線を形成する工程は、上部電極、抵抗変化層、下部電極からなる抵抗変化素子の側面及び上面、並びに第1の層間絶縁層上に第3の層間絶縁層を形成する工程と、第3の層間絶縁層に第2の配線溝を形成する工程と、第2の配線溝に第2の配線材料を埋め込む工程とを有してもよい。
[抵抗変化型不揮発性記憶素子の構成]
図1は、第1実施形態に係る抵抗変化型不揮発性記憶素子10の概略構成の一例を示す工程断面図である。
図1では、一般的な抵抗変化型不揮発性記憶装置においてメモリアレイと呼ばれる部分の抵抗変化型不揮発性記憶素子が、抵抗変化型不揮発性記憶素子10として示されている。図1では、説明を簡単にするために、メモリアレイ中の1つの抵抗変化型不揮発性記憶素子(1ビット)のみを記載している。なお、抵抗変化型不揮発性記憶素子10は、さらに、このようなメモリアレイとともに、メモリアレイを駆動するための駆動回路を備えていてもよい。
本実施形態に係る抵抗変化型不揮発性記憶素子10は、主要な構成要素として、基板の上方に形成された第1の層間絶縁層(層間絶縁層106)と、第1の層間絶縁層を貫通したコンタクトホール107と、コンタクトホール107の側壁、底面および第1の層間絶縁層の上面の一部を覆う密着層(第2の密着層108)と、コンタクトホール107内に充填され、密着層の上面より下方にあるコンタクトプラグ109と、コンタクトプラグ109上及び第1の層間絶縁層の上面の一部を覆う密着層上に形成された下部電極110と、下部電極110上に形成された抵抗変化層111と、抵抗変化層111上に形成された上部電極112と備える。なお、本実施形態に係る抵抗変化型不揮発性記憶素子10では、これらの主要な構成要素の他に、その他の任意的な構成要素も備える。以下、本実施形態に係る抵抗変化型不揮発性記憶素子10の主要な構成要素及びその他の任意的な構成要素について説明する。
層間絶縁層101は、トランジスタなどが形成されている半導体基板(図示せず)上に形成されており、例えば、シリコン酸化物で構成される。この層間絶縁層101は、基板と第1の層間絶縁層との間に形成された第2の層間絶縁層に相当する。
層間絶縁層101には、第1の配線溝102が形成され、この第1の配線溝102の内部に、第1の密着層103と第1の金属配線104とが形成されている。第1の金属配線104は、第2の層間絶縁層内にかつ表面が露出して形成された第1の配線に相当する。ここで、第1の密着層103は、第1の金属配線104を第1の配線溝102の側面と底面に確実に密着させるための金属層である。例えば、第1の密着層103はタンタル窒化物(膜厚は5nm以上40nm以下)及びタンタル(膜厚は5nm以上40nm以下)の積層構造を有する。第1の金属配線104は銅配線である。なお、第1の金属配線104は、銅以外の他の金属(例えばアルミニウム)等で構成されてもよい。
ライナー層105は、第1の金属配線104の露出している表面を少なくとも覆うように成膜される。この場合、第1の密着層103の露出している表面、および層間絶縁層101上にも形成されてもよい。ライナー層105は、例えば、窒化シリコン(SiN)や炭窒化シリコン(SiCN)で構成される(膜厚は、例えば20nm以上100nm以下)。このライナー層105は、第1の金属配線104が露出している表面の酸化を防止するための絶縁膜として機能する。
層間絶縁層106(第1の層間絶縁層)は、ライナー層105上に形成されており、例えば、シリコン酸化物(膜厚は100nm以上500nm以下)で構成される。この層間絶縁層106は、基板の上方に形成された第1の層間絶縁層に相当する。
コンタクトホール107(直径は50〜200nmφ)は、ライナー層105が露出するようにライナー層105及び層間絶縁層106を貫通して形成されている。このコンタクトホール107は、第1の層間絶縁層を貫通したコンタクトホールに相当する。
第2の密着層108は、コンタクトホール107の中の側面及び底面と層間絶縁層106の上面の一部を被覆して形成され、例えばタンタル窒化物(膜厚は5nm以上20nm以下)で構成され、第1の金属配線104に接している。この第2の密着層108は、コンタクトホールの側壁、底面および前記第1の層間絶縁層の上面の一部を覆う密着層に相当する。ここで、第2の密着層108は、コンタクトプラグ109をコンタクトホール107の中の側面及び底面に確実に密着させるための金属層である。
コンタクトホール107内の第2の密着層108の内部には、コンタクトプラグ109が埋め込まれ、充填されている。コンタクトプラグ109は、例えば銅やタングステンで構成される。このコンタクトプラグ109は、コンタクトホール内に充填され、密着層の上面より下方にあるコンタクトプラグに相当する。
抵抗変化素子113は、第2の密着層108及びコンタクトプラグ109上に形成されている。
抵抗変化素子113は、下部電極(第1電極)110と、抵抗変化層111と、上部電極(第2電極)112とを含む。下部電極110は、コンタクトプラグ上及び第1の層間絶縁層の上面の一部を覆う密着層上に形成された下部電極に相当する。抵抗変化層111は、下部電極上に形成された抵抗変化層に相当する。上部電極112は、抵抗変化層上に形成された上部電極に相当する。ここで、下部電極110の膜厚は、第2の密着層108上よりコンタクトプラグ109上の方が厚く、かつ下部電極110の抵抗変化層111と接する面は平坦である。
抵抗変化層111は、下部電極110と上部電極112との間に介在され、下部電極110と上部電極112との間に与えられる電気的信号に基づいて可逆的に抵抗値が変化する層である。例えば、下部電極110と上部電極112との間に与えられる電気的信号(例えばパルス電圧)の極性に応じて高抵抗状態と低抵抗状態とを可逆的に遷移する層である。図1においては、抵抗変化層111は、下部電極110に接続する第1の抵抗変化層111aと、上部電極112に接続する第2の抵抗変化層111bの2層を積層して構成されている。
第1の抵抗変化層111aは、酸素不足型の第1の金属酸化物で構成されている。第2の抵抗変化層111bは、第1の金属酸化物よりも酸素不足度が小さい第2の金属酸化物で構成されている。抵抗変化素子113の第2の抵抗変化層111b中には、電気パルスの印加に応じて酸素不足度が可逆的に変化する微小な局所領域が形成されている。局所領域は、酸素欠陥サイトから構成されるフィラメント(導電パス)を含むと考えられる。
積層構造の抵抗変化層における抵抗変化現象は、抵抗が高い第2の金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こって、局所領域中のフィラメントが変化することにより、抵抗変化層111の抵抗値が変化すると考えられる。
つまり、第2の金属酸化物に接続する上部電極112に、下部電極110を基準にして正の電圧を印加したとき、抵抗変化層111中の酸素イオンが第2の金属酸化物側に引き寄せられる。これによって、第2の金属酸化物中に形成された微小な局所領域中で酸化反応が発生し、酸素不足度が減少する。その結果、局所領域中のフィラメントが繋がりにくくなり、抵抗値が増大すると考えられる。
逆に、第2の金属酸化物に接続する上部電極112に、下部電極110を基準にして負の電圧を印加したとき、第2の金属酸化物中の酸素イオンが第1の金属酸化物側に押しやられる。これによって、第2の金属酸化物中に形成された微小な局所領域中で還元反応が発生し、酸素不足度が増加する。その結果、局所領域中のフィラメントが繋がりやすくなり、抵抗変化層111の抵抗値が減少すると考えられる。
下部電極110は、第2の密着層108と同じ材料で構成してもよい。下部電極110と第2の密着層108は、遷移金属の窒化物で構成してもよい。例えば、タンタル窒化物(TaN)やチタン窒化物(TiN)で構成してもよい。
下部電極110と第2の密着層108が同じ材料である場合、抵抗変化素子113をドライエッチング法で加工する際、下部電極110と第2の密着層108の加工も含めて、抵抗変化素子113の加工が容易となる。
層間絶縁層114(第3の層間絶縁層)は層間絶縁層106上と抵抗変化素子113上に形成されている。層間絶縁層114には、上部電極112上に第2の配線溝115が形成されている。第2の配線溝115の側面と底面には、第3の密着層116が形成されている。ここで、第3の密着層116は、第2の金属配線117を第2の配線溝115の側面と底面に確実に密着させるための金属層である。第3の密着層116上には第2の金属配線117が形成されている。抵抗変化素子113を構成する上部電極112は、第3の密着層116を介して第2の金属配線117と電気的に接続されている。例えば、第3の密着層116はタンタルおよびタンタル窒化膜(膜厚は5nm以上20nm以下)の積層構造を有する。第2の金属配線117は銅配線である。第2の金属配線117は銅以外の他の金属(例えばアルミニウム)等で構成されてもよい。なお、図1においては、第2の金属配線117は、第1の金属配線104と同一方向に伸びているが、第1の金属配線104と直交する方向に伸びていてもよい。
抵抗変化素子113を構成する上述した各層は、上部電極112上に設けたハードマスク(図示せず)を用いてドライエッチングで同時に加工されることから、各々の側面(端面)が同一面内にあり、横方向から見ると直線状となっている。つまり、第1の層間絶縁層の上面の一部を覆っている密着層、下部電極、抵抗変化層、および上部電極の各々の側面が同一面内にある。
以下に、用語の定義について説明する。
「酸素不足度」とは、金属酸化物において、その化学量論的組成(複数の化学量論的組成が存在する場合は、そのなかで最も抵抗値が高い化学量論的組成)の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。
例えば、金属がタンタル(Ta)の場合、上述の定義による化学量論的組成の酸化物はTaであるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%であり、TaO1.5の酸素不足度は、酸素不足度=(2.5−1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素不足度が負の値となる。なお、本明細書中では、特に断りのない限り、酸素不足度は正の値、0、負の値も含むものとして説明する。
酸素不足度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高い。一方、酸素不足度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
「酸素含有率」とは、総原子数に占める酸素原子の比率である。例えば、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。例えば、第1の金属酸化物を構成する金属と、第2の金属酸化物を構成する金属とが同種である場合、酸素含有率は酸素不足度と対応関係にある。すなわち、第2の金属酸化物の酸素含有率が第1の金属酸化物の酸素含有率よりも大きいとき、第2の金属酸化物の酸素不足度は第1の金属酸化物の酸素不足度より小さい。抵抗変化層111は、酸素不足型の遷移金属酸化物(例えば、酸素不足型のタンタル酸化物)で構成してもよい。酸素不足型の遷移金属酸化物とは、遷移金属をM、酸素をOとして遷移金属酸化物をMOxと表記した場合に、酸素Oの組成xが化学量論的に安定な状態(通常は絶縁体)よりも少ない組成(通常は半導体)であるときの酸化物である。例えば、遷移金属がタンタルである場合、Taが化学量論的に安定な状態であるので、0<x<2.5の場合に、酸素不足型のタンタル酸化物であるといえる。
抵抗変化層111として酸素不足型のタンタル酸化物を用いる場合は、タンタルをターゲットとして用い、アルゴン及び酸素ガス雰囲気中でスパッタリングする、所謂、反応性スパッタ法を用いて形成する。この際、酸素の流量を調整することにより、抵抗変化層111内の酸素濃度を制御する。抵抗変化層111の酸素含有率は、例えば、44.4〜65.5atm%(TaOと表記したときに、0.8≦x≦1.9)に制御してもよい。
上記した酸素不足型タンタル酸化物を用いて構成される抵抗変化層111を用い、上部電極112と下部電極110との間に、極性が異なる所定の電気的パルス(例えば、パルス電圧)を印加することによって、電気抵抗値が可逆的に変化し、安定した書き換え特性を有する、抵抗変化現象を利用した抵抗変化型不揮発性記憶素子を実現することができる。第1の抵抗変化層111aと第2の抵抗変化層111bとにタンタル酸化物を用いた場合には、第1の抵抗変化層111aの酸素含有率は、44.4〜65.5atm%(タンタル酸化物をTaOと表記したときに、0.8≦x≦1.9)、第2の抵抗変化層111bの酸素含有率は、第1の抵抗変化層111aの酸素含有率より大きくするタンタル酸化物をTaOと表記したときに、x<yとしてもよい。上部電極112と接続される第2の抵抗変化層111bの酸素含有率を第1の抵抗変化層111aの酸素含有率よりも高く設定することにより、第2の抵抗変化層111bと上部電極112との界面近傍での酸化及び還元による抵抗変化が発現しやすくなる。これにより、低電圧駆動が可能で、かつ安定した抵抗変化特性を持つ抵抗変化素子113を実現できる。抵抗変化層111は、図1に示したような二層に限らず、単層でもよいし、三層以上でも構成することが可能である。
抵抗変化層111を構成する金属は、タンタル以外の金属を用いてもよい。抵抗変化層111を構成する金属としては、遷移金属、またはアルミニウム(Al)を用いることができる。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
上述したように、第1の抵抗変化層111aは、酸素不足型の第1の金属酸化物で構成され、第2の抵抗変化層111bは、第1の金属酸化物よりも酸素不足度が小さい第2の金属酸化物で構成されている。
抵抗変化層111として、例えば、ハフニウム酸化物を用いる場合、第1の金属酸化物の組成をHfOとした場合にxが0.9以上1.6以下であり、かつ、第2の金属酸化物の組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物の膜厚は、3nm以上4nm以下としてもよい。
ハフニウム酸化物の場合は、Hfターゲットを用い、アルゴンガス及び酸素ガス中でスパッタリングする所謂反応性スパッタリング法によって、第1電極の上に第1の抵抗変化層(第1のハフニウム酸化物層)を形成する。第2の抵抗変化層(第2のハフニウム酸化物層)は、この第1のハフニウム酸化物層を形成後に、アルゴンガスと酸素ガスとのプラズマに第1のハフニウム酸化物層の表面を暴露することにより形成できる。第1のハフニウム酸化物層の酸素含有率は、上述したタンタル酸化物の場合と同様、反応性スパッタ中のアルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整できる。なお、この処理は、基板を特に加熱することなく室温で行える。また、第2のハフニウム酸化物層の膜厚は、アルゴンガスと酸素ガスとのプラズマへの暴露時間により容易に調整できる。
また、ジルコニウム酸化物を用いる場合、第1の金属酸化物の組成をZrOとした場合にxが0.9以上1.4以下であり、かつ、第2の金属酸化物の組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物の膜厚は、1nm以上5nm以下としてもよい。ジルコニウム酸化物の場合は、Zrをターゲットに用い、アルゴンガス及び酸素ガス中でスパッタリングする所謂反応性スパッタリング法によって、下部電極の上に第1のジルコニウム酸化物層を形成する。第2のジルコニウム酸化物層は、この第1のジルコニウム酸化物層を形成後に、アルゴンガスと酸素ガスとのプラズマに第1のジルコニウム酸化物層の表面を暴露することにより形成できる。第1のジルコニウム酸化物層の酸素含有率は、上述したタンタル酸化物の場合と同様、反応性スパッタ中のアルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整できる。なお、この処理は、基板を特に加熱することなく室温で行える。また、第2のジルコニウム酸化物層の膜厚は、アルゴンガスと酸素ガスのプラズマへの暴露時間により容易に調整できる。
第1の金属酸化物を構成する第1の金属と、第2の金属酸化物を構成する第2の金属とは、異なる金属を用いてもよい。この場合、第2の金属酸化物は、第1の金属酸化物よりも酸素不足度が小さい、つまり抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に第1電極と第2電極との間に印加された電圧は、第2の金属酸化物に、より多くの電圧が分配され、第2の金属酸化物中で発生する酸化還元反応をより起こしやすくすることができる。
また、第1の抵抗変化層となる第1の金属酸化物を構成する第1の金属と、第2の抵抗変化層となる第2の金属酸化物を構成する第2の金属とを、互いに異なる材料を用いる場合、第2の金属の標準電極電位は、第1の金属の標準電極電位より低くてもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。これにより、標準電極電位が相対的に低い第2の金属酸化物において、酸化還元反応が起こりやすくなる。なお、抵抗変化現象は、抵抗が高い第2の金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こってフィラメント(導電パス)が変化することにより、第2の金属酸化物の抵抗値(酸素不足度)が変化すると考えられる。
例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2の金属酸化物にチタン酸化物(TiO)を用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=−1.63eV)はタンタル(標準電極電位=−0.6eV)より標準電極電位が低い材料である。このように、第2の金属酸化物に第1の金属酸化物より標準電極電位が低い金属の酸化物を用いることにより、第2の金属酸化物中でより酸化還元反応が発生しやすくなる。その他の組み合わせとして、高抵抗層となる第2の金属酸化物にアルミニウム酸化物(Al)を用いることができる。例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2の金属酸化物にアルミニウム酸化物(Al)を用いてもよい。酸素不足度がより小さい第2の金属酸化物に接続されている上部電極112は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2の金属酸化物を構成する金属及び下部電極110を構成する材料と比べて標準電極電位が、より高い材料で構成する。また、酸素不足度がより高い第1の金属酸化物に接続されている下部電極110は、例えば、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、窒化タンタル(TaN)、窒化チタン(TiN)など、第1の金属酸化物を構成する金属と比べて標準電極電位が、より低い材料で構成してもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。
すなわち、上部電極112の標準電極電位V、第2の金属酸化物を構成する金属の標準電極電位Vr2、第1の金属酸化物を構成する金属の標準電極電位Vr1、下部電極110の標準電極電位Vとの間には、Vr2<V、かつV<Vなる関係を満足してもよい。さらには、V>Vr2で、Vr1≧Vの関係を満足してもよい。
電極と抵抗変化層とを構成する金属間の標準電極電位の差が大きいほど酸化反応が抵抗変化層側で起こるため抵抗変化が起こりやすい。また、この差が小さくなるにつれて、電極中での酸化反応により抵抗変化が起こりにくい。これらのことから、電極と抵抗変化層との界面での、抵抗変化層の酸化のされやすさが抵抗変化現象のメカニズムに大きな役割を果たしていると推測される。イリジウム及び白金の標準電極電位は約1.2eVである。タンタルの標準電極電位は約−0.6eVで、イリジウム及び白金の標準電極電位よりも低い。したがって、イリジウム又は白金で上部電極112を構成し、酸素不足型タンタル酸化物で抵抗変化層111を構成した場合には、イリジウム又は白金で構成される上部電極112と抵抗変化層111(第2の抵抗変化層111b)との界面で、酸素不足型タンタル酸化物の酸化及び還元反応が起こる。これにより、抵抗変化層111内、及び抵抗変化層111と上部電極112との間で酸素の授受が行われることにより、抵抗変化現象が発現する。タンタルより標準電極電位が高い材料としては、イリジウム、白金、パラジウム、銅、及びタングステン等が挙げられる。
上記の構成とすることにより、上部電極と第2の金属酸化物の界面近傍の第2の金属酸化物中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
[製造方法]
図2から図15は、第1実施形態に係る抵抗変化型不揮発性記憶素子10の製造方法の一例を示す工程断面図である。これらを用いて、第1実施形態に係る抵抗変化型不揮発性記憶素子10の製造方法について説明する。つまり、上部電極、抵抗変化層、および下部電極にて構成される抵抗変化素子を備えた抵抗変化型不揮発性記憶素子の製造方法について説明する。
まず、図2に示すように、トランジスタなどが予め形成されている半導体基板(図示せず)上に、プラズマCVD等を用いてシリコン酸化物で構成される層間絶縁層101(第2の層間絶縁層)を形成する。これにより、基板上に第2の層間絶縁層を形成する工程が行われる。
続いて、図3に示すように、層間絶縁層101に第1の金属配線104を埋め込み形成するための第1の配線溝102をフォトリソグラフィー及びドライエッチングにより形成する。
続いて、図4に示すように、この第1の配線溝102内に、第1の密着層103となる第1のバリアメタル層(例えば、タンタル窒化物(膜厚は5nm以上40nm以下)及びタンタル(膜厚は5nm以上40nm以下)の積層構造)と、配線材料のシード層となる銅(膜厚は50nm以上300nm以下)とをスパッタ法等を用いて堆積させる。そして、電解めっき法等により、銅のシード層上に銅をさらに堆積させることで、側面と底面に第1の密着層103が形成された第1の配線溝102を全て配線材料の銅で充填する。その後、堆積した銅のうち表面の余分な銅をCMP(Chemical Mechanical Polishing)法によって除去しながら、層間絶縁層101の上面と第1の金属配線104の上面とを平坦にする。このような製造方法で、第1の金属配線104を形成する。これにより、第2の層間絶縁層内にかつ表面を露出させた第1の配線を形成する工程が行われる。このとき、第1の配線を形成する工程は、第2の層間絶縁層に第1の配線溝を形成する工程と、第1の配線溝に第1の配線材料を埋め込む工程とを有する。
その後、図5に示すように、プラズマCVD等を用いて、層間絶縁層101の上面及び第1の金属配線104の上面に、シリコン窒化物(絶縁層)を堆積(膜厚は20nm以上100nm以下)させる。これによって、層間絶縁層101及び第1の金属配線104上を覆うライナー層105を形成する。続いて、ライナー層105上に、プラズマCVD等を用いてシリコン酸化物で構成される層間絶縁層106(第1の層間絶縁層)をさらに堆積させる。必要であればCMP法により、層間絶縁層106の上面の段差緩和を行う。これにより、基板の上方に第1の層間絶縁層を形成する工程が行われる。
続いて、図6に示すように、フォトリソグラフィー及びドライエッチングによって、第1の金属配線104上の所定の位置に、第1の金属配線104に接続されるプラグを埋め込むためのコンタクトホール107を形成する。これにより、第1の層間絶縁層にコンタクトホールを開口する工程が行われる。
その後、図7に示すように、形成されたコンタクトホール107を含む層間絶縁層106上に、タンタル窒化物(膜厚は5nm以上40nm以下)及びタンタル(膜厚は5nm以上40nm以下)の積層構造で構成される第2の密着層108と、第2の導電層としての配線材料の銅(Cu)109(膜厚は50nm以上300nm以下)とをスパッタ法等を用いて堆積させる。そして、電解めっき法等により、銅をシードとして銅をさらに堆積させることで、コンタクトホール107の内部及び第2の密着層108上に銅を堆積する。これにより、コンタクトホールの側壁、底面および第1の層間絶縁層の上面を覆う密着層を形成する工程と、コンタクトホールの側壁、底面および第1の層間絶縁層の上面に形成された密着層上に導電層を堆積する工程とが行われる。なお、密着層を形成する工程では、第1の配線(第1の金属配線104)が密着層の底面と接するように、密着層が形成される。
次に、図8に示すように、銅膜の研磨レートに比べてタンタル窒化物の研磨レートが遅い、すなわちタンタル窒化膜に対する選択性の高いスラリーを用いて、第2の密着層108の上面上に存する余分な銅のみをCMPで除去し、コンタクトプラグ109を形成する。すなわち、第2の密着層108が層間絶縁層106上を覆った状態を維持するようにCMP研磨を行う。つまり、CMP研磨時は、第2の密着層108とコンタクトプラグ109とで層間絶縁層106および第1の金属配線104の上面が全て覆われた状態とする。これにより、導電層を研磨して第1の層間絶縁層の上面に形成された密着層の上面を露出させるとともに、コンタクトホール内に導電層の上面を露出させる工程が行われる。
これによって、層間絶縁層106の上面が露出しなくなり、コンタクトプラグ109の開口率(パターン密度)に関係なく、上面が全て金属膜(第2の密着層108およびコンタクトプラグ109)で覆われた状態となる。従って、メモリアレイ領域の端部のように、コンタクトプラグのパターン密度が急激に変化する領域が存在しないことから、いわゆるグローバル段差を原理的に抑制することが可能となる。
次に、図9〜図12に示すように、第2の密着層108とコンタクトプラグ109の上面に、抵抗変化素子113を形成する。
まず、図9に示すように、コンタクトプラグ109と第2の密着層108上に、タンタル窒化物で構成される下部電極層110’(膜厚は10nm以上30nm以下)をスパッタ法等を用いて堆積する。これによって、露出された密着層上、及びコンタクトホール内の導電層からなるコンタクトプラグ上に下部電極層を形成する工程が行われる。
下部電極層110’については、図10に示すように、タンタル窒化物を堆積した後にCMP研磨することで、タンタル窒化物の上面を平坦化する。これにより、銅膜をCMP研磨した時に生じたコンタクトプラグ109上のリセス(凹み)を除去する。これにより、下部電極層を形成した後に、当該下部電極層の上面を研磨することで、下部電極層の膜厚を密着層上よりコンタクトプラグ上の方を厚くし、かつ下部電極層の抵抗変化層と接する面を平坦化する工程が行われる。
なお、銅膜をCMP研磨した時に生じたコンタクトプラグ109上のリセス(凹み)を除去するために、下部電極層110’を2層の積層構造で形成しても構わない。より具体的には、第1の下部電極層110a’(図示せず)を堆積後、第1の下部電極層110a’の上面をCMP研磨し、当該第1の下部電極層110a’の上面を平坦化することで、コンタクトプラグ109上のリセスを除去できる。これにより、抵抗変化素子の安定動作が可能となる。その後、上面が平坦化された第1の下部電極層110a’上に、第2の下部電極層110b’(図示せず)をスパッタ法等を用いて堆積する。このようにすることで、第2の下部電極層の上面をCMPする必要がなくなる。従って、第2の下部電極層110b’の表面がCMPのスラリーの影響で酸化される事がなく、この後に、成膜される抵抗変化層111と第2の下部電極110bとの界面の酸素濃度を制御することができる。
このように、下部電極層を形成する工程は、第1の下部電極層を密着層と導電層の上に堆積する工程と、第1の下部電極層の表面を研磨して当該表面を平坦化する工程と、平坦化された第1の下部電極層上に第2の下部電極層を堆積する工程とを含んでもよい。
次に、図11に示すように、タンタルをターゲットとして用いて、アルゴン及び酸素ガス雰囲気中でスパッタリングする、所謂、反応性スパッタ法を用いて抵抗変化薄膜111’を堆積する。これにより、平坦化した下部電極層の上に抵抗変化薄膜を形成する工程が行われる。ここで、酸素の流量を調整することにより、層内の酸素濃度を45〜65atom%に制御する。これにより、酸素不足型の第1の抵抗変化薄膜111a’の抵抗率を0.5〜20mΩ・cmに調整できる。例えば、酸素濃度を60atm%とすることにより、約2mΩ・cmの抵抗率を有する第1の抵抗変化薄膜111a’を形成することができる。さらに、第1の抵抗変化薄膜111a’の表面を酸化処理することで、第1の抵抗変化薄膜111a’より酸素含有率の高い第2の抵抗変化薄膜111b’(例えば、Ta層)を膜厚2nm以上12nm以下の範囲で形成してもよい。つまり、抵抗変化層を形成する工程は、酸素不足型の金属酸化物からなる第1の金属酸化物を形成する工程と、第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層を形成する工程とを有してもよい。
なお、ここでは、抵抗変化薄膜111’は2層積層の場合を例にして述べたが、単層としてもよい。また、抵抗変化薄膜111’は、酸素の流量を調整して3層以上の積層としてもよい。
次に、抵抗変化薄膜111’の上に、例えばイリジウムから成る上部電極層112’(膜厚は20nm以上50nm以下)を、スパッタ法等を用いて堆積する。これにより、抵抗変化薄膜の上に上部電極層を形成する工程が行われる。なお、上部電極層112’はイリジウム以外の白金やパラジウムなどの貴金属で堆積してもよい。更に、貴金属を含む上部電極層112’上に、ドライエッチング時のハードマスクとして用いられる導電性の膜である、タンタル窒化物、チタン窒化物及びチタン−アルミニウム窒化物のいずれかを水平に積層するように堆積してもよい(図示せず)。導電性のハードマスクはスパッタ法等を用いて形成する。
次に、図12に示すように、図11に示される工程で形成された上部電極層112’抵抗変化薄膜111’、下部電極層110’、及び第2の密着層108を、フォトリソグラフィー及びドライエッチングで加工(パターニング)する。これにより、コンタクトプラグ109に接続されかつ互いに独立したドット形状(上面から見たときに一辺が40nm以上400nm以下で、例えば一辺が120nmの矩形形状)の抵抗変化素子113を形成する。このとき、上部電極層112’、抵抗変化薄膜111’、下部電極層110’及び第2の密着層108を同時にドライエッチングすることで、抵抗変化型不揮発性記憶素子の側面を一括して直接的に形成でき、側面の保護層(図示せず)の堆積が容易となる。これにより、上部電極層、抵抗変化薄膜、下部電極層、および密着層を同時に加工し、上部電極、抵抗変化層、下部電極、および密着層の側面が同一面内になるように、抵抗変化素子を形成する工程が行われる。このとき、密着層が第1の層間絶縁層の上面の一部のみを覆うように、上部電極層、抵抗変化薄膜、下部電極層、密着層を同時にエッチングで加工される。
次に、図13に示すように、抵抗変化素子113と層間絶縁層106の上に、プラズマCVD等を用いてシリコン酸化物等で構成される層間絶縁層114を堆積する。
そして、図14に示すように、フォトリソグラフィー及びドライエッチングにより、層間絶縁層114中に第2の配線溝115を形成する。この第2の配線溝115は、上部電極112が露出するように形成される。ここでは図示していないが、この第2の配線溝115の形成と同時に、第1の金属配線104と接続するコンタクトホールの開口を行う(ディアルダマシンプロセス)。
続いて、図15に示すように、上述した第1の金属配線104を埋め込み形成する工程と同様の条件を用いて、第2の配線溝115内に、第3の密着層116と、シード層としての銅とを、スパッタ法等を用いて堆積する。第3の密着層116は、例えば、タンタル窒化物(膜厚は5nm以上40nm以下)とタンタル(膜厚は5nm以上40nm以下)との積層構造としてもよい。シード層としての銅の膜厚は50nm以上300nm以下としてもよい。さらに、電解めっき法等により、シード層の銅をシードとして銅をさらに堆積させ、側面と底面に第3の密着層116が形成された第2の配線溝115を配線材料の銅で充填する。そして、CMP法によって、層間絶縁層114の上面上の余分な銅と第3の密着層116とを除去するとともに、層間絶縁層114の上面と第2の金属配線117の上面とを平坦化する。これにより、第2の金属配線117が形成される。つまり、上部電極に接続された第2の配線を形成する工程が行われる。そして、第2の配線を形成する工程は、上部電極、抵抗変化層、下部電極からなる抵抗変化素子の側面及び上面、並びに第1の層間絶縁層上に第3の層間絶縁層を形成する工程と、第3の層間絶縁層に第2の配線溝を形成する工程と、第2の配線溝に第2の配線材料を埋め込む工程とを有する。
以上の製造方法にて製造した本実施形態に係る抵抗変化型不揮発性記憶素子10を用いたメモリアレイの特性ばらつきの抑制効果を示す特性図を図24に示す。従来の抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合には、メモリアレイ領域の端部でセル電流の変動が見られ、セル電流が大きくなって(図23)、動作不良が生じていた。これは、従来の抵抗変化型不揮発性記憶素子では、CMP研磨によるコンタクトプラグ109の形成時に、層間絶縁層106上の第2の密着層108をCMP研磨して除去した際に、層間絶縁層106の表面も研磨されてしまうことで、グローバル段差(コンタクトプラグのパターン密度に起因する層間絶縁層の表面における凸凹)が生じていたからである。
これに対して、本実施形態の抵抗変化型不揮発性記憶素子10は、層間絶縁層106上に第2の密着層108を形成し、第2の密着層108をそのまま残した上で、第2の密着層108およびコンタクトプラグ109の上に下部電極層110’を堆積し(図9)、その後に、下部電極層110’の上面をCMP研磨にて平坦化している(図10)。これにより、従来の抵抗変化型不揮発性記憶素子ではCMP研磨によるコンタクトプラグの形成時に生じていた上記グローバル段差を、原理的に抑制することができ、メモリアレイ領域内の抵抗変化型不揮発性記憶素子の特性ばらつきを低減できる。したがって、抵抗変化動作における不良ビット数を大幅に低減できるとともに、製造プロセスの安定性を向上させることができる。
なお、上部電極112は、白金、銅、タングステン、イリジウム、及びパラジウムのいずれかの金属、もしくはこれらの金属の組み合わせまたは合金で構成してもよい。このような合金で抵抗変化層111の第2の抵抗変化層111b側の電極を構成することにより、初期抵抗値の低下及びばらつきを抑えつつ、初期ブレイクダウン電圧を低く抑えることができる。
なお、第1実施形態では、第1の金属配線104と第2の金属配線117とは、図1に示されるように、平行に延びていたが、これに限られず、直交していてもよい。図16Aは、直交した第1の金属配線104と第2の金属配線117とを備える、第1実施形態の変形例に係る抵抗変化型不揮発性記憶素子10の上面図であり、アレイ状に配置された4個の抵抗変化型不揮発性記憶素子10の上面図を示している。図16Bは、図16Aに示された抵抗変化型不揮発性記憶素子において、断面線16Bが示す断面を、図示された矢印の方向に見た場合の断面図である。図16Cは、図16Aに示された抵抗変化型不揮発性記憶素子において、断面線16Cが示す断面を、図示された矢印の方向に見た場合の断面図である。
図16Aに示されるように、この例では、互いに平行に延びる2本の第1の金属配線104の上方に、互いに平行に延びる2本の第2の金属配線117が形成されている。
図16Bに示されるように、図16Aにおける断面線16Bに示される断面では、図1に示される断面構造と異なり、第2の金属配線117が、図面に向かって左右方向に(第1の金属配線104と直交して)延びている。
また、図16Cに示されるように、図16Aにおける断面線16Cに示される断面では、図1に示される断面構造と異なり、第1の金属配線104が、図面に向かって左右方向に(第2の金属配線117と直交して)延びている。
このような図16A〜図16Cに示される変形例に係る抵抗変化型不揮発性記憶素子10であっても、第1の金属配線104と第2の金属配線117とが配置される方向を除いて、上記第1実施形態と同様の製造方法で製造される。つまり、本変形例の抵抗変化型不揮発性記憶素子10は、層間絶縁層106上に第2の密着層108を形成し、第2の密着層108をそのまま残した上で、第2の密着層108およびコンタクトプラグ109の上に下部電極層110’を堆積し(図9)、その後に、下部電極層110’の上面をCMP研磨にて平坦化する(図10)。これにより、従来の抵抗変化型不揮発性記憶素子ではCMP研磨によるコンタクトプラグの形成時に生じていた上記グローバル段差を、原理的に抑制することができ、メモリアレイ領域内の抵抗変化型不揮発性記憶素子の特性ばらつきを低減できる。したがって、抵抗変化動作における不良ビット数を大幅に低減できるとともに、製造プロセスの安定性を向上させることができる。
(第2実施形態)
上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10を適用し、1つの抵抗変化型不揮発性記憶素子に対応して、電流制御素子としての1つのダイオードが電気的に接続された抵抗変化型不揮発性記憶装置について説明する。
第2実施形態に係る抵抗変化型不揮発性記憶装置は、半導体基板と、半導体基板上に形成された、互いに交差するように配列された複数の第1の配線および複数の第2の配線と、複数の第1の配線および複数の第2の配線の交点に対応してそれぞれ設けられた複数の抵抗変化型不揮発性記憶素子、並びに複数の抵抗変化型不揮発性記憶素子に対応して設けられた複数の電流制御素子とを備え、抵抗変化型不揮発性記憶素子のそれぞれは、下部電極と、上部電極と、下部電極と上部電極との間に介在し、下部電極および上部電極間に与えられる電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化層を備え、抵抗変化型不揮発性記憶素子として、上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10を用いる。本実施形態においては、電流制御素子としてダイオードを用いる。
かかる構成によれば、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、コンタクトプラグの形成時にプラグ材料を構成する導電層の研磨(例えばCMP)を行っても、コンタクトプラグが形成された層間絶縁層の上面の一部を覆う密着層を残した状態で導電層が研磨される。したがって、層間絶縁層は研磨されず、メモリアレイ領域の端部における層間絶縁層の表面の凹凸(グローバル段差)を抑制できる。これによって、抵抗変化型不揮発性記憶素子を多数用いた大容量のクロスポイント型の抵抗変化型不揮発性記憶装置の特性ばらつきを低減することができる。
[抵抗変化型不揮発性記憶装置の構成]
図17は、第1実施形態に係る抵抗変化型不揮発性記憶素子10を適用した本実施形態に係る抵抗変化型不揮発性記憶装置200の構成を示すブロック図である。また、図18は、図17に示される抵抗変化型不揮発性記憶装置200におけるA部の構成(4ビット分の構成)を示す斜視図である。本構成は、抵抗変化型不揮発性記憶素子(抵抗変化素子)にダイオードを直列に電気的に接続して構成したクロスポイント型のメモリセルを備えた抵抗変化型不揮発性記憶装置である。
図17に示すように、本実施形態の抵抗変化型不揮発性記憶装置200は、半導体基板上に、メモリ本体部201を備えている。メモリ本体部201は、メモリセルアレイ202と、行選択回路・ドライバ203と、列選択回路・ドライバ204と、情報の書き込みを行うための書き込み回路205と、選択ビット線に流れる電流量を検出し、データ「1」又は「0」と判定するセンスアンプ206と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路207とを具備している。また、抵抗変化型不揮発性記憶装置200は、外部から入力されるアドレス信号を受け取るアドレス入力回路208と、外部から入力されるコントロール信号に基づいて、メモリ本体部201の動作を制御する制御回路209とをさらに備えている。
メモリセルアレイ202は、図17、図18に示すように、半導体基板の上に互いに平行に形成された複数のワード線(第1の配線)WL0、WL1、WL2、…と、これらの複数のワード線WL0、WL1、WL2、…の上方にその半導体基板の主面に平行な面内において互いに平行且つ複数のワード線WL0、WL1、WL2、…に立体交差するように形成された複数のビット線(第2の配線)BL0、BL1、BL2、…とを備えている。
また、メモリセルアレイ202には、これらの複数のワード線WL0、WL1、WL2、…と複数のビット線BL0、BL1、BL2、…との立体交差点に対応してマトリクス状に設けられた複数のメモリセルM111、M112、M113、M121、M122、M123、M131、M132、M133、…が設けられている。第1実施形態(図1)およびその変形例(図16A〜図16C)における第1の金属配線104は本実施形態におけるワード線に対応し、第1実施形態(図1)およびその変形例(図16A〜図16C)における第2の金属配線117は本実施形態におけるビット線に対応する。なお、両者の対応関係は、この逆でも構わない。
メモリセルM111、M112、…のそれぞれは、上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10を構成している抵抗変化素子113と、抵抗変化素子113に直列に接続された電流制御素子(ダイオード)130とで構成されている。それぞれの抵抗変化素子113は、積層構造の金属酸化物で構成される抵抗変化層を有している。積層構造の金属酸化物は酸素不足型の金属酸化物で構成してもよい。
なお、図20におけるメモリセルM111、M112、…は、図21ではメモリセル210として示されている。
[抵抗変化型不揮発性記憶素子の構成]
図19は、図17に示される抵抗変化型不揮発性記憶装置200における抵抗変化素子113とダイオード(電流制御素子130)の構成を示す断面図である。なお、図19では、図18のB部における構成(図18の断面指示線19における断面)が示されている。
図19に示すように、第2実施形態の抵抗変化型不揮発性記憶装置200において、メモリセル210は、銅配線である下部配線212(図17におけるワード線WL1に相当する)及び上部配線211(図17におけるビット線BL1に相当する)の間に介在しており、下部電極217と、電流制御層216と、内部電極215と、抵抗変化層214と、上部電極213とが順に積層されて構成されている。
ここで、内部電極215、抵抗変化層214、及び上部電極213は、図1に示した第1実施形態に係る抵抗変化型不揮発性記憶素子10における下部電極110、抵抗変化層111、及び上部電極112にそれぞれ相当し、これらによって抵抗変化素子113が構成される。したがって、本実施形態における抵抗変化素子113は、第1実施形態における構成と同様にして形成される。
電流制御層216は、窒化タンタル(TaN)で構成される内部電極215を介して、抵抗変化層214と直列接続されている。電流制御層216と抵抗変化層214とは電気的に接続されている。この下部電極217、電流制御層216、内部電極215で構成される電流制御素子130は、MIM(Metal−Insulator−Metal;金属−絶縁体−金属の意味)ダイオード又はMSM(Metal−Semiconductor−Metal;金属−半導体−金属の意味)ダイオードに代表される素子であり、電圧に対して非線形な電流特性を示す。MIMダイオードよりもMSMダイオードの方がより多くの電流を流すことができる。電流制御層216としては、アモルファスSi等を用いることができる。また、この電流制御素子130は、電圧に対して双方向性の電流特性を有しており、所定の閾値電圧Vf(一方の電極を基準にして例えば+1V以上又は−1V以下)で導通するように構成されている。
なお、タンタル及びタンタル酸化物は、半導体プロセスに一般的に用いられている材料であり、非常に親和性が高いといえる。そのため、既存の半導体製造プロセスに容易に組み入れることが可能である。
[多層化構造の抵抗変化型不揮発性記憶装置の構成例]
図18及び図19に示した第2実施形態の抵抗変化型不揮発性記憶装置200におけるメモリセルアレイを、3次元に積み重ねることによって、多層化構造の抵抗変化型不揮発性記憶装置を実現することができる。
図20は、図17に示される第2実施形態に係る抵抗変化型不揮発性記憶装置200を多層化した構造におけるメモリセルアレイの構成を示す斜視図である。図20に示すように、この抵抗変化型不揮発性記憶装置は、図示しない半導体基板の上に互いに平行に形成された複数の下部配線(第1の配線)212と、これらの複数の下部配線212の上方にその半導体基板の主面に平行な面内において互いに平行且つ複数の下部配線212に立体交差するように形成された複数の上部配線(第2の配線)211と、これらの複数の下部配線212と複数の上部配線211との立体交差点に対応してマトリクス状に設けられた複数のメモリセル210とを備えるメモリセルアレイが、複数積層されてなる多層化メモリセルアレイを備えている。
なお、図20に示す例では、配線層が5層であり、配線層の立体交差点に配される抵抗変化型不揮発性記憶素子が4層の構成となっているが、必要に応じてこれらの層数を増減してもよいことは勿論である。
このように構成された多層化メモリセルアレイを設けることによって、超大容量不揮発性メモリを実現することが可能となる。
なお、本実施形態における抵抗変化層は低温で形成することが可能である。したがって、本実施形態で示すような配線工程での積層化を行う場合であっても、下層工程で形成されたトランジスタ及びシリサイドなどの配線材料に影響を与えることがないため、多層化メモリセルアレイを容易に実現することができる。すなわち、本開示のタンタル酸化物を含む抵抗変化層を用いることによって、多層化構造の抵抗変化型不揮発性記憶装置を容易に実現することが可能となる。
(第3実施形態)
上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10を適用し、1つの抵抗変化型不揮発性記憶素子に対応して、電流制御素子としての1つのトランジスタが電気的に接続された抵抗変化型不揮発性記憶装置について説明する。
第3実施形態に係る抵抗変化型不揮発性記憶装置は、半導体基板と、半導体基板上に形成された、互いに交差するように配列された複数の第1の配線および複数の第2の配線と、複数の第1の配線および複数の第2の配線の交点に対応してそれぞれ設けられた複数の抵抗変化型不揮発性記憶素子、並びに複数の抵抗変化型不揮発性記憶素子に対応して設けられた複数の電流制御素子とを備え、抵抗変化型不揮発性記憶素子のそれぞれは、下部電極と、上部電極と、下部電極と上部電極との間に介在し、下部電極および上部電極間に与えられる電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化層を備え、抵抗変化型不揮発性記憶素子として、上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10を用いる。本実施形態においては、電流制御素子としてトランジスタを用いる。
かかる構成によれば、抵抗変化型不揮発性記憶素子をメモリアレイ状に配置した場合に、コンタクトプラグの形成時にプラグ材料を構成する導電層の研磨(例えばCMP)を行っても、コンタクトプラグが形成された層間絶縁層の上面の一部を覆う密着層を残した状態で導電層が研磨される。したがって、層間絶縁層は研磨されず、メモリアレイ領域の端部における層間絶縁層の表面の凹凸(グローバル段差)を抑制できる。これによって、抵抗変化型不揮発性記憶素子を多数用いた1T1R型の容量の大きな抵抗変化型不揮発性記憶装置の特性ばらつきを低減することができる。
[抵抗変化型不揮発性記憶装置の構成]
図21は、第1実施形態に係る抵抗変化型不揮発性記憶素子10を適用した抵抗変化型不揮発性記憶装置300の構成を示すブロック図である。また、図22は、図21に示される抵抗変化型不揮発性記憶装置300におけるC部の構成(2ビット分の構成)を示す断面図である。本構成は、抵抗変化型不揮発性記憶素子(抵抗変化素子)にトランジスタを直列に電気的に接続して構成した、1トランジスタと1抵抗変化素子(1T1R型)のメモリセルを備えた抵抗変化型不揮発性記憶装置である。
図21に示すように、本実施形態における抵抗変化型不揮発性記憶装置300は、半導体基板上に、メモリ本体部301を備えている。このメモリ本体部301は、メモリセルアレイ302と、行選択回路・ドライバ303と、列選択回路304と、情報の書き込みを行うための書き込み回路305と、選択ビット線に流れる電流量を検出し、データ「1」又は「0」と判定するセンスアンプ306と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路307とを具備している。また、抵抗変化型不揮発性記憶装置300は、セルプレート電源(VCP電源)308と、外部から入力されるアドレス信号を受け取るアドレス入力回路309と、外部から入力されるコントロール信号に基づいて、メモリ本体部301の動作を制御する制御回路310とをさらに備えている。
メモリセルアレイ302は、半導体基板の上に形成された、互いに交差するように配列された複数のワード線(第1の配線)WL0、WL1、WL2、…及びビット線(第2の配線)BL0、BL1、BL2、…と、これらのワード線WL0、WL1、WL2、…及びビット線BL0、BL1、BL2、…の交点に対応してそれぞれ設けられた複数のトランジスタT11、T12、T13、T21、T22、T23、T31、T32、T33、…と、トランジスタT11、T12、…と1対1に設けられた複数のメモリセルM211、M212、M213、M221、M222、M223、M231、M232、M233、…とを備えている。第1実施形態(図1)およびその変形例(図16A〜図16C)における第1の金属配線104は本実施形態におけるワード線に対応し、第1実施形態(図1)およびその変形例(図16A〜図16C)における第2の金属配線117は本実施形態におけるビット線に対応する。なお、両者の対応関係は、この逆でも構わない。
また、メモリセルアレイ302は、ワード線WL0、WL1、WL2、…に平行して配列されている複数のプレート線(第3の配線)PL0、PL1、PL2、…を備えている。図22に示すように、ワード線WL0、WL1の上方にビット線BL0が配され、そのワード線WL0、WL1とビット線BL0との間に、プレート線PL0、PL1が配されている。なお、上記の構成例では、プレート線はワード線と平行に配置されているが、ビット線と平行に配置してもよい。また、プレート線はトランジスタに共通の電位を与える構成としているが、行選択回路・ドライバと同様の構成のプレート線選択回路・ドライバを有し、選択されたプレート線と非選択のプレート線とを異なる電圧(極性も含む)で駆動する構成としてもよい。
ここで、メモリセルM211、M212、…は、それぞれが上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10に相当し、それぞれの抵抗変化型不揮発性記憶素子は、積層構造の酸素不足型の金属酸化物で構成される抵抗変化層を有している。積層構造の金属酸化物は酸素不足型の金属酸化物で構成してもよい。
より具体的には、図22における抵抗変化型不揮発性記憶素子313が、図21におけるメモリセルM211、M212、…における抵抗変化素子400に相当する。メモリセルM211、M212、…のそれぞれの抵抗変化素子400は、上述した第1実施形態に係る抵抗変化型不揮発性記憶素子10で構成されている。抵抗変化型不揮発性記憶素子313は、上部電極314、積層構造の金属酸化物で構成される抵抗変化層315、及び下部電極316から構成されている。抵抗変化型不揮発性記憶素子313は図22には、さらに、プラグ層317、金属配線層318、及びソース領域又はドレイン領域319が示されている。
図21に示すように、トランジスタT11、T12、T13、…のドレインはビット線BL0に、トランジスタT21、T22、T23、…のドレインはビット線BL1に、トランジスタT31、T32、T33、…のドレインはビット線BL2に、それぞれ接続されている。
また、トランジスタT11、T21、T31、…のゲートはワード線WL0に、トランジスタT12、T22、T32、…のゲートはワード線WL1に、トランジスタT13、T23、T33、…のゲートはワード線WL2に、それぞれ接続されている。
さらに、トランジスタT11、T12、…のソースはそれぞれ、メモリセルM211、M212、…と接続されている。
また、メモリセルM211、M221、M231、…はプレート線PL0に、メモリセルM212、M222、M232、…はプレート線PL1に、メモリセルM213、M223、M233、…はプレート線PL2に、それぞれ接続されている。
アドレス入力回路309は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路・ドライバ303へ出力するとともに、列アドレス信号を列選択回路304へ出力する。ここで、アドレス信号は、複数のメモリセルM211、M212、…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
制御回路310は、情報の書き込みサイクルにおいては、データ入出力回路307に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路305へ出力する。他方、情報の読み出しサイクルにおいて、制御回路310は、読み出し用電圧の印加を指示する読み出し信号を列選択回路304へ出力する。
行選択回路・ドライバ303は、アドレス入力回路309から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0、WL1、WL2、…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
また、列選択回路304は、アドレス入力回路309から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0、BL1、BL2、…のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧又は読み出し用電圧を印加する。
書き込み回路305は、制御回路310から出力された書き込み信号を受け取った場合、列選択回路304に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。
また、センスアンプ306は、情報の読み出しサイクルにおいて、読み出し対象となる選択ビット線に流れる電流量を検出し、データ「1」又は「0」と判定する。その結果得られた出力データDOは、データ入出力回路307を介して、外部回路へ出力される。
なお、1T1R型不揮発性記憶素子の構造を有する本第3実施形態の場合、第2実施形態におけるクロスポイント型の抵抗変化型不揮発性記憶素子の構成と比べて記憶容量は小さくなる。しかしながら、第3実施形態では、ダイオードのような電流制御素子が不要であるため、CMOSプロセスに容易に組み合わせることができ、また、動作の制御も容易であるという利点がある。
また、第2実施形態の場合と同様に、本第3実施形態における抵抗変化層は低温で形成することが可能であることから、本第3実施形態で示すような配線工程での積層化を行う場合であっても、下層工程で形成されたトランジスタ及びシリサイドなどの配線材料に影響を与えることがないという利点がある。
さらに、第2実施形態の場合と同様に、タンタル及びタンタル酸化物の形成は、既存の半導体製造プロセスに容易に組み入れることが可能であるため、本第3実施形態における抵抗変化型不揮発性記憶装置を容易に製造することができる。
なお、上述した実施形態においては、抵抗変化層としての金属酸化物としては、タンタル酸化物、ハフニウム酸化物、ジルコニウム酸化物の場合について説明したが、下部電極と上部電極間に挟まれる金属酸化物層としては、抵抗変化を発現する主たる抵抗変化層として、タンタル、ハフニウム、ジルコニウム等の酸化物層が含まれていればよく、これ以外に例えば微量の他元素が含まれていても構わない。抵抗値の微調整等で、他元素を少量、意図的に含めることも可能であり、このような場合も本開示の範囲に含まれる。例えば、抵抗変化層に窒素を添加すれば、抵抗変化層の抵抗値が上がり、抵抗変化の反応性を改善できる。
また、スパッタリングにて抵抗変化層を形成した際に、残留ガスや真空容器壁からのガス放出などにより、意図しない微量の元素が抵抗変化層に混入することがあるが、このような微量の元素が抵抗膜に混入した場合も本開示の範囲に含まれることは当然である。
以上、本開示に係る抵抗変化型不揮発性記憶素子の製造方法について、第1〜第3実施形態に基づいて説明したが、本開示は、これらの第1〜第3実施形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
本開示に係る抵抗変化型不揮発性記憶素子は、メモリアレイ状に抵抗変化型不揮発性記憶素子を配置してもCMP研磨に起因する段差を原理的に抑制できることから、メモリアレイ領域の端部の特性ばらつきを低減し、抵抗変化型不揮発性記憶素子を多数用いた大容量な抵抗変化型不揮発性記憶装置を提供することができ、産業上の利用可能性を十分に有している。
10 抵抗変化型不揮発性記憶素子
101 層間絶縁層(第2の層間絶縁層)
102 第1の配線溝
103 第1の密着層
104 第1の金属配線
105 ライナー層
106 層間絶縁層(第1の層間絶縁層)
107 コンタクトホール
108 第2の密着層
109 コンタクトプラグ
110 下部電極(第1電極)
110’ 下部電極層
110a’ 第1の下部電極層
110b 第2の下部電極
110b’ 第2の下部電極層
111 抵抗変化層
111’ 抵抗変化薄膜
111a 第1の抵抗変化層
111a’ 第1の抵抗変化薄膜
111b 第2の抵抗変化層
111b’ 第2の抵抗変化薄膜
112 上部電極(第2電極)
112’ 上部電極層
113,400 抵抗変化素子
114 層間絶縁層(第3の層間絶縁層)
115 第2の配線溝
116 第3の密着層
117 第2の金属配線
130 電流制御素子(ダイオード)
200 抵抗変化型不揮発性記憶装置
201 メモリ本体部
202 メモリセルアレイ
203 行選択回路・ドライバ
204 列選択回路・ドライバ
205 書き込み回路
206 センスアンプ
207 データ入出力回路
208 アドレス入力回路
209 制御回路
210 メモリセル
211 上部配線
212 下部配線
213 上部電極
214 抵抗変化層
215 内部電極
216 電流制御層
217 下部電極
300 抵抗変化型不揮発性記憶装置
301 メモリ本体部
302 メモリセルアレイ
303 行選択回路・ドライバ
304 列選択回路
305 書き込み回路
306 センスアンプ
307 データ入出力回路
308 セルプレート電源
309 アドレス入力回路
310 制御回路
313 抵抗変化型不揮発性記憶素子
314 上部電極
315 抵抗変化層
316 下部電極
317 プラグ層
318 金属配線層
319 ソース領域又はドレイン領域
400 抵抗変化素子
BL0,BL1,… ビット線
M111,M112,… メモリセル
M211,M212,… メモリセル
T11,T12,… トランジスタ
WL0,WL1,… ワード線

Claims (6)

  1. 上部電極、抵抗変化層、および下部電極にて構成される抵抗変化素子を備えた抵抗変化型不揮発性記憶素子の製造方法であって、
    基板の上方に第1の層間絶縁層を形成する工程と、
    前記第1の層間絶縁層にコンタクトホールを開口する工程と、
    前記コンタクトホールの側壁、底面および前記第1の層間絶縁層の上面を覆う密着層を形成する工程と、
    前記コンタクトホールの側壁、底面および前記第1の層間絶縁層の上面に形成された密着層上に導電層を堆積する工程と、
    前記導電層を研磨して前記第1の層間絶縁層の上面に形成された前記密着層の上面を露出させるとともに、前記コンタクトホール内に前記導電層の上面を露出させる工程と、
    前記露出された密着層上、及び前記コンタクトホール内の前記導電層からなるコンタクトプラグ上に下部電極層を形成する工程と、
    前記下部電極層を形成した後に、当該下部電極層の上面を研磨することで、前記下部電極層の膜厚を前記密着層上より前記コンタクトプラグ上の方を厚くし、かつ前記下部電極層の前記抵抗変化層と接する面を平坦化する工程と、
    前記平坦化した下部電極層の上に抵抗変化薄膜を形成する工程と、
    前記抵抗変化薄膜の上に上部電極層を形成する工程と、
    前記上部電極層、前記抵抗変化薄膜、前記下部電極層、および前記密着層を同時に加工し、前記上部電極、前記抵抗変化層、前記下部電極、および前記密着層の側面が同一面内になるように、前記抵抗変化素子を形成する工程と、
    を有する抵抗変化型不揮発性記憶素子の製造方法。
  2. 前記第1の層間絶縁層を形成する前に、さらに、
    前記基板上に第2の層間絶縁層を形成する工程と、
    前記第2の層間絶縁層内にかつ表面を露出させた第1の配線を形成する工程とを有し、
    前記抵抗変化素子を形成する工程の後に、さらに、前記上部電極に接続された第2の配線を形成する工程を有し、
    前記密着層を形成する工程では、前記第1の配線が前記密着層の底面と接するように、前記密着層を形成する請求項に記載の抵抗変化型不揮発性記憶素子の製造方法。
  3. 前記下部電極層を形成する工程は、
    第1の下部電極層を前記密着層と前記導電層の上に堆積する工程と、
    前記第1の下部電極層の表面を研磨して当該表面を平坦化する工程と、
    前記平坦化された第1の下部電極層上に第2の下部電極層を堆積する工程と、
    を含む請求項に記載の抵抗変化型不揮発性記憶素子の製造方法。
  4. 前記抵抗変化素子を形成する工程では、前記密着層が前記第1の層間絶縁層の上面の一部のみを覆うように、前記上部電極層、前記抵抗変化薄膜、前記下部電極層、前記密着層を同時にエッチングで加工する請求項に記載の抵抗変化型不揮発性記憶素子の製造方法。
  5. 前記抵抗変化層を形成する工程は、
    酸素不足型の金属酸化物からなる第1の金属酸化物を形成する工程と、
    前記第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層を形成する工程と、
    を有する請求項に記載の抵抗変化型不揮発性記憶素子の製造方法。
  6. 前記第1の配線を形成する工程は、
    前記第2の層間絶縁層に第1の配線溝を形成する工程と、
    前記第1の配線溝に第1の配線材料を埋め込む工程とを有し、
    前記第2の配線を形成する工程は、
    前記上部電極、前記抵抗変化層、前記下部電極からなる前記抵抗変化素子の側面及び上面、並びに前記第1の層間絶縁層上に第3の層間絶縁層を形成する工程と、
    前記第3の層間絶縁層に第2の配線溝を形成する工程と、
    前記第2の配線溝に第2の配線材料を埋め込む工程とを有する請求項に記載の抵抗変化型不揮発性記憶素子の製造方法。
JP2014232103A 2014-03-17 2014-11-14 抵抗変化型不揮発性記憶素子の製造方法 Active JP6391009B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014232103A JP6391009B2 (ja) 2014-03-17 2014-11-14 抵抗変化型不揮発性記憶素子の製造方法
US14/642,957 US9444044B2 (en) 2014-03-17 2015-03-10 Resistive nonvolatile storage device, manufacturing method for same, and resistive nonvolatile storage apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014053051 2014-03-17
JP2014053051 2014-03-17
JP2014232103A JP6391009B2 (ja) 2014-03-17 2014-11-14 抵抗変化型不揮発性記憶素子の製造方法

Publications (2)

Publication Number Publication Date
JP2015195339A JP2015195339A (ja) 2015-11-05
JP6391009B2 true JP6391009B2 (ja) 2018-09-19

Family

ID=54069918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232103A Active JP6391009B2 (ja) 2014-03-17 2014-11-14 抵抗変化型不揮発性記憶素子の製造方法

Country Status (2)

Country Link
US (1) US9444044B2 (ja)
JP (1) JP6391009B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386349B2 (ja) * 2014-11-19 2018-09-05 東芝メモリ株式会社 不揮発性記憶装置
TWI556245B (zh) * 2015-02-16 2016-11-01 國立中山大學 電阻式記憶體
US9601545B1 (en) * 2015-10-15 2017-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Series MIM structures compatible with RRAM process
US9461245B1 (en) 2015-11-13 2016-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Bottom electrode for RRAM structure
US10453816B2 (en) * 2016-09-28 2019-10-22 Rohm Co., Ltd. Semiconductor device
US10164169B2 (en) * 2016-09-30 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device having a single bottom electrode layer
US10566519B2 (en) 2017-08-18 2020-02-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a flat bottom electrode via (BEVA) top surface for memory
CN108630810B (zh) * 2018-05-14 2022-07-19 中国科学院微电子研究所 1s1r存储器集成结构及其制备方法
US10475997B1 (en) * 2018-07-17 2019-11-12 International Business Machines Corporation Forming resistive memory crossbar array employing selective barrier layer growth
US10720580B2 (en) * 2018-10-22 2020-07-21 Globalfoundries Singapore Pte. Ltd. RRAM device and method of fabrication thereof
JP7319808B2 (ja) * 2019-03-29 2023-08-02 ローム株式会社 半導体装置および半導体パッケージ
CN112713169A (zh) * 2019-10-25 2021-04-27 中电海康集团有限公司 包括mram底电极制作工艺的制作方法及mram器件
US11302865B2 (en) * 2019-12-26 2022-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase-change memory with two-portioned phase-change layer
US11245072B2 (en) 2019-12-26 2022-02-08 Taiwan Semiconductor Manufacturing Company, Ltd. Phase-change memory and method of forming same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289809A (ja) * 2001-03-28 2002-10-04 Toshiba Corp 半導体装置およびその製造方法
US7144744B2 (en) 2004-10-27 2006-12-05 Freescale Semiconductor, Inc. Magnetoresistive random access memory device structures and methods for fabricating the same
JP2006269480A (ja) * 2005-03-22 2006-10-05 Matsushita Electric Ind Co Ltd 誘電体メモリおよびその製造方法
JP4785436B2 (ja) * 2005-06-13 2011-10-05 Okiセミコンダクタ株式会社 強誘電体メモリ装置の製造方法
JP2006303544A (ja) 2006-08-03 2006-11-02 Matsushita Electric Ind Co Ltd 半導体メモリ装置およびその製造方法
JP2008218855A (ja) * 2007-03-07 2008-09-18 Matsushita Electric Ind Co Ltd 不揮発性記憶素子及びその製造方法
EP2063467B1 (en) 2007-06-05 2011-05-04 Panasonic Corporation Nonvolatile storage element, its manufacturing method, and nonvolatile semiconductor device using the nonvolatile storage element
CN102484113B (zh) * 2009-08-28 2014-11-26 松下电器产业株式会社 半导体存储装置及其制造方法
JP5159996B2 (ja) * 2011-01-31 2013-03-13 パナソニック株式会社 抵抗変化型素子の製造方法
WO2013094169A1 (ja) * 2011-12-19 2013-06-27 パナソニック株式会社 不揮発性記憶装置及びその製造方法
JP2014127566A (ja) * 2012-12-26 2014-07-07 Panasonic Corp 不揮発性記憶装置の製造方法および不揮発性記憶装置

Also Published As

Publication number Publication date
US20150263279A1 (en) 2015-09-17
JP2015195339A (ja) 2015-11-05
US9444044B2 (en) 2016-09-13

Similar Documents

Publication Publication Date Title
JP6391009B2 (ja) 抵抗変化型不揮発性記憶素子の製造方法
JP5468087B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
JP5174282B2 (ja) 不揮発性記憶素子およびそれを備えた不揮発性記憶装置
JP4948688B2 (ja) 抵抗変化型不揮発性記憶素子、抵抗変化型不揮発性記憶装置及び抵抗変化型不揮発性記憶素子の製造方法
JP5899474B2 (ja) 不揮発性記憶素子、不揮発性記憶装置、不揮発性記憶素子の製造方法、及び不揮発性記憶装置の製造方法
WO2010064446A1 (ja) 不揮発性記憶素子及び不揮発性記憶装置
JP5039857B2 (ja) 記憶装置およびその製造方法
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5081334B2 (ja) 不揮発性記憶素子、その製造方法
JP5571833B2 (ja) 不揮発性記憶素子及び不揮発性記憶素子の製造方法
JP2009124167A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP2010021381A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP2009135370A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP5650855B2 (ja) 不揮発性記憶素子の製造方法、不揮発性記憶素子及び不揮発性記憶装置
JP2011044443A (ja) 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
JP5367198B1 (ja) 抵抗変化型不揮発性記憶装置
JP2011198909A (ja) 抵抗変化型不揮発性記憶素子
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
WO2020136974A1 (ja) 抵抗変化型不揮発性記憶素子およびそれを用いた抵抗変化型不揮発性記憶装置
JP2013161933A (ja) 不揮発性記憶素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R151 Written notification of patent or utility model registration

Ref document number: 6391009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250