JP6288298B2 - 炭化珪素半導体スイッチング素子およびその製造方法 - Google Patents

炭化珪素半導体スイッチング素子およびその製造方法 Download PDF

Info

Publication number
JP6288298B2
JP6288298B2 JP2016558934A JP2016558934A JP6288298B2 JP 6288298 B2 JP6288298 B2 JP 6288298B2 JP 2016558934 A JP2016558934 A JP 2016558934A JP 2016558934 A JP2016558934 A JP 2016558934A JP 6288298 B2 JP6288298 B2 JP 6288298B2
Authority
JP
Japan
Prior art keywords
silicon carbide
source contact
contact region
carbide semiconductor
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016558934A
Other languages
English (en)
Other versions
JPWO2016076055A1 (ja
Inventor
雅秀 後藤
雅秀 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2016076055A1 publication Critical patent/JPWO2016076055A1/ja
Application granted granted Critical
Publication of JP6288298B2 publication Critical patent/JP6288298B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Description

本発明は、単結晶炭化珪素半導体スイッチング素子に関し、特に、プレーナ型MOSFETの表面構造の炭化珪素半導体スイッチング素子およびその製造方法に関する。
単結晶炭化珪素(SiC)は、単結晶シリコン(Si)を大幅に上回るバンドギャップや破壊電界強度を有し、より低損失な素子で置き換える、あるいは単体で耐圧10kVを超える超高耐圧半導体スイッチング素子を実現することができると期待されている。
炭化珪素半導体素子としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)のMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造は、オン電流がゲート電極直下を水平方向に流れるプレーナ型構造と、ゲート電極が炭化珪素半導体基板に形成された溝(トレンチ)の中に埋め込まれ、オン電流がゲート電極の側面に沿って流れるトレンチ型構造とに大別される。このプレーナ型構造は、ゲート電極近傍での電界集中が起こらないため、高耐圧化が容易であり、また構造が比較的単純であることから、早期の実用化に適している。
しかし、プレーナ型構造は、平坦な炭化珪素基板上に、ある一定の厚み(典型的には100〜500nm)を有するゲート電極を形成することから、段差の発生を避けられず、ゲート電極の高さやゲート電極パターン端部の側壁角(角度等)によっては、層間絶縁膜を堆積する際、段差部の被覆形状がオーバーハングとなり、バリアメタル(例えば窒化チタン(TiN)膜)や、表面電極層(例えばアルミニウム−シリコン(Al−Si)膜)の、段差側壁部における被覆率の悪化をもたらす、という問題を有している。
上記の、物理的形状に起因する問題については、トレンチ型構造を採用し、ゲート電極をゲートトレンチ内へ完全に埋め込むことで回避する技術がある(例えば、下記特許文献1〜3参照。)。
また、プレーナ型構造のままで、層間絶縁膜のオーバーハングを解消する方法としては、例えば層間絶縁膜の最表層にBPSG(ホウ素・リンドープシリケートガラス)を用い、成膜後に数百℃の加熱(=リフロー処理)を行って、段差部の形状をなだらかにする、という技術がある(例えば、下記特許文献4参照。)。
特開2011−91283号公報 特開2012−199515号公報 特許第5059989号公報 特開2008−112824号公報
しかし、特許文献1〜3のトレンチ型MOSFETは、トレンチ側壁のゲートチャネルの界面準位密度がプレーナ型と比べて高く、オン抵抗の低減が難しい、あるいはゲートトレンチ底部に電界が集中するため、これを緩和する構造を追加しなくてはならない、といった電気的な課題が別途存在し、実用化は容易ではない。
また、特許文献4のBPSGは吸湿性が非常に高いため、表面電極パターンの開口部が他の保護膜で覆われない限り、次工程の処理待ちなどの間に再び大気中の水分を取り込み、素子の信頼性に悪影響を及ぼす可能性がある。
この発明は、上述した従来技術による問題点を解消するため、層間絶縁膜のオーバーハングを解消できる構造の提供を目的とする。
上記目的を達成するため、本発明の炭化珪素半導体スイッチング素子は、シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子において、ソースコンタクト領域の深さよりも浅い深さのトレンチと、前記トレンチに埋め込み形成され、頂面の高さが前記ソースコンタクト領域の頂面と同じ高さのゲート電極と、前記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い設けられ、下面が段差なく平らな層間絶縁膜と、を有することを特徴とする。
また、上記目的を達成するため、本発明の炭化珪素半導体スイッチング素子は、シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子において、前記炭化珪素半導体基板の表面層に形成されるソースコンタクト領域と、前記炭化珪素半導体基板の表面層に、側壁に前記ソースコンタクト領域が露出されるように形成された、前記ソースコンタクト領域の深さよりも浅い深さのトレンチと、前記トレンチの内部にゲート酸化膜を介して形成され、頂面の高さが前記ソースコンタクト領域の頂面と同じ高さのゲート電極と、からなる前記絶縁ゲート構造と、前記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い設けられ、下面が段差なく平らな層間絶縁膜と、前記層間絶縁膜を深さ方向に貫通し、前記ソースコンタクト領域を露出するコンタクトホールと、前記コンタクトホールを介して前記ソースコンタクト領域に接する電極と、を備え、前記コンタクトホールの幅が下端から上端に向って一定となるように、前記ゲート電極の頂面の高さと前記ソースコンタクト領域の頂面の高さとの差が設定されていることを特徴とする。
また、前記ゲート電極直下の前記炭化珪素半導体基板と前記ゲート酸化膜界面の高さ位置を、前記ソースコンタクト領域の頂面の高さ位置よりも150nm以上低い位置とし、かつ、前記ソースコンタクト領域の底面の高さ位置よりも100nm以上浅い位置の範囲に設けたことを特徴とする。
また、前記ゲート電極の幅が、隣接する2つの前記ソースコンタクト領域同士の距離よりも長いことを特徴とする。
また、上記目的を達成するため、本発明の炭化珪素半導体スイッチング素子の製造方法は、シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子の製造方法において、ソースコンタクト領域の深さよりも浅い深さのトレンチを形成する工程と、前記トレンチにゲート電極を埋め込み形成する工程と、前記ゲート電極の頂面の高さと前記ソースコンタクト領域の頂面の高さが同じでおもて面側を平坦に形成する工程と、前記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い、下面が段差なく平らに層間絶縁膜を形成する工程と、を含むことを特徴とする。
また、上記目的を達成するため、本発明の炭化珪素半導体スイッチング素子の製造方法は、シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子の製造方法において、ソースコンタクト領域の深さよりも浅い深さのトレンチを形成する工程と、前記トレンチにゲート電極を埋め込み形成する工程と、化学機械研磨で前記ゲート電極の頂面と前記ソースコンタクト領域の頂面を同じ高さで平坦に形成する工程と、を含むことを特徴とする。
また、前記ソースコンタクト領域をイオン注入の工程とドーパント活性化の工程により形成し、前記トレンチを形成する工程では、前記トレンチを、前記ソースコンタクト領域のイオン注入の工程の後からドーパント活性化の工程の直前までの間に、ドライエッチングにより形成することを特徴とする。
上記構成によれば、ドーパント活性化プロセスを行う前に、ゲート電極が位置する直下の領域の炭化珪素を、ソースコンタクト領域の底部位置よりも浅い深さでドライエッチングにより予め掘り下げ、ゲート電極を基板内に埋め込む。また、ソースコンタクト領域の頂面の高さと、ゲート電極の頂面の高さとの差がないようほぼ平坦にする。これにより、素子構造はプレーナ型のままで、層間絶縁膜のオーバーハングの発生を抑えることができる。
本発明によれば、層間絶縁膜のオーバーハングを解消できる。
図1は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その1) 図2は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その2) 図3は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その3) 図4は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その4) 図5は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その5) 図6は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その6) 図7は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その7) 図8は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。(その8)
(実施の形態)
以下に添付図面を参照して、この発明にかかる炭化珪素半導体スイッチング素子およびその製造方法の好適な実施の形態を詳細に説明する。
以下の説明では、ゲート電極の材料として高濃度ドープのポリシリコン(poly−Si)を、層間絶縁膜として比較的吸湿性が低いPSG(リンドープシリケートガラス)を、バリアメタルとして窒化チタン(TiN)膜を、おもて面電極層としてアルミニウム−シリコン(Al−Si)膜を用いるものとする。
図1〜図8は、実施の形態にかかる炭化珪素半導体スイッチング素子の製造工程を示す断面図である。これらの図を用いてn型炭化珪素基板上に形成した表面構造を説明する。
〔手順1〕
図1は、単結晶n型炭化珪素(SiC)基板1に、エピタキシャル成長によりn型ドリフト層2を成膜し、さらに、低濃度イオン注入によりp型ベース領域3を形成した直後の状態を示す。
この図1に示すように、はじめに、薬液洗浄やプラズマエッチングなどの方法で清浄化された、シリコンよりもバンドギャップが広い単結晶n型炭化珪素基板(基板)1の上に、エピタキシャル成長により、n型ドリフト層2を成膜する。次いで、低濃度イオン注入により、n型ドリフト層2上に選択的にp型ベース領域3を形成する。イオン注入装置の能力が制約となって、深部へのイオン注入(典型的には加速電圧表記で350keV以上)が実施できない場合、上記エピタキシャル成長と低濃度イオン注入の組み合わせを、2段以上に分けて行うと良い。なお、マスクパターン形成やマスク合わせの手法については、自明であるため説明および図示を省略する。
〔手順2〕
図2は、高濃度イオン注入により、ソースコンタクト領域4、およびp型コンタクト領域5を形成した直後の状態を示す。図2に示すように、高濃度イオン注入により、p型ベース領域3の表面層に選択的にn型のソースコンタクト領域4、およびp型コンタクト領域5を形成する。
ソースコンタクト領域4の底面の深さは、ゲート電極やゲート酸化膜の膜厚、犠牲酸化による目減り分などを考慮すると、典型的には400〜600nmとする必要がある。一方、p型コンタクト領域5は、p型ベース領域3との電気的接合が目的なので、ソースコンタクト領域4ほど深くまでドーパントを打ち込む必要はなく、底面の深さは200〜300nm程度で良い。
〔手順3〕
図3は、ドライエッチングにより、ゲート電極を埋め込むための、浅いトレンチ6をおもて面側に形成した直後の状態を示す。図3に示すように、トレンチ6の幅wを隣接する2つのソースコンタクト領域4同士の距離よりも広く取ることで、チャネル長(p型ベース領域3の、ソースコンタクト領域4とn型ドリフト層2に挟まれた部分の幅wc)はソースコンタクト領域4の形成に用いるイオン注入用マスクを形成するときの位置合わせ精度だけで定まり、浅いトレンチ6の幅方向の加工精度には影響されなくなる。
また、トレンチ6の深さdを、ソースコンタクト領域4の頂面4a(高さ位置du)よりも150nm以上低く、かつ、ソースコンタクト領域4の底面の高さ位置dlよりも100nm以上浅い位置に留める。
これにより、素子構造自体は依然としてプレーナ型MOSFETのままとなる。トレンチ6の深さdが上記の範囲よりも小さい(浅い)場合、ゲート電極の厚みを充分に取れなくなるため好ましくない。また、トレンチ6の深さdが上記の範囲よりも大きい(ソースコンタクト領域4の底面dlよりも深い)場合、チャネルがトレンチ側壁にまで形成される、即ち、チャネル長が設計よりも大きくなるため、ゲート閾値電圧のばらつきを招くことになり好ましくない。
なお、ドライエッチング直後の浅いトレンチ6の底部は、プラズマダメージによって平滑性が低下しており、そのままではゲートチャネルの移動度が向上しないため、ドーパント活性化工程を兼ねた平滑化アニールを実施し、トレンチ6底部の表面の平滑性を回復させることが好ましい。
〔手順4〕
図4は、熱酸化によりゲート酸化膜7を形成し、さらに、低圧化学気相成長法(CVD)によりポリシリコン膜8を成膜した直後の状態を示す。はじめに、図4には図示しないが、犠牲酸化とバッファードフッ酸などの薬液を用いた犠牲酸化膜除去により、単結晶n型炭化珪素基板1全面の清浄化を行う。
この後、例えば熱酸化により、基体(単結晶n型炭化珪素基板(基板)1とn型ドリフト層2)のおもて面側全面にゲート酸化膜7を形成する。次いで、ゲート酸化膜7上に、例えば低圧化学気相成長法により、ゲート電極材として高濃度ドープのポリシリコン膜8を成膜する。パワーデバイスで一般的に用いられるゲート閾値電圧や、ポリシリコンの膜厚制御性を考慮し、ゲート酸化膜7の膜厚は50〜100nm、ポリシリコン膜8の膜厚は300〜500nmとすることが好ましい。
〔手順5〕
図5は、化学機械研磨もしくはドライエッチングにより、ポリシリコン膜8の加工を行い、ゲート電極9をパターン形成した直後の状態を示す。ここで、ゲート電極9の頂面9aの高さとソースコンタクト領域4の頂面4aの高さとの差がなくほぼ平坦(200nm以内)となるように加工する。これにより、後述するソースコンタクトホール11の幅が下端から上端に向ってほぼ一定にできるようになる。
ポリシリコン膜8の加工手段としては化学機械研磨の方が、ポリシリコン膜8に対して容易に高い選択比が得られる(浅いトレンチ6の側壁、即ち基体が強力なストッパーとして作用する)ことから、自己整合的にゲート電極9を形成できるため好ましい。
例えば、フォトレジストをマスクとし(図示せず)、ゲート電極9の頂面9aとソースコンタクト領域4の頂面4aの高さの差を、既存のドライエッチング装置による加工で200nm以内に収めることが可能な場合であれば、化学機械研磨専用の装置を別途準備する必要がないため、ドライエッチングの方が好ましい。
なお、ゲート電極9の頂面9aとソースコンタクト領域4の頂面4aの高さの差が、200nm以上に達する場合、ゲート電極9の側壁角によっては層間絶縁膜10(図6参照)のオーバーハングが発生するため好ましくない。
〔手順6〕
図6は、常圧化学気相成長により層間絶縁膜10を成膜し、ゲート電極9を完全に埋め込んだ直後の状態を示す。図6に示すように、常圧化学気相成長で基体のおもて面側全面にPSG膜を堆積することにより、層間絶縁膜10を形成する。上記の手順5で、ゲート電極9の頂面とソースコンタクト領域4との高さの差が200nm以内に抑えられているため、従来のプレーナ型構造で問題となっていたオーバーハングは発生しない。特に、化学機械研磨でゲート電極9のパターン形成を行った場合は、ほぼ完全な平坦化を達成することも可能となる。
〔手順7〕
図7は、ドライエッチングによりソースコンタクトホール11を形成し、層間絶縁膜10表面をTiN膜で保護した後、コンタクトホール底部および基板1裏面側にオーミック電極13,14を形成した直後の状態を示す。例えば、フォトレジストをマスクとし(図示せず)、ドライエッチングにより、ソースコンタクトホール11を形成する。次いで、例えばスパッタリングによりTiN膜を成膜して、層間絶縁膜10の表面をバリアメタル層12で保護する。また、ソースコンタクトホール11の底部は、ドライエッチングにより再度開口し、炭化珪素(p型コンタクト領域5およびソースコンタクト領域4)を露出させておく。
さらに、ソースコンタクトホール11の底部に露出した炭化珪素(p型コンタクト領域5およびソースコンタクト領域4)と、例えばNiなどの炭化珪素とオーミック接合を形成し易い金属とを反応させ、基板のおもて面側にオーミック電極13を形成する。オーミック接合の形成にあたっては、熱アニールなどの一般的な方法を用いることができる。
なお、縦型デバイスの場合は、裏面側オーミック電極14も形成する必要があるが、工程簡略化のため、上記表面側オーミック電極13と同じタイミングで形成することが好ましい。
〔手順8〕
図8は、おもて面電極層15としてAl−Si積層膜を成膜した直後の状態を示す。ゲート電極9との電気的接合を確保するためのコンタクトホールを形成した後(図示せず)、例えばスパッタリングによりAl−Si膜を成膜して、おもて面電極層15を形成する。おもて面電極層15用のパターン抜きの手段としては、フォトレジストをマスクとし(図示せず)、例えばリン硝酢酸によるウェットエッチングを適用することができる。
以上説明したように、本願発明では、ドーパント活性化プロセスを行う前に、ゲート電極9が位置する直下の領域の炭化珪素(ドリフト層2)を、ソースコンタクト領域4の底部dl位置よりも浅い深さでドライエッチングにより予め掘り下げ、ゲート電極9を基板1内に埋め込む。また、高濃度イオン注入領域(ソースコンタクト領域)4の頂面4aの高さと、ゲート電極9の頂面9aの高さとの差を、200nm未満に抑える。これにより、素子構造はプレーナ型のままで、層間絶縁膜10のオーバーハングの発生を抑えることができる。
これに対し、従来のプレーナ型構造のままでは、ゲート電極9と炭化珪素層(基体)との間に段差が発生し、層間絶縁膜10の堆積時に段差部の被覆形状がオーバーハングとなり、バリアメタル層(例えばTiN膜)12や、おもて面電極層(例えばAl−Si膜)15の、段差側壁部における被覆率の悪化が生じたが、これにより、従来のプレーナ型構造と比較して、バリアメタル層12やおもて面電極層15の被覆率を格段に向上できるようになる。
さらには、プレーナ型構造の物理的形状に起因する上記問題を解消するためにトレンチ型のMOSFET構造(ゲート電極をゲートトレンチ内へ完全に埋め込む構造)を採用する必要もない。本願発明の上記構成では、ゲート電極9周辺に着目すると、素子構造自体はプレーナ型MOSFETのままであるため、トレンチ型構造特有の電気的問題(オン抵抗の低減、トレンチ底部の電界集中の緩和等)を考慮した対策を不要にできる。
また、上述した各実施の形態においては、炭化珪素基板上に炭化珪素エピタキシャル層を堆積した炭化珪素エピタキシャル基板(基体)を用いた場合を例に説明しているが、これに限らず、例えばデバイスを構成するすべての領域が炭化珪素基板の内部に形成されたイオン注入領域であってもよい。
以上において本発明は、半導体層または半導体領域、半導体基板の導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる炭化珪素半導体スイッチング素子およびその製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用される高耐圧半導体装置に有用であり、特に、ワイドバンドギャップ半導体を用いて高耐圧化した炭化珪素半導体スイッチング素子に適している。
1 単結晶n型炭化珪素基板(基板)
2 n型ドリフト層
3 p型ベース領域
4 ソースコンタクト領域
5 p型コンタクト領域
6 トレンチ(ゲート電極9を埋め込むための浅いトレンチ)
7 ゲート酸化膜
8 ポリシリコン膜
9 ゲート電極
10 層間絶縁膜
11 ソースコンタクトホール
12 バリアメタル層
13 おもて面側オーミック電極
14 裏面側オーミック電極
15 おもて面電極層

Claims (7)

  1. シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子において、
    ソースコンタクト領域の深さよりも浅い深さのトレンチと、
    前記トレンチに埋め込み形成され、頂面の高さが前記ソースコンタクト領域の頂面と同じ高さのゲート電極と、
    記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い設けられ、下面が段差なく平らな層間絶縁膜と、
    を有することを特徴とする炭化珪素半導体スイッチング素子。
  2. シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子において、
    前記炭化珪素半導体基板の表面層に形成されるソースコンタクト領域と、
    前記炭化珪素半導体基板の表面層に、側壁に前記ソースコンタクト領域が露出されるように形成された、前記ソースコンタクト領域の深さよりも浅い深さのトレンチと、
    前記トレンチの内部にゲート酸化膜を介して形成され、頂面の高さが前記ソースコンタクト領域の頂面と同じ高さのゲート電極と、からなる前記絶縁ゲート構造と、
    前記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い設けられ、下面が段差なく平らな層間絶縁膜と、
    前記層間絶縁膜を深さ方向に貫通し、前記ソースコンタクト領域を露出するコンタクトホールと、
    前記コンタクトホールを介して前記ソースコンタクト領域に接する電極と、
    を備え、
    前記コンタクトホールの幅が下端から上端に向って一定となるように、前記ゲート電極の頂面の高さと前記ソースコンタクト領域の頂面の高さとの差が設定されていることを特徴とする炭化珪素半導体スイッチング素子。
  3. 前記ゲート電極直下の前記炭化珪素半導体基板と前記ゲート酸化膜界面の高さ位置を、前記ソースコンタクト領域の頂面の高さ位置よりも150nm以上低い位置とし、かつ、前記ソースコンタクト領域の底面の高さ位置よりも100nm以上浅い位置の範囲に設けたことを特徴とする請求項2に記載の炭化珪素半導体スイッチング素子。
  4. 前記ゲート電極の幅が、隣接する2つの前記ソースコンタクト領域同士の距離よりも長いことを特徴とする請求項1〜3のいずれか一つに記載の炭化珪素半導体スイッチング素子。
  5. シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子の製造方法において、
    ソースコンタクト領域の深さよりも浅い深さのトレンチを形成する工程と、
    前記トレンチにゲート電極を埋め込み形成する工程と、
    前記ゲート電極の頂面の高さと前記ソースコンタクト領域の頂面の高さが同じでおもて面側を平坦に形成する工程と、
    前記ゲート電極および前記ソースコンタクト領域のおもて面上を覆い、下面が段差なく平らに層間絶縁膜を形成する工程と、
    を含むことを特徴とする炭化珪素半導体スイッチング素子の製造方法。
  6. シリコンよりもバンドギャップが広い炭化珪素半導体基板上に形成するプレーナ型の金属−酸化膜−半導体からなる絶縁ゲート構造の炭化珪素半導体スイッチング素子の製造方法において、
    ソースコンタクト領域の深さよりも浅い深さのトレンチを形成する工程と、
    前記トレンチにゲート電極を埋め込み形成する工程と、
    化学機械研磨で前記ゲート電極の頂面と前記ソースコンタクト領域の頂面を同じ高さで平坦に形成する工程と、
    を含むことを特徴とする炭化珪素半導体スイッチング素子の製造方法。
  7. 前記ソースコンタクト領域をイオン注入の工程とドーパント活性化の工程により形成し、前記トレンチを形成する工程では、前記トレンチを、前記ソースコンタクト領域のイオン注入の工程の後からドーパント活性化の工程の直前までの間に、ドライエッチングにより形成することを特徴とする請求項5または6に記載の炭化珪素半導体スイッチング素子の製造方法。
JP2016558934A 2014-11-12 2015-10-14 炭化珪素半導体スイッチング素子およびその製造方法 Expired - Fee Related JP6288298B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014230223 2014-11-12
JP2014230223 2014-11-12
PCT/JP2015/079020 WO2016076055A1 (ja) 2014-11-12 2015-10-14 炭化珪素半導体スイッチング素子およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2016076055A1 JPWO2016076055A1 (ja) 2017-07-20
JP6288298B2 true JP6288298B2 (ja) 2018-03-07

Family

ID=55954147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016558934A Expired - Fee Related JP6288298B2 (ja) 2014-11-12 2015-10-14 炭化珪素半導体スイッチング素子およびその製造方法

Country Status (3)

Country Link
US (1) US9947750B2 (ja)
JP (1) JP6288298B2 (ja)
WO (1) WO2016076055A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530361B2 (ja) * 2016-10-07 2019-06-12 トヨタ自動車株式会社 半導体装置
CN109742137A (zh) * 2018-12-04 2019-05-10 北京大学深圳研究生院 一种dmos器件及其制造方法
JP7280154B2 (ja) * 2019-09-18 2023-05-23 株式会社日立製作所 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906350B2 (en) * 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
JP3952914B2 (ja) * 2002-09-09 2007-08-01 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP5098295B2 (ja) 2006-10-30 2012-12-12 株式会社デンソー 炭化珪素半導体装置の製造方法
JPWO2010110246A1 (ja) * 2009-03-25 2012-09-27 ローム株式会社 半導体装置
JP5511308B2 (ja) 2009-10-26 2014-06-04 三菱電機株式会社 半導体装置およびその製造方法
JP5717661B2 (ja) 2011-03-10 2015-05-13 株式会社東芝 半導体装置とその製造方法
JP5059989B1 (ja) 2011-06-28 2012-10-31 パナソニック株式会社 半導体装置とその製造方法
US8563987B2 (en) 2011-06-28 2013-10-22 Panasonic Corporation Semiconductor device and method for fabricating the device
JP5995518B2 (ja) 2012-05-11 2016-09-21 ローム株式会社 半導体装置および半導体装置の製造方法
JP5996671B2 (ja) 2012-12-28 2016-09-21 株式会社日立製作所 炭化珪素半導体装置及びその製造方法
JP6135383B2 (ja) * 2013-08-07 2017-05-31 住友電気工業株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
US20170200788A1 (en) 2017-07-13
US9947750B2 (en) 2018-04-17
WO2016076055A1 (ja) 2016-05-19
JPWO2016076055A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6354525B2 (ja) 炭化珪素半導体装置の製造方法
CN109524451B (zh) 半导体装置及其制造方法
US9825166B2 (en) Silicon carbide semiconductor device and method for producing same
CN107799591B (zh) Ldmos及其形成方法
JP5767857B2 (ja) トレンチ型mosfet及びその製造方法
JP2017162909A (ja) 半導体装置
JP5298565B2 (ja) 半導体装置およびその製造方法
TWI488304B (zh) 溝渠金屬氧化物半導體場效電晶體(mosfet)及其製造方法
JP6996302B2 (ja) 窒化物半導体装置とその製造方法
JP5767869B2 (ja) 半導体装置の製造方法
JP5198760B2 (ja) 半導体装置及びその製造方法
JP4735414B2 (ja) 絶縁ゲート型半導体装置
US10529847B2 (en) Trench power semiconductor component and method of manufacturing the same
JP6288298B2 (ja) 炭化珪素半導体スイッチング素子およびその製造方法
CN110828572B (zh) 半导体装置及其制造方法
JP2015146399A (ja) 半導体装置及び半導体装置の製造方法
JP2009099872A (ja) 半導体装置及びその製造方法
JP5037103B2 (ja) 炭化珪素半導体装置
JP2016134546A (ja) 半導体装置と、その製造方法
JP2018152522A (ja) 半導体装置および半導体装置の製造方法
JP2021082689A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
TWI664729B (zh) 切換元件及製造切換元件的方法
JP5833274B1 (ja) 炭化ケイ素半導体装置、炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置の設計方法
JP2005252204A (ja) 絶縁ゲート型半導体装置およびその製造方法
JP7157719B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20170403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees