JP6254126B2 - 造影剤およびその中間体を合成するための方法および装置 - Google Patents

造影剤およびその中間体を合成するための方法および装置 Download PDF

Info

Publication number
JP6254126B2
JP6254126B2 JP2015181159A JP2015181159A JP6254126B2 JP 6254126 B2 JP6254126 B2 JP 6254126B2 JP 2015181159 A JP2015181159 A JP 2015181159A JP 2015181159 A JP2015181159 A JP 2015181159A JP 6254126 B2 JP6254126 B2 JP 6254126B2
Authority
JP
Japan
Prior art keywords
contrast agent
contrast
optionally substituted
reaction
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015181159A
Other languages
English (en)
Other versions
JP2016029059A (ja
Inventor
リチャード・アール・セサティ
エドワード・エイチ・チースマン
ジョエル・ラゼワトスキー
ハイケ・エス・ラデケ
ジェイムズ・エフ・カストナー
エンリコ・モンゴー
ダイアン・ディ・ヅァンキーウイッツ
ロバート・ウィルバーン・シーグラー
メアリーベス・デバイン
Original Assignee
ランセウス メディカル イメージング, インコーポレイテッド
ランセウス メディカル イメージング, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ランセウス メディカル イメージング, インコーポレイテッド, ランセウス メディカル イメージング, インコーポレイテッド filed Critical ランセウス メディカル イメージング, インコーポレイテッド
Publication of JP2016029059A publication Critical patent/JP2016029059A/ja
Application granted granted Critical
Publication of JP6254126B2 publication Critical patent/JP6254126B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • C07D237/16Two oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cameras In General (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

関連出願の相互参照
本出願は、参照により各々が本明細書において援用される、「Methods and Apparatus for Synthesizing Contrast Agents,Including Radiolabeled Contrast Agents」と題された2010年2月8日に出願の米国仮特許出願第61/302,477号明細書;「Methods for Synthesizing Contrast Agents and Precursors Thereof」と題された2010年3月18日に出願の米国仮特許出願第61/315,376号明細書;および「Compositions,Methods,and Systems for Imaging」と題された2010年5月11日に出願の米国仮特許出願第61/333,693号明細書に対する米国特許法第119条(e)に基づく優先権を主張する。
本発明は、造影剤およびその前駆体を合成するためのシステム、組成物、方法および装置に関する。
ミトコンドリアは、大多数の真核細胞の細胞質ゾル中に分布している生体膜からなる小器官である。ミトコンドリアは、特に心筋組織中に高濃度で分布している。
複合体1(「MC−1」)は、46の異種サブユニットの膜結合性タンパク質複合体である。この酵素複合体は、哺乳類のミトコンドリアにおける呼吸鎖を構成する3種のエネルギー変換複合体の1種である。このNADH−ユビキノン酸化還元酵素は、呼吸鎖を移動する電子のほとんどの進入点であり、最終的に酸素による水への還元をもたらす(Q.Rev.Biophys.1992,25,253−324)。MC−1の抑制剤の例としては、デグエリン、ピエリシジンA、ユビシジン−3、ロリニアスタチン−1、ロリニアスタチン−2(ブラタシン)、カプサイシン、ピリダベン、フェンピロキシメート、アミタール、MPP+、キノリンおよびキノロンが挙げられる(BBA 1998,1364,222−235)。ミトコンドリアの正常な機能を妨げることによって、ミトコンドリア中、従って、ミトコンドリアを多く含む心筋組織中に特定の化合物を有利に濃縮させることが可能であることが研究により示されている。造影成分(例えば、18F)を含む化合物がこのような化合物の蓄積の判定に有用であることが可能であり、これにより、心筋灌流画像法に有用な診断マーカーをもたらすことが可能である。加えて、このような化合物は、冠動脈疾患(CAD)の診断に適用可能であり得る。
CADは現代的な工業国における主たる死因であり、安静時および負荷時(運動による、または、薬理的な冠血管拡張)の局所心筋灌流のアセスメントがCADの非侵襲性診断に有用であることが既に見出されている。心筋灌流画像法(MPI)と陽電子放出断層撮影(PET)との併用が単光子放出コンピュータ断層撮影法(SPECT)と比して優れていることがいくつかの実施形態において示されているが、PET MPIの広範な臨床的な使用は、これまでに入手可能であるPET心筋灌流トレーサによって限定されていた。
塩化ルビジウム−82(82Rb)、窒素−13(13N)アンモニアおよび酸素−15(15O)水などの数々のPET血流トレーサが、心筋灌流のアセスメント用に開発および検証されてきている。13Nおよび15Oは、サイクロトロンで生成される同位体であって半減期が短いものである。従って、これらの使用は、サイクロトロンが設けられている設備に限定されてしまう。82Rbはジェネレータにより生成されるトレーサであるが、その短い半減期、ジェネレータの高いコスト、および、トレッドミル運動負荷と併せた研究の実施ができないことから、このトレーサは広範な使用には実用的ではない。しかしながら、18Fを含むトレーサに、造影剤として潜在的な用途が見出されている。
造影成分を含む化合物を調製する現在の方法は[18F]−フッ素化化学を含んでいるが、多くの方法が、フッ化カリウム(KF)を用いる求核性[18F]−フッ素化化学に注目している。特質上、これらの方法では、元素フッ化物源は、例えば、炭酸カリウム(KCO)とサイクロトロンで生成された[18F]含有種との間のアニオン交換を介して生成され、度々、反応性を高めるために、アザ−クラウンエーテルKryptofix(登録商標)222(4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサン)の添加が必要とされる。臨床量での生成には好適であるが、このような方法は、効率が大したことがなく、精製が煩雑であり、および、実施が複雑であることにより広範な商業的用途には好適ではない場合がある。
従って、向上した方法、システムおよび装置が、造影剤の合成のために必要とされている。
本発明は、広義において、造影剤およびその前駆体の合成方法、造影剤前駆体である化合物、ならびに、その使用方法を提供する。
一態様においては、発明は、式:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、造影成分で任意により置換されているアルキルまたは造影成分で任意により置換されているヘテロアルキルであり;および、nは、1、2、3、4または5である)を含む造影剤を合成する方法を提供し;方法は:式:
Figure 0006254126
(式中、nは、1、2、3、4または5であり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rは、同一であることも異なっていることも可能であると共に、各々が任意により置換されているアルキル、ヘテロアルキルまたはカルボニル−含有基であり、Rはヒドロキシルまたはハライドであり;ならびに、Rは、各々が任意により置換されている、アルキル、ヘテロアルキルまたはカルボニル−含有基であり、ここで、Rがヒドロキシルである場合、RおよびRの少なくとも一方が脱離基を含んでおり;または、Rがハライドである場合、RまたはRの少なくとも一方がヒドロキシルを含んでいる)を含む前駆体化合物をエーテル化して、式:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、ヒドロキシルで任意により置換されているアルキル、または、ヒドロキシルで任意により置換されているヘテロアルキルであり;ここで、少なくとも1つのRはヒドロキシルを含んでおり;および、nは、1、2、3、4または5であり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rは、同一であることも異なっていることも可能であると共に、各々が任意により置換されているアルキル、ヘテロアルキルまたはカルボニル−含有基である)を含む化合物を生成するステップ;
式:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、ヒドロキシルで任意により置換されているアルキル、または、ヒドロキシルで任意により置換されているヘテロアルキルであり;ここで、少なくとも1つのRはヒドロキシルを含んでおり;および、nは、1、2、3、4または5である)を含む化合物をスルホネート含有種と反応させて、式:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、スルホネート含有基で任意により置換されているアルキル、または、スルホネート含有基で任意により置換されているヘテロアルキルであり;ここで、少なくとも1つのRはスルホネート含有基を含んでおり;および、nは、1、2、3、4または5である)を含むスルホネート含有化合物を生成するステップ;
スルホネート含有化合物のスルホネート含有基を造影成分で置換して、式:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、造影成分で任意により置換されているアルキルまたは造影成分で任意により置換されているヘテロアルキルであり;ならびに、nは、1、2、3、4または5であり;ただし、少なくとも1種のフッ素種が化合物中に存在している)を含む化合物を得るステップ
を含む。
一態様においては、本発明は、式:
Figure 0006254126
(式中、Rはアルキルであり;Rは水素またはハロゲンであり;および、Rは、スルホネート含有基で置換されているアルキル、スルホネート含有基で置換されているアルコキシまたはスルホネート含有基で置換されているアルコキシアルキル)を含む化合物を18F−標識化する方法を提供する。この方法は、化合物を、アンモニウム塩または重炭酸塩の存在下に、18F種と反応させて、18F種を含む生成物を形成するステップを含む。
いくつかの実施形態において、Rは、スルホネート含有基で置換されているアルコキシアルキルである。いくつかの実施形態において、スルホネート含有基は、メシレート、トシレート、トリフレートまたは1,2−環式サルフェートである。いくつかの実施形態において、Rはハロゲンである。一実施形態においては、Rは塩化物である。いくつかの実施形態において、Rはメチル、エチル、プロピル、n−ブチル、s−ブチルまたはt−ブチルである。いくつかの実施形態において、Rはt−ブチルである。いくつかの実施形態において、生成物は式:
Figure 0006254126
を含む。
他の態様において、本発明は、式(III)を含む化合物を求核剤と反応させるステップを含む前駆体を造影剤に(または造影剤の前駆体を)合成する方法を提供しており、ここで、式(III)は、構造:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、脱離基で任意により置換されているアルキル、または、脱離基で任意により置換されているヘテロアルキルであり、ただし、Rは少なくとも1個の脱離基を含んでおり;および、nは1、2、3、4または5であり、ただし、少なくとも1個のRが脱離基で置換されている)を含み、求核剤と共に(ここで、求核剤は少なくとも1個の脱離基を置換する)生成物(または前駆体)を生成する。
いくつかの実施形態において、求核剤はエチレングリコールである。いくつかの実施形態において、化合物を求核剤と反応させるステップは塩基の存在下に行われる。塩基は、特に限定されないが、金属または金属塩であり得る。塩基は、ナトリウム金属、水素化ナトリウム、カリウムt−ブトキシド、炭酸カリウムまたは水酸化カリウムであり得る。いくつかの実施形態において、塩基は、カリウムt−ブトキシドまたは水酸化カリウムである。いくつかの実施形態において、塩基はカリウムt−ブトキシドである。
いくつかの実施形態において、化合物を求核剤と反応させるステップは触媒の存在下で行われる。触媒は、特にこれらに限定されないが、ヨウ化テトラエチルアンモニウムを含むヨウ化テトラアルキルアンモニウムであり得る。
いくつかの実施形態において、脱離基は、特にこれらに限定されないが、臭化物を含むハライドである。
いくつかの実施形態において、Wは−O(CH)−であり;Rはt−ブチルであり;Rは塩化物であり;および、Rは、脱離基で置換されているアルキルである。
いくつかの実施形態において、式(III)を含む化合物は以下の構造を含む:
Figure 0006254126
いくつかの実施形態において、式(III)を含む化合物は以下の構造を含む:
Figure 0006254126
いくつかの実施形態において、生成物(または前駆体)は、式:
Figure 0006254126
を含む。
いくつかの実施形態において、生成物(または前駆体)は、式:
Figure 0006254126
を含む。
いくつかの実施形態において、方法は、式(IV)を含む化合物を脱離基を含む反応体と反応させて式(III)を含む化合物を生成するステップをさらに含み、ここで、式(IV)は、構造:
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;各Rは、同一であることも異なっていることも可能であると共に、ヒドロキシルで任意により置換されているアルキル、または、ヒドロキシルで任意により置換されているヘテロアルキルであり;ただし、Rは少なくとも1個のヒドロキシル基を含んでおり;および、nは、1、2、3、4または5である)を含み、ここで、少なくとも1個のヒドロキシルが脱離基で置換される。
いくつかの実施形態において、式(IV)を含む化合物を反応させるステップは、ハロゲン化剤の存在下で実施される。いくつかの実施形態において、ハロゲン化剤は臭素化剤である。臭素化剤は、限定されないが、三臭化リン、二臭化ピリジニウム、または、四臭化炭素とトリフェニルホスフィンとの組み合わせであり得る。
いくつかの実施形態において、Wは−O(CH)−であり;Rはt−ブチルであり;Rは塩化物であり;および、Rは、ヒドロキシルで置換されているアルキルである。
いくつかの実施形態において、式(IV)を含む化合物は以下の構造を含む:
Figure 0006254126
いくつかの実施形態において、式(IV)を含む化合物は以下の構造を含む:
Figure 0006254126
いくつかの実施形態において、生成物は式:
Figure 0006254126
を含む。
いくつかの実施形態において、生成物は式:
Figure 0006254126
を含む。
いくつかの実施形態において、式(IV)を含む化合物は、式(IVa)および(IVb):
Figure 0006254126
(式中、mは、1、2、3、4または5以上であり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rはヒドロキシルまたはハライドであり;ならびに、RおよびRは、同一であることも異なっていることも可能であると共に、各々は、アルキル、ヘテロアルキルまたはカルボニル−含有基であり、これらの各々は、任意により、および、独立して置換されていてもよく、ここで、Rがヒドロキシルである場合、RおよびRの少なくとも一方が、脱離基、または、脱離基によって置換されることが可能である基を含んでおり、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる)を含む前駆体化合物のエーテル化によって形成される。
いくつかの実施形態において、式(IV)を含む化合物は、式:
Figure 0006254126
(式中、mは1以上であり;Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rはヒドロキシルまたはハライドであり;ならびに、RおよびRは、同一であることも異なっていることも可能であると共に、各々はアルキル、ヘテロアルキルまたはカルボニル−含有基であり、これらの各々は置換されていてもよく、Rがヒドロキシルである場合、RおよびRの少なくとも一方が、脱離基、または、脱離基によって置換されることが可能である基を含んでおり、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる)を含む化合物のエーテル化により形成される。
いくつかの実施形態において、式(IV)を含む化合物は、式(IVa)および(IVd):
Figure 0006254126
(式中、Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rはヒドロキシルまたはハライドであり;ならびに、RおよびRは、同一であることも異なっていることも可能であると共に、各々は、アルキル、ヘテロアルキルまたはカルボニル−含有基であり、これらの各々は、任意により、および、独立して置換されていてもよく、Rがヒドロキシルである場合、RおよびRの少なくとも一方が脱離基を含んでおり、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる)を含む前駆体化合物のエーテル化により形成される。
いくつかの実施形態において、式(IV)を含む化合物は、式:
Figure 0006254126
(式中、Rは、任意により置換されているアルキルであり;Rは水素またはハライドであり;Rはヒドロキシルまたはハライドであり;ならびに、RおよびRは、同一であることも異なっていることも可能であると共に、各々はアルキル、ヘテロアルキルまたはカルボニル−含有基であり、これらの各々は置換されていてもよく、Rがヒドロキシルである場合、RおよびRの少なくとも一方が脱離基を含んでおり、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでおり、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる)を含む化合物のエーテル化により形成される。
いくつかの実施形態において、エーテル化は、前駆体化合物を塩基の存在下で反応させるステップを含む。いくつかの実施形態において、塩基は炭酸イオンを含む。
いくつかの実施形態において、Rはハライドであり;ならびに、RおよびRは、各々、置換されているアルキルである。
いくつかの実施形態において、Rは塩化物であり;ならびに、RおよびRは、各々、ヒドロキシルで置換されているアルキルである。
いくつかの実施形態において、式(IV)を含む化合物は、式:
Figure 0006254126
(式中、Rは、任意により置換されているアルキルであり;Rは水素またはハライドである)を含む前駆体化合物の、式:
Figure 0006254126
を含む生成物が形成されるエーテル化により合成される。
いくつかの実施形態において、式(IV)を含む化合物は、式:
Figure 0006254126
を含む化合物の、式:
Figure 0006254126
を含む生成物が形成されるエーテル化により合成される。
いくつかの実施形態において、Rはヒドロキシルであり;および、Rはカルボニル−含有基であると共に、は置換されているアルキルである。いくつかの実施形態において、Rはヒドロキシルであり;および、Rはエステルであると共に、Rは脱離基で置換されているアルキルである。
いくつかの実施形態において、式(IV)を含む化合物は、式:
Figure 0006254126
を含む化合物の、式:
Figure 0006254126
を含む生成物が形成されるエーテル化により合成される。
いくつかの実施形態において、方法は、生成物を還元剤に露出させてエステル基をアルコールに転換するステップをさらに含む。還元剤は、限定されないが、水素化アルミニウムリチウム、水素化ホウ素リチウムまたは水素化ジイソブチルアンモニウム(DIBAL−H)であり得る。
他の態様においては、本発明は、造影剤前駆体をフッ化物種およびアンモニウム塩と、フッ化物種が脱離基を置換してフッ化物種を含む造影剤が生成される条件下で接触させるステップを含む造影剤を合成する方法を提供し、ここで、アンモニウム塩対造影剤前駆体のモル比は、約1:1以下を含む1.5:1未満である。
いくつかの実施形態において、アンモニウム塩対造影剤前駆体のモル比は、約1:1以下または約0.75:1以下または約0.5:1以下または約0.25:1以下または約0.05:1以下である。いくつかの実施形態において、アンモニウム塩対造影剤前駆体のモル比は、約1:1〜約0.5:1である。いくつかの実施形態において、アンモニウム塩対造影剤前駆体のモル比は、約1.4:1〜約0.05:1の範囲である。
いくつかの実施形態において、アンモニウム塩は、重炭酸アンモニウム、水酸化アンモニウム、酢酸アンモニウム、乳酸アンモニウム、トリフルオロ酢酸アンモニウム、メタンスルホン酸アンモニウム、p−トルエンスルホン酸アンモニウム、硝酸アンモニウム、ヨウ化アンモニウムまたは重硫酸アンモニウムである。いくつかの実施形態において、アンモニウム塩は、テトラアルキルアンモニウム塩である。アンモニウム塩は、RがアルキルであるRNHCOであり得る。アンモニウム塩はEtNHCOであり得る。
他の態様において、本発明は、造影剤前駆体をフッ化物種および重炭酸塩と、フッ化物種が脱離基を置換してフッ化物種を含む造影剤が生成される条件下で接触させるステップを含む造影剤を合成する方法を提供し、ここで、重炭酸塩対造影剤前駆体のモル比は、約1:1以下を含む1.5:1未満である。
いくつかの実施形態において、重炭酸塩対造影剤前駆体のモル比は、約1:1以下または約0.75:1以下または約0.5:1以下または約0.25:1以下または約0.05:1である。いくつかの実施形態において、重炭酸塩対造影剤前駆体のモル比は、約1:1〜約0.5:1である。いくつかの実施形態において、重炭酸塩対造影剤前駆体のモル比は、約1.4:1〜約0.05:1の範囲である。いくつかの実施形態において、重炭酸塩対造影剤前駆体のモル比は約0.5:1〜約1:1である。
いくつかの実施形態において、重炭酸塩は金属重炭酸塩である。重炭酸塩は、限定されないが、ナトリウム、重炭酸カルシウム、重炭酸カリウムまたは重炭酸マグネシウムであり得る。
いくつかの実施形態において、重炭酸塩は重炭酸アンモニウムである。いくつかの実施形態において、重炭酸塩はテトラアルキル重炭酸アンモニウムである。重炭酸塩は式RNHCOを含み、式中、Rはアルキルである。重炭酸塩はEtNHCOであり得る。
いくつかの実施形態において、造影剤前駆体は、特にこれらに限定されないが、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサンなどのクリプタンドにさらに露出される。
いくつかの実施形態において、接触させるステップは、特にこれらに限定されないが、炭酸カリウムなどの炭酸塩の不在下で行われる。
いくつかの実施形態において、接触させるステップは、特にこれらに限定されないが、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサンなどのクリプタンドの不在下で行われる。
他の態様において、本発明は、造影剤前駆体をフッ化物種と、フッ化物種が脱離基を置換してフッ化物種を含む造影剤が生成される条件下で接触させるステップを含む造影剤を合成する方法を提供し、ここで、接触させるステップは、7未満のpHで行われる。いくつかの実施形態において、接触させるステップは、6未満のpHまたは5未満のpHまたは5〜6のpHで行われる。
いくつかの実施形態において、脱離基はスルホネート含有基である。脱離基は、メシレート、トシレート、トリフレートまたは1,2−環式サルフェート基であり得る。いくつかの実施形態において、脱離基はトシレート基である。いくつかの実施形態において、フッ化物種は18Fイオンである。
いくつかの実施形態において、造影剤前駆体は、式(I):
Figure 0006254126
(式中、Jは、N(R28)、S、O、C(=O)、C(=O)O、NHCHCHO、結合およびC(=O)N(R27)からなる群から選択され;存在する場合、Kは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;存在する場合、Lは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;Mは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;または、LおよびMは、これらが結合している原子と一緒になって、3員、4員、5員または6員炭素環を形成していてもよく;Qはハロまたはハロアルキルであり;nは、0、1、2または3であり;R21、R22、R27およびR28は、水素、脱離基で任意により置換されているC〜Cアルキルおよび脱離基から独立して選択され;R23、R24、R25およびR26は、水素、ハロゲン、ヒドロキシル、アルキルオキシ、脱離基で任意により置換されているC〜Cアルキルおよび脱離基から独立して選択され;R29は、脱離基で任意により置換されているC〜Cアルキルであり;ならびに、Yは、結合、炭素および酸素からなる群から選択され;ただし、Yが結合である場合、KおよびLは不在であり、Mは、脱離基で任意により置換されているアリールおよび脱離基で任意により置換されているヘテロアリールからなる群から選択され;ならびに、ただし、Yが酸素である場合、KおよびLは不在であり、Mは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキルおよび脱離基で任意により置換されているヘテロアリールから選択され;ただし、少なくとも1個の脱離基が式(I)中に存在している)を含む。
いくつかの実施形態において、造影剤は、式(II):
Figure 0006254126
(式中、Jは、N(R28)、S、O、C(=O)、C(=O)O、NHCHCHO、結合およびC(=O)N(R27)からなる群から選択され;存在する場合、Kは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;存在する場合、Lは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;Mは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;または、LおよびMは、これらが結合している原子と一緒になって、3員または4員炭素環を形成し得;Qはハロまたはハロアルキルであり;nは、0、1、2または3であり;R21、R22、R27およびR28は、水素、造影成分で任意により置換されているC〜Cアルキル、および、造影成分から独立して選択され;R23、R24、R25およびR26は、水素、ハロゲン、ヒドロキシル、アルキルオキシ、造影成分で任意により置換されているC〜Cアルキル、および、造影成分から独立して選択され;R29は、造影成分で任意により置換されているC〜Cアルキルであり;ならびに、Yは、結合、炭素および酸素からなる群から選択され;ただし、Yが結合である場合、KおよびLは不在であり、Mは、造影成分で任意により置換されているアリールおよび造影成分で任意により置換されているヘテロアリールからなる群から選択され;ならびに、ただし、Yが酸素である場合、KおよびLは不在であり、Mは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、および、造影成分で任意により置換されているヘテロアリールから選択され;ただし、少なくとも1種の造影成分が式(II)中に存在しており、造影成分は18Fである)を含む。
いくつかの実施形態において、JはOである。いくつかの実施形態において、R29は、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチルまたはt−ブチルであり、各々は任意により脱離基で置換されている。いくつかの実施形態において、R29はt−ブチルである。いくつかの実施形態において、Qはクロロである。いくつかの実施形態において、R21、R22、R23、R24、R25、R26およびR27の各々が水素である。
いくつかの実施形態において、Yは炭素であり、KおよびLは水素であり、ならびに、Mは、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリール、および、脱離基からなる群から選択される。
いくつかの実施形態において、Yは炭素であり、KおよびLは各々水素であり、ならびに、Mは脱離基で任意により置換されているアルキルオキシである。
いくつかの実施形態において、造影剤前駆体は、式:
Figure 0006254126
を含み、式中、Lは脱離基である。
いくつかの実施形態において、造影剤は、式:
Figure 0006254126
を含み、式中、Imは造影成分である。
いくつかの実施形態において、造影剤前駆体は:
Figure 0006254126
を含み、式中、Lは脱離基である。
いくつかの実施形態において、造影剤は、式:
Figure 0006254126
を含み、式中、Imは造影成分である。
いくつかの実施形態において、造影剤前駆体は、式:
Figure 0006254126
を含む。
いくつかの実施形態において、フッ化物種を含む造影剤は、式:
Figure 0006254126
を含む。
いくつかの実施形態において、方法は、少なくとも1つの精製技術を用いて造影剤を精製するステップをさらに含む。いくつかの実施形態において、精製技術は、特にこれらに限定されないが、HPLCなどのクロマトグラフィである。いくつかの実施形態において、精製技術は、特にこれらに限定されないが、C−18樹脂を通したろ過などのろ過である。
いくつかの実施形態において、方法は、造影剤を安定化剤と組み合わせるステップをさらに含む。いくつかの実施形態において、安定化剤は、アスコルビン酸、または、その塩である。
他の態様において、本発明は、式:
Figure 0006254126
を含む造影剤を生産する方法を提供し、
方法は、(a)式:
Figure 0006254126
を含むトシレート前駆体をアンモニウム塩を伴う無水フッ化物種と接触させるステップ;(b)(a)の混合物を加熱するステップ;(c)加熱された混合物を冷却するステップ;(d)HOを冷却された混合物に添加するステップ;(e)HO/MeCN溶離液を用いるHPLCを用いて(d)の水和混合物から混合物を精製するステップ;ならびに、(f)溶離液をアスコルビン酸またはその塩の溶液で希釈するステップを含む。
いくつかの実施形態において、ステップ(b)は混合物を50℃〜250℃の温度に加熱するステップを含む。いくつかの実施形態において、ステップ(b)は、混合物を、5分間未満、10分間未満、20分間未満または30分間未満加熱するステップを含む。
いくつかの実施形態において、方法は、(g)(f)の希釈溶離液をC18樹脂と接触させるステップ;(h)接触させたC18樹脂をアスコルビン酸またはその塩の溶液で洗浄するステップ;(i)
Figure 0006254126
をC18樹脂から無水ETOHで溶離するステップ;ならびに、(j)(i)の溶離液を溶液またはアスコルビン酸またはその塩で希釈するステップ
をさらに含む。
いくつかの実施形態において、方法は、(k)希釈された(j)の溶離液を滅菌ろ過するステップ、および、(l)任意により、
Figure 0006254126
の存在を(k)の無菌濾液のサンプルにおいて判定するステップをさらに含む。
他の態様において、本発明は、前述の方法のいずれかにより形成された造影剤を提供する。
それ故、一態様において、本発明は、式:
Figure 0006254126
を含む造影剤を提供し、ここで、造影剤は、(a)式:
Figure 0006254126
を含むトシレート前駆体をアンモニウム塩を伴う無水フッ化物種と接触させるステップ;(b)(a)の混合物を加熱するステップ;(c)加熱された混合物を冷却するステップ;(d)HOを冷却された混合物に添加するステップ;(e)HO/MeCN溶離液を用いるHPLCを用いて(d)の水和混合物から混合物を精製するステップ;ならびに、(f)溶離液をアスコルビン酸またはその塩の溶液で希釈するステップにより生産される。
いくつかの実施形態において、ステップ(b)は、混合物を50℃〜250℃の温度に加熱するステップを含む。いくつかの実施形態において、ステップ(b)は、混合物を5分間未満、10分間未満、20分間未満または30分間未満加熱するステップを含む。
いくつかの実施形態において、生産するステップは、(g)(f)の希釈溶離液をC18樹脂と接触させるステップ;(h)接触させたC18樹脂をアスコルビン酸またはその塩の溶液で洗浄するステップ;(i)
Figure 0006254126
をC18樹脂から無水ETOHで溶離するステップ;および、(j)(i)の溶離液をアスコルビン酸またはその塩の溶液で希釈するステップをさらに含む。
いくつかの実施形態において、生産するステップは:(k)希釈された(j)の溶離液を滅菌ろ過するステップ、および、(l)任意により、
Figure 0006254126
の存在を(k)の無菌濾液のサンプルにおいて判定するステップをさらに含む。
他の態様において、本発明は、炭酸塩または重炭酸塩の存在下に、(i)ハライドまたはスルホネート含有基で置換されているアルコキシアルキル基を含むフッ素化化合物の前駆体を、(ii)フッ化物種および弱く配位結合されたカチオンを含む塩と反応させるステップを含むフッ素化化合物を合成する方法を提供する。
いくつかの実施形態において、アルコキシアルキル基はスルホネート含有基で置換されている。いくつかの実施形態において、スルホネート含有基は、メシレート、トシレート、トリフレートまたは1,2−環式サルフェートである。いくつかの実施形態において、スルホネート含有基はトシレートである。いくつかの実施形態において、弱く配位結合されたカチオンは、テトラアルキルアンモニウムカチオンである。いくつかの実施形態において、フッ化物種は18F同位体が富化されている。
他の態様において、本発明は、炭酸塩または重炭酸塩の存在下に、(i)ハライドまたはスルホネート含有基で置換されているアルコキシアルキルを含むフッ素化化合物の前駆体を、(ii)18F同位体と反応させるステップを含むフッ素化化合物を合成する方法を提供する。
他の態様において、本発明は、(i)ハライドまたはスルホネート含有基で置換されているアルコキシアルキルを含むフッ素化化合物の前駆体を、(ii)18F同位体と、テトラアルキル重炭酸アンモニウムまたはテトラアルキル炭酸アンモニウムの存在下で反応させるステップを含むフッ素化化合物を合成する方法を提供する。いくつかの実施形態において、反応は、テトラアルキル重炭酸アンモニウムの存在下で実施される。
いくつかの実施形態において、テトラアルキル重炭酸アンモニウムは、テトラエチル重炭酸アンモニウム、テトラブチル重炭酸アンモニウムまたはテトラヘキシル重炭酸アンモニウムである。
他の態様において、本発明は、式:
Figure 0006254126
(式中、Rは−低級アルキル−スルホネートであり、RはC〜C10アルキルであり、および、RはHまたはハロゲンである)を含む18F−標識化する方法を提供し、化合物を18Fと、テトラアルキル重炭酸アンモニウムまたはテトラアルキル炭酸アンモニウムの存在下に反応させるステップを含む。いくつかの実施形態において、Rは−(CH)O(CH−スルホネート含有基であり、式中、nは1〜5の整数である。いくつかの実施形態において、スルホネート含有基は、メシレート、トシレート、トリフレートまたは1,2−環式サルフェートである。いくつかの実施形態において、Rはハロゲンである。いくつかの実施形態において、Rは塩化物である。いくつかの実施形態において、Rは、メチル、エチル、プロピルまたはブチルである。いくつかの実施形態において、Rはt−ブチルである。いくつかの実施形態において、Rは−CH−O−CH−CH−トシレートであり、Rはt−ブチルであり、および、Rは塩化物である。
他の態様において、本発明は、式(V):
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;Rは、任意により置換されているアルキルであり;ならびに、Rは水素またはハライドである)を含む化合物を求核剤またはラジカル種と反応させて、式(VI):
Figure 0006254126
を含む化合物を生成する前駆体を造影剤に合成する方法を提供する。
いくつかの実施形態において、求核剤は水素化物イオンである。いくつかの実施形態において、水素化物イオンは、水素化ジイソブチルアンモニウム(DIBAL−H)から生成される。いくつかの実施形態において、ラジカル種は、H・である。
いくつかの実施形態において、Wが−OCH−である式(V)を含む化合物は、式(Va)および(Vb):
Figure 0006254126
を含む前駆体化合物をエーテル化して、式:
Figure 0006254126
を含む生成物を形成することにより合成される。
いくつかの実施形態において、Rはt−ブチルであり、および、RはClである。
いくつかの実施形態において、エーテル化は、前駆体化合物を塩基の存在下に反応させるステップを含む。いくつかの実施形態において、塩基は炭酸イオンを含む。いくつかの実施形態において、塩基は水酸化イオンを含む。いくつかの実施形態において、塩基は、水酸化ナトリウムまたはテトラメチル水酸化アンモニウムである。いくつかの実施形態において、エーテル化反応は、水酸化ナトリウムおよびベンジルトリエチル塩化アンモニウムへの露出を含む。
いくつかの実施形態において、式(Vb)を含む化合物は、式:
Figure 0006254126
を含む化合物を還元剤に露出させることにより生成される。いくつかの実施形態において、還元剤は、水素化アルミニウムリチウムまたは水素化ホウ素リチウムである。いくつかの実施形態において、還元剤は水素化アルミニウムリチウムである。
いくつかの実施形態において、式:
Figure 0006254126
を含む化合物は、4−ホルミル安息香酸メチルをエチレングリコールと酸の存在下で反応させるステップにより生成される。
他の態様において、本発明は、式:
Figure 0006254126
を含む化合物をスルホネート含有種と反応させて造影剤のスルホネート含有前駆体を含む生成物を形成するステップを含む造影剤のスルホネート含有前駆体を形成する方法を提供する。
いくつかの実施形態において、スルホネート含有基は、メシレート、トシレートまたはトリフレートである。いくつかの実施形態において、スルホネート含有基はトシレートである。いくつかの実施形態において、造影剤のスルホネート含有前駆体は、式:
Figure 0006254126
を含む。
いくつかの場合において、スルホネート含有前駆体は、造影成分と反応されて造影剤を形成する。
いくつかの実施形態において、造影成分は放射性同位体である。いくつかの実施形態において、造影成分は、11C、13N、18F、123I、125I、99mTc、95Tc、111In、62Cu、64Cu、67Gaまたは68Gaである。いくつかの実施形態において、造影成分は18Fである。
いくつかの実施形態において、造影剤は、構造:
Figure 0006254126
を有する。
他の態様において、本発明は、エーテル化反応を介して式:
Figure 0006254126
を含む前駆体化合物を反応させて、式:
Figure 0006254126
を含む第1の化合物を形成するステップ;第1の化合物を還元剤に露出させてベンジル型アルコールを含む第2の化合物を形成するステップ;第2の化合物を三臭化リンで処理して臭化ベンジルを含む第3の化合物を形成するステップ;第3の化合物をエチレングリコールと反応させて、式:
Figure 0006254126
を含む第4の化合物を生成するステップ;および
第4の化合物をスルホネート含有種と反応させて造影剤のスルホネート含有前駆体を含む生成物を形成するステップを含む造影剤を合成する方法を提供する。いくつかの場合において、方法は、造影剤のスルホネート含有前駆体を造影成分と反応させて造影剤を形成するステップをさらに含む。
他の態様において、本発明は、構造:
Figure 0006254126
を有する化合物を含む。
ここで、化合物は前述の方法のいずれかを用いて合成される。
他の態様において、本発明は、式:
Figure 0006254126
を含む化合物を提供する。
他の態様において、本発明は、式:
Figure 0006254126
を含む化合物を提供する。
他の態様において、本発明は、式:
Figure 0006254126
を含む化合物を提供する。
他の態様において、本発明は、式:
Figure 0006254126
を含む化合物を提供する。
他の態様において、本発明は、式:
Figure 0006254126
を含む造影剤を、約1mCi〜約4mCiの量の第1の投与量で被験者に投与するステップ;被験者の一部分の少なくとも1つの第1の画像を取得するステップ;被験者に負荷を与えるステップ;負荷下にある被験者に、造影剤の第1の投与量の少なくとも約1.5倍と、造影剤の第1の投与量よりも多量の第2の投与量の造影剤を投与するステップ;ならびに、被験者の一部分の少なくとも1つの第2の画像を取得するステップを含む被験者において造影する方法を提供する。
いくつかの実施形態において、造影剤の第2の投与量は、少なくとも1つの第1の画像を取得後、約48時間未満、24時間、18時間、12時間、6時間、5時間、4時間、3時間、2時間、1時間、30分間または15分間以内に投与される。いくつかの実施形態において、造影剤の第2の投与量は、造影剤の第1の投与量よりも少なくとも2.0倍多い。いくつかの実施形態において、第1の画像は、1〜20分間の撮像期間の間に取得される。いくつかの実施形態において、第2の画像は、1〜20分間の撮像期間の間に取得される。いくつかの実施形態において、被験者の一部分は、心血管系の少なくとも一部分である。いくつかの実施形態において、心血管系の一部分は、心臓の少なくとも一部分である。いくつかの実施形態において、取得するステップは、陽電子放出断層撮影を利用する。
いくつかの実施形態において、方法は、被験者における心血管系疾患または状態の在不在を判定するステップをさらに含む。いくつかの実施形態において、心血管系疾患は冠動脈疾患または心筋虚血である。
いくつかの実施形態において、造影剤は、水、約5%未満のエタノールおよび約50mg/mL未満のアスコルビン酸ナトリウムを含む配合物として投与される。いくつかの実施形態において、造影剤を含む配合物は静脈内大量注射を介して投与される。いくつかの実施形態において、負荷は、被験者の運動により誘導される。いくつかの実施形態において、造影剤の第2の投与量は運動中に投与される。
いくつかの実施形態において、造影剤の第1の投与量は約1.0mCi〜約2.5mCiである。いくつかの実施形態において、造影剤の第1の投与量は、約1.7mCi〜約2.0mCiである。いくつかの実施形態において、造影剤の第1の投与量は、約2.5〜約3.0mCiである。
いくつかの実施形態において、被験者の一部分の少なくとも1つの第1の画像を取得するステップと被験者に造影剤の第2の投与量を投与するステップとの間の待ち時間は60分間である。いくつかの実施形態において、造影剤の第2の投与量は、造影剤の第1の投与量よりも少なくとも2.5倍または少なくとも3.0倍多い量で投与される。いくつかの実施形態において、造影剤の第2の投与量は、造影剤の第1の投与量よりも、2.5〜5.0または2.5〜4.0または3.0〜4.0倍多い量、または、3.0〜5.0倍多い量で投与される。いくつかの実施形態において、造影剤の第2の投与量は、約8.6mCi〜約9.0mCiまたは約8.6mCi〜約9.5mCiまたは約9.0〜約9.5mCiである。
いくつかの実施形態において、負荷は薬理学的負荷である。いくつかの実施形態において、薬理学的負荷は、薬理学的負荷剤を被験者に投与することにより誘導される。いくつかの実施形態において、薬理学的負荷剤は血管拡張剤である。いくつかの実施形態において、血管拡張剤はアデノシンである。いくつかの実施形態において、造影剤の第2の投与量は、薬理学的負荷剤が投与された後に被験者に投与される。いくつかの実施形態において、造影剤の第2の投与量は、被験者における薬理学的負荷剤による血管拡張が最大の時に投与される。
いくつかの実施形態において、造影剤の第1の投与量は、約2.0mCi〜約3.5mCiである。いくつかの実施形態において、造影剤の第1の投与量は、約2.4mCi〜約3.0mCiまたは約2.4mCi〜約2.9mCiである。いくつかの実施形態において、造影剤の第1の投与量は、約2.5mCi〜約3.0mCiまたは約2.5mCi〜約3.5mCiである。
いくつかの実施形態において、被験者の一部分の少なくとも1つの第1の画像を取得するステップと被験者に造影剤の第2の投与量を投与するステップとの間の待ち時間は30分間である。いくつかの実施形態において、造影剤の第2の投与量は、造影剤の第1の投与量よりも少なくとも2.0倍多い量で投与される。いくつかの実施形態において、造影剤の第2の投与量は、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8または2.9倍を含む、造影剤の第1の投与量より2〜3倍多い量で投与される。
いくつかの実施形態において、造影剤の第2の投与量は、約5.7mCi〜約6.2mCiである。いくつかの実施形態において、造影剤の第2の投与量は約6.0mCi〜約6.5mCiまたは約5.7mCi〜約6.5mCiである。いくつかの実施形態において、第1および造影剤の第2の投与量の合計は約14mCiを超えない。
他の態様において、本発明は、式:
Figure 0006254126
を含む造影剤を含む組成物を含むシリンジを提供し、ここで、シリンジは、造影剤の20%未満、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%または0.5%を吸着する。いくつかの場合において、シリンジは、約1%〜約20%または約5%〜約15%または約1%〜約15%または2%〜約10%または約5%〜約20%を吸着する。
いくつかの実施形態において、シリンジは、造影剤の20%未満、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%または0.5%を吸着するプランジャーを備えている。いくつかの実施形態において、シリンジは、先端がゴムではないプランジャーを備えている。いくつかの実施形態において、シリンジはラテックスを含まないシリンジである。いくつかの実施形態において、シリンジは、ゴムを含んでおらず、および、ケイ素潤滑剤を含んでいない。いくつかの実施形態において、シリンジは非反応性シリンジである。いくつかの場合において、シリンジは、約1%〜約20%、または約5%〜約15%または約1%〜約15%または2%〜約10%または約5%〜約20%を吸着する。
いくつかの実施形態において、シリンジは、アスコルビン酸ナトリウム、エタノールおよび水をさらに含む。いくつかの実施形態において、造影剤は、4%未満のエタノールおよび50mg/mL未満のアスコルビン酸ナトリウムを水中に含む溶液中にある。
いくつかの実施形態において、造影剤は、シリンジ中に、約1.5〜約14mCiの投与量で存在している。
他の態様において、本発明は、被験者に負荷を与えるステップ;約1mCi〜約4mCiの量で、式:
Figure 0006254126
を含む造影剤の第1の投与量を被験者に投与するステップ;被験者の一部分の少なくとも1つの第1の画像を取得するステップ;造影剤の第1の投与量を超える量で被験者に造影剤の第2の投与量を投与するステップ;ならびに、被験者の一部分の少なくとも1つの第2の画像を取得するステップを含む被験者において造影する方法を提供する。
いくつかの実施形態において、第2の投与量の量は第1の投与量の量の1.5倍超である。
他の態様において、本発明は、被験者に負荷を与えるステップ;20mCi未満の量で、式:
Figure 0006254126
を含む造影剤の投与量を被験者に投与するステップ;および、被験者の一部分の少なくとも1つの第1の画像を取得するステップを含む被験者において造影する方法を提供する。
いくつかの実施形態において、投与量の量は14mCi未満である。いくつかの実施形態において、投与量は1mCi〜4mCiである。
他の態様において、本発明は、式:
Figure 0006254126
を含む造影剤の調製用カセットであって、(i)式:
Figure 0006254126
を含む造影剤前駆体を含む容器、および、(ii)18Fの供給源を添加するための流路を備えるカセットを提供する。
他の態様において、本発明は:前述のカセットを備える自動反応システムを提供する。他の態様において、本発明は、[18O]HO採収システム、ガス入口、造影剤前駆体の溶液を有する貯蔵タンク、バイアル、アニオン交換カートリッジ、C−18カートリッジ、シリンジ、溶剤貯蔵タンク、反応容器、HPLCシステム、回収容器、アスコルビン酸またはその塩の溶液用貯蔵タンクおよび排出出口からなる群から選択される構成要素の1つ以上に接続されている線形に配置された複数の止め栓マニホールドを備える、造影剤を合成する装置を提供する。
いくつかの実施形態において、装置は、チューブをさらに備えている。いくつかの実施形態において、装置は、造影剤合成モジュールをさらに備えており、ここで、装置は、装置に液体流通可能に接続されている。いくつかの実施形態において、装置は、本明細書に記載の方法を実施することが可能である。いくつかの実施形態において、装置は、式:
Figure 0006254126
を含む造影剤を調製することが可能である。
いくつかの実施形態において、本発明は、図8に示されているとおりに配置されている構成要素を備えている装置を提供する。いくつかの場合において、構成要素は、:(1)ガス入口;(2)[18O]HO採収システム;(3)アニオン交換カートリッジ;(4)MeCN貯蔵タンク;(5)シリンジ;(6)造影剤前駆体の溶液を有する貯蔵タンク;(7)反応容器;(8)HPLCシステム;(9)アスコルビン酸またはその塩の溶液を有する貯蔵タンク;(10)回収容器;(11)エタノール貯蔵タンク;(12)最終生成物を含むバイアル;(13)Sep−packカートリッジ;(14)アスコルビン酸またはその塩の溶液を有する貯蔵タンク;(15)反応容器;ならびに、(16)排出出口の順番で配置されている。
図1は、造影剤を形成するための、造影剤前駆体およびフッ化物源を用いる求核性[18F]−フッ素化反応の例を示す。 図2は、求核性フッ素化反応の最中における造影剤前駆体の種々の反応経路を示す。 図3は、中間体化合物の例示的な合成を示す。 図4は、中間体化合物の代替的な合成を示す。 図5は、中間体化合物の他の代替的な合成を示す。 図6は、造影剤の合成方法を説明するフローチャートを示す。 図7は、変形Explora GN合成モジュールを用いる造影剤の合成システムの概略図である。 図8は、変形GE−Tracerlab−MX合成モジュールを用いて造影剤を合成するための関連するカラムおよび試薬を備えたカセットの概略図である。 図9は、(a)重炭酸塩のモル濃度に応じた生成物分布の変化を表しているグラフ、(b)反応時間に応じた生成物分布を表しているグラフ、および、(c)造影剤前駆体のモル濃度に応じた生成物分布の変化を表しているグラフを含む。 図10は、いくつかの実施形態における本明細書に記載のフッ素化法を用いて調製され得る造影剤の非限定的な例を示す。 図11は、造影剤1の投与後の異なる時点での、代表的なヒト被験者からの心筋層レベルでの全身冠状断を示す。 図12は、対照および慢性心筋梗塞(MI)ウサギにおける造影剤1の代表的な心画像を示す。 図13は、非限定的な実施形態による、造影剤1注入剤の被験者への投与後の研究の安静時画像データに対する、検出器スコア対最大値からの低減割合のプロットを示す。
本発明の他の態様、実施形態および機構は、添付の図面を併せて考慮することで、以下の詳細な説明から明らかとなるであろう。添付の図は概略図であり、縮尺どおりの描写は意図されていない。明確さのために、当業者による本発明の理解のために図示が必要ではない場合には、すべての図における構成要素のすべてに符号は付されておらず、図示されている本発明の各実施形態の構成要素のすべてにも符号は付されていない。本明細書において参照により援用されているすべての特許出願および特許は、参照によりそれらの全体が援用される。抵触する場合には、定義を含む本明細書により規定される。
本発明の特定の実施形態の詳細な説明
本発明は、一般に、造影剤およびその前駆体を合成するためのシステム、組成物、カセット、方法および装置に関する。いくつかの態様において、本発明は、本明細書に記載の方法を用いて合成される造影剤に関する。
いくつかの実施形態において、本発明は、例えば、造影剤前駆体を造影成分の供給源と反応させることにより、造影剤を合成する方法に関する。本明細書に記載されているとおり、いくつかの場合において、この方法は、化学反応を促進させ得る1種以上の添加剤(例えば、塩)の使用を含む。この方法は、向上した収率を示し得、放射性同位体(例えば、18F)を含む造影剤を包含する造影剤の広範な合成を許容し得る。造影剤は、センサー、診断ツール等として有用であり得る。造影剤を調製するための合成方法はまた、放射性同位体を含む造影剤を調製し、精製するための自動合成システムを用いるよう設計されている。いくつかの態様において、本発明は、特にこれらに限定されないが、PET生産設備(PMF)で通例利用可能であるExplora GNまたはRN synthesis system(Siemens Medical Solutions USA,Inc.)、GE−Tracerlab−MX synthesis system (GE Healthcare)、Eckert & Zeigler Modular−Lab Synthesis system等を含む求核性反応システムを用いて、放射性標識化造影剤の形成を可能とする。
いくつかの実施形態において、本発明は造影剤前駆体を合成する方法を提供し、ここで、造影剤前駆体が造影成分の供給源と反応されて造影剤が形成される。当業者により理解されるであろうとおり、高収率反応を含んでいると共に、合成および/または精製ステップが比較的少ない方法を利用することが有利である。従って、造影剤前駆体を合成するための本明細書において提供されている方法の多くは、かなり容易な合成で、および/または、高い収率で、既に報告されているものよりも少ないステップ数で造影剤前駆体を提供する。
いくつかの実施形態において、本発明は、注入、点滴またはいずれかの投与方法によって、組成物または配合物(例えば、本明細書に記載のとおり造影剤1を含むもの)を被験者に投与するステップ、および、対象となる被験者の領域を造影するステップを含む被験者における造影方法が含まれる造影方法を提供する。関心領域としては、これらに限定されないが、心臓、心血管系、心臓血管、血管(例えば、動脈、静脈)、脳および他の器官が挙げられ得る。血流、心臓壁運動または灌流などの対象となるパラメータを、本発明の方法および/またはシステムを用いて造影し、および、検出することが可能である。いくつかの場合においては、心筋灌流を含む灌流を評価するための方法が提供されている。
本明細書において用いられるところ、「造影剤」という用語は、検出可能なシグナルを、それ自体が生成し得るか、または、外部エネルギー源(例えば、電磁波、超音波等)への露出で生成し得る少なくとも1個の原子または少なくとも1つの原子群を含むいずれかの種を指す。典型的には、造影剤は、被験者(例えばヒト)の少なくとも一部分に関連する情報を提供するために被験者に投与され得る。いくつかの場合において、造影剤は、被験者の特定の領域を強調して、器官、血管、組織および/または他の部分をより検出可能とし、より明瞭に造影するために用いられ得る。研究されている対象物の検出性および/または画質を高めることにより、疾患および/または傷害の存在および程度を判定することが可能である。造影剤は、核医学造影用の放射性同位体を含んでいてもよい。本明細書において造影剤1とも称される、造影剤の非限定的な例は、式:
Figure 0006254126
を含む。
本明細書において用いられるところ、「造影成分」とは、検出可能なシグナルを、それ自体が生成するか、または、外部エネルギー源への露出で生成することが可能である、1個の原子または1つの原子群を指す(例えば、造影成分を含む造影剤は、状態の存在および/または進行、病理学的障害および/または疾患の検出、造影および/または監視を許容し得る)。核医学造影剤としては、造影成分として、11C、13N、18F、123I、125I、99mTc、95Tc、111In、62Cu、64Cu、67Gaおよび68Gaを挙げることが可能である。いくつかの実施形態において、造影成分は18Fである。18F系の造影剤は、低酸素症および癌の造影に用いられてきている(Drugs of the Future 2002,27,655−667)。
いくつかの実施形態において、化合物(例えば、造影剤、フッ化物種)は、フッ素−18で同位体的に富化されていてもよい。「同位体的に富化されている」とは、元素の同位体を、結果的な同位体組成がその元素の自然の同位体組成以外となるよう含有する組成物を指す。本明細書において提供される化合物に関して、特定の原子配置が18Fとされている場合、その位置での18Fの存在比は、実質的にゼロである18Fの自然存在比よりも実質的に大きいと理解されるべきである。いくつかの実施形態において、18Fとされるフッ素は、約0.01%、約0.05%、約0.1%、約0.2%、約0.3%、約0.4%、約0.5%、約0.75%、約1%、約2%、約3%、約4%、約5%、約10%、約15%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%またはそれ以上の最低同位体富化係数を有し得る。本明細書において提供される化合物の同位体富化は、質量分光測定およびHPLCを含む技術分野において当業者に公知である従来の分析方法を用いて測定することが可能である。
造影剤を合成する例示的方法
本発明は、造影剤を合成するための方法を提供する。いくつかの場合において、造影剤は、造影剤前駆体を造影成分と反応させることにより形成される。特定の実施形態において、方法は、脱離基を含む造影剤前駆体と造影成分の供給源(例えば、フッ化物種)との反応を含む。
例えば、造影成分は、S2またはS1反応などの置換反応を介して脱離基を置換する。換言すると、反応の最中に、造影成分が脱離基を置換し、これにより、造影剤が生成される。
本明細書に記載の方法が、造影剤前駆体からの広く多様な造影剤の合成に用いられ得る。一般に、造影剤前駆体は、18F種などの造影成分により置換され得る少なくとも1個の脱離基を含んでいればよい。造影剤前駆体は、当業者に公知の方法を用いて、および、以下に記載のとおり合成され得る。
いくつかの実施形態において、造影剤前駆体は、式(I):
Figure 0006254126
(式中:
Jは、N(R28)、S、O、C(=O)、C(=O)O、NHCHCHO、結合およびC(=O)N(R27)からなる群から選択され;
存在する場合、Kは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;
存在する場合、Lは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;
Mは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールおよび脱離基からなる群から選択され;または
LおよびMは、これらが結合している原子と一緒になって、3員、4員、5員または6員炭素環を形成していてもよく;
Qはハロまたはハロアルキルであり;
nは、0、1、2または3であり;
21、R22、R27およびR28は、水素、脱離基で任意により置換されているC〜Cアルキルおよび脱離基から独立して選択され;
23、R24、R25およびR26は、水素、ハロゲン、ヒドロキシル、アルキルオキシ、脱離基で任意により置換されているC〜Cアルキルおよび脱離基から独立して選択され;
29は、脱離基で任意により置換されているC〜Cアルキルであり;ならびに
Yは、結合、炭素および酸素からなる群から選択され;ただし、Yが結合である場合、KおよびLは不在であり、Mは、脱離基で任意により置換されているアリールおよび脱離基で任意により置換されているヘテロアリールからなる群から選択され;ならびに、ただし、Yが酸素である場合、KおよびLは不在であり、Mは、水素、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキルおよび脱離基で任意により置換されているヘテロアリールから選択され;
ただし、少なくとも1個の脱離基が式(I)中に存在している)
を含む。
いくつかの実施形態において、本発明の方法は、式(II):
Figure 0006254126
(式中:
Jは、N(R28)、S、O、C(=O)、C(=O)O、NHCHCHO、結合およびC(=O)N(R27)からなる群から選択され;
存在する場合、Kは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;
存在する場合、Lは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;
Mは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアルキルオキシ、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、造影成分で任意により置換されているヘテロアリール、および、造影成分からなる群から選択され;または
LおよびMは、これらが結合している原子と一緒になって、3員、4員、5員または6員炭素環を形成していてもよく;
Qはハロまたはハロアルキルであり;
nは、0、1、2または3であり;
21、R22、R27およびR28は、水素、造影成分で任意により置換されているC〜Cアルキル、および、造影成分から独立して選択され;
23、R24、R25およびR26は、水素、ハロゲン、ヒドロキシル、アルキルオキシ、造影成分で任意により置換されているC〜Cアルキル、および、造影成分から独立して選択され;
29は、造影成分で任意により置換されているC〜Cアルキルであり;ならびに
Yは、結合、炭素および酸素からなる群から選択され;ただし、Yが結合である場合、KおよびLは不在であり、Mは、造影成分で任意により置換されているアリールおよび造影成分で任意により置換されているヘテロアリールからなる群から選択され;ならびに、ただし、Yが酸素である場合、KおよびLは不在であり、Mは、水素、造影成分で任意により置換されているアルコキシアルキル、造影成分で任意により置換されているアリール、造影成分で任意により置換されているC〜Cアルキル、および、造影成分で任意により置換されているヘテロアリールから選択され;
ただし、少なくとも1種の造影成分が式(II)中に存在している)
を含む造影剤を調製するステップを含んでいる。換言すると、式(II)を含む造影剤は、式(I)を含む造影剤前駆体から形成され、式(I)を含む造影剤前駆体の脱離基が造影成分によって置換される。いくつかの実施形態において、造影成分は18Fである。
いくつかの場合において、Jは、N(R27)、S、O、C(=O)、C(=O)O、NHCHCHO、結合またはC(=O)N(R27)から選択される。いくつかの場合において、存在する場合、Kは、水素、脱離基で任意により置換されているアルコキシアルキル、アルキルオキシ、アリール、脱離基で任意により置換されているC〜Cアルキル、ヘテロアリール、および、脱離基から選択される。いくつかの場合において、存在する場合、Lは、水素、脱離基で任意により置換されているアルコキシアルキル、アルキルオキシ、アリール、脱離基で任意により置換されているC〜Cアルキル、ヘテロアリール、および、脱離基から選択される。いくつかの事例において、Mは、水素、脱離基で任意により置換されているアルコキシアルキル、アルキルオキシ、アリール、脱離基で任意により置換されているC〜Cアルキル、ヘテロアリール、および、脱離基から選択される。いくつかの場合において、LおよびMは、これらが結合している原子と一緒になって、3員または4員炭素環を形成する。いくつかの場合において、Qはハロまたはハロアルキルである。いくつかの場合において、nは、0、1、2または3である。いくつかの場合において、R21、R22、R23、R24、R25、R26およびR27は、水素、脱離基で任意により置換されているC〜Cアルキル、および、脱離基から独立して選択される。いくつかの場合においてR29は、脱離基で任意により置換されているC〜Cアルキルである。いくつかの場合において、Yは、結合、炭素および酸素から選択されるが;ただし、Yが結合である場合、KおよびLは不在であると共にMはアリールおよびヘテロアリールから選択され;ならびに、ただし、Yが酸素である場合、KおよびLは不在であると共に、Mは水素、脱離基で任意により置換されているアルコキシアルキル、アリール、脱離基で任意により置換されているC〜Cアルキル、および、ヘテロアリールから選択される。
いくつかの場合において、JはOである。いくつかの場合においてR29は、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチルまたはt−ブチルであり、各々は、脱離基で任意により置換されていてもよい。特定の実施形態において、R29はt−ブチルである。いくつかの場合において、Qはクロロである。いくつかの場合において、R21、R22、R23、R24、R25、R26およびR27のすべてが水素である。いくつかの場合において、Yは炭素であり、KおよびLは水素であり、ならびに、Mは、脱離基で任意により置換されているアルコキシアルキル、脱離基で任意により置換されているアルキルオキシ、脱離基で任意により置換されているアリール、脱離基で任意により置換されているC〜Cアルキル、脱離基で任意により置換されているヘテロアリールまたは脱離基である。いくつかの場合において、Yは炭素であり、KおよびLは水素であり、ならびに、Mは脱離基で任意により置換されているアルキルオキシである。
いくつかの実施形態において、造影剤前駆体は、式:
Figure 0006254126
(式中、R21、R22、R29、Q、Jおよびnは本明細書に記載のとおりであり、ならびに、Lは脱離基である)
を含む。
いくつかの実施形態において、造影剤は、式:
Figure 0006254126
(式中、R21、R22、R29、Q、Jおよびnは、本明細書に記載のとおりであり、ならびに、Iは造影成分である)
を含む。
いくつかの実施形態において、造影剤前駆体は、式:
Figure 0006254126
(式中、R29およびQは本明細書に記載のとおりであり、ならびに、Lは脱離基である)
を含む。
いくつかの実施形態において、造影剤は、式:
Figure 0006254126
式中、R29およびQは本明細書に記載のとおりであり、ならびに、Imは造影成分である)
を含む。
一組の実施形態において、造影剤前駆体は、式:
Figure 0006254126
を含み、本明細書において造影剤前駆体1と称されている(図1を参照のこと)。
いくつかの場合において、造影剤は、式:
Figure 0006254126
を含み、本明細書において造影剤1と称されている(図1を参照のこと)。
本発明のフッ素化法を用いて調製され得る造影剤の他の非限定的な例が、図10に示されている。いくつかの場合において、造影剤前駆体は塩ではない。
2種のアルコール間またはフェノールとアルコールとの間のエーテル化反応(例えば、光延反応)を含む種々の方法を用いて式(I)の造影剤前駆体を合成し得る。いくつかの場合において、脱離基は、例えば、塩基(例えば、DMAP)の存在下でのp−トルエンスルホネート塩化物との反応によるヒドロキシル基のトシレート基または他の脱離基への転換によって組み込まれ得る。式(II)を含む構造を有する造影剤または式(I)を含む構造を有する造影剤前駆体を合成する追加の方法が、その内容が本明細書において参照に援用される国際公開第2005/079391号パンフレットに記載されている。
いくつかの実施形態において、造影剤を合成する方法は、造影剤前駆体(例えば、式(I)を含む化合物)をフッ化物種およびアンモニウム塩と、フッ化物種が脱離基を置換してフッ素種を含む造影剤(例えば、式(II)を含む化合物)が生成される条件下で接触させるステップを含み、ここで、アンモニウム塩対造影剤前駆体のモル比は、約1.5:1未満または約1:1以下である(または、本明細書に記載のいずれかの比)。
いくつかの実施形態において、造影剤を合成する方法は、造影剤前駆体(例えば、式(I)を含む化合物)をフッ化物種および重炭酸塩と、フッ化物種が脱離基を置換してフッ素種を含む造影剤(例えば、式(II)を含む化合物)が生成される条件下で接触させるステップを含み、ここで、重炭酸塩対造影剤前駆体のモル比は、約1.5:1未満であるか、または、約1:1以下である(または、本明細書に記載のいずれかの比)。
いくつかの実施形態において、造影剤を合成する方法は、造影剤前駆体(例えば、式(I)を含む化合物)をフッ化物種と、フッ化物種が脱離基を置換してフッ素種を含む造影剤(例えば、式(II)を含む化合物)が生成される条件下で接触させるステップを含み、ここで、接触させるステップは7未満のpHで実施される。
いくつかの実施形態において、式:
Figure 0006254126
(式中:
は、任意により置換されているアルキルであり;
は水素またはハロゲンであり;および
は、スルホネート含有基で置換されているアルキル、スルホネート含有基で置換されているアルコキシまたはスルホネート含有基で置換されているアルコキシアルキルである)を含む化合物を18F−標識化する方法は、化合物を、アンモニウム塩または重炭酸塩の存在下に、18F種と反応させて、18F種を含む生成物を形成するステップを含む。
いくつかの実施形態において、式:
Figure 0006254126
を含む造影剤を生産する方法は、
(a)式:
Figure 0006254126
を含むトシレート前駆体をアンモニウム塩を伴うフッ化物種と接触させるステップ;
(b)(a)の混合物を加熱するステップ;
(c)加熱された混合物を冷却するステップ;
(d)HOを冷却された混合物に添加するステップ;
(e)HO/MeCN溶離液を用いるHPLCを用いて(d)の水和混合物から混合物を精製するステップ;および
(f)溶離液をアスコルビン酸またはその塩の溶液で希釈するステップ
を含む。
いくつかの場合において、ステップ(b)は、混合物を50℃〜250℃の温度に加熱するステップを含む。いくつかの場合において、加熱するステップ(b)は、混合物を、5分間未満、10分間未満、20分間未満または30分間未満加熱するステップを含む。いくつかの場合において、方法は:
(g)(f)の希釈溶離液をC18樹脂と接触させるステップ;
(h)接触させたC18樹脂をアスコルビン酸またはその塩の溶液で洗浄するステップ;
(i)
Figure 0006254126
をC18樹脂から無水エタノールで溶離するステップ;および
(j)(i)の溶離液をアスコルビン酸またはその塩の溶液で希釈するステップ(例えば、ナトリウム塩)をさらに含む。
いくつかの場合において、方法は
(k)希釈された(j)の溶離液を滅菌ろ過するステップ、および
(l)任意により、
Figure 0006254126
の存在を(k)の無菌濾液のサンプルにおいて判定するステップ
をさらに含む。
いくつかの実施形態において、式:
Figure 0006254126
を含む造影剤は:
(a)式:
Figure 0006254126
を含むトシレート前駆体をアンモニウム塩を伴う無水フッ化物種と接触させるステップ;
(b)(a)の混合物を加熱するステップ;
(c)加熱された混合物を冷却するステップ;
(d)HOを冷却された混合物に添加するステップ;
(e)HO/MeCN溶離液を用いるHPLCを用いて(d)の水和混合物から混合物を精製するステップ;および
(f)溶離液をアスコルビン酸またはその塩の溶液で希釈するステップ
により生産される。
いくつかの場合において、ステップ(b)は、混合物を50℃〜250℃の温度に加熱するステップを含む。いくつかの場合において、加熱するステップ(b)は、混合物5分間未満、10分間未満、20分間未満または30分間未満加熱するステップを含む。いくつかの場合において、生産するステップは:
(g)(f)の希釈溶離液をC18樹脂と接触させるステップ;
(h)接触させたC18樹脂をアスコルビン酸またはその塩の溶液で洗浄するステップ;
(i)
Figure 0006254126
をC18樹脂から無水エタノールで溶離するステップ;および
(j)(i)の溶離液をアスコルビン酸またはその塩の溶液で希釈するステップ
をさらに含む。
いくつかの場合において、生産するステップは:
(k)希釈された(j)の溶離液を滅菌ろ過するステップ、および
(l)任意により、
Figure 0006254126
の存在を(k)の無菌濾液のサンプルにおいて判定するステップ
をさらに含む。
いくつかの実施形態において、フッ素化化合物を合成する方法は、炭酸塩または重炭酸塩イオンの存在下で、(i)ハライドまたはスルホネート含有基で置換されているアルコキシアルキル基を含むフッ素化化合物の前駆体を(ii)フッ化物種および弱く配位結合されたカチオンを含む塩と反応させるステップを含む。
本明細書において用いられるところ、「脱離基」という用語は、合成有機化学の技術分野における通常の意味を有しており、求核剤によって置換されることが可能である原子または基を指す。好適な脱離基の例としては、これらに限定されないが、ハライド(塩化物、臭化物またはヨウ化物など)、アルコキシカルボニルオキシ、アリールオキシカルボニルオキシ、アルカンスルホニルオキシ、アレーンスルホニルオキシ、アルキル−カルボニルオキシ(例えば、アセトキシ)、アリールカルボニルオキシ、アリールオキシ、メトキシ、N,O−ジメチルヒドロキシルアミノ、ピクシル、ハロギ酸塩等が挙げられる。いくつかの場合において、脱離基は、トルエンスルホネート(トシレート、TsO)、メタンスルホネート(メシレート、MsO)またはトリフルオロメタンスルホネート(トリフレート、TfO)などのスルホン酸エステルである。いくつかの場合において、脱離基は、p−ブロモベンゼンスルホニルなどのブロシレートであり得る。いくつかの場合において、脱離基は、2−ニトロベンゼンスルホニルなどのノシレートであり得る。脱離基はまた、ホスフィネオキシド(例えば、光延反応の最中に形成される)、または、エポキシドもしくは環式サルフェートなどの内部脱離基であり得る。いくつかの実施形態において、脱離基はスルホネート含有基である。いくつかの実施形態において、脱離基はトシレート基である。
特定の実施形態において、本発明は、ハロゲンを含む造影剤を合成する方法を提供する。例えば、方法は、ハロゲン化反応を含んでいてもよい。いくつかの実施形態においては、フッ化物(例えば、18Fで富化されている)を含む造影剤を合成する方法が提供されている。方法は、造影剤前駆体をフッ化物の供給源と、フッ化物が前駆体の脱離基を置換してフッ化物種を含む造影剤が生成されることとなる条件下で接触させるステップを含む。特定の実施形態において、方法は、求核性フッ素化反応を含む。換言すると、脱離基を含む造影剤前駆体がフッ化物種の存在下に反応され、これにより、フッ化物種による脱離基のS2またはS1置換が造影剤をもたらす。いくつかの実施形態において、フッ化物種は、18Fで富化されている。図1は、造影剤前駆体1が18F種で処理されて造影剤1が置換反応を介して生成される、例示的な例を示している。
いくつかの実施形態において、1種以上の添加剤は、造影剤前駆体とフッ化物種との反応混合物に組み込まれていてもよい。添加剤は、いくつかの場合において、造影剤前駆体とフッ化物種との間の反応を促進させ得、および/または、造影剤の安定化を補助し得る。例えば、フッ化物種は、反応性(例えば、求核性)が比較的低くてもよく、添加剤の添加によりフッ化物種の反応性が高められてもよい。例示的実施形態として、フッ素種は、負電荷フッ化物イオン(例えば、同位体的に富化された18Fイオン)であってもよく、添加剤は、反応混合物中に存在しているいずれかの正電荷対イオンを結合し、これにより、フッ化物イオンの反応性を高めるために用いられてもよい。いくつかの実施形態において、添加剤は、以下に記載のとおり、望ましくない副反応の速度を低下させてもよい。
いくつかの場合において、添加剤は、造影剤前駆体との接触に先だってフッ化物種と組み合わされてもよい。例えば、特定の実施形態においては、フッ化物種および添加剤を含む溶液が調製され、この溶液が造影剤前駆体に添加される。他の実施形態においては、フッ化物種および添加剤を含む固体が調製され、この固体が造影剤前駆体と接触される。特定の実施形態において、フッ化物種は固体の支持体(例えば、アニオン交換カラム)に吸着されると共に、添加剤を含む溶液が固体支持体からのフッ化物種の溶離に用いられる。次いで、溶離された溶液が、造影剤前駆体と接触させられるか、または、濃縮されて固体が生成され、これが、次いで、造影剤前駆体と接触させられる。
いくつかの実施形態において、添加剤は重炭酸塩である。特定の実施形態においては、炭酸塩の重炭酸塩(KHCOなど)との置換は、フッ素化効率および出発材料の結合性の両方に著しい改善をもたらすことが発見されている。本明細書において用いられるところ、「重炭酸塩」という用語は、は、重炭酸イオンまたは炭酸水素イオン(HCO イオン)を含む塩を指す。重炭酸塩は、重炭酸ナトリウム、重炭酸カルシウム、重炭酸カリウム、重炭酸マグネシウム等などの金属重炭酸塩であり得る。特定の実施形態において、重炭酸塩は重炭酸カリウム(KHCO)である。いくつかの実施形態において、重炭酸塩は、重炭酸アンモニウムなどの非金属対イオンを含む。例えば、重炭酸塩は、Rがアルキルである式RNHCOを有するテトラアルキル重炭酸アンモニウム塩であり得る。いくつかの実施形態において、Rは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル等などの低級アルキルであり得る。特定の実施形態において、アンモニウム塩は、EtNHCOである。他の実施形態において、塩は、MeNHCO、i−PrNHCO、n−PrNHCO、n−BuNHCO、i−BuNHCOまたはt−BuNHCOである。
実施例14にさらに記載されているとおり、より大きい差速で微分フッ素化速度を生起させる反応条件は、より効率的で化学選択的なプロセスをもたらすであろうと考えられている(換言すると、遅い加水分解速度または速いフッ素化速度)。本明細書において概説されている研究では、アニオン交換には必要とされたが、KCOは、ベースラインレベルを超えたフッ素化の促進にはほとんど関与せず、主に、フッ素化反応において有害な役割を果たしていたことが明らかとなった。しかしながら、対照的に、KHCOの添加は、同一の濃度範囲にわたり、フッ素化において著しい改善をもたらし、一方で、分解経路はほとんど変わらないままであった。これらの事実は、[18F]NaFのテトラアルキルアンモニウムカチオンとの交換は活性度の高い求核性フッ化物源を直接生成することが可能であるという観察と相まって、フッ素化の速度を高める関連する対イオン効果を特定するための一連の塩の調査に繋がった。
アンモニウム塩の総括的なスクリーニングにより、重炭酸塩アニオンの存在下でフッ素化効率の大幅な増大が特定され(例えば、表1を参照のこと);アルキル置換基のサイズに対するあまり大きくない依存が、系列メチル→エチル→ブチル(例えば、実施例14)において観察された。
その後の塩化学量論の最適化で、造影剤前駆体に対して25mol%のテトラアルキル重炭酸アンモニウム(例えば、1:0.25)もの低いレベルで造影剤前駆体の造影剤へのほとんど完全な転換がもたらされることが明らかとされ;また、塩基濃度の上昇に伴って生じる出発材料の非生産的な消費により、変更した反応条件に対する最適な化学量論範囲が明らかにされた。最適前駆体濃度の判定のための関連する研究が濃度閾値を明らかにした。
この試薬の組み合わせはまた、KCO/Kryptofix(登録商標)222法を超える、フッ素化に対する迅速な転換および顕著に向上した化学選択性を実証した。実際に、粗反応混合物のより詳細な評価によって、加水分解不純物の不在により表されるとおり、全体的な分解速度の大幅な低下が明らかにされた(例えば、実施例14に記載のとおり);結果は、Kryptofix(登録商標)222の不在下における低い溶液のpH(5〜6対9〜10)に起因する可能性がある。
いくつかの実施形態において、添加剤は、フッ化物種と共に弱く配位している塩を形成するカチオンを含む塩である。本明細書において用いられるところ、「フッ化物種と共に弱く配位している塩を形成するカチオン」とは、フッ素化反応においてフッ化物種反応性を付与するカチオンである。例えば、カチオンは、フッ化物種に強固に結合しておらず、求核性フッ素化反応の最中にフッ化物種を求核剤として作用させてもよい。当業者は、フッ化物種に対して弱く配位している対イオンとして好適であるよう適切なカチオンを選択することが可能であろう。例えば、カチオンは、比較的大きな原子半径を有していてもよく、および/または、弱いルイス塩基であってもよい。いくつかの場合において、カチオンは、親油性として選択され得る。いくつかの場合において、カチオンはアルキル基を1個以上含んでいてもよい。弱く配位結合されたカチオンの例としては、セシウムイオン、アンモニウムイオン等が挙げられる。弱く配位結合されたカチオンの例としては、ヘキサメチルピペリジンジウム(hexamethylpiperidindium)の弱く配位している塩、S(NMe、P(NMe、テトラアアアルキルホスホニウム(tetraaalkylphosphonium)塩、テトラアリールホスホニウム塩(例えば、テトラフェニルホスホニウム)、ヘキサキス(ジメチルアミノ)ジホスファゼニウム、トリス(ジメチルアミノ)スルホニウム塩等が挙げられる。
いくつかの実施形態において、添加剤は、アンモニウム塩、すなわち、置換または非置換のアンモニウムイオンを含む塩である。いくつかの場合において、アンモニウムイオンは弱く配位結合されたカチオンである。いくつかの場合において、アンモニウム塩は式RNXを有しており、式中、各Rは同一であることも異なっていることも可能であり、各々が任意により置換されているアルキル、ヘテロアルキル、アリール、ヘテロアリールまたは複素環式であり、および、Xは負電荷対イオンである。いくつかの場合において、Rは、各々が任意により置換されている、アルキル、ヘテロアルキル、アリール、ヘテロアリールまたは複素環式である。アンモニウム塩は、ハライド、炭酸塩、重炭酸塩等を含む広範な範囲の負電荷対イオンを含み得る。アンモニウム塩の例としては、これらに限定されないが、重炭酸アンモニウム塩、水酸化アンモニウム塩、酢酸アンモニウム塩、乳酸アンモニウム塩、トリフルオロ酢酸アンモニウム塩、メタンスルホン酸アンモニウム塩、p−トルエンスルホン酸アンモニウム塩、硝酸アンモニウム塩、アンモニウムハライド塩(例えば、ヨウ化アンモニウム塩)、重硫酸アンモニウム塩等が挙げられる。
一組の実施形態において、アンモニウム塩は、テトラアルキル重炭酸アンモニウム塩などのテトラアルキルアンモニウム塩である。例えば、アンモニウム塩は、式RNHCOを有していてもよく、式中、各Rは、独立してアルキルである。いくつかの場合において、Rは、任意により置換されている。いくつかの実施形態において、アルキル基は、低級C〜Cアルキル基である。いくつかの実施形態において、テトラアルキルアンモニウム塩は塩基性テトラアルキルアンモニウム塩である。
塩添加剤(例えば、重炭酸塩および/またはアンモニウム塩)は、塩添加剤対造影剤前駆体のモル比が、約1.5:1未満であるように、反応において利用され得る。いくつかの場合において、モル比は、約1.5:1以下、約1.4:1以下、約1.3:1以下、約1.25:1以下、約1.2:1以下、約1.1:1以下、約1:1以下、約0.75:1以下、約0.5:1以下、約0.25:1以下、約0.1:1以下または約0.05:1以下である。いくつかの場合において、この比は、約0.05:1超、約0.01:1超または約0.25:1超である。いくつかの実施形態において、塩添加剤対造影剤前駆体のモル比は、約0.5:1〜約1:1または約0.25:1〜約1:1または約0.25:1〜約0.75:1約1.49:1〜約0.05:1または約1.4:1〜約0.25:1または約0.25:1〜約1.4:1または約0.25:1〜約1.25:1である。
理論に束縛されることは望まないが、重炭酸塩およびアンモニウム塩の使用は、造影剤前駆体の求核性フッ素化の最中における加水分解などの反応が完了する速度の低下を補助し得る。
いくつかの実施形態において、添加剤は、フッ化物種の反応性を高めるか、または、そうでなければ造影剤前駆体の造影剤への転換を促進させることが可能である種との組み合わせで用いられ得る。例えば、この種は、反応混合物中に存在し得る1つ以上のイオン(例えば金属イオン)をキレート化することが可能である化合物であり得る。理論に束縛されることは望まないが、この種は、カリウムイオンなどの対イオンをフッ化物種にキレート化し、これにより、フッ化物種の反応性(例えば求核性)を高めるために用いられ得る。特定の実施形態において、添加剤は、金属イオンをキレート化することが可能であるクラウンエーテルまたはクリプタンドなどの多座配位子との組み合わせで用いられる。多座配位子(例えば、クリプタンド)は、キレート化されるべき金属イオンに基づいて選択されればよい。多座配位子は、例えば、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサン(例えば、Kryptofix(登録商標)222)であり得る。他のクリプタンドが当業者に公知であろう。
いくつかの実施形態は、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサンとの組み合わせでの重炭酸塩の使用を含み得る。特定の実施形態において、重炭酸カリウムは、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサンとの組み合わせで使用され得る。
実施形態の他の組において、本明細書に記載の方法をクリプタンドの不在下で利用することが有利であり得る。「クリプタンド」という用語は、技術分野における通常の意味を有しており、カチオンに対する二座配位子または多環式多座配位子を指す。例えば、この方法は、アンモニウム塩を、クリプタンド(例えば、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]−ヘキサコサンなど)の不在下で用いて実施され得る。
実施形態の他の組において、方法は炭酸塩の不在下で実施される。
いくつかの実施形態において、反応における塩添加剤の使用は、基本的に同一の条件下であるが塩添加剤の不在下で反応を行う場合を基準として、約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約100%、約200%、約300%、約400%、約500%またはそれ以上収率を高める。
当業者は、特定の用途における使用に対して好適な反応条件(例えば、濃度、温度、圧力、反応時間、溶剤等)の適切な組を選択および/または判定することが可能であろう。造影剤は、1つ以上の精製技術を用いてさらに処理されてもよく、および、任意により、安定化剤などの追加の構成成分と組み合わされてもよい。
当業者は、本明細書に記載の方法における使用に好適なフッ化物種の供給源を選択することが可能であろう。「フッ化物種」という用語は、本明細書において用いられるところ、少なくとも1個のフッ化物原子を含むフッ化物原子または原子群を指し、ここで、フッ化物原子は、他の化合物(例えば、造影剤前駆体)と反応することが可能である。いくつかの実施形態において、同位体的に富化された18F種は、サイクロトロンにおける[18O]HOのプロトン衝撃による核反応18O(p,n)18Fによって生成され得る。この方法は、18F種の溶液を処理して未反応の[18O]HOなどのすべての不純物を除去するステップを含み得る。例えば、18F種の溶液はアニオン交換カラムを通してろ過され得、ここでは、18F種はカチオン性樹脂マトリックスに保持され、一方で、[18O]HOは溶離される。次いで、18F種は、アニオン交換カラムを溶剤と任意の添加剤(例えば塩添加剤)との種々の混合物で洗浄して18F含有溶液を形成することによって除去される。いくつかの場合において、アニオン交換カラムは、KHCOまたはEtNHCOなどの塩の水溶液で洗浄される。
いくつかの場合において、18F含有溶液は、造影剤前駆体との反応に先だって追加の構成成分と組み合わされる。例えば、1種以上の溶剤が添加されて、18F含有溶液が選択された濃度に希釈されてもよい。一組の実施形態において、18F含有溶液はアセトニトリルで希釈される。
いくつかの場合において、18F含有溶液は、高温および/または減圧に露出されて乾燥するまで濃縮されて、無水18F含有固体が形成されてもよい。いくつかの実施形態において、18F含有固体は、1種以上の添加剤(例えば、塩添加剤)をさらに含み得る。18F含有固体の化学組成は、18F含有溶液の調製において用いられる添加剤の数および種類に応じ得る。例えば、重炭酸カリウムの溶液を用いて18F種をアニオン交換カラムから溶離し、これにより、[18F]KFを含む18F含有固体がもたらされてもよい。他の例においては、重炭酸アンモニウムの溶液を用いて18F種をアニオン交換カラムから溶離し、これにより、[18F]EtNFを含む18F含有固体がもたらされる。
いくつかの場合においては、18F種を含む溶液が、室温〜約200℃の範囲の温度に加熱される。いくつかの実施形態において、溶液は90〜120℃の範囲の温度に加熱される。いくつかの場合において、溶液は、約75℃、約85℃、約95℃、約105℃、約115℃、約125℃またはそれ以上に加熱される。いくつかの場合において、溶液は、約100mmHg、約125mmHg、約150mmHg、約175mmHg、約200mmHg、約225mmHg、約250mmHg、約275mmHg、約300mmHg、約325mmHg、約350mmHg、約375mmHg、約400mmHgまたはそれ以上の減圧下に置かれる。いくつかの場合において、溶液は、約100mbar、約125mbar、約150mbar、約175mbar、約200mbar、約225mbar、約250mbar、約275mbar、約280mbar、約300mbar、約325mbar、約350mbar、約375mbar、約400mbar、約450mbar、約500mbarまたはそれ以上の減圧下に置かれる。当業者は、特定の反応に対して好適な条件を選択および/または決定することが可能であろう。いくつかの実施形態において、溶液は、約150mmHgおよび約115℃で乾燥するまで濃縮される。いくつかの実施形態において、溶液は、約375mmHgおよび約115℃で乾燥するまで濃縮される。いくつかの実施形態において、溶液は、約400mbarおよび約110〜150℃で乾燥するまで濃縮される。いくつかの実施形態において、溶液は、約280mbarおよび約95〜115℃で乾燥するまで濃縮される。
存在する場合、フッ化物種および/または添加剤は、次いで、求核性フッ素化を介した造影剤前駆体の造影剤生成物への転換をもたらす条件下で、造影剤前駆体と接触させられる。当業者は、特定の反応における使用に好適な条件を選択することが可能であろう。例えば、フッ化物種対造影剤前駆体の比は、約1:10,000以上、約1:5000以上、約1:3000以上、約1:2000以上、1:1000以上、1:500以上、1:100以上、1:50以上、1:10以上、1:5以上、または、いくつかの場合において、1:1以上となるよう選択され得る。いくつかの実施形態において、フッ化物種は、造影剤前駆体の量を基準として、約10mol%または約5mol%または約3mol%または約2mol%または約1mol%または約0.5mol%または約0.1mol%または約0.05mol%または約0.01mol%で存在し得る。いくつかの実施形態においては、提供されるフッ化物種の少なくとも1種が18Fで富化されている。例えば、18F種対造影剤前駆体の比は、約1:1,000,000以上、または、約1:500,000以上、または、約1:250,000以上、または、約1:100,000以上、または、約1:50,000以上、または、約1:25,000以上、または、約1:10,000以上、約1:5000以上、約1:3000以上、約1:2000以上、1:1000以上、1:500以上、1:100以上、1:50以上、1:10以上、1:5以上、または、いくつかの場合において、1:1以上となるよう選択され得る。
いくつかの実施形態において、求核性フッ素化反応は、例えば、有機溶剤、非有機溶剤(例えば、水性溶剤)、または、これらの組み合わせといった1種以上の溶剤の存在下で実施される。いくつかの場合において、溶剤は、極性溶剤または非極性溶剤である。いくつかの実施形態において、溶剤は水などの水溶液である。溶剤は、少なくとも約0.001%の水、少なくとも約0.01%の水、少なくとも約0.1%の水、少なくとも約1%の水、少なくとも約5%、少なくとも約10%、少なくとも約20%の水、少なくとも約30%の水、少なくとも約40%の水、少なくとも約50%の水、または、それ以上を含む。いくつかの場合において、溶剤は、約0.1%〜100%の水、約1%〜約90%、約1%〜約70%、約1%〜約50%、または、約10%〜約50%を含んでいてもよい。いくつかの場合において、溶剤は、10%以下の水、5%以下の水、4%以下の水、3%以下の水、2%以下の水、1%以下の水、または0.5%以下の水を含む。いくつかの場合において、溶剤は、約0.01%水〜約5%の水または約0.01%水〜約2%の水または約0.1%水〜約0.2%の水を含む。
本発明の方法において有用な溶剤の他の非限定的な例としては、これらに限定されないが、非ハロゲン化炭化水素溶剤(例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等)、ハロゲン化炭化水素溶剤(例えば、ジクロロメタン、クロロホルム、フルオロベンゼン、トリフルオロメチルベンゼン等)、芳香族炭化水素溶剤(例えば、トルエン、ベンゼン、キシレン等)、エステル溶剤(例えば、酢酸エチル等)、エーテル溶剤(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジメトキシエタン等)およびアルコール溶剤(例えば、エタノール、メタノール、プロパノール、イソプロパノール等)が挙げられる。溶剤の他の非限定的な例としては、アセトン、酢酸、ギ酸、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリルおよびピリジンが挙げられる。いくつかの実施形態において、反応は、アセトニトリルなどの極性溶剤中で実施される。
一組の実施形態において、任意により添加剤を含む無水18F含有固体は、造影剤前駆体(例えば、トシレート前駆体)の溶液と接触させられ、得られる溶液が、選択された時間の間、高温に加熱されてもよい。溶液は、例えば、アセトニトリル溶液であり得る。他の実施形態において、存在している場合、18F種および添加剤の溶液は、固体造影剤前駆体または造影剤前駆体の溶液と接触させられる。
いくつかの実施形態は、造影剤前駆体を、約7未満、約6未満または約5未満のpHを有する溶液中のフッ化物種と接触させるステップを含む。いくつかの場合において、溶液は、約5〜約6または約5〜約7または約4〜約7のpHを有する。
いくつかの場合において、18F種、造影剤前駆体および任意により添加剤を含む溶液は、高温で一定の時間加熱される。例えば、溶液は、約50℃、約60℃、約70℃、約80℃、約90℃、約100℃、約110℃、約120℃、150℃、約170℃、約200℃、約225℃、約250℃またはそれ以上に、5分間以下、10分間以下、20分間以下、30分間以下の間加熱されてもよい。他の温度および反応時間が用いられ得ることが理解されるべきである。反応が完了したら、反応混合物は、次いで、冷却され(例えば、室温に)、任意により、水などの溶剤で希釈される。
フッ素化反応が完了したら、得られる造影剤は、任意により、1回以上の精製ステップに供される。いくつかの場合において、造影剤(例えば、式(II)を含む化合物)の合成、精製および/または配合は、カセットを備える自動反応システムを用いて準備され得、ここで、カセットは、合成モジュール、精製モジュールおよび/または配合モジュールを備えていてもよい。自動反応システムおよびカセットは本明細書に記載されている。
精製および単離は、クロマトグラフィのような分離技術を含む当業者に公知の方法、または、例えば、抽出、蒸留および結晶化といった技術分野において公知である種々の分離技術組み合わせを用いて実施され得る。一実施形態においては、高速液体クロマトグラフィー(HPLC)が溶離液として溶剤または溶剤の混合物と共に用いられて、生成物が回収される。いくつかの場合において、溶離液は、45:55の水:アセトニトリル混合物などの水とアセトニトリルとの混合物を含む。溶離液中の水の含有量は様々であり得るが、例えば、約1%〜約50%である。いくつかの場合において、HPLCは、C18カラムを用いて実施され得る。
生成物は、ろ過などの追加の精製技術を用いてさらに処理され得る。いくつかの場合において、造影剤は、HPLCを用いて精製されて、HPLC移動相および造影剤の溶液が生成され得る。HPLC移動相は、その後、C−18樹脂(例えば、C18 Sep−Pak(登録商標)カートリッジ)を通したろ過により、アスコルビン酸またはその塩の溶液、および、エタノール溶液について交換がなされる。いくつかの実施形態において、HPLC移動相および造影剤の溶液はC−18樹脂を通してろ過され、ここで、造影剤は樹脂に残留すると共に、アセトニトリルなどの他の構成成分および/または他の溶剤または構成成分は溶離を介して除去される。C−18樹脂は、アスコルビン酸またはその塩の溶液でさらに洗浄され、濾液は廃棄され得る。精製された造影剤を採収するために、C−18樹脂はエタノールなどの溶剤で洗浄され、得られる溶液が、任意により、本明細書に記載のとおりアスコルビン酸溶液またはその塩でさらに希釈される。
任意により、採収された生成物は、アスコルビン酸またはその塩などの1種以上の安定化剤と組み合わされる。例えば、精製された造影剤を含む溶液は、アスコルビン酸またはその塩の溶液でさらに希釈され得る。本明細書に記載されているとおり、配合物は、カセットを備える自動反応システムを介して調製され得る。
いくつかの場合において、造影剤生成物を含む溶液は、無菌生成物バイアルに滅菌ろ過され得る(例えば、13mm径、Millipore,Millex PVDF 0.22μm滅菌フィルタを使用)。無菌生成物バイアルは、造影剤(または他の構成成分)はすべて使用前にセプタムを介して無菌的に挿入され得るために、生成プロセス中には開封されない市販されている滅菌済ユニットであり得る。当業者は、0.22μm孔径のメンブラン通気フィルタおよび品質管理サンプル採取用シリンジを備える市販されている滅菌済ユニットを含む、好適なバイアルおよび生成構成要素を選択することが可能であろう。
滅菌ろ過の後に、個別の投与量がシリンジに充填され、ラベルが付され、および、臨床サイトに輸送され得る。投薬技術、キット、カセット、造影剤の合成のための方法およびシステム(例えば自動反応システム)、および、テスト手法が本明細書に記載されている。いくつかの実施形態において、生成物は3または5mLシリンジに分取され、配送のためにラベルが付される。ラベルは放射性医薬局で準備され、シリンジシールドおよび輸送容器に貼付され得る。臨床サイトにおける記録のために、追加のラベルを輸送容器に付してもよい。
造影剤は、本明細書に記載のとおり、注入、点滴またはいずれかの他の方法によって造影剤を患者に投与するステップ、および、患者の領域を造影するステップを含む患者を造影する方法を含む造影方法において用いられ得る。いくつかの実施形態においては、患者の心臓の一部分が造影される。
造影剤前駆体の例示的合成方法
造影剤前駆体およびその中間体を合成するための方法もまた提供されている。いくつかの場合において、造影剤前駆体(例えば、式(I)を含む化合物)を合成する方法は、向上した収率を示し、および/または、造影剤前駆体および/またはその中間体の大規模な合成を許容し得る。いくつかの実施形態により、生成物の損失と共に、時間がかかり、および/または、高価である可能性がある、クロマトグラフィなどの精製を伴わずに所望の生成物を合成することが可能となる。上記のとおり、図1は、心筋灌流の造影用の造影剤の合成に利用されている造影剤前駆体の例示的な例を示す。脱離基(すなわち、トシレート基)が本明細書に記載のとおり、例えば18Fといった造影成分で置換されており、これにより、造影剤が形成されている。
いくつかの実施形態においては、ヘテロ原子とアルキル、ヘテロアルキル、アリールまたはヘテロアリール基との間に結合が形成される反応を介して造影剤前駆体が形成される。例えば、反応は、エーテル化反応などのアルキル化反応であり得る。いくつかの実施形態において、この反応には、求電子性種と反応してエーテル結合を形成するヒドロキシル含有求核性種が関与する。本明細書において用いられるところ、「エーテル」または「エーテル結合」という用語は、技術分野における通常の意味を有しており、基R−O−R(式中、RおよびRは、同一であることも異なっていることも可能であると共に、これらのいずれかが置換されていてもよいアルキル、ヘテロアルキル、アリールまたはヘテロアリールである)を指す。例えば、反応は、ヒドロキシル含有種の酸素原子の求電子性種への求核性付加を含み得る。いくつかの実施形態において、反応は、例えば光延反応を介した、2つのアルコール間の結合を含み得る。
いくつかの場合において、エーテル化反応は、酸素原子と、アルキル、アリール、ヘテロアルキル、ヘテロアリール、炭素環式または複素環基との間における結合の形成を含む。図3は、ベンゼンジメタノール12とジクロロピリダジノン11との間のベンジルアルコール13を形成するエーテル化反応の例示的実施形態を示す。他の実施形態において、図4は、ヒドロキシクロロピリダジノン17と4−ブロモメチル安息香酸メチルとの間のピリダジノンエステル18が得られるエーテル化反応を示す。
いくつかの実施形態において、本発明の方法は、式(III):
Figure 0006254126
(式中:
Wは、任意により置換されているアルキルまたはヘテロアルキルであり;
は、任意により置換されているアルキルであり;
は水素またはハライドであり;
各Rは、同一であることも異なっていることも可能であると共に、脱離基で任意により置換されているアルキル、または、脱離基で任意により置換されているヘテロアルキルであり;および
nは、1、2、3、4または5である)
を含む化合物を求核剤と反応させるステップを含み、ここでは、求核剤が脱離基を置換して生成物が生成される。例えば、求核剤はエチレングリコールであり得、エーテル化反応は、本明細書に記載のとおり実施され得る。いくつかの実施形態において、反応は、カリウムt−ブトキシドまたは水酸化カリウムなどの塩基の存在下で実施される。いくつかの場合において、Rは、脱離基で置換されているアルキルであり、および/または、nは1である。いくつかの実施形態において、式(III)を含む化合物は以下の構造を含み:
Figure 0006254126
式中、脱離基はBrであり、および、反応の生成物は、式:
Figure 0006254126
(式中、RおよびRは本明細書において定義されているとおりである。)
を含む。
いくつかの場合において、式(III)を含む化合物は、構造:
Figure 0006254126
を含み、および、エーテル化反応の生成物は、式:
Figure 0006254126
を含む。
いくつかの場合において、式(III)を含む化合物は、求核剤として作用し得ると共に、求電子剤と反応して生成物を生成してもよい。例えば、Rは−CHOHであり得、求電子剤はエチレンオキシドであり得る。
いくつかの実施形態において、方法は、式(IV):
Figure 0006254126
(式中:
は、任意により置換されているアルキルであり;
は水素またはハライドであり;
Wは、任意により置換されているアルキルまたはヘテロアルキルであり;
各Rは、同一であることも異なっていることも可能であると共に、ヒドロキシルで任意により置換されているアルキルまたはヒドロキシルで任意により置換されているヘテロアルキルであり;および
nは、1、2、3、4または5である)
を含む化合物を反応体と反応させるステップを含み、ここでは、ヒドロキシル基は反応体の一部分で置換されて化合物に関連する脱離基が形成される。いくつかの場合において、Rは、ヒドロキシルで置換されているアルキルであり、および/または、nは1である。いくつかの実施形態において、式IVを含む化合物を反応させるステップは、三臭化リン、二臭化ピリジニウム、または、四臭化炭素とトリフェニルホスフィンとの組み合わせなどのハロゲン化剤への露出を含む。いくつかの実施形態において、ハロゲン化剤は三臭化リンである。
いくつかの実施形態において、Wは−O(CH)−であり;Rはt−ブチルであり;Rは塩化物であり;ならびに、Rは、ヒドロキシルで置換されているアルキルである。いくつかの場合において、nは1である。
いくつかの実施形態において、式(IV)を含む化合物は以下の構造を含み:
Figure 0006254126
および、生成物は、構造:
Figure 0006254126
を含む。
いくつかの実施形態において、式(IV)を含む化合物は以下の構造を含み:
Figure 0006254126
および、生成物は、構造:
Figure 0006254126
を含む。
いくつかの場合においては、式(IV)を含む化合物を合成する方法が提供されている。いくつかの場合において、方法は、式(IVa)および(IVb):
Figure 0006254126
(式中:
は、任意により置換されているアルキルであり;
は水素またはハライドであり;
mは、1、2、3、4または5以上であり;
はヒドロキシルまたはハライドであり;および
各RおよびRは、同一であることも異なっていることも可能であると共に、各々が任意により置換されているアルキル、ヘテロアルキルまたはアシル基である)
を含む化合物間のエーテル化反応を介して式(IV)を含む化合物を合成するステップを含み、
ここで、Rがヒドロキシルである場合、RおよびRの少なくとも一方が脱離基、もしくは、脱離基によって置換されることが可能である部分(例えばヒドロキシル)を含み、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる。
いくつかの場合において、式(IVa)を含む化合物は、構造:
Figure 0006254126
を含む。
式中、Rは、本明細書に記載のとおりである。
一組の実施形態において、式IIを含む化合物は、式(IVa)および(IVd):
Figure 0006254126
(式中:
は、任意により置換されているアルキルであり;
は水素またはハライドであり;
はヒドロキシルまたはハライドであり;および
およびRは、同一であることも異なっていることも可能であると共に、各々が任意により置換されているアルキル、ヘテロアルキルまたはカルボニル基である)
を含む化合物間のエーテル化反応により合成され、ここで、Rがヒドロキシルである場合、RおよびRの少なくとも一方が脱離基を含み、または、Rがハライドである場合、RおよびRの少なくとも一方がヒドロキシルを含んでいる。一組の実施形態において、Rはヒドロキシルであり、Rはカルボニル基であり、および、Rは置換されているアルキルである。いくつかの場合において、Rはヒドロキシルであり、Rはエステルであり、および、Rは脱離基で置換されているアルキルである。
いくつかの場合において、式(IVa)を含む化合物は、構造:
Figure 0006254126
を含む。
式中、Rは、本明細書において定義されているとおりである。
エーテル化反応は、本明細書に記載のとおり実施され得、および、炭酸カリウムなどの塩基への前駆体化合物の露出を含み得る。
いくつかの実施形態において、Rはハライドであり;ならびに、RおよびRは、各々、任意により置換されているアルキルである。いくつかの実施形態において、Rは塩化物であり;ならびに、RおよびRは、各々、ヒドロキシルで置換されているアルキルである。一実施形態において、式(IVe)および(IVf):
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
を含む生成物を形成する。
一実施形態においては、式:
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
を含む生成物を形成する。
一実施形態においては、式:
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
を含む生成物を形成する。
生成物は、水素化アルミニウムリチウム、水素化ホウ素リチウムまたは水素化ジイソブチルアンモニウム(DIBAL−H)などの還元剤で還元され、これにより、エステル基がアルコールに転換され得る。
図3における例示的実施形態により示されているとおり、ベンゼンジメタノール12およびジクロロピリダジノン11は、DMF中の炭酸カリウムの存在下でエーテル化反応を介して反応されてベンジルアルコール13が形成され得る。いくつかの実施形態において、二置換不純物もまた形成され、ここで、ベンゼンジメタノール12が両方のヒドロキシル基でアルキル化され、これらはクロマトグラフ精製を介して後に除去され得る。ベンジルアルコール13の臭化ベンジル14への転換は、ジクロロメタン中の三臭化リンなどの多様な臭化剤と共に実施され得る。その後の臭化ベンジル14のアルコール15への転換は、テトラヒドロフラン中のカリウムt−ブトキシドの存在下に、いくつかの場合においては高温下でエチレングリコールと反応されることにより完了され得る。次いで、アルコール15がカラムクロマトグラフィーにより精製されて、ベンジルアルコール13の合成中に形成された二置換不純物を含むすべての不純物が除去され得る。次いで、アルコール15は、DMAP、トリエチルアミンおよびジクロロメタンの存在下でp−トルエンスルホニルクロリドとさらに反応されて造影剤前駆体1が形成され得、これは、再結晶を介して精製され得る。図5に示されている方法を用いて、化合物11(例えば、2−(t−ブチル)−4,5−ジクロロピリダジン−3(2H)−オン)および化合物12(例えば、1,4−ベンゼンジメタノール)から開始されるアルコール15の合成の全収率は、精製方法としてクロマトグラフィを用いて、少なくとも10%、少なくとも20%、少なくとも30%または少なくとも40%であり得る。いくつかの場合において、化合物11および化合物12から開始されるアルコール15の合成の全収率は、精製方法としてクロマトグラフィを用いておよそ43%である。
図4は、ジクロロピリダジノン11のエチレングリコール中の水酸化カリウムとのクロロヒドロキシピリダジノン17が得られる反応を含み、次いで、クロロヒドロキシピリダジノン17がDMF中の炭酸カリウムの存在下で4−ブロモメチル安息香酸メチルと反応されて、ピリダジノンエステル18が得られ得る、アルコール13の合成に対する代替的なアプローチを示す。次いで、例えば、DIBAL−Hまたは水素化アルミニウムリチウムのいずれかを用いたピリダジノンエステル18の還元がベンジルアルコール13をもたらし得、これは、次いで、本明細書に記載のとおりアルコール15および造影剤前駆体1に転換され得る。図4に示されている合成スキームの1つの有利な機構は、図3に示されている合成スキーム中に形成されている可能性がある二置換不純物の還元または脱離である。これにより、クロマトグラフィを使用せずにベンジルアルコール13を精製することが可能となる。いくつかの場合においては、きわめて高純度の中間体化合物を得るために、再結晶法が単独で用いられ得る。例えば、ベンジルアルコール13は、酢酸イソプロピルからの再結晶により精製され得る。また、図4に示されている合成スキームは、高収率反応で、および、追加的な保護/脱保護ステップを必要とせずに実施され得るより簡素化されたプロセスを提供し得る。図4に示されている方法を用いて、化合物17(例えば、2−(t−ブチル)−4−クロロ−5−ヒドロキシピリダジン−3(2H)−オン)および4−ブロモメチル安息香酸メチルから開始されるアルコール15の合成の全収率は、精製にクロマトグラフィを用いずに、少なくとも10%、少なくとも20%、少なくとも30%または少なくとも40%であり得る。いくつかの場合において、化合物17および4−ブロモメチル安息香酸メチルから開始されるアルコール15の合成の全収率は、精製法としてクロマトグラフィを用いずに、48%である。
いくつかの実施形態において、エーテル化反応(例えば、図3、ベンジルアルコール13を形成するエーテル化反応を参照のこと)は塩基の存在下で実施される。塩基は、例えば、金属、または、炭酸塩、金属アルコキシド等などの金属塩であり得る。いくつかの実施形態において、塩基は、アミンなどの有機部分であり得る。塩基の例としては、これらに限定されないが、金属(例えば、ナトリウム金属)、ナトリウムt−ブトキシドまたはカリウムt−ブトキシドなどのアルコキシド、ナトリウムアミド、リチウムジイソプロピルアミドなどのアルカリ金属アミド、または、リチウムビス(トリメチルシリル)アミドあるいはナトリウムビス(トリメチルシリル)アミドなどのアルカリ金属ビス(トリアルキルシリル)アミド、アミン(例えば、トリエチルアミン、トリメチルアミン、Et(i−Pr)N、CyMeN、4−(ジメチルアミノ)ピリジン(DMAP)、2,6−ルタジン(lutadine)、N−メチルピロリジン(NMP)、キヌクリジン)、1,5−ジアザビシクロ[4.3.0]ノン−5−エン(DBN)、1,5−ジアザビシクロ[5.4.0]ウンデセ−5−エン(DBU)、アンモニウム塩(例えば、水酸化アンモニウム、テトラメチル水酸化アンモニウム)、アルカリおよびアルカリ土類炭酸塩、アルカリおよびアルカリ土類重炭酸塩、アルカリおよびアルカリ土類水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)、ならびに、アルカリおよびアルカリ土類水和物、(例えば、NaH、LiH、KH、KCO、NaCO、TlCO、CsCO、K(Ot−Bu)、Li(Ot−Bu)、Na(Ot−Bu)K(OPh)、Na(OPh))が挙げられる。いくつかの実施形態において、塩基は、ナトリウム金属、水素化ナトリウム、カリウムt−ブトキシド、ナトリウムメトキシド、炭酸カリウム、炭酸ナトリウム、炭酸セシウムまたは水酸化カリウムである。いくつかの実施形態において、塩基は炭酸セシウムである。いくつかの実施形態において、塩基は水酸化カリウムである。いくつかの実施形態において、塩基は水酸化ナトリウムである。いくつかの実施形態において、塩基はカリウムt−ブトキシドである。いくつかの実施形態において、塩基はテトラメチル水酸化アンモニウムである。エーテル化反応はまた、塩基の不在下でも実施され得ることが理解されるべきである。
1種以上の添加剤が、エーテル化反応混合物に組み込まれて反応を促進させてもよい。いくつかの場合において、エーテル化反応は触媒の存在下に実施され得る。例えば、触媒はアンモニウム塩などの塩であり得る。いくつかの実施形態において、触媒は、特にこれらに限定されないが、ヨウ化テトラエチルアンモニウムなどのハロゲン化テトラアルキルアンモニウムであり得る。いくつかの実施形態において、触媒は、相間移動触媒であり得る。本明細書において用いられるところ、「相間移動触媒」という用語は、例えば、化学反応の課程において第1の相から第2の異なる相への化合物の移動を促進させることが可能であるいずれかの種を指す。いくつかの実施形態において、相間移動触媒は、一の相から化学反応が進行する異なる相への化合物の移動を増大させる。相間移動触媒のいくつかの例としては、これらに限定されないが、ベンジルトリエチル塩化アンモニウム、テトラブチル塩化アンモニウム、テトラエチル塩化アンモニウム、テトラブチル硫酸アンモニウム、テトラオクチル硫酸アンモニウムおよびテトラメチル水酸化アンモニウムが挙げられる。相間移動触媒は、例えば、塩基または他の化学薬品との組み合わせで用いられ得る。いくつかの実施形態において、反応は、ベンジルトリエチル塩化アンモニウムなどの相間移動触媒および水酸化ナトリウムへの露出を含む。
エーテル化反応は、任意により、1種以上の溶剤の存在下に実施され得る。溶剤は、例えば、有機溶剤(例えば、トルエン)、水性溶剤、または、これらの組み合わせであり得る。いくつかの場合において、溶剤は、極性溶剤(例えば、極性プロトン性溶剤、極性非プロトン性溶剤)であり得る。極性溶剤の例としては、これらに限定されないが、アセトン、酢酸エチル、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトニトリル、アルコールまたはこれらの組み合わせが挙げられる。一組の実施形態において、エーテル化反応は、DMFの存在下で実施される。一組の実施形態において、エーテル化反応は、THFの存在下で実施される。いくつかの場合において、エーテル化反応は、イオン性液体の存在下で実施される。いくつかの実施形態において、エーテル化反応は、溶剤の不在下で実施される。例えば、化合物は、純粋なエチレングリコール中で反応され得る。
いくつかの場合において、エーテル化反応の構成成分は、約0℃〜約200℃のいずれかの温度で、一定の時間加熱または冷却される。いくつかの実施形態において、溶液は、約20℃〜約100℃または約40℃〜約70℃の温度に加熱される。いくつかの場合において、溶液は、約20℃、約30℃、約40℃、約50℃、約60℃、約70℃、約80℃またはそれ以上に加熱され得る。いくつかの実施形態において、エーテル化反応混合物は約20℃で維持される。いくつかの実施形態において、エーテル化反応混合物は室温で保持される。いくつかの実施形態において、エーテル化反応混合物は約60℃に加熱される。いくつかの実施形態において、エーテル化反応混合物は約65℃に加熱される。反応は、特定の温度で、約1時間以下、約2時間、約3時間、約4時間、約5時間、約10時間、約15時間、約20時間、約25時間、約30時間以上といった一定の時間加熱/冷却/保持され得る。一組の実施形態において、反応混合物は、約65℃で約4時間加熱される。実施形態の他の組において、反応混合物は約20℃で約18時間保持される。他の温度および反応時間もまた用いられ得ることが理解されるべきである。
いくつかの実施形態において、方法は、還元反応(例えば、図4、ピリダジノンエステル18の還元を参照のこと)を含む。「還元反応」という用語は、技術分野における通常の意味を有しており、少なくとも1つの原子の酸化状態が低くなる化学反応を指す。例えば、還元反応は、エステルまたはケトンのアルコールへの還元を含んでいてもよい。還元反応は、水素化アルミニウムリチウム、水素化ホウ素リチウム(メタノール添加剤有りまたは無しで)および水素化ジイソブチルアンモニウム(DIBAL−H)を含む当業者に公知である還元剤をテトラヒドロフラン、メチルテトラヒドロフランおよびジクロロメタンを含む多様な溶剤中で用いて実施され得る。一組の実施形態において、還元剤は、2−メチルテトラヒドロフランを共溶媒として用いる、トルエン中のDIBAL−Hの25%w/w溶液であり得る。
いくつかの実施形態において、本発明は、脱離基を含む化合物(例えば、中間体化合物)を合成する方法を提供する。脱離基は本明細書に記載のとおりである。いくつかの実施形態において、脱離基は臭化物などのハライドである。
いくつかの場合において、化合物は、容易に脱離基へ転換され得る部分(例えば、ヒドロキシル)を含む。例えば、化合物は、p−トルエンスルホニルクロリドとの反応でトシレート基に転換されるヒドロキシル基を含み得る。他の実施形態において、化合物は、光延化学を用いてホスフィン(例えば、トリフェニルホスフィン、TPP)およびジエチルアゾジカルボキシレート(DEAD)で処理されて脱離基を形成し得るヒドロキシル基を含み得る。
一組の実施形態において、方法は、ヒドロキシル基を脱離基に転換するステップを含む。例えば、方法は、ヒドロキシル基をハライド(例えば、臭化物)などの脱離基で置換するステップを含み得る。いくつかの実施形態においては、ヒドロキシル基で置換されている化合物がハロゲン化剤に露出される。いくつかの場合において、ハロゲン化剤は、三臭化リン、二臭化ピリジニウム、または、四臭化炭素とトリフェニルホスフィンとの組み合わせなどの臭素化剤である。一組の実施形態において、臭素化剤は三臭化リンである。
ハロゲン化反応は1種以上の溶剤の存在下で実施され得る。いくつかの実施形態において、溶剤は、ジクロロメタン、クロロホルム、ベンゼンまたはトルエンなどの有機溶剤である。一組の実施形態において、用いられる溶剤はジクロロメタンである。
いくつかの場合において、ハロゲン化反応混合物は、0℃〜約200℃の範囲のいずれかの温度に、一定の時間で加熱または冷却される。いくつかの実施形態において、溶液は、約20℃〜約100℃の範囲の温度に加熱される。いくつかの場合において、溶液は、間の温度を含めて、約20℃、約30℃、約40℃、約50℃、または、それ以上に加熱される。いくつかの実施形態において、ハロゲン化反応混合物は20℃で維持される。反応は、特定の温度で、10分間以下、30分間、1時間、2時間、3時間、4時間、5時間、10時間以上の一定の時間の間加熱/冷却/保持され得る。実施形態の他の組において、反応混合物は20℃で30分間保持される。他の温度および反応時間もまた用いられ得ることが理解されるべきである。
造影剤前駆体の合成は、開環反応、還元反応、保護/脱保護反応等を含む他の反応を含み得る。
いずれかの反応の後、本明細書に記載の化合物(例えば、中間体、生成物)は、1回以上の精製ステップに供され得る。精製および単離は、クロマトグラフィのような分離技術、または、技術分野において公知である種々の分離技術の組み合わせを含む当業者に公知の方法を用いて実施され得る。いくつかの実施形態において、カラムクロマトグラフィーは、固体相としてのシリカまたはアルミナと、溶離液としての溶剤または溶剤の混合物と共に用いられて生成物を採収する。いくつかの場合において、溶離液は、非極性溶剤と極性溶剤との混合物を含み得る。例えば、溶離液は、ヘプタンと酢酸エチルとの混合物を含み得る。
いくつかの場合において、合成または特定の反応は、精製を必要とせずに実施されてもよい。いくつかの実施形態において、化合物または中間体は再結晶を用いて精製されればよく、このプロセスは、生成物の所望のレベルの純度が得られるまで繰り返されてもよい。一実施形態においては、化合物または中間体は少なくとも1回、2回、3回または4回以上再結晶されて所望のレベルの純度が達成される。例えば、化合物または中間体は、50%、80%、85%、90%、95%、97%、98%、98.5%または99.8%以上の純度で入手され得る。再結晶は、単一の溶剤、または、溶剤の組み合わせを用いて達成され得る。いくつかの場合において、再結晶は、高温で化合物または中間体をヘキサンなどの溶剤中に溶解させ、次いで、溶液を冷却して沈殿物を生成させることにより達成される。特定の実施形態において、化合物はヘキサンから再結晶される。
いくつかの実施形態には開環反応が関与していてもよい。例えば、開環反応は、任意により触媒の存在下に環を含む化合物を求核剤に露出させることで実施され得る。いくつかの実施形態において、求核剤は水和物(例えば、H)であり得る。いくつかの実施形態において、開環反応は、ジルコニウム塩化物などの金属含有触媒の存在下に実施され得る。
いくつかの実施形態において、方法は、式(V):
Figure 0006254126
(式中:
Wは、任意により置換されているアルキルまたはヘテロアルキルであり;
は、任意により置換されているアルキルであり;および
は水素またはハライドである)、
を含む化合物を求核剤またはラジカル種と反応させて、式(VI)、
Figure 0006254126
を含む化合物を生成するステップを含む。
いくつかの実施形態は、式(V)を含む化合物の求核剤への露出を含む。いくつかの実施形態において、求核剤は水素化物イオン(例えば、H)である。いくつかの場合において、化合物を反応させるステップは化合物を水素化ジイソブチルアンモニウム(DIBAL−H)と接触させるステップを含む。
開環反応はまた、ラジカル反応を介して行われ得る。例えば、式(V)を含む化合物は、式(VI)を含む化合物を生成するために、水素ラジカル(例えばH・)などのラジカル種に露出され得る。いくつかの実施形態において、ラジカル種は、SmIなどの触媒により生成され得る。
いくつかの実施形態においては、式(VI)を含む化合物を合成するための方法が提供されている。例えば、エーテル化反応は式(Va)および(Vb):
Figure 0006254126
を含む化合物間で実施されて、式:
Figure 0006254126
(式中:
は、任意により置換されているアルキルであり;および
は水素またはハライドである)
を含む生成物が形成される。
例えば、式:
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
の生成物を形成する。
このエーテル化反応は、本明細書に記載のとおり実施され得ると共に、任意により相間移動触媒の存在下における、塩基(例えば、炭酸セシウム、水酸化ナトリウム、テトラメチル水酸化アンモニウム)への露出を含み得る。いくつかの実施形態において、エーテル化反応は、水酸化ナトリウムおよびベンジルトリエチル塩化アンモニウムへの露出を含む。いくつかの場合において、エーテル化反応は、相間移動触媒およびイオン性液体の存在下で実施される。
一組の実施形態において、光延条件下(例えば、PPhおよびDEAD)での、式(Vc)および(Vb):
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
(式中、Rは、任意により置換されているアルキルであり;および
は水素またはハライドである)
を含む生成物を形成する。
例えば、光延条件下(例えば、PPhおよびDEAD)での、式:
Figure 0006254126
を含む化合物間のエーテル化反応は、式:
Figure 0006254126
を含む生成物を形成する。
いくつかの実施形態は、式(VII):
Figure 0006254126
を含む化合物の合成をさらに含み得、式中、Rは、水素、ヒドロキシル、ハライド(例えば、塩化物)、O−アルキル、O−ヘテロアルキル、O−アリール、O−ヘテロアリール、S−アルキル、S−ヘテロアルキル、S−アリール、S−ヘテロアリール、アルキル、ヘテロアルキル、アリールまたはヘテロアリールであり得、これらのいずれかは任意により置換されていてもよい。いくつかの場合において、Rは、O−メチル、O−エチル、O−プロピル等などのO−アルキルである。いくつかの実施形態において、RはO−メチルである。例えば、方法は、酸の存在下での式(VII)を含む化合物が生成される4−ホルミル安息香酸メチルとエチレングリコールとの反応を含み得る。式(VII)を含む化合物は、例えば、脱離基を化合物に組み込むためにさらに反応され得る。いくつかの場合において、脱離基はヒドロキシル基である。一組の実施形態において、Rはメチルであると共に、カルボキシ基は、水素化アルミニウムリチウム、ナトリウムビス(2−メトキシエトキシ)アルミニウム水和物または水素化ホウ素リチウムなどの還元剤で処理されてベンジル型アルコールが生成される。
図5は、開環反応を用いてアルコール15を合成する例示的実施形態を示す。第1のステップは、酸の存在下でのエチレングリコールとの反応を介した、エーテル4−ホルミル安息香酸メチルまたは4−ホルミル安息香酸の対応するアセタールへの転換を含む。いくつかの実施形態において、4−ホルミル安息香酸メチルおよびエチレングリコールは、トルエンスルホン酸およびトルエンの存在下で反応される。溶剤は、共沸蒸留を用いて還流で加熱されて、反応が完了するよう操作するために生成されるすべての水が除去され得る。次いで、誘導された酸またはエステル19は、水素化アルミニウムリチウム、ナトリウムビス(2−メトキシエトキシ)アルミニウム水和物、水素化ホウ素リチウム(例えば、エステル用)またはボラン(例えば、酸用)でベンジルアルコール20に還元され得る。いくつかの場合において、水素化アルミニウムリチウムまたはナトリウムビス(2−メトキシエトキシ)アルミニウム水和物が還元剤として用いられ得る。次いで、ベンジルアルコール20が本明細書に記載のとおりエーテル化反応を介してジクロロピリダジノン11と反応されて化合物21が得られ得る。例えば、エーテル化反応は、特にこれらに限定されないが、ベンジルトリエチル塩化アンモニウムなどの多様な相間移動触媒の存在下で、炭酸セシウム、炭酸カリウムまたは水酸化ナトリウムと共に実施され得る。一組の実施形態において、エーテル化反応は、ジメチルホルムアミド中における炭酸セシウムの使用を含む。実施形態の他の組において、エーテル化反応は、トルエン中における1〜10%ベンジルトリエチル塩化アンモニウムに伴う水酸化ナトリウムの使用を含む。
次いで、化合物21のアセタール環が、水素化ジイソブチルアンモニウム(DIBAL−H)を用いて対応するアルコール15に開環される。いくつかの場合において、開環反応は、金属含有触媒(例えば、ジルコニウム塩化物)または有機触媒(例えば、9−ボラビシクロノナン(9−BBN)ダイマー)などの触媒の存在下で実施され得る。
いくつかの場合において、開環反応の構成成分は、約−78℃〜約200℃のいずれかの温度に一定の時間かけて加熱または冷却される。いくつかの実施形態において、反応混合物は、約−78℃〜約室温のいずれかの温度で保持され得る。いくつかの場合において、反応混合物は、間の温度すべてを含む、約−60℃、約−50℃、約−40℃、約−30℃、約−20℃、約−10℃、約0℃、または、それ以上で保持され得る。いくつかの実施形態において、開環反応混合物は−40℃で保持され得る。いくつかの実施形態において、開環反応混合物は室温で保持され得る。反応は、特定の温度で、約10分間、約30分間、約1時間、約2時間、約3時間、約4時間、約5時間、約10時間、または、これらの間のいずれかの時間、それ以上などの一定の時間加熱/冷却/保持され得る。実施形態の他の組において、反応混合物は、約−40℃で約1時間保持され得る。他の温度および反応時間もまた用いられ得ることが理解されるべきである。
化合物16の精製は、クメンおよび/または酢酸イソブチルからの連続的な再結晶化により実施され得る。例えば、実施例37Eを参照のこと。
図6に示されている方法を用いて、4−ホルミル安息香酸メチルから開始されるアルコール15の合成の全収率は、精製にクロマトグラフィを用いて、または、用いずに、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%または少なくとも50%であり得る。いくつかの場合において、4−ホルミル安息香酸メチルから開始されるアルコール15の合成の全収率は、精製にクロマトグラフィを用いずにおよそ50%である。
本明細書に記載の造影剤前駆体を合成する方法のいずれかは、式(VIII):
Figure 0006254126
を含む化合物を脱離基を含む試薬に露出させて、式(IX):
Figure 0006254126
(式中、Wは、任意により置換されているアルキルまたはヘテロアルキルであり;
は、任意により置換されているアルキルであり;
は水素またはハライドであり;および
Lは脱離基である)
を含む化合物を形成する操作をさらに含み得る。
いくつかの場合において、試薬はスルホネート含有種であり、脱離基はスルホネート含有基(例えば、造影剤のスルホネート含有前駆体)である。いくつかの実施形態において、スルホネート含有基は、メシレート、トシレートまたはトリフレートである。一組の実施形態において、スルホネート含有基はトシレートである。脱離基の追加の例は本明細書に記載のとおりである。
例えば、式:
Figure 0006254126
を含む化合物を脱離基を含む反応体に露出させる操作で、式:
Figure 0006254126
(式中、R、RおよびLは本明細書に記載のとおりである)
を含む生成物が形成される。
一実施形態においては、式:
Figure 0006254126
を含む化合物をトシレート基を含む反応体に露出することで、式:
Figure 0006254126
を含む生成物が形成される。
本明細書に記載の造影剤前駆体を合成するステップのいくつかの実施形態は、新規な化合物(例えば、中間体)を提供する。いくつかの実施形態において、化合物は、構造:
Figure 0006254126
を含む。
造影剤の例示的方法および用途
いくつかの実施形態において、本発明は、造影剤1を含む組成物または配合物を被験者に注入、点滴またはいずれかの他の公知の方法によって投与するステップ、および、対象となる被験者の領域を造影するステップを含む、被験者において造影する方法を含む造影方法に関する。本明細書に記載されているとおり、(2−t−ブチル−4−クロロ−5−[4−(2−(18F)フルオロエトキシメチル)−ベンジルオキシ]−2H−ピリダジン−3−1または造影剤1は、式:
Figure 0006254126
を含む。
造影剤1は、電子移動鎖のミトコンドリア複合体Iに高い親和性をもって結合する。造影剤1は、心筋層における高密度のミトコンドリアにより、心臓に対する選択的な摂取を示す。関心領域としては、これらに限定されないが、心臓、心血管系、心臓血管、血管(例えば、動脈、静脈)脳および他の器官が挙げられ得る。血流、心臓壁運動等などの対象となるパラメータを、本発明の方法および/またはシステムを用いて造影し、検出することが可能である。本発明のいくつかの態様においては、心筋灌流を含む灌流を評価するための方法が提供されている。
いくつかの実施形態において、本発明の方法は、(a)被験者に、造影剤1を含む組成物を投与するステップ、および、(b)被験者の少なくとも一部分の少なくとも1つの画像を取得するステップを含む。いくつかの場合において、取得するステップは、被験者の少なくとも一部分における造影剤1の分布を可視化する陽電子放出断層撮影(PET)を採用する。当業者により理解されるであろうとおり、本発明の方法を用いる造影は、被験者の全身造影、または、対象となる被験者の特定の身体領域または組織の造影を含み得る。例えば、被験者が心筋虚血を患っていることが分かっている場合、または、心筋虚血の疑いがある場合には、本発明の方法を用いて被験者の心臓が造影され得る。いくつかの実施形態において、造影は、心臓に限定され得、または、心臓およびその関連する血管系を含み得る。
本発明のいくつかの実施形態においては、疾患もしくは状態を診断するまたはその診断を補助する方法、疾患もしくは状態の処置の効力を査定する方法、または、既知であるか疑いのある心血管系疾患または状態の被験者において造影する方法が提供されている。心血管系疾患は、心臓、または、血管系から養分を得ている他の器官もしくは組織のいずれかの疾患であることが可能である。血管系は、冠動脈、および、末梢血管系および脳に栄養分を供給するすべての末梢動脈、ならびに、静脈、細動脈、細静脈および毛細血管を含む。心血管系疾患の例としては、冠動脈疾患、心筋梗塞、心筋虚血、狭心症、うっ血性心不全、心筋症(先天性または後天性)、不整脈または弁膜性心疾患などの心臓の疾患が挙げられる。いくつかの実施形態において、本明細書に開示の方法は、冠動脈疾患および/または心筋灌流の監視および計測に有用である。例えば、本明細書に記載の方法は、冠動脈疾患の在不在および/または心筋梗塞の在不在を判定することが可能である。心臓の状態は、疾患によるものではなく例えば、外傷性傷害、外科的傷害といった傷害による損傷を含み得る。いくつかの場合において、本発明の方法は、心筋虚血のパラメータまたは在不在、安静時(R)および/または負荷時(S)心筋血流量(MBF)、冠動脈血流予備能(CFR)、冠動脈疾患(CAD)、左心室駆出率(LVEF)、収縮末期用量(ESV)、拡張末期用量(EDV)等を測定するステップを含み得る。
いくつかの場合において、本発明の方法が適用される被験者は、心筋虚血または心筋梗塞を示唆する徴候または症状を有し得る。いくつかの場合において、本発明の方法は、被験者の疾患のリスクが高いことを示す早期または前疾患状態を特定するために用いられることが可能である。いくつかの事例においては、本発明の方法は、被験者における心筋梗塞または心臓死などの将来的な心イベントのリスクを判定するために用いられることが可能である。本発明の造影方法は、心筋虚血障害もしくは状態を有していると既に診断された被験者、または、このような状態の履歴もしくは診断を有していない被験者における心筋虚血を検出するために用いられることが可能である。他の事例において、本発明の方法は、心筋虚血障害もしくは状態の診断をもたらすか、または、その診断を補助する計測値を得るために用いられることが可能である。いくつかの事例においては、被験者は、心筋虚血障害または状態に対する薬物治療を既に受けていてもよく、一方で、他の事例においては、被験者は心筋虚血に対する治療を受けていなくてもよい。いくつかの実施形態において、本発明の方法は、疾患または状態に対する処置の効力を査定するために用いられることが可能である。例えば、心臓は、被験者の心臓に作用している状態の処置の前、最中、および/または、その後に、本発明の造影剤を用いて可視化されることが可能である。このような可視化は、疾患または状態を査定するため、および、例えば治療、手術、投薬といった被験者に対する処置レジメンの選択を補助するために用いられ得る。
PET造影剤は、高い初回循環抽出率を有し得ると共に、広い範囲にわたって区域心筋血流を辿ることが可能である。これらの特質により、冠動脈血流予備能のより低レベルの低下の検出、および、絶対的心筋血流量(MBF)の正確な推測が可能とされ得る。本発明のPET造影剤はこれらのおよび他の特性を提供すると共に、地域のPET放射性医薬局から単位投与量でも入手可能であり、現場でのサイクロトロンまたは高価なRb−82ジェネレータに対する必要性が排除される。
本発明のいくつかの実施形態において、造影剤1は、陽電子放出断層撮影(PET)、または、特にこれらに限定されないが、SPECT造影法を含む他の造影方法との組み合わせで造影剤として用いられる。本発明のいくつかの実施形態においては、造影剤1が被験者に投与され、および、PETを用いて被験者における像が形成される。当業者には公知となるであろうとおり、PETは、一定期間にわたって、単一の被験者における一連の画像および計測値の入手を可能とする非侵襲性の技術である。本発明の方法において用いられるPET造影は、公知のシステム、方法および/またはデバイスを用いて実施され得る。本発明のいくつかの実施形態において、PET造影は心臓造影システムを用いて実施される。心臓造影システムは、PET造影機能および造影機能を駆動するよう構成された制御ユニットを備えて、被験者への造影剤1の投与の前、その最中および/またはその後に、被験者の一部分でPET造影手法を実施し得る。いくつかの場合において、制御ユニットは、PET造影手法が実施されるよう造影機能を駆動するよう構成されている。制御ユニットは、コンピュータシステムおよび/またはソフトウェアを備えていてもよい。このような事例において、コンピュータシステムは、画像を取得および/または解析するための要求された方法を実行するようプログラムまたは構成されていればよい。さらに、システムは、機器により読み取り可能であるデータ保存装置を備えていてもよく、これにより、機器により実行可能な1セットの命令が具体化されて画像を取得および/または解析するための要求された方法が実施されてもよい。
投与されるべき造影剤の有用な投与量、および、特定の投与モードは、本明細書に記載のとおり、および、当業者には容易に明らかとなるであろうとおり、年齢、重量および造影される特定の領域、ならびに、用いられる特定の造影剤、意図される診断上の使用、および、例えば懸濁液、エマルジョン、微小球、リポソーム等といった配合物の形態などの要因に応じて様々である。
いくつかの実施形態において、造影剤は低投与量で投与され、投与量は望ましい診断上の効果が達成されるまで増やされる。一実施形態においては、上記の造影剤は、静脈注射によって、通常は生理食塩水溶液中で、約0.1〜約100mCi/70kg体重の投与量(および、この範囲内における投与量範囲および特定の投与量のすべての組み合わせおよびサブコンビネーション)、または、約0.5〜約50mCiまたは約0.1mCi〜約30mCiまたは0.5mCi〜約20mCiで投与され得る。核医学造影剤として使用するために、静脈注射により投与される造影剤、投与量は、約0.1pmol/kg〜約1000pmol/kg(ならびに、この範囲内における投与量範囲および特定の投与量のすべての組み合わせおよびサブコンビネーション)の範囲であり得、ならびに、いくつかの実施形態においては、150pmol/kg未満であり得る。
造影システムおよびその構成要素は当業者に公知であろう。例えばSiemens Biograph−64スキャナといった、多くの造影システムおよび構成要素(例えば、カメラ、画像解析用ソフトウェア等)が公知であると共に市販されている。画像の撮影の最中の患者の動きによって空間的なぶれおよび人為的な結果が生じてしまう可能性があるために、灌流静止画像における動きを低減させるか排除するいずれかの技術、ソフトウェアまたは器具が本発明の方法において用いられ得る。本発明のいくつかの実施形態において、画像は、リスト方式で取得されてもよく、および、静止画像、動画像または同期画像であってもよい。画像の取得に適切な期間は当業者によって判定されることが可能であると共に、心臓造影システム、造影剤(例えば、投与される量、造影剤の組成、被験者のパラメータ、関心領域)に応じて様々であり得る。本明細書において用いられるところ、「画像を取得する期間」または「撮像期間」は、単一の連続した画像を得るための時間であり得、または、1つ以上の個々の独立した画像を得る間の期間であり得る。それ故、画像撮影時間は、被験者の1つ以上の領域の1つ以上の画像が撮影される間の時間であることが可能である。
本発明のいくつかの実施形態において、被験者への本発明の造影剤の投与後の画像撮影時間は、約30秒〜約60分間、約1分〜約30分間、約5分間〜約20分間、または少なくとも約1分、約3分間、約5分間、約6分間、約7分間、約8分間、約9分間、約10分間、約15分間、約20分間、約30分間、約45分間、約60分間、または、それ以上であり得る。例えば、安静時/負荷時造影プロトコルにおいては、少なくとも2つの画像撮影する期間があり、少なくとも1つは安静時セグメントに対応していると共に、少なくとも1つが負荷時セグメントに対応している。いくつかの実施形態において、造影は、造影期間にわたって連続的であり得るか、または、画像は、周期的または同期造影における場合のように間隔をおいて撮影されてもよい。
本発明のいくつかの態様において、同期撮影は、造影剤1などの方法によって調製された造影剤が投与された被験者から画像を取得するために用いられる。同期造影は、本発明の種々の態様において用いられることが可能であり、例えば、被験者の鼓動している心臓の画像を提供し得、および、心臓がどの程度良好に鼓動しているかの機能的な評価を実現するために用いられ得る。同期造影は、画像撮影時間の最中に特定の間隔で、被験者から個別の画像を取得することにより実施されることが可能である。同期造影の非限定的な例は、画像撮影時間が約10分間の長さである場合、その10分間の間に反復的な間隔で画像が取得される事例である。この間の画像の撮影頻度は撮影者によって設定されることが可能であり、例えば、頻度は、少なくとも約1msec、約5msec、約10msec、約20msec、約50msec、約100msec、約125msec、約250msec以上毎であることが可能である。間隔の長さは心臓のR波などのイベントにより開始されるよう撮影者によって設定され、この間隔の長さは、R波間隔に対しては、所望される時間区分の数/R波により定義される。当業者は、同期画像撮影のコンセプトおよび方法に精通しているであろうと共に、既知の方法を用いて、造影剤1を造影剤として用いて同期画像を得ることが可能である。
同期造影における画像撮影は特定の間隔で開始されることが可能であり、例えば、画像撮影は、心臓のEKGを利用して開始されることが可能である。非限定的な例においては、R波−同期走査で画像の撮影が開始されてもよく、心臓の1回のR波と次のR波との間の時間の平均長が保存可能である。次いで、収集される画像の数を決定することが可能である。例えば、125msecで第1の画像、250msecで第2の画像、375msecで第3の画像等が撮影可能である(すなわち、R間隔での画像は125msec間隔で撮影され得る)。次のR間隔が始まる際に画像の収集がリセットされ、次いで、画像データが、そのR間隔開始時間から125msecで「第1の」画像、次いで、そのR間隔開始時間から250msecで収集された「第2の」画像等として取得される。それ故、各R間隔の間に、画像撮影が一連の画像の画像の最初のものに追加されて、R間隔の各々の開始時にゼロ時間がリセットされながら、所望の頻度で一連の画像が収集することが可能であるよう、一連の連続した画像に漸増していくこととなる。撮影された同期画像は、心臓の動きの画像をもたらすために用いられることが可能であると共に、心臓壁厚さ、心臓の1つ以上の部分が動いていないか、または、拍動している(例えば、壁運動異常)かどうかに関する情報を提供することが可能である。同期造影を使用することで、駆出率などの心臓の灌流を評価し、ならびに、壁運動の低減、欠如、奇異性または非同期性を可視化および特定するためのデータが提供され得る。同期造影を使用することで、心筋灌流のアセスメントを向上し、心機能を評価し、ならびに、非同期壁運動を可視化および特定するためのデータもまた提供され得る。
いくつかの場合においては、PET造影を用い、心筋虚血の代謝結果を実証するこの技術の機能を介して心筋生存能を査定し得る。PET造影を用いることで、血管再生後に改善する可能性のある心筋のセグメントを特定することが可能である。いくつかの場合においては、PET造影を冠動脈疾患の検出に用い得ると共に、トレッドミル運動負荷テストを行うことができない被験者への代替的なテストとされることも可能である。いくつかの実施形態において、負荷試験法(例えば、薬理学的負荷、運動負荷)を本発明の方法を用いるPETと一緒になって採用して、造影剤の点滴の最中に心機能の1つ以上のパラメータを定性的または定量的に査定し得る。例えば運動または薬理学的負荷を用いる負荷を誘導させるための薬剤および方法は技術分野において周知である。負荷の好適な誘導は、確立されている、既知の薬剤および方法を用いて実施されることが可能である。本発明の方法を用いて有用に計測される機能としては、これらに限定されないが、種々の実施形態においては、心筋灌流の造影、心室機能の造影または計測、および、冠動脈血流速度の計測が挙げられる。
いくつかの場合において、被験者の心臓を造影する方法は、被験者が安静にしている間に造影剤1の第1の投与量を被験者に投与するステップ、心臓の少なくとも1つの第1の画像を取得するステップ、続いて、被験者に負荷を与えるステップ(例えば、運動負荷または薬理学的負荷)、および、負荷の期間中に造影剤1の第2の投与量を被験者に投与するステップ、ならびに、心臓の少なくとも1つの他の画像を取得するステップを含み得る。
いくつかの実施形態において、安静時/負荷時プロトコルにおける運動−誘導負荷の最中に用いられる造影剤1の投与量は、薬理学的−誘導負荷に必要とされる量よりも多く、運動−誘導負荷時投与量対薬理学的−誘導負荷時投与量の比は、約1.2以上、約1.3、約1.4、約1.5、約1.6、約1.7、約1.8、約1.9、または、それ以上である。薬理学的負荷に関して、安静時/負荷時造影方法を含む本発明のいくつかの実施形態においては、薬理学的負荷の最中に造影のために投与される造影剤1の投与量は、安静時の造影のために投与される造影剤1の投与量の少なくとも2倍である。運動負荷に関して、安静時/負荷時造影方法を含む本発明のいくつかの実施形態においては、運動誘導負荷の最中に造影のために投与される造影剤1の投与量は、安静時の造影のために投与される造影剤1の投与量の少なくとも3倍である。本発明のいくつかの実施形態においては、最初の安静時の造影、これに続く、負荷を伴う造影に関して、安静時に投与される造影剤1の投与量は、負荷時に投与される造影剤1の投与量よりも少なくなる。
いくつかの場合において、本発明の造影方法は、本明細書に記載のとおり、1日(例えば、約24時間未満、約12時間未満、約6時間未満、約4時間未満、約2時間未満、約1時間未満)で完了し得る。他の事例において、この方法は、例えば、約24時間超、約36時間または約48時間といったより長い期間で完了してもよい。
造影剤1は、例えば、薬学的に許容可能な形態といったいずれかの好適な形態で提供され得る。いくつかの場合において、造影剤1は、薬学的に許容可能な組成物中に含まれる。いくつかの実施形態において、造影剤1は、エタノール、アスコルビン酸ナトリウムおよび水を含む組成物として提供される。いくつかの場合において、組成物は、20重量%未満のエタノール、15重量%未満のエタノール、10重量%未満のエタノール、8重量%未満のエタノール、6重量%未満のエタノール、5重量%未満のエタノール、4重量%未満のエタノール、3重量%未満のエタノール、または、それ未満のエタノールを含む。いくつかの場合において、組成物は、100mg/mL未満、75mg/mL未満、60mg/mL未満、50mg/mL未満、40mg/mL未満、30mg/mL未満、または、それ未満のアスコルビン酸ナトリウムを水中に含む。特定の非限定的な実施形態において、造影剤1は、4%未満のエタノールおよび50mg/mL未満のアスコルビン酸ナトリウムを水中に含む水溶液として提供される。
注入用の造影剤1組成物は注入シリンジ中に調製され得る。造影剤1は、放射性医薬局(例えば、本明細書に記載の方法を用いて)および/またはPET生産センターにより調製されて、投与のために医療従事者に提供されてもよい。本発明のいくつかの態様において、造影剤1は、例えば、シリンジまたは他の容器中に、≦50mg/mLの水中のアスコルビン酸ナトリウム、≦4重量%のエタノールおよび約1〜14mCiの造影剤1と共に提供される。造影剤1の量は、安静時または負荷時投与量が投与されるかに応じて様々であり得る。例えば、造影剤1は、負荷時投与量投与における使用のためのシリンジまたは容器においては、安静時投与における使用のためのシリンジにおける場合よりも多量に提供されていてもよい。造影剤1の投与量は、実際上の投与量体積を達成するために必要な場合には、生理食塩水で希釈されてもよい(例えば、本明細書に記載のとおり)。例えば、造影剤1の放射能濃度が過剰に高く、被験者に対する適切な投与量のために0.1mLしか必要とされない場合、0.5mL〜4mL以上の投与用の造影剤1溶液をシリンジが含有するよう、溶液を例えば無菌生理食塩水で希釈することが可能である。本発明のいくつかの実施形態において、造影剤1に対する注入体積は、0.5〜5ml、1〜4ml、2〜3ml、少なくとも0.5ml、1ml、2ml、3ml、4ml、5ml、6ml、7ml、8ml、9ml、10ml以上である。当業者は、どのようにして造影剤1を希釈して、投与のための投与量体積を十分にもたらすかを認識しているであろう。本発明のいくつかの態様において、造影剤1は、バイアル、ボトルまたはシリンジなどの容器中に提供されると共に、必要に応じて、投与用のシリンジなどの好適な容器中に移されてもよい。
吸着性のプランジャーチップを備えるシリンジは、注入後においても、シリンジ中に造影剤1活量を10〜25%残留させてしまう場合がある。3mLもしくは5mL NORM−JECT(Henke Sass Wolf,Dudley,MA)などの吸着性のプランジャーチップを備えていないシリンジ、または、吸着性のプランジャーチップを備えていない他の同等のシリンジが用いられ得る。シリンジにおける吸着を低減させることで、シリンジから移されて、本発明の方法において被験者に投与される造影剤1の量を高めることが可能である。本発明の方法において用いられるシリンジは、造影剤1を含んでいると共に、非吸着性であるか、または、低吸着性のシリンジであり得る。いくつかの実施形態において、非吸着性または低吸着性シリンジは、造影剤1の吸着が低減するよう被覆されるか処理されたシリンジである。いくつかの実施形態において、非吸着性または低吸着性のシリンジは、吸着性のプランジャーチップを備えていないシリンジである。いくつかの実施形態において、本発明で併用されるシリンジは、含有する造影剤1の20%未満、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%または0.5%を吸着する。本発明の特定の態様において、造影剤1を含有するシリンジは、ゴムまたはラテックス製のチップをプランジャーに備えていない。いくつかの場合において、本発明の方法において用いられるシリンジは、シリンジが含有する造影剤1の20%未満、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%または0.5%を吸着するプランジャーを備えている。本発明のシリンジはまた、アスコルビン酸ナトリウム、エタノールおよび水を含んでいてもよく、ならびに、本発明の特定の実施形態は、造影剤1を、4%未満のエタノールおよび50mg/mL未満のアスコルビン酸ナトリウムを水中に含む溶液中にを含有するシリンジを含む。本発明のシリンジは、ラテックスフリー、ゴムフリーおよび/または潤滑剤フリーであるシリンジであり得る。本発明のシリンジは、造影剤1を約1.5〜約14mCiの量で含有し得る。本発明のシリンジは、約20mCi以下の造影剤1を含有し得る。
造影剤1を含む組成物の構成成分は、被験者への投与モードに応じて選択され得る。本発明の造影剤を所望の組織、細胞、器官または体液に効果的に送達させる種々の投与モードは当業者に公知であろう。いくつかの実施形態において、造影剤は、当業者に公知の方法を用いて、静脈内に投与(例えば、静脈内大量注入)される。本明細書において用いられるところ、「被験者に投与される」投与量は、被験者の身体に入る例えば造影剤1といった造影剤の量を意味する。いくつかの実施形態において、シリンジ、チューブ、針、カテーテル、または、造影剤の被験者への投与にもしくは用いられた他の器具の中への造影剤1などの造影剤の部分的な残留などの要因により、投与のために準備されたシリンジまたは他の器具中にあると計測または測定される造影剤1などの造影剤の量は、被験者に投与される投与量中の量よりも多くてもよい。いくつかの実施形態において、造影剤の注入に続いて、造影剤1の投与に用いたものと同一のチューブ、針、ポート等を用いて、通常の生理食塩水が被験者にフラッシング注入される。フラッシングは、造影剤1を投与した直後に、または、投与から1分間以下、2分間、3分間、5分間以上後に実施され得る。フラッシング用の生理食塩水または他の薬剤の体積は、5ml以下、6ml、7ml、8ml、9ml、10ml、15ml、20ml以上であり得る。当業者により理解されるであろうとおり、シリンジまたは他の容器を用いて造影剤1が投与される実施形態において、被験者に投与される造影剤1の実際の量は、容器中に残留している造影剤1に対して補正され得る。例えば、容器、ならびに、容器から、および、被験者に造影剤を運んだチューブおよび針、または、送達機器中に残留している放射活性の量は、造影剤が被験者に投与された後に測定することが可能であり、開始時の放射活性の量と投与後に残留している量との差が、被験者に送達された量を示している。いくつかの場合において、容器または注入デバイス(例えば、カテーテル、シリンジ)は、造影剤1が投与された後に溶液(例えば、生理食塩水溶液)ですすがれてもよい。
本発明のいくつかの実施形態において、所与の時間にわたる被験者に投与される造影剤1の総量は、例えば、1回の処置で、約50mCi以下、40mCi以下、30mCi以下、20mCi以下、18mCi以下、16mCi以下、15mCi以下、14mCi以下、13mCi以下、12mCi以下、10mCi以下、8mCi以下、6mCi以下、4mCi以下、2mCi以下、1mCi以下、0.5mCi以下である。投与される総量は、1分間以下、10分間、30分間、1時間、2時間、6時間、12時間、24時間、48時間以上の所与の時間内に被験者に投与される1回の投与量または複数回の投与量に基づいて判定され得る。
放射線量の研究に基づいて、被験者に投与される望ましい最大投与量は、当業者により理解されるであろうとおり、放射線量を、危険臓器に対して約5rem、および/または、約1rem実効線量(ED)以下に制限する造影剤1の量の判定に基づき得る。特定の実施形態において、投与される造影剤1の望ましい最大投与量または総量は、30分間以下、1時間、2時間、6時間、12時間、24時間、48時間以上の時間にわたって、約25mCi以下または約14mCi以下である。いくつかの実施形態において、被験者に投与される造影剤1の最大投与量は3.5μg/体重50kg/日未満であり得る。換言すると、本発明のいくつかの実施形態において、被験者に投与される造影剤1の最大投与量は、約0.07μgの造影剤1/体重1kg/日未満であり得る。
いくつかの実施形態において、本発明の方法は、被験者に第1の投与量(例えば、安静時投与量)の造影剤1を被験者が安静時にある間に投与するステップ、および、第1のPET造影手法(例えば、PET安静時造影手法)を実施するステップ、および、被験者の一部分の少なくとも第1の画像を取得するステップを含む。いくつかの場合においては、被験者が安静時にある間に造影剤1などの造影剤を投与した後、被験者は負荷に供され得、および、この負荷の最中に、造影剤1などの造影剤が第2の投与量(例えば、負荷時投与量)で被験者に投与され、および、第2のPET造影手法(例えば、PET負荷時造影手法)が被験者に実施され、および、被験者の一部分の少なくとも1つの他の画像が撮影され得る。上記は、安静時−負荷時テストと称され得る方法の一例である。第1のPET造影手法の完了と第2の造影剤投与量の投与との間の時間が待ち時間と称される。いくつかの場合において、安静時−負荷時テストは、48時間未満、36時間未満、24時間未満、12時間未満、6時間未満、5時間未満、4時間未満、3時間未満、2時間未満、1時間未満、30分間未満、または、それ以下の時間の間に完了し得る。
いくつかの実施形態において、第1の投与量において、安静時に被験者に投与される造影剤1の量(例えば、安静時−負荷時テストにおける安静時投与量)は、約1mCi〜約5mCi、約2mCi〜約4mCi、約2.5mCi〜約3.5mCiまたは約3mCiである。第1の投与量の造影剤1の投与に続いて、PET造影手法が実施され得、および、少なくとも1つの第1の画像が被験者の少なくとも一部分で撮影され得る。
いくつかの場合において、負荷の最中に被験者に投与される造影剤1の量は、安静時に被験者に投与される造影剤1の量に基づいていてもよい。換言すると、負荷中の投与は、少なくとも部分的に、投与比(DR)(例えば、負荷−投与量対安静時−投与量の比)に基づいていてもよい。DRは当業者に公知であろうとおり数多くの要因に応じていてもよく、いくつかの場合においては、被験者に負荷を誘導する方法に応じていてもよい。いくつかの場合において、DRは、1〜5、1〜4、1〜3、2〜5または2〜4である。いくつかの場合において、DRは、少なくとも1、少なくとも1.5、少なくとも2、少なくとも3、少なくとも4または少なくとも5である。いくつかの場合において、DRは、造影剤の第1の投与量よりも2.5〜5.0または2.5〜4.0または3.0〜4.0または3.0〜5.0倍大きい。いくつかの場合において、運動負荷に供される被験者に必要とされるDRは、薬理学的負荷に供される被験者に用いられるDRおよび/または時間間隔よりも大きい。これは、部分的に、運動に伴う放射活性の正味での心筋摂取が低いことに起因し得る。いくつかの場合において、運動負荷に供した被験者に採用したDRは、待ち時間が少なくとも15分間、30分間、1時間、1.5時間、2時間等である実施形態においては、2〜4、2.5〜3.5または少なくとも3.0、少なくとも3.5、少なくとも4.0以上である。いくつかの場合において、薬理学的負荷に供した被験者に採用したDRは、待ち時間が、少なくとも15分間、30分間、1時間、1.5時間、2時間等である実施形態においては、1〜3または1.5〜2.5または少なくとも2.0、少なくとも2.2、または少なくとも2.5以上である。特定の実施形態において、薬理学的負荷に供した被験者について、少なくとも15分間または少なくとも30分間の待ち時間に対して少なくとも2.2のDRが採用され、および/または、運動負荷に供した被験者については、少なくとも30分間または少なくとも1時間の待ち時間に対して少なくとも3.0のDRが採用される。
いくつかの場合において、造影剤は、約2.0mCi〜約3.5mCiまたは2.4mCi〜約2.9mCiまたは約2.5mCi〜約3.0mCiまたは約2.5mCi〜約3.5mCiである。
特定の実施形態において、薬理学的負荷(例えば、アデノシンまたはリガデノソンの投与により誘導された血管拡張剤負荷)に関して、約2.9mCi〜約3.4mCi restの投与量が安静の最中に提供され、少なくとも約15分間または少なくとも約30分間の待ち時間を伴って、安静時投与量の約2.0〜約2.4倍の投与量が負荷の最中に提供される。
いくつかの場合において、造影剤の第2の投与量は、約5.7mCi〜約6.2mCiまたは約6.0mCi〜約6.5mCi、ならびに、約5.7mCi〜約6.5mCiである。
他の実施形態において、運動負荷については、約1.7mCi〜約2.0mCiの投与量が安静の最中に提供されると共に、少なくとも約30分または少なくとも約60分間の待ち時間を伴って、安静時投与量の約3.0〜約3.6倍の投与量が負荷の最中に提供される。いくつかの場合において、造影剤の第2の投与量は、約8.6mCi〜約9.0mCiまたは約9.0〜約9.5mCiまたは約8.6mCi〜約9.5mCiである。
他の実施形態において、薬理学的負荷については、約2.4mCi〜約2.9mCiの投与量が安静の最中に投与されると共に、約5.7mCi〜約6.2mCiの投与量が負荷の最中に投与され(例えば、少なくとも約2のDR)、ここで、待ち時間は少なくとも約15分間または少なくとも約30分間である。他の実施形態において、運動負荷については、約1.7mCi〜約2.0mCiの投与量が安静の最中に投与されると共に、約8.6mCi〜約9.0mCiの投与量が負荷の最中に投与され(例えば、少なくとも約3のDR)、ここで、待ち時間は、少なくとも30分間または少なくとも60分間である。
特定の実施形態において、薬理学的負荷については、約2.9mCi〜約3.3mCi restの投与量が安静の最中に提供されると共に、少なくとも15分間または少なくとも30分間の待ち時間を伴って、安静時投与量の2.0〜2.4倍の投与量が負荷の最中に提供される。他の実施形態において、運動負荷については、約2.9mCi〜約3.3mCiの投与量が安静の最中に提供されると共に、少なくとも30分または少なくとも60分間の待ち時間を伴って、安静時投与量の3.0〜3.6倍の投与量が負荷の最中に提供される。
さらに他の実施形態において、薬理学的負荷については、約2.5mCi〜約3.0mCi restの投与量が安静の最中に提供されると共に、約6mCi〜約6.5mCiの投与量が負荷の最中に提供される。さらに他の実施形態においては、運動負荷については、約2.5mCi〜約3.0mCi restの投与量が安静の最中に提供されると共に、約9mCi〜約9.5mCiの投与量が負荷の最中に提供される。
いくつかの実施形態において、負荷の最中に投与するステップは、安静時造影手法が完了した後の一定期間内(例えば、待ち期間)に第2の投与量の投与を開始することを含む。いくつかの場合において、第2の投与量は、安静時造影手法が完了した後、少なくとも5分間、10分間、15分間、20分間、30分間、40分間、45分間、50分間、60分間、70分間、80分間、90分間、2時間、4時間、6時間、12時間、24時間、または、それ以上の時間で投与され得る。いくつかの場合において、第2の投与量は、安静時造影手法の完了後、5分間〜30日間、5分間〜20日間、5分間〜10日間、5分間〜5日間、5分間〜4日間、5分間〜3日間、5分間〜48時間、5分間〜24時間、5分間〜12時間、5分間〜2時間、5分間〜90分間、10分間〜60分間の時間で投与される。
本発明の方法における負荷テストについて、被験者は、当業者に公知の手法を用いて負荷に供されてもよい。いくつかの場合において、被験者は、運動負荷および/または薬理学的負荷を含む手法を用いて負荷に供されてもよい。薬理学的負荷は、血管拡張剤などの薬理学剤を被験者に投与するステップによって誘導され得る。有用な薬理学的負荷剤の例としては、これらに限定されないが、アデノシン、ドブタミン、ジピリダモール、リガデノソン、ビノデネソン、アパデネソンおよび他のアデノシンA2a受容体アゴニストが挙げられる。血管拡張剤などの薬理学的負荷を誘導する薬剤の投与および投薬は技術分野において周知であり、本発明の方法およびシステムとの併用に対して判定されることが可能であり。運動負荷は、トレッドミル、運動用自転車、手回しクランクまたは高い労作を介して被験者の心拍数を高めるのに好適な他の器具を用いて誘導され得る。
本発明のいくつかの実施形態においては、安静時/負荷時方法が続く。安静時/負荷時方法においては、安静が最初でこれに負荷が続く順番で、安静期間および造影に、負荷期間および造影が続く。本発明の特定の実施形態において、負荷時/安静時方法が用いられ得る。負荷時/安静時方法においては、負荷が最初でこれに安静が続く順番で、負荷期間および造影に、安静期間および造影が続く。本発明のいくつかの態様において、造影剤1は、被験者において造影剤1を用いる造影のために負荷が誘導され、被験者のセッションの最中に安静時造影を行わない、「負荷のみ」法において用いられることが可能である。本発明のいくつかの実施形態において、造影剤1は、被験者は負荷時誘導を経ず、セッション中には安静時にのみ造影剤1を用いて造影が行われる「安静時のみ」法において用いられることが可能である。
例示的なカセットおよび反応システム
いくつかの実施形態においては、システム、方法、キットおよびカセットが造影剤(例えば、造影剤1)の合成のために提供されている。いくつかの実施形態において、造影剤は、ディスポーザブルまたは使い捨てのカセットを備える自動反応システムを用いて調製され得る。カセットは、すべての非放射性試薬、溶剤、チューブ、バルブ、反応容器および他の装置、および/または、造影剤の所与のバッチの調製を実施するために必要な構成要素を備えていればよい。カセットにより、反応システムは、単にカセットを変えることにより、最低限の交差汚染のリスクで、多様に異なる造影剤を形成する汎用性を有することが可能とされている。「カセット」という用語は、自動反応システムの可動部の機械的動作が、カセットの外側(すなわち、外部)からカセットの作動を制御するよう、取り外し可能で、かつ、交換可能であるよう自動反応システムに固定されるよう設計されている一部品の装置を意味している。特定の実施形態において、カセットは直線配置のバルブを備えており、その各々は、セプタムでシールされたバイアルを針で穿刺することにより、または、気密性の対合ジョイントにより、種々の試薬、カートリッジ、シリンジおよび/またはバイアルを取り付け可能であるポートに接続されている。各バルブは、自動合成装置の対応する可動アームと接続するオネジ−メネジジョイントを有し得る。アームの外部回転は、自動反応システムにカセットが取り付けられている場合にバルブの開閉を制御することが可能である。自動反応システムの追加の可動部が、シリンジプランジャーチップを把持し、これにより、シリンジバレルを昇降させるよう設計されている。自動反応システムは、コントローラと、コントローラに電気的に連通している1つ以上の制御可能なバルブとをさらに備えていてもよい。自動反応システムはまた、コントローラと電気的に連通している、追加の容器、バルブ、センサー、ヒータ、加圧要素等を備えていてもよい。自動反応システムは、バルブの開閉、加熱、冷却、圧力レベル、流体動作、流速等を制御するための好適なソフトウェアを用いて、コントローラにより操作され得る。自動反応システムは、任意により、コンピュータ操作システム、ソフトウェア、制御装置等、または、他の構成要素を備えていてもよい。加えて、自動反応システムは、カセット用のマウントを備えていてもよい。
自動反応システム(例えば、求核性反応システム)の例としては、これらに限定されないが、PET生産設備で通例利用可能である、Explora GNまたはRN synthesis system(Siemens Medical Solutions USA,Inc.)、GE−Tracerlab−MX synthesis system(GE Healthcare)、Eckert & Zeigler Modular−Lab Synthesis system等が挙げられる。
自動反応システムは、図9に概説されているとおり、特にこれらに限定されないが、18Fフッ化物種の調製、任意により溶液中での造影剤前駆体の提供(例えば、本明細書に記載のとおり、例えば、アセトニトリル中の造影剤前駆体1)、任意により合成モジュール中での放射性同位元素標識化反応(例えば、18F種および造影剤前駆体の造影剤を形成する反応)、精製(例えば分取HPLCによる)、溶剤交換(例えばSepPakによる)、滅菌ろ過、ならびに、容器への放出を含む数多くのステップを実施し得る。例えば、実施例9、10および11を参照のこと。
いくつかの実施形態において、自動反応システムは、精製モジュールおよび/または配合モジュールと流体的に接続している反応モジュールを備えるカセットを利用していてもよい。図7および8は、造影剤を合成するための例示的な反応システムに関連する、反応モジュール、精製モジュールおよび/または配合モジュールを備えるカセットの概略図を示す。
例えば、反応モジュールは、造影剤前駆体の造影剤への転換が実施される反応チャンバを備えていてもよい。反応モジュールは、フッ化物種の供給源(例えば、18F)、造影剤前駆体の供給源、添加剤の供給源(例えば、塩添加剤)、および、溶剤などの追加の構成成分の他の供給源を備えていてもよく、これらの各々は、任意により、反応チャンバに液体が流動可能に接続されていてもよい。反応モジュールはまた、反応チャンバへの導入の前にフッ化物種を精製するためのアニオン交換カラムを備えていてもよい。
反応に際して、得られる造影剤生成物は、さらなるプロセス、処理および/または精製のために反応モジュールから精製モジュールに移される。精製モジュールは、溶離液として用いられる溶剤の供給源の1つ以上に液体が流動可能に接続されている例えばカラム(例えば、HPLCカラム)を備えていてもよい。精製モジュールは、精製(例えば、HPLCによる)の際に造影剤に添加され得る安定化剤(例えばアスコルビン酸またはその塩)の供給源をさらに備えていてもよい。次いで、精製した造影剤は、さらなる精製および配合が実施され得る配合モジュールに移される。配合モジュールは、滅菌ろ過用のフィルタおよび/または溶剤交換のためのC−18カラムを備えていてもよい。
他の実施形態において、カセットは、反応モジュールおよび配合モジュールを備える。本発明の反応モジュールは、18Fの供給源、未反応[18O]HOを除去するためのフィルタ、アンモニウム塩の供給源、18Fのための希釈剤の供給源、造影剤前駆体用の供給源、(例えば、図1に示されている造影剤前駆体1、または、他の造影剤前駆体)、造影剤前駆体のためのHO希釈剤の供給源、18Fおよび造影剤前駆体を反応させるための反応容器、反応容器と流体的に連通している固体相抽出塔(例えば、C18カラムまたは他の好適なカラム)を備えていてもよい。固体相抽出塔は、放射性標識化造影剤生成物を吸着剤に吸着する固体吸着剤を備えている。残存する反応不純物の少なくとも一部が固体相抽出塔を吸着剤に吸着されることなく通過してしまう。反応モジュールはまた、吸着剤に残留している不純物を溶離する、固体相抽出塔に流体的に連通している洗浄溶液を提供する洗浄溶液の供給源を備えていると共に、放射性標識化造影剤生成物を吸着剤から溶離するための、固体相抽出塔に流体的に連通している溶離液(例えば、HO/MeCN、または、他の好適な溶離液)の供給源を備えている。反応モジュールはまた、溶離した放射性標識化造影剤の希釈剤の供給源を備えていてもよい。
本発明の装置の配合モジュールは、反応モジュールと流体的に連通していると共に、希釈された放射性標識化造影剤を吸着する固体吸着剤(例えば、C−18、または他の好適吸着剤)、吸着剤に残留している不純物を洗浄する洗浄溶液を供給するための、固体相抽出カートリッジと流体的に連通している洗浄溶液(例えば、アスコルビン酸、その塩、または、他の好適な洗浄溶液を含む)の供給源、および、放射性標識化造影剤生成物を吸着剤から溶離するための、固体相抽出カートリッジと流体的に連通している溶離流体(例えば、エタノール、または、他の好適な溶離流体)の供給源を備える固体相抽出カートリッジを備えていてもよい。配合モジュールはまた、溶離された放射性標識化造影剤を希釈するための、希釈剤(例えば、アスコルビン酸、その塩、または、他の好適な希釈剤を含む)の供給源を備えていてもよい。配合モジュールはまた、滅菌フィルタ(例えば、Millipore Millex GV PVDF滅菌フィルタ、または、他の好適な滅菌フィルタ)と流体的に連通していてもよい。
特定の実施形態においては、例えば、GE TRACERlab MX合成モジュールといった自動合成モジュールと使用するためにカセットが提供されている。一実施形態においては、カセットは、自動合成モジュール(例えば、GE TRACERlab MX合成モジュール)と用いられるよう専用に設計された成形止め栓マニホールドの使い捨て滅菌アセンブリを備える。個々のマニホールドは線形または非線形に接続されて、造影剤(例えば、造影剤1)注入物の調製に用いられる試薬の流路を示す方向性を有するアレイを形成する。いくつかの実施形態において、カセットの本体は、複数のマニホルド位置を有する少なくとも1つのマニホルド(例えば、止め栓)を備える。例えば、本体は、少なくとも1つ、2つ、3つ、4つ以上のマニホールドを備えていてもよい。カセットは、1〜20個のマニホルド位置、1〜15個のマニホルド位置、5〜20個のマニホルド位置、5〜15個のマニホルド位置を備えていてもよい。マニホールドの各々は対称的であってもなくてもよい。一実施形態において、カセットの本体は3つのプラスチック製マニホールドを備えており、その各々には5つの標準的な成形止め栓が取り付けられており、これにより、合計して15個の合計マニホルド位置を有している。個々の止め栓は、溶剤、試薬、シリンジ、ガスおよび液体の取り扱いに必要とされるチューブ等を収容するためにルアー継手に適合している。止め栓は溶剤および試薬に適応していると共に、逆さにされたパンチバイアルがその上に配置されるプラスチック製の突起が取り付けられていてもよいが、チューブおよびシリンジを含むものは、機能に応じてオスルアー接続部が取り付けられている。いくつかの実施形態において、カセットは、ガス入口、アニオン交換カートリッジ、C−18カートリッジ、シリンジ、溶剤貯蔵タンク、反応容器、HPLCシステム、回収容器、アスコルビン酸またはその塩の溶液用貯蔵タンクおよび排出出口からなる群から選択される構成要素の1つ以上に接続されている直線配置されている複数の止め栓マニホールドを備える。いくつかの場合において、カセットは、チューブをさらに含む。いくつかの場合において、カセットは造影剤合成モジュールをさらに含み、ここで、装置は、カセットに液体流通可能に接続されている。いくつかの場合において、装置は、本明細書に記載の造影剤の合成方法(例えば、造影剤1の合成方法)を実施することが可能である。
造影1注入物の調製に必要とされるカセット構成が図8に示されている。15個のマニホルド位置の各々へのアタッチメントの説明が以下に提供されている:1)ルアー接続部(2)−ガス入口および[18O]HO採収;2)アニオン交換カートリッジ−QMA Light;3)突起接続−MeCN;4)シリンジ−空;5)突起接続−造影剤前駆体1;6)ルアー接続部−反応容器;7)HPLC入口;8)突起接続−アスコルビン酸;9)ルアー接続部−回収容器;10)シリンジ−EtOH;11)ルアー接続部−最終生成物バイアル;12)突起接続−SWFI;13)突起接続−アスコルビン酸;14)シリンジ−空;15)ルアー接続部(2)−反応容器および排出。第1のマニホルド(止め栓1〜5)は、短いケイ素チューブが取り付けられている2つのオスルアー接続部を用いて第2のマニホルド(止め栓6〜10)に接合されている。第2のマニホルドは、C−18Sep−Pak(登録商標)および適切なルアーアダプタを用いて第3のマニホルド(止め栓11〜15)に接続されている。個々のマニホルド接続部、ルアー継手およびすべてのケイ素チューブは、商業的供給者から容易に入手可能である。
いくつかの実施形態において、本発明は、式:
Figure 0006254126
を含む造影剤の調製用カセットを提供し、カセットは:(i)式:
Figure 0006254126
を含む造影剤前駆体を含む容器と、(ii)18Fの供給源を添加するための流路とを含む。
医薬組成物
一旦造影剤または造影剤前駆体が調製されるか入手されたら、これが、1種以上の薬学的に許容可能な賦形物と組み合わされて、ヒトを含む被験者への投与に好適である医薬組成物が形成され得る。当業者によって評価されるであろうとおり、賦形物は、例えば、以下に記載されている投与経路、送達される薬剤、薬剤の送達の時間経過、および/または、被験者の健康/容体に応じて選択され得る。
本発明の医薬組成物および本発明に従って用いられる医薬組成物は、薬学的に許容可能な賦形剤またはキャリアを含んでいてもよい。本明細書において用いられるところ、「薬学的に許容可能な賦形剤」または「薬学的に許容可能なキャリア」という用語は、任意のタイプの、無毒で、不活性の固体、半固体または液体充填材、希釈剤、封入材料または配合助剤を意味する。薬学的に許容可能なキャリアとされることが可能である材料のいくつかの例は、ラクトース、グルコースおよびスクロースなどの糖質;コーンスターチおよびジャガイモデンプンなどのデンプン;カルボキシルメチルセルロースナトリウム、エチルセルロースおよび酢酸セルロースなどのセルロースおよびその誘導体;トラガントゴム粉末;麦芽;ゼラチン;タルク;カカオバターおよび座薬ワックスなどの賦形物;落花生油、綿実油などの油;ベニバナ油;ゴマ油;オリーブ油;コーン油および大豆油;プロピレングリコールなどのグリコール;エチルオレアートおよびエチルラウレートなどのエステル;寒天;Tween80などの洗剤;水酸化マグネシウムおよび水酸化アルミニウムなどの緩衝材;アルギン酸;パイロジェン除去水;等張生理食塩水;リンゲル溶液;エチルアルコール;ならびに、リン酸緩衝剤溶液であり、ならびに、ラウリル硫酸ナトリウムおよびステアリン酸マグネシウムなどの他の無毒の適合性の潤滑剤、および、着色剤、離型剤、コーティング剤、甘味剤、香味剤および賦香剤、防腐剤および酸化防止剤もまた、配合者の判断に従って組成物中に存在していることが可能である。
本発明の医薬組成物は、ヒトおよび/または動物に、非経口的、経鼻腔的に、腹腔内に、または、鼻噴霧を介して投与されることが可能である。投与モードは、技術分野において周知であるとおり、意図される使用に応じて様々となる。代わりに、本発明の配合物は、注入物(静脈内、筋肉内または皮下)として非経口的に投与され得る。これらの配合物は、従来の手段により調製され得、所望の場合には、対象となる組成物はいずれかの従来の添加剤と混合され得る。
例えば、無菌の注入可能な水性または油性懸濁液といった注入可能な調製物は、公知の技術分野に準拠して、好適な分散剤または湿潤剤および懸濁剤を用いて配合され得る。注入可能な無菌調製物は、例えば、1,3−ブタンジオール中の溶液といった、無毒の非経口的に許容可能な希釈剤または溶剤中の無菌の注入可能な溶液、懸濁液またはエマルジョンでもあり得る。許容可能なビヒクルおよび溶剤の内、水、リンゲル溶液、U.S.P.および等張塩化ナトリウム溶液が採用され得る。加えて、無菌の不揮発性油が溶剤または懸濁媒として従来から採用されている。この目的のために、合成モノグリセリドまたはジグリセリドを含む任意の混合不揮発性油を採用することが可能である。加えて、オレイン酸などの脂肪酸が注入可能物の調製において用いられる。
注入可能な配合物は、例えば、細菌を保持するフィルタを通したろ過により、または、使用前に、滅菌水もしくは他の無菌の注入可能な媒体中に溶解もしくは分散可能である無菌固体組成物の形態の滅菌剤を組み込むことにより滅菌されることが可能である。
例示的キット
いくつかの実施形態においては、造影剤(例えば、造影剤1)調製用のシステム、方法、キットおよびカセットキットが、心筋灌流を検出、造影および/または監視するために提供されている。いくつかの実施形態において、造影剤(例えば、造影剤1)の投与用キットが提供されている。本発明のキットは、例えば、造影剤または造影剤前駆体を含む容器と使用上の説明書を含み得る。キットは、所定の量の造影剤(例えば、造影剤1)および任意により他の構成成分を含む無菌、非パイロジェン性配合物を含み得る。本発明のいくつかの態様において、キットは、被験者への投与のために調製されるべき造影剤(例えば、造影剤1)を含む1つ以上のシリンジを含み得る。造影剤(例えば、造影剤1)と(例えば、造影剤(例えば、造影剤1)を被験者に送達および/または投与するために)併用され得る容器は、シリンジ、ボトル、バイアル、チューブ等であり得る。本発明のキットに含まれ得る例示的なシリンジは、3mLまたは5mL NORM−JECT(Henke Sass Wolf,Dudley,MA)または吸着性のプランジャーチップを備えていない他の同等のシリンジなどの吸着性のプランジャーチップを備えていないシリンジである。造影剤(例えば、造影剤1)がキットに提供され得、および、使用前の追加の調製は、任意により、造影剤を使用可能な濃度に希釈するステップを含み得る。本発明のキット中の説明書は、造影剤を希釈する方法、診断上の造影のために造影剤を被験者に投与する方法のための方法、または、他の使用条の説明書に関連し得る。
いくつかの場合において、キットはまた、被験者(例えば、ヒト)に投与するための造影剤(例えば、造影剤1)組成物を調製するための希釈剤を含有する1つ以上のバイアルを含んでいることが可能である。希釈剤バイアルは、生理学的生理食塩水、水、緩衝溶液等などの希釈剤を造影剤(例えば、造影剤1)を希釈するために含んでいてもよい。例えば、造影剤(例えば、造影剤1)は、直ぐに注入可能な配合物中でキットに包装されていてもよく、または、注入もしくは点滴用の最終組成物/配合物が調製されるいくらかの再形成もしくは希釈が必要とされてもよい。
本発明のキット中の説明書はまた、造影剤(例えば、造影剤1)を被験者に投与するための説明書を含み得、および、投与、タイミング、負荷時誘導等に係る情報を含んでいてもよい。例えば、キットは、薬剤の意図される用途および適切な投与を説明する説明書と一緒に本明細書に記載の造影剤を含んでいてもよい。本明細書において用いられるところ、「説明書」は、説明書および/または宣伝用資料の一部を構成していることが可能であり、典型的には、本発明のパッケージングの、もしくは、これに関連する書面による説明書を含んでいる。説明書はまた、ユーザが、説明書は、キット、例えば、視聴覚式意思疎通(例えば、ビデオテープ、DVD等)、インターネットおよび/またはウェブに基づく意思疎通等に関連していると明確に認識することとなるよう、任意の方法で提供される任意の音声または電子説明書を含んでいることが可能である。書面による説明書は、医薬品または生物学的製品の生産、使用または販売を取り締まる行政機関によって規定された形態であってもよく、この説明書はまた、ヒトへの投与のために生産、使用または販売機関による認可を反映していることが可能である。いくつかの場合において、説明書は、特定の量の希釈剤と特定の量の造影剤の濃縮溶液もしくは造影剤の固体調製物とを混合し、これにより、例えば、得られる溶液が被験者への投与に好適な濃度(例えば、本明細書に記載の濃度)となるよう、注入または点滴のための最終配合物を調製するための説明書を含んでいることが可能である。キットは、本発明の化合物の完全な処置レジメンを含んでいてもよい(例えば、安静時投与量および負荷時投与量)。
キットは、本明細書に記載の構成成分のいずれか1種以上を1つ以上の容器に含有していてもよい。例として、一実施形態においては、キットは、キットの1種以上の構成成分を混合するための、および/または、サンプルを単離および混合するための、ならびに、被験者に適用するための説明書を含んでいてもよい。キットは、本明細書に記載の薬剤を収容する容器を含んでいてもよい。薬剤は、液体、ゲルまたは固体(粉末)の形態であり得る。薬剤は、無菌状態で調製され、シリンジ中に梱包され、冷蔵輸送され得る。あるいは、保管のためにバイアルまたは他の容器中に収容されてもよい。第2の容器が無菌的に調製された他の薬剤を有していてもよい。あるいは、キットは、シリンジ、バイアル、チューブまたは他の容器中で予め混合され、および、輸送された活性薬剤を含んでいてもよい。キットは、シリンジ、局部的適用デバイス、または、iv針チューブおよびバッグなどの薬剤を患者に投与するために必要とされる構成要素の1つ以上またはすべてを有していてもい。
容器がボトル、バイアル(例えば、セプタムを備える)、アンプル、点滴バッグ等であるかに関わらず、本発明のキットの構成要素を含む容器は、調製物がオートクレーブにかけられるか他の方法で滅菌されたら変色する従来のマーキングなどの追加の証印を備えていることが可能であることもまた理解されるであろう。本発明のキットは、シリンジ、ラベル、バイアル、チューブ、カテーテル、針、ポート等などの他の構成要素をさらに備えていてもよい。本発明のいくつかの態様において、キットは、投与に十分な造影剤(例えば、造影剤1)を含有する単一のシリンジを備えていてもよく、本発明のいくつかの態様においては、キットは、2本の個別のシリンジを備えていてもよく、この一方は安静時造影用に被験者に投与される造影剤1を含み、および、他方のシリンジは負荷時造影用に被験者に投与される造影剤1を含んでいてもよい。
造影剤およびキットの調製において有用である緩衝剤としては、例えば、リン酸、クエン酸、スルホサリチレートおよび酢酸塩緩衝剤が挙げられる。より完全なリストは、United States Pharmacopoeiaに見いだすことが可能である。造影剤およびキットの調製において有用である凍結乾燥助剤としては、例えば、マンニトール、ラクトース、ソルビトール、デキストラン、FICOLL(登録商標)ポリマーおよびポリビニルピロリジン(PVP)が挙げられる。造影剤およびキットの調製において有用である安定化助剤としては、例えば、アスコルビン酸、システイン、モノチオグリセロール、亜硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、ゲンチシン酸およびイノシトールが挙げられる。造影剤およびキットの調製において有用である可溶化助剤としては、例えば、エタノール、グリセリン、ポリエチレングリコール、プロピレングリコール、ポリオキシエチレンソルビタンモノオレエート、ソルビタンモノオレエート、ポリソルベート、ポリ(オキシエチレン)−ポリ(オキシプロピレン)−ポリ(オキシエチレン)ブロックコポリマー(「Pluronics」)およびレシチンが挙げられる。特定の実施形態において、可溶化助剤は、ポリエチレングリコール、シクロデキストリンおよびPluronicsである。造影剤およびキットの調製において有用である静菌剤としては、例えば、ベンジルアルコール、塩化ベンザルコニウム、クロルブタノール、および、メチル、プロピルまたはブチルパラベンが挙げられる。
定義
簡便性のために、明細書、実施例および添付の特許請求の範囲において採用されている特定の用語をここに列挙する。
以下に、特定の官能基および化学用語の定義をより詳細に記載する。本発明の目的のために、化学元素は、Periodic Table of the Elements,CAS version,Handbook of Chemistry and Physics,75th Ed.内表紙に従って識別し、特定の官能基は、本明細書に記載されているとおり通常通り定義されている。また、有機化学の一般原則、ならびに、特定の官能部分および反応性は、その内容全体が本明細書において参照により援用されている「Organic Chemistry,」Thomas Sorrell,University Science Books,Sausalito:1999に記載されている。
本発明の特定の化合物は、特に幾何異性形態または立体異性形態で存在していてもよい。本発明は、本発明の範囲内に包含されるため、シス−およびトランス−異性体、R−およびs−エナンチオマー、ジアステレオマー、(d)−異性体、(l)−異性体、ラセミこれらの混合物ならびにこれらの他の混合物を含むすべてのこのような化合物を想定している。追加の不斉炭素原子がアルキル基などの置換基に存在していてもよい。すべてのこのような異性体、ならびに、これらの混合物は、本発明において包含されることが意図されている。
多様な異性体比のいずれかを含んでいる異性体混合物が、本発明により利用されてもよい。例えば、2種の異性体のみが組み合わされている場合、50:50、60:40、70:30、80:20、90:10、95:5、96:4、97:3、98:2、99:1、または100:0異性体比を含んでいる混合物のすべてが本発明により想定されている。当業者は、より複雑な異性体混合物について同様の比が想定されることを容易に認識するであろう。
例えば、本発明の化合物の特定のエナンチオマーが所望される場合、これは、不斉合成により調製され得るか、または、得られるジアステレオ異性混合物が分離され、補助剤基が分割されて純粋な所望されるエナンチオマーがもたらされる、キラル補助剤が伴う誘導により調製され得る。あるいは、分子がアミノなどの塩基性官能基またはカルボキシルなどの酸性官能基を含有している場合、ジアステレオ異性塩が適切な光学的に活性な酸または塩基と共に形成され、技術分野において周知である分別結晶化またはクロマトグラフ手段によるこのように形成されたジアステレオマーの分割、および、その後の純粋なエナンチオマーの回収が続く。
本明細書において用いられるところ、「アルキル」という用語は、技術分野における通常の意味を有していると共に、直鎖アルキル基、分岐鎖アルキル基、シクロアルキル(脂環式)基、シクロアルキル基で置換されているアルキルおよびアルキル基で置換されているシクロアルキルを含む飽和脂肪族基のラジカルを指す。いくつかの場合において、アルキル基は、低級アルキル基、すなわち、1〜10個の炭素原子を有するアルキル基(例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニルまたはデシル等)であり得る。いくつかの実施形態において、直鎖または分岐鎖アルキルは、30個以下、いくつかの場合においては20個以下の炭素原子をその主鎖に有していてもよい。いくつかの実施形態において、直鎖または分岐鎖アルキルは、12個以下、6個以下または4個以下の炭素原子をその主鎖中に有していてもよい(例えば、直鎖についてはC〜C12、分岐鎖についてはC〜C12)。同様に、シクロアルキルは、3〜10個の炭素原子をその環構造中に、または、5、6あるいは7個の炭素を環構造中に有していてもよい。アルキル基の例としては、これらに限定されないが、メチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、イソブチル、t−ブチル、シクロブチル、ヘキシル、シクロヘキシル等が挙げられる。
「アルケニル」および「アルキニル」という用語は、技術分野におけるその通常の意味が与えられており、上記の全長およびアルキルに対する置換の可能性が近似しているが、少なくとも1つの二重または三重結合をそれぞれ含んでいる不飽和脂肪族基を指す。
特定の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜20個の脂肪族炭素原子を含有している。特定の他の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜10個の脂肪族炭素原子を含有している。さらに他の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜8個の脂肪族炭素原子を含有している。さらに他の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜6個の脂肪族炭素原子を含有している。さらに他の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜4個の炭素原子を含有している。例示的な脂肪族基としては、それ故、これらに限定されないが、例えば、メチル、エチル、n−プロピル、イソプロピル、アリル、n−ブチル、sec−ブチル、イソブチル、t−ブチル、n−ペンチル、sec−ペンチル、イソペチル、t−ペンチル、n−ヘキシル、sec−ヘキシル部分等が挙げられ、これらはまた、1つ以上の置換基を有していてもよい。アルケニル基としては、これらに限定されないが、例えば、エテニル、プロペニル、ブテニル、1−メチル−2−ブテン−1−イル等が挙げられる。代表的なアルキニル基としては、これらに限定されないが、エチニル、2−プロピニル(プロパルギル)、1−プロピニル等が挙げられる。
本明細書において用いられるところ、「シクロアルキル」という用語は、特定的に、3〜10個、好ましくは3〜7個の炭素原子を有する基を指す。好適なシクロアルキルとしては、これらに限定されないが、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等が挙げられ、これらは、他の脂肪族、複素脂肪族または複素環式部分の場合と同様に、任意により、特にこれらに限定されないが、脂肪族;複素脂肪族;アリール;ヘテロアリール;アリールアルキル;ヘテロアリールアルキル;アルコキシ;アリールオキシ;ヘテロアルコキシ;ヘテロアリールオキシ;アルキルチオ;アリールチオ;ヘテロアルキルチオ;ヘテロアリールチオ;−F;−Cl;−Br;−I;−OH;−NO;−CN;−CF;−CHCF;−CHCl;−CHOH;−CHCHOH;−CHNH;−CHSOCH;−C(O)R;−CO(R);−CON(R;−OC(O)R;−OCO;−OCON(R;−N(R;−S(O);−NR(CO)Rを含む置換基で置換されていてもよく、ここで、Rの各出現としては、独立して、特に限定されないが、脂肪族、複素脂肪族、アリール、ヘテロアリール、アリールアルキルまたはヘテロアリールアルキルが挙げられ、ここで、上記のおよび本明細書に記載の脂肪族、複素脂肪族、アリールアルキルまたはヘテロアリールアルキル置換基のいずれかは置換または非置換、分岐または直鎖、環式または非環式であり得、ならびに、ここで、上記のおよび本明細書に記載のアリールまたはヘテロアリール置換基のいずれかは置換または非置換であり得る。一般に適用化能な置換基の追加の例は、本明細書に記載されている実施例に示されている特定の実施形態によって例示されている。
「ヘテロアルキル」という用語は、技術分野における通常の意味を有しており、1個以上の炭素原子がヘテロ原子で置き換えられている本明細書に記載のアルキル基を指す。好適なヘテロ原子としては、酸素、硫黄、窒素、リン等が挙げられる。ヘテロアルキル基の例としては、これらに限定されないが、アルコキシ、アミノ、チオエステル、ポリ(エチレングリコール)、アルキル−置換アミノ、テトラヒドロフラニル、ピペリジニル、モルホリニル等が挙げられる。
「ヘテロアルケニル」および「ヘテロアルキニル」という用語は、技術分野におけるその通常の意味与えられており、上記の全長およびヘテロアルキルに対する置換の可能性が近似しているが、少なくとも1つの二重または三重結合をそれぞれ含んでいる不飽和脂肪族基を指す。
本発明の化合物の上記の脂肪族(および他の)部分の置換基のいくつかの例としては、これらに限定されないが、脂肪族;複素脂肪族;アリール;ヘテロアリール;アルキルアリール;アルキルヘテロアリール;アルコキシ;アリールオキシ;ヘテロアルコキシ;ヘテロアリールオキシ;アルキルチオ;アリールチオ;ヘテロアルキルチオ;ヘテロアリールチオ;F;C1;Br;I;−OH;−NO;−CN;−CF;−CHF;−CHF;−CHCF;−CHC1;−CHOH;−CHCHOH;−CHNH;−CHSOCH;−C(O)R;−CO(R);−CON(R;−OC(O)R;−OCO;−OCON(R;−N(R;−S(O);−NR(CO)Rが挙げられ、ここで、Rの各出現としては、独立して、特に限定されないが、脂肪族、脂環式、複素脂肪族、複素環式、アリール、ヘテロアリール、アルキルアリールまたはアルキルヘテロアリールが挙げられ、ここで、上記のおよび本明細書に記載の脂肪族、複素脂肪族、アルキルアリール、またはアルキルヘテロアリール置換基のいずれかは、置換または非置換、分岐または直鎖、環式または非環式であり得、ならびに、ここで、上記のおよび本明細書に記載のアリールまたはヘテロアリール置換基のいずれかは置換または非置換であり得る。一般に適用可能な置換基の追加の例が、本明細書に記載されている実施例に示されている特定の実施形態によって例示されている。
「アリール」という用語は、技術分野における通常の意味を有しており、任意により置換されており、単一の環(例えば、フェニル)、複数の環(例えば、ビフェニル)、または、少なくとも1つが芳香族(例えば、1,2,3,4−テトラヒドロナフチル、ナフチル、アントリルあるいはフェナントリル)である複数の縮合環を有する芳香族炭素環式基を指す。換言すると、少なくとも1つの環は共役π電子系であり得る一方で、他の隣接する環は、シクロアルキル、シクロアルケニル、シクロアルキニル、アリールおよび/またはヘテロシクリルであることが可能である。アリール基は、本明細書に記載のとおり、任意により置換されていてもよい。置換基としては、これらに限定されないが、既述の置換基のいずれか、すなわち、本明細書に開示のとおり脂肪族部分または他の部分に関して言及されている置換基が挙げられ、安定した化合物の形成がもたらされる。いくつかの場合において、アリール基は、各々が置換であっても非置換であってもよい、好ましくは3〜14個の炭素原子を有する安定な単環式または多環式不飽和部分である。「炭素環式アリール基」とは、芳香族環上の環原子が炭素原子であるアリール基を指す。炭素環式アリール基としては、ナフチル基などの、単環炭素環式アリール基および多環式または縮合化合物(例えば、2個以上の隣接する環原子が2つの隣接する環で共有されている)が挙げられる。
「ヘテロアリール」という用語は、技術分野における通常の意味を有しており、少なくとも1個のヘテロ原子を環原子として含むアリール基を指す。「ヘテロアリール」は、各々が置換であっても非置換であってもよい、好ましくは3〜14個の炭素原子を有する安定な複素環式または多複素環式不飽和部分である。置換基としては、これらに限定されないが、既述の置換基のいずれか、すなわち、本明細書に開示のとおり脂肪族部分、または、他の部分に関して言及されている置換基が挙げられ、安定した化合物の形成がもたらされる。いくつかの場合において、ヘテロアリールは5〜10個の環原子を有する環式芳香族ラジカルであり、その1個の環原子は、S、OおよびNから選択され;ゼロ個、1個または2個の環原子は、S、OおよびNから独立して選択される追加のヘテロ原子であり;ならびに、残りの環原子は炭素であり、ラジカルは、例えば、ピリジル、ピラジニル、ピリミジニル、ピローリル、ピラゾリル、イミダゾリル、チアゾリル、オキサゾリル、イソオキサゾリル、チアジアゾリル、オキサジアゾリル、チオフェニル、フラニル、キノリニル、イソキノリニル等などの環原子のいずれかを介して残りの分子に結合している。
アリールおよびヘテロアリール部分は、本明細書において定義されているとおり、アルキルまたはヘテロアルキル部分を介して結合していてもよく、それ故、−(アルキル)アリール、−(ヘテロアルキル)アリール、−(ヘテロアルキル)ヘテロアリール、および−(ヘテロアルキル)ヘテロアリール部分も挙げられることも評価されるであろう。それ故、本明細書において用いられるところ、「アリールまたはヘテロアリール部分」および「アリール、ヘテロアリール、−(アルキル)アリール、−(ヘテロアルキル)アリール、−(ヘテロアルキル)ヘテロアリールおよび−(ヘテロアルキル)ヘテロアリール」という句は同義である。置換基としては、これらに限定されないが、既述の置換基のいずれか、すなわち、本明細書に開示のとおり脂肪族部分または他の部分に関して言及されている置換基が挙げられ、安定した化合物の形成がもたらされる。
アリールおよびヘテロアリール基(二環式アリール基を含む)は、未置換であるか、または、置換されていることが可能であり、ここで、置換は、独立して、その上の1個以上の水素原子の、特にこれらに限定されないが、以下の:脂肪族;脂環式;複素脂肪族;複素環式;芳香族;芳香族複素環式;アリール;ヘテロアリール;アルキルアリール;ヘテロアルキルアリール;アルキルヘテロアリール;ヘテロアルキルヘテロアリール;アルコキシ;アリールオキシ;ヘテロアルコキシ;ヘテロアリールオキシ;アルキルチオ;アリールチオ;ヘテロアルキルチオ;ヘテロアリールチオ;F;C1;Br;I;−OH;−NO;−CN;−CF;−CHF;−CHF;−CHCF;−CHC1;−CHOH;−CHCHOH;−CHNH;−CHSOCH;−C(O)R;−CO(R);−CON(R;−OC(O)R;−OCO;−OCON(R;−N(R;−S(O)R;−S(O);−NR(CO)Rを含む部分のいずれか1つ以上での置き換えを含み、ここで、Rの各出現としては、独立して、特に限定されないが、脂肪族、脂環式、複素脂肪族、複素環式、芳香族、芳香族複素環式、アリール、ヘテロアリール、アルキルアリール、アルキルヘテロアリール、ヘテロアルキルアリールまたはヘテロアルキルヘテロアリールが挙げられ、ここで、上記のおよび本明細書に記載の脂肪族、脂環式、複素脂肪族、複素環式、アルキルアリール、またはアルキルヘテロアリール置換基のいずれかは、置換または非置換の、分岐または直鎖、飽和または不飽和であり得、ならびに、ここで、上記のおよび本明細書に記載の芳香族、芳香族複素環式、アリール、ヘテロアリール、−(アルキル)アリールまたは−(アルキル)ヘテロアリール置換基のいずれかは置換であっても非置換であってもよいことが認識されるであろう。また、いずれかの隣接する2つの基が一緒になって、4員、5員、6員または7員置換または非置換脂環式または複素環式部分を表し得ることが評価されるであろう。一般に適用可能な置換基の追加の例が、本明細書に記載の特定の実施形態により例示されている。
「複素環」という用語は、技術分野における通常の意味を有しており、環原子として少なくとも1個のヘテロ原子、いくつかの場合において、環原子として1個〜3個のヘテロ原子を含有しており、残りの環原子が炭素原子である環式基を指す。好適なヘテロ原子としては、酸素、硫黄、窒素、リン等が挙げられる。いくつかの場合において、複素環は、その環構造中に1個〜4個のヘテロ原子を含む、3員〜10員環構造または3員〜7員環であり得る。
「複素環」という用語は、ヘテロアリール基、飽和複素環(例えば、シクロヘテロアルキル)基、または、これらの組み合わせを含み得る。複素環は、飽和分子であってもよく、または、1つ以上の二重結合を含んでいてもよい。いくつかの場合において、複素環は窒素複素環であり、ここで、少なくとも1つの環が少なくとも1個の窒素環原子を有している。複素環は、他の環に縮合して多環式複素環を形成していてもよい。複素環はまた、スピロ環基に縮合していてもよい。いくつかの場合において、複素環は、環中の窒素または炭素原子を介して化合物に結合していてもよい。
複素環としては、例えば、チオフェン、ベンゾチオフェン、チアントレン、フラン、テトラヒドロフラン、ピラン、イソベンゾフラン、クロメン、キサンテン、フェノキサチン、ピロール、ジヒドロピロール、ピロリジン、イミダゾール、ピラゾール、ピラジン、イソチアゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、イソインドール、インドール、インダゾール、プリン、キノリジン、イソキノリン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シノリン、プテリジン、カルバゾール、カルボリン、トリアゾール、テトラゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フェナントリジン、アクリジン、ピリミジン、フェナントロリン、フェナジン、フェナルサジン、フェノチアジン、フラザン、フェノキサジン、ピロリジン、オキソラン、チオラン、オキサゾール、オキサジン、ピペリジン、ホモピペリジン(ヘキサメチレンイミン)、ピペラジン(例えば、N−メチルピペラジン)、モルホリン、ラクトン、アゼチジノンおよびピロリジノンなどのラクタム、スルタム、スルトン、他の飽和および/またはこれらの不飽和誘導体等が挙げられる。複素環は、任意により、1つ以上の位置で本明細書に記載されているもののような置換基で置換されていることが可能である。いくつかの場合において、複素環は、ヘテロ原子環原子(例えば、窒素)を介して化合物に結合していてもよい。いくつかの場合において、複素環は、炭素環原子を介して化合物に結合していてもよい。いくつかの場合において、複素環は、ピリジン、イミダゾール、ピラジン、ピリミジン、ピリダジン、アクリジン、アクリジン−9−アミン、ビピリジン、ナフチリジン、キノリン、ベンゾキノリン、ベンゾイソキノリン、フェナントリジン−1,9−ジアミン等である。
本明細書において用いられるところ、「ハロ」および「ハロゲン」という用語は、フッ素、塩素、臭素およびヨウ素から選択される原子を指す。
「ハロアルキル」という用語は、これに結合している1個、2個または3個のハロゲン原子を有する上記に定義されているアルキル基を示し、クロロメチル、ブロモエチル、トリフルオロメチル等のような基により例示される。
本明細書において用いられるところ、「アミノ」という用語は、第1級(−NH)、第2級(−NHR)、第3級(−NR)または第4級(−N)アミンを指し、ここで、R、RおよびR、本明細書において定義されているとおり、独立して、脂肪族、脂環式、複素脂肪族、複素環式、アリールまたはヘテロアリール部分である。アミノ基の例としては、これらに限定されないが、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ、ジエチルミノカルボニル、メチルエチルアミノ、イソプロピルアミノ、ピペリジノ、トリメチルアミノおよびプロピルアミノが挙げられる。
「アルキン」という用語は、技術分野における通常の意味を有しており、少なくとも1つの三重結合を含有する分岐または直鎖不飽和炭化水素基を指す。アルキンの非限定的な例としては、アセチレン、プロピン、1−ブチン、2−ブチン等が挙げられる。アルキン基は、置換されているか、および/または、ヒドロキシル、ハロゲン、アルコキシおよび/またはアリール基などの官能基で置換された1個以上の水素原子を有していてもよい。
「アルコキシ」(または「アルキルオキシ」)、または「チオアルキル」という用語は、本明細書において用いられるところ、上記において定義されているとおり、酸素原子または硫黄原子を介して親分子部分に結合しているアルキル基を指す。特定の実施形態において、アルキル基は1〜20個の脂肪族炭素原子を含有している。特定の他の実施形態において、アルキル基は1〜10個の脂肪族炭素原子を含有している。さらに他の実施形態において、本発明において採用されているアルキル、アルケニルおよびアルキニル基は1〜8個の脂肪族炭素原子を含有している。さらに他の実施形態において、アルキル基は1〜6個の脂肪族炭素原子を含有している。さらに他の実施形態において、アルキル基は1〜4個の脂肪族炭素原子を含有している。アルコキシの例としては、これらに限定されないが、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n−ブトキシ、t−ブトキシ、ネオペントキシおよびn−ヘキソキシが挙げられる。チオアルキルの例としては、これらに限定されないが、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、n−ブチルチオ等が挙げられる。
「アリールオキシ」という用語は−O−アリール基を指す。「アシルオキシ」という用語は−O−アシル基を指す。
「アルコキシアルキル」という用語は、少なくとも1個のアルコキシ基(例えば、1個、2個、3個以上のアルコキシ基)で置換されているアルキル基を指す。例えば、アルコキシアルキル基は、任意により置換されている−(C1〜6−アルキル)−O−(C1〜6−アルキル)であり得る。いくつかの場合において、アルコキシアルキル基は、任意により置換されている、他のアルキルオキシアルキル基(例えば、−(C1〜6−アルキル)−O−(C1〜6−アルキル)−O−(C1〜6−アルキル)で任意により置換されていてもよい。
本明細書に記載の上記の基および/または化合物は、任意の数の置換基または官能性部分で任意により置換されていてもよいことが認識されるであろう。換言すると、上記基のいずれも任意により置換されていてもよい。本明細書において用いられるところ、「置換されている」という用語は、有機化合物の許容されるすべての置換基を含むと考えられており、「許容される」とは、当業者に公知である原子価の化学規則の文脈においてである。普通、「置換されている」という用語は、用語「任意により」および本発明の式中に含有される置換基が先行しているか否かに関わらず、特定された置換基のラジカルによる所与の構造における水素ラジカルの置換を指す。いずれかの所与の構造における2つ以上の位置が特定の群から選択される2個以上の置換基で置換されていてもよい場合、置換基は、各位置において同一であっても異なっていてもよい。「置換されている」はまた、置換が、例えば、自然に転位、環化、脱離等などの形質転換を受けない安定した化合物をもたらすことを含んでいることが理解されるであろう。いくつかの場合において、「置換されている」は、一般に、本明細書に記載のとおり、置換基による水素の置換を指してもよい。しかしながら、本明細書において用いられるところ、「置換されている」は、例えば、「置換された」官能基が置換を介して異なる官能基となってしまうような、分子を識別する重要な官能基の置換および/または改変は包含されていない。例えば、「置換されたフェニル基」はなおフェニル部分を含んでいなければならず、この定義においては、置換により変性されて、例えばピリジン環になることは可能ではない。広範な態様において、許容される置換基は、有機化合物の非環式および環式、分岐および直鎖、炭素環式および複素環式、芳香族および非芳香族置換基を含む。例示の置換基は、例えば、本明細書に記載のものを含む。許容される置換基は、適切な有機化合物について、1個以上であることが可能であり、および、同一であることも異なっていることも可能である。本発明の目的について、窒素などのヘテロ原子は、水素置換基、および/または、ヘテロ原子の原子価を満たす本明細書に記載の有機化合物のいずれかの許容される置換基を有していてもよい。しかも、本発明は、有機化合物の許容される置換基によるいずれかの様式において限定されることは意図していない。本発明により想定される置換基と可変要素との組み合わせは、好ましくは、造影剤または造影剤前駆体の形成に有用である安定な化合物の形成をもたらすものである。本明細書において用いられるところ、「安定」という用語は、好ましくは、生産が可能であるほどに十分な安定性を有し、ならびに、検出されるのに十分な時間であって、好ましくは、本明細書に詳述されている目的のために有用であるほどに十分な時間だけ化合物の完全性を維持する安定性を備えている化合物を指す。
置換基の例としては、これらに限定されないが、ハロゲン、アジド、アルキル、アラルキル、アルケニル、アルキニル、シクロアルキル、ヒドロキシル、アルコキシル、アミノ、ニトロ、スルフヒドリル、イミノ、アミド、ホスホネート、ホスフィネート、カルボニル、カルボキシル、シリル、エーテル、アルキルチオ、スルホニル、スルホンアミド、ケトン、アルデヒド、エステル、ヘテロシクリル、芳香族または芳香族複素環式部分、−CF、−CN、アリール、アリールオキシ、パーハロアルコキシ、アラルコキシ、ヘテロアリール、ヘテロアリールオキシ、ヘテロアリールアルキル、ヘテロアラルコキシ、アジド、アミノ、ハライド、アルキルチオ、オキソ、アシルアルキル、カルボキシエステル、−カルボキサミド、アシルオキシ、アミノアルキル、アルキルアミノアリール、アルキルアリール、アルキルアミノアルキル、アルコキシアリール、アリールアミノ、アラルキルアミノ、アルキルスルホニル、−カルボキサミドアルキルアリール、−カルボキサミドアリール、ヒドロキシアルキル、ハロアルキル、アルキルアミノアルキルカルボキシ−、アミノカルボキサミドアルキル−、シアノ、アルコキシアルキル、パーハロアルキル、アリールアルキルオキシアルキル等が挙げられる。
本明細書において用いられるところ、「判定する」という用語は、一般に、例えば、定量的または定性的な種またはシグナルの分析、および/または、種またはシグナルの在不在の検出を指す。「判定する」はまた、2つ以上の種またはシグナル間の相互作用の分析であって、例えば、定量的または定性的なもの、および/または、相互作用の在不在を検出することによるものを指す。
本明細書において用いられるところ、画像を「撮影する」という用語は、画像を得ることを意味する。
本明細書において用いられるところ、「診断上の造影」という用語は、造影剤の検出に用いられる手法を指す。
「診断上のキット」または「キット」は、1つ以上のバイアル中の配合物と表記される構成成分の集合を含み、これらは、診断用の放射性医薬品を合成するための臨床的設定または薬学的設定において用いられる。例えば、キットは、診断用の放射性医薬品を合成および/または使用するための臨床的または薬学的設定において、現場のエンドユーザによって用いられ得る。いくつかの実施形態において、キットは、注入用の水または生理食塩水などの現場のエンドユーザが通例利用可能であるもの、放射性核種の溶液、放射性医薬品の合成および操作の最中にキットを処理するための器具、必要な場合には、シリンジなどの放射性医薬品を被験者に投与するために必要な器具、遮蔽材、造影器具等を除く、診断用医薬品を合成および/または使用するための必須構成成分のすべてを提供し得る。いくつかの実施形態において、造影剤は、典型的には、凍結乾燥された固体または水溶液のいずれかとして1つのバイアルまたはシリンジ中に含有されている、配合物でのその最終形態においてエンドユーザに提供され得る。
本明細書において用いられるところ、「被験者の一部」とは、被験者の特定の領域、被験者の位置を指す。例えば、被験者の一部は、被験者の脳、心臓、脈管構造、心臓血管であり得る。
本明細書において用いられるところ、テストの「セッション」は、被験者に行われる単一のテストプロトコルであり得る。いくつかの場合において、セッションは、安静時/負荷時造影プロトコル;負荷時/安静時造影プロトコル;安静時のみの造影プロトコル;または、負荷時のみの造影プロトコルを含み得る。テストのセッションは、24時間未満、または、48時間未満で行われることが可能である。
本明細書において用いられるところ、「被験者」という用語は、ヒトまたは非ヒト哺乳動物または動物を指す。非ヒト哺乳動物としては、家畜動物、伴侶動物、実験用動物および非ヒト霊長類が挙げられる。非ヒト被験者としてはまた、特定的に、特に限定はされないが、ウマ、雌ウシ、ブタ、ヤギ、イヌ、ネコ、マウス、ラット、モルモット、アレチネズミ、ハムスター、ミンクおよびウサギが挙げられる。本発明のいくつかの実施形態において、被験者は「患者」と称される。いくつかの実施形態において、患者または被験者は、医師または他の医療従事者の治療下にあり得、特にこれらに限定されないが、医師または他の医療従事者から診断を受け、助言を受け、または、処方箋もしくは他の推奨を受けている者を含む。
本明細書に記載の化合物のいずれかは、特にこれらに限定されないが、塩、溶媒和物、水和物、互変異性体および異性体などの多様な形態であり得る。
特定の実施形態において、造影剤は、造影剤の薬学的に許容可能な塩である。「薬学的に許容可能な塩」という用語は、本明細書において用いられるところ、適切な医学的判断の範囲内で、不適当な毒性、刺激作用、アレルギー性の応答等を伴うことなくヒトおよび下等動物の組織との接触に好適に用いられると共に妥当な利益/リスク比に整合している塩を指す。薬学的に許容可能な塩は技術分野において周知である。例えば、Bergeらは、薬学的に許容可能な塩を、参照により本明細書において援用されるJ.Pharmaceutical Sciences,1977,66,1−19において詳述している。本発明の化合物の薬学的に許容可能な塩としては、好適な無機酸および有機酸、ならびに、塩基に由来するものが挙げられる。薬学的に許容可能な無毒の酸付加塩の例は、塩酸、臭化水素酸、リン酸、硫酸および過塩素酸などの無機酸と、または、酢酸、シュウ酸、マレイン酸、酒石酸、クエン酸、コハク酸あるいはマロン酸などの有機酸と形成されるアミノ基の塩、または、イオン交換などの技術分野において用いられている他の方法を用いることにより形成されるアミノ基の塩である。他の薬学的に許容可能な塩としては、アジピン酸塩、アルギン酸塩、アスコルビン酸塩、アスパラギン酸塩、ベンゼンスルホネート、安息香酸塩、重流酸塩、ホウ酸塩、酪酸塩、樟脳、カンファースルホン酸塩、クエン酸塩、シクロペンタンプロピオン酸塩、ジグルコネート、ドデシル硫酸塩、エタンスルホン酸塩、ギ酸塩、フマル酸塩、グルコヘプトネート、グリセロリン酸塩、グルコネート、ヘミ流酸塩、ヘプタノエート、ヘキサン酸塩、ヒドロヨージド、2−ヒドロキシ−エタンスルホン酸塩、ラクトビオン酸塩、乳酸塩、ラウリン酸塩、ラウリル硫酸塩、リンゴ酸塩、マレイン酸塩、マロン酸塩、メタンスルホン酸塩、2−ナフタレンスルホン酸、ニコチネート、硝酸塩、オレイン酸塩、シュウ酸塩、パルミチン酸塩、パモエート、ペクチネート、過硫酸塩、3−フェニルプロピオネート、リン酸、ピクリン酸塩、ピバル酸塩、プロピオネート、ステアリン酸塩、コハク酸塩、硫酸塩、酒石酸塩、チオシアネート、p−トルエンスルホネート、ウンデカノエート、吉相酸塩等が挙げられる。適切な塩基に由来する塩としては、アルカリ金属、アルカリ土類金属、アンモニウムおよびN(C1〜4アルキル)塩が挙げられる。代表的なアルカリまたはアルカリ土類金属塩としては、ナトリウム、リチウム、カリウム、カルシウム、マグネシウム等が挙げられる。さらに薬学的に許容可能な塩としては、適切な場合、無毒のアンモニウム、第4級アンモニウム、ならびに、ハライド、ヒドロキシド、カルボキシレート、サルフェート、リン酸、硝酸塩、低級アルキルスルホネートおよびアリールスルホネートなどの対イオンを用いて形成されるアミンカチオンが挙げられる。
特定の実施形態において、化合物は、水和物または溶媒和物の形態である。「水和物」という用語は、本明細書において用いられるところ、1つ以上の水分子と非共有結合的に関連している化合物を指す。同様に、「溶媒和物」という用語は、1つ以上の有機溶剤分子と非共有結合的に関連している化合物を指す。
特定の実施形態において、本明細書に記載の化合物は、種々の互変異性形態で存在していてもよい。「互変異性体」という用語は、本明細書において用いられるところ、水素原子の少なくとも1つの形式的な移動、および、原子価における少なくとも1つの変化(例えば、単結合から二重結合、三重結合から単結合、または、その逆)からもたらされる2つ以上の相互転換性の化合物を含む。互変異性体の正確な比は、温度、溶剤およびpHを含む数々の要因に応じる。互変異性化(すなわち、互変異性対をもたらす反応)は、酸または塩基によって触媒され得る。例示的な互変異性化は、ケト−エノール;アミド−イミド;ラクタム−ラクチム;エナミン−イミン;ならびに、エナミン−(異なる)エナミン互変異性化を含む。
特定の実施形態において、本明細書に記載の化合物は種々の異性形態で存在していてもよい。「異性体」という用語は、本明細書において用いられるところ、幾何異性体および立体異性体(例えば、エナンチオマー、ジアステレオマー等)のいずれかおよびすべてを含む。例えば、「異性体」としては、本発明の範囲に含まれる、シス−およびトランス−異性体、E−およびZ−異性体、R−およびS−エナンチオマー、ジアステレオマー、(D)−異性体、(L)−異性体、ラセミこれらの混合物、および、他のこれらの混合物が挙げられる。例えば、異性体/エナンチオマーは、いくつかの実施形態において、対応するエナンチオマーを実質的に含まないで提供され得、および、「光学的に富化されている」とも称され得る。「光学的に富化されている」とは、本明細書において用いられるところ、化合物が、顕著に大きい割合で一方のエナンチオマーから構成されていることを意味する。特定の実施形態において、本発明の化合物は、少なくとも約90重量%の好ましいエナンチオマーから構成されている。他の実施形態において、化合物は、少なくとも約95%、98%または99重量%の好ましいエナンチオマーから構成されている。好ましいエナンチオマーは、キラル高圧液体クロマトグラフィー(HPLC)、ならびに、キラル塩の形成および結晶化を含むいずれかの当業者に公知の方法によりラセミ混合物から単離され得るか、または、非対称合成により調製され得る。例えば、Jacques,et al.,Enantiomers,Racemates and Resolutions(Wiley Interscience,New York,1981);Wilen,S.H.,et al.,Tetrahedron 33:2725(1977);Eliel,E.L.Stereochemistry of Carbon Compounds(McGraw−Hill,NY,1962);Wilen,S.H.Tables of Resolving Agents and Optical Resolutions p.268(E.L.Eliel,Ed.,Univ.of Notre Dame Press,Notre Dame,IN 1972)を参照のこと。
本発明のこれらのおよび他の態様は、本発明のある特定の実施形態を例示することが意図されているが、特許請求の範囲によって定義されているその範囲を限定することは意図されていない以下の実施例の考察でさらに評価されるであろう。
実施例1
4−(2−ヒドロキシエトキシメチル)安息香酸メチルエステルの合成
Figure 0006254126
デュワー凝縮器を備えていた二首丸底フラスコに、4−ヒドロキシメチル安息香酸メチルエステル(2.50g、0.015mol)の無水ジクロロメタン(30mL)中の溶液を塩/氷浴中で−10℃に冷却した。エチレンオキシド(1.10mL)を冷却した攪拌溶液に滴下し、続いて三フッ化ホウ素エーテラート(0.51ml)を添加した。反応混合物を45分間撹拌し、次いで、30分間かけて室温に温めて反応混合物から過剰量のエチレンオキシドを蒸発させた。次いで、反応混合物を塩水で希釈した。水性層をジクロロメタンで抽出した(3回)。すべての有機層を組み合わせ、NaSOで乾燥させ、ろ過し、濃縮して油をもたらした。粗材料を、シリカゲルクロマトグラフィ(4:1ペンタン:酢酸エチル)を用いて精製して、所望の生成物(537mg、2.56mmol)を17%収率で得た。H(CDCl8.36,600MHz):δ(2H,d,J=8.4Hz),7.41(2H,d,J=8.5Hz),4.62(3H,s),3.92(2H,s),3.78(m,2H),3.63(2H,m);13C(CDCl167.1,143.5,130.0,129.8,127.5,72.9,72.0,150MHz):δ62.1,52.3。
実施例2
4−[2−(t−ブチルジメチルシラニルオキシ)エトキシメチル]安息香酸メチルエステルの合成
Figure 0006254126
実施例1(544.5mg、2.59mmol)の生成物の無水DMF(26mL)中の溶液に、イミダゾール(264mg、3.89mmol)およびTBDMS−Cl(586mg、3.89mmol)を添加した。反応混合物を室温で一晩撹拌し、水で失活させた。水性層を酢酸エチル(3×)で抽出した。すべての組み合わせた有機層をNaSOで乾燥させ、ろ過し、濃縮させた。粗材料を、シリカゲルクロマトグラフィ(4:1ペンタン:酢酸エチル)を用いて精製して、所望の生成物(677.5mg、2.19mmol)を84%収率で得た。H(CDCl8.01,600MHz):δ(2H,d,J=8.3Hz),7.42(2H,d,J=8.4Hz),4.63(2H,s),3.91(2H,s),3.82(2H,t,J=5.0),3.58(2H,t,J=5.1Hz),0.91(9H,s),0.07(6H,s);13C(CDCl166.5,143.5,129.2,128.8,126.5,72.1,71.6,150MHz):δ62.3,51.5,25.4,17.9,−5.8。
実施例3
{4−[2−(t−ブチルジメチルシラニルオキシ)エトキシメチル]フェニル}メタノールの合成
Figure 0006254126
実施例2の生成物(670mg、2.18mmol)を無水THF(22mL)中に溶解させた溶液に、LAHの溶液(THF中の1.0M溶液、2.18mL、2.18mmol)を滴下した。添加が完了した後、反応混合物を室温で3時間撹拌した。反応混合物を水で希釈した。水性層を酢酸エチルで抽出した(3回)。すべての組み合わせた有機層をNaSOで乾燥させ、ろ過し、濃縮して油を得(587mg、1.98mmol)、これを、さらに精製することなく次のステップにおいて用いた(91%収率)。H(CDCl7.34(4H,s),4.68(2H,s),4.57(2H,s),3.80,600MHz):δ(2H,t,J=5.2Hz),3.56(2H,t,J=5.3Hz),1.69(1H,br s),0.90(9H,s),0.07(6H,s);13C(CDCl140.4,138.3,128.0,127.2,73.2,71.9,65.4,150MHz):δ63.0,26.2,18.6,−5.0。
実施例4
2−t−ブチル−5−{4−[2−(t−ブチルジメチルシラニルオキシ)エトキシメチル]ベンジルオキシ}−4−クロロ−2H−ピリダジン−3−オンの合成
Figure 0006254126
実施例3の生成物(437mg、1.48mmol)および2−t−ブチル−4−クロロ−5−ヒドロキシ−2H−ピリダジン−3−オン(250mg、1.23mmol)を無水THF(12mL)に溶解した溶液に、固体PPh(485mg、1.85mmol)およびジイソプロピルアゾジカルボキシレート(DIAD、0.358mL、1.85mmol)を添加した。添加が完了した後、反応混合物を室温で撹拌し続けた。20時間後、反応混合物を水で希釈した。水性層を分離し、酢酸エチルで抽出した(3×)。すべての組み合わせた有機層をNaSOで乾燥させ、ろ過し、濃縮して油をもたらした。粗材料をシリカゲルクロマトグラフィ(4:1ペンタン:酢酸エチル)を用いて精製して、所望の生成物528mg、1.10mmol)を89%収率で得た。H(CDCl7.70(1H,s),7.38(4H,m),5.30(2H,s),4.58,600MHz):δ(2H,s),3.80(2H,t,J=5.4Hz),3.57(2H,t,J=5.4Hz),1.63(9H,br s),0.90(9H,s),0.07(6H,s);13C(CDCl159.0,153.7,138.8,134.4,128.3,127.3,150MHz):δ125.1,118.5,72.8,71.7,71.6,66.4,61.9,29.7,27.9,25.6,−5.1.;C2437ClNSiに対するHRMS計算値:481.228389,実測値481.2282。
実施例5
2−t−ブチル−4−クロロ−5−[4−(2−ヒドロキシエトキシメチル)ベンジルオキシ]−2H−ピリダジン−3−オンの合成
Figure 0006254126
実施例4の生成物(528mg、1.09mmol)を無水THF(11mL)中に溶解した溶液に、TBAFの溶液(THF中に1.0M溶液、1.65mL、1.65mmol)を滴下した。添加が完了した後、反応を室温で1時間撹拌し、次いで、水で失活させた。水性層を分離し、酢酸エチルで抽出した(3×)。すべての組み合わせた有機層をNaSOで乾燥させ、ろ過し、濃縮して油をもたらした。粗材料をシリカゲルクロマトグラフィ(4:1ヘキサン:酢酸エチル)を用いて精製して、所望の生成物(311mg、0.850mmol)を78%収率で得た。H(CDCl,600MHz):δ7.70(1H,s),7.38(4H,m),5.30(2H,s),4.56(2H,s),3.76(2H,t,J=4.9Hz),3.60(2H,t,J=4.8Hz),2.00(1H,br s),1.61(9H,br s);13C(CDCl159.0,153.6,150MHz):δ138.8,134.4,128.2,127.2,125.1,118.3,72.8,71.6,71.6,66.4,61.9,27.8;C1823ClNに対するHRMS計算値:367.141911,実測値367.1419。
実施例6
トルエン−4−スルホン酸2−[4−(1−t−ブチル−5−クロロ−6−オキソ−1,6−ジヒドロ−ピリダジン−4−イルオキシメチル)−ベンジルオキシ]−エチルエステルの合成
Figure 0006254126
実施例5の生成物(200mg、0.546mmol)を無水ジクロロメタン(5.50mL)中に溶解させた溶液に、TsCl(125mg、0.656mmol)、DMAP(100mg、0.819mmol)およびトリエチルアミン(0.091mL、0.656mmol)を添加した。反応混合物を室温で攪拌し続けた。22時間後、反応混合物を水で希釈した。水性層を分離し、酢酸エチルで抽出した(3×)。すべての組み合わせた有機層をNaSOで乾燥させ、ろ過し、濃縮して油をもたらした。粗材料をシリカゲルクロマトグラフィ(3:2ペンタン:酢酸エチル)を用いて精製して、所望の生成物(232mg、0.447mmol)を82%収率で得た。H(CDCl7.79,600MHz):δ(2H,d,J=8.3Hz),7.71(1H,s),7.38(2H,d,J=8.2Hz),7.32(4H,m),5.30(2H,s),4.50(2H,s),4.21(2H,m),3.69(2H,m),2.43(3H,s),1.63(9H,br s);13C(CDCl159.0,153.7,144.8,138.8,150MHz):δ134.4,133.1,129.8,128.1,128.0,127.2,125.1,118.4,72.8,71.7,69.2,67.8,66.4,27.9,21.6;C2529ClNに対するHRMS計算値:521.150762,実測値521.1503。
実施例7
18F]フッ化物の調製
18F]フッ化物をサイクロトロンにおける18O]HOのプロトン衝撃により生成した;核化学的形質転換が以下に示されており、18O(p,n)18Fとまとめられてもよい。衝撃のために、18Oの化学形態はH 18Oである。得られる18Fの化学形態はフッ化物イオンである。
18O+プロトン→18F+ニュートロン
確立された産業手法によれば、Havar(登録商標)フォイルを用いてタンタル標的本体内に収容された[18O]HO(2〜3mL)が、11MeVプロトン(公称エネルギー)で衝撃に供され;ここで、反応に係るプロトン閾値エネルギーは2.57MeVであり、および、最大断面のエネルギーは5MeVである。標的体積、衝撃時間およびプロトンエネルギーの各々が調節されて、生成される[18F]フッ化物の量が管理されてもよい。
実施例8
造影剤前駆体1アセトニトリル濃縮物の調製
図1に示されているとおり、造影剤前駆体1(20.4g、39.2mmol)を無水MeCN(3400mL)中に溶解させ、次いで、Opticap XL2 Duraporeフィルタ(0.2μm)を介して、5mLガラスバイアル(2.0mL充填用量)に移した。次いで、バイアルにゴムセプタを取り付け、アルミニウムの圧着でシールし、および、使用前に周囲温度で保管した。
実施例9
造影剤1の一般的な調製
以下の実施例には、図1に示されている、造影剤1を合成するための基本手順が記載されている。実施例7において調製した水性[18F]フッ化物をサイクロトロンから合成モジュールに移し、次いで、アニオン交換カラムを通してろ過して未反応[18O]HOを除去し;[18F]フッ化物をカチオン性樹脂マトリックス中に保持させた。次いで、カラムを水性EtNHCOで反応容器に移しながら洗浄した。得られた溶液をMeCNで希釈し、次いで、高温および減圧を用いて乾燥するまで濃縮した。無水[18F]EtNFおよびこのようにして得たEtNHCOの混合物を実施例8で調製した造影剤前駆体1のアセトニトリル溶液で処理し、次いで、90〜100℃に温め、10〜20分間保持した。冷却した後、溶液をHOで希釈し、次いで、HO/MeCN溶離液を用いるWaters Xterra MS C18カラムでのHPLCにより直接精製した。主生成物ピークを回収し、アスコルビン酸で希釈し、次いで、配合モジュールに移した。他の事例においては、溶液を85〜120℃に温め、5〜20分間保持し、続いて、冷却し、1:1 HO/MeCNで希釈したこと以外は、上記のとおり、同様のステップおよび条件を採用した。
実施例10
Explora RN合成モジュールを用いた造影剤1の調製
実施例7の生成物をサイクロトロンから合成モジュールに移し、次いで、アニオン交換カラムを通してろ過して未反応[18O]HOを除去し;[18F]フッ化物をカチオン性樹脂マトリックス中に保持した。次いで、カラムをEtNHCO(5.75μmol;HO中に0.500mLの11.5mM溶液)で反応容器に移しながら洗浄した。得られた溶液をMeCN(0.500mL)で希釈し、次いで、乾燥するまで濃縮した(150mmHg、115℃で4分間)。無水[18F]EtNFおよびこのようにして得たEtNHCOの混合物を実施例8の生成物(MeCN中に11.5μmol;1.00mLの11.5mM溶液)で処理し、次いで、90℃に温め、20分間維持した。35℃に冷却した後、溶液をHO(1.00mL)で希釈し、次いで、5mL/分の流量で45:55 HO/MeCN溶離液を用いるWaters Xterra MS C18カラム(10μm;10×250mm)でのHPLCにより直接精製した。11分で溶離される主生成物ピークを回収し、アスコルビン酸(10mLのHO中の0.28M溶液;pH2)で希釈し、次いで、配合モジュールに移した;58%減衰補正放射化学収率。
他の事例においては、EtNHCOは11.5μmol(0.500mLのHO中の23.0mM溶液)であり;溶液を280mbar、95〜115℃で、4分間乾燥するまで濃縮し;実施例8の生成物で処理した無水[18F]EtNFおよびEtNHCOの混合物を90℃に温め、10分間保持し;ならびに、生成物は61%減衰補正放射化学収率を有していたこと以外は、上記のとおり、同様のステップおよび条件を採用した。
実施例11a
Eckhert & Ziegler Modular−Lab合成モジュールを用いる造影剤1の調製
実施例7の生成物をサイクロトロンから合成モジュールに移し、次いで、アニオン交換カラムを通してろ過して未反応[18O]HOを除去し;[18F]フッ化物をカチオン性樹脂マトリックス中に保持した。次いで、カラムをEtNHCO(11.5μmol;0.500mLのHO中の23.0mM溶液)で、反応容器に移しながら洗浄した。得られた溶液をMeCN(0.500mL)で希釈し、次いで、乾燥するまで濃縮した;115℃で375mmHg、10分間。無水[18F]EtNFおよびこのようにして得たEtNHCOの混合物を実施例8の生成物(MeCN中に11.5μmol;1.00mLの11.5mM溶液)で処理し、次いで、110℃に温め、10分間維持した。20℃に冷却した後、溶液をHO(1.00mL)で希釈し、次いで、5mL/分の流量で45:55 HO/MeCN溶離液を用いるWaters Xterra MS C18カラム(10μm;10×250mm)でのHPLCにより直接精製した。11分で溶離される主生成物ピークを回収し、アスコルビン酸(10mLのHO中の0.28M溶液;pH2)で希釈し、次いで、配合モジュールに移した;68%減衰補正放射化学収率。
他の事例においては、得られた溶液を400mbar、110〜150℃で、10分間乾燥するまで濃縮し;実施例8の生成物で処理した無水[18F]EtNFおよびEtNHCOの混合物を120℃に温め、10分間保持し;ならびに、35℃で冷却を行ったこと以外は、上記のとおり、同様のステップおよび条件を採用した。
実施例11b
Explora GN合成モジュールを用いる造影剤1の調製
実施例7の生成物をサイクロトロンから合成モジュールに移し、次いで、アニオン交換カラムを通してろ過して未反応[18O]HOを除去し;[18F]フッ化物をカチオン性樹脂マトリックス中に保持した。次いで、カラムをEtNHCO(11.5μmol;1.00mLのHO中の11.5mM溶液)で、反応容器に移しながら洗浄した。得られた溶液をMeCN(1.00mL)で希釈し、次いで、乾燥するまで濃縮した;110〜115℃。次いで、追加のMeCN(1.50mL)を添加し、溶液を再度乾燥するまで濃縮した。無水[18F]EtNFおよびこのようにして得たEtNHCOの混合物を実施例8の生成物(MeCN中に11.5μmol;1.00mLの11.5mM溶液)で処理し、次いで、120℃に温め、10分間維持した。60℃に冷却した後、溶液をHO/MeCN(3.00mL;2:1v/v)で希釈し、次いで、5mL/分の流量で45:55 HO/MeCN溶離液を用いるWaters Xterra MS C18カラム(10μm;10×250mm)でのHPLCにより直接精製した。11分で溶離される主生成物ピークを回収し、アスコルビン酸(10mLのHO中の0.28M溶液;pH2)で希釈し、次いで、配合モジュールに移した;68%減衰補正放射化学収率。
実施例11c
GE TRACERLab MX合成モジュールを用いる造影剤1の調製
実施例7の生成物をサイクロトロンから合成モジュールに移し、次いで、アニオン交換カラムを通してろ過して未反応[18O]HOを除去し;[18F]フッ化物をカチオン性樹脂マトリックス中に保持した。次いで、カラムをEtNHCO(23.0μmol;0.500mLの1:1HO/MeCN中の46.0mM溶液)で、反応容器に移しながら洗浄した。得られた溶液をMeCNで希釈し、次いで、乾燥するまで濃縮した;150mbar、105℃、8分間。次いで、追加のMeCNを添加し、乾燥プロセスを繰り返した;MeCN添加プロセス、続いて、蒸発を3回繰り返した。無水[18F]EtNFおよびこのようにして得たEtNHCOの混合物を実施例8の生成物(MeCN中に23.0μmol;2.00mLの11.5mM溶液)で処理し、次いで、85℃に温め、10分間維持した。次いで、得られた溶液をHO(2.00mL)で希釈し、5mL/分の流量で45:55 HO/MeCN溶離液を用いるWaters Xterra MS C18カラム(10μm;10×250mm)でのHPLCにより直接精製した。11分で溶離される主生成物ピークを回収し、アスコルビン酸(10mLのHO中の0.28M溶液;pH2)で希釈し、次いで、配合モジュールに移した;63%減衰補正放射化学収率。
実施例12
溶剤交換プロセス
実施例10または11の生成物を精製から配合モジュールに移し、次いで、C18 Sep−Pak(登録商標)カートリッジを通してろ過してMeCNを除去し;造影剤1をC18樹脂マトリックスに保持させ、濾液を廃棄した。カートリッジを上手くアスコルビン酸(10mLのHO中の0.28M溶液;pH2)で洗浄し、濾液を廃棄し、次いで、無水EtOH(0.50mL)および濾液を回収した。このようにして得た造影剤1のエタノール濃縮物を、最終滅菌ろ過のための調製において、アスコルビン酸(10.0mLのHO中の0.28M溶液)でさらに希釈した。
実施例13
滅菌ろ過プロセス
最終生成物バイアルアセンブリを以下の滅菌済の構成要素から構成した:1本の30mL生成物バイアル、1つのMilliporeMillexGV4通気フィルタ(0.22μm×4mm)、1本のツベルクリンシリンジ(1mL)および1本のインスリンシリンジ(0.5mL)。実施例12の生成物を、次いで、配合物から最終生成物バイアルアセンブリにMillipore Millex GV PVDF滅菌フィルタ(0.22μm×13mm)を通して移した。次いで、品質管理サンプルをシリンジアセンブリを用いて取り出して、すべての製品リリース要件を満たした。
実施例14
CO/Kryptofix(登録商標)222を用いる造影剤前駆体1の求核性フッ素化(図1)における数々の実験のパラメータの評価に際して、反応全体の複雑さがKCOの添加によって高められていることが分かった;同等のフッ素化効率が試薬化学量論に関わらず観察された。高い塩基(例えば、炭酸塩)レベルは、単に出発材料の非生産的な消費(例えば、造影剤前駆体)と相関していた。KCOをKHCOで置き換えることで、フッ素化効率および出発材料完全性の両方を結果的に顕著に向上させた。溶液pHは、塩基のアイデンティティおよび試薬化学量論に関わらず一定に維持されており;Kryptofix(登録商標)222の在不在が全体的な溶液pHを決定する。フッ素化効率は試薬化学量論に関わらず安定に維持され、これは、反応座標における添加される塩基のより複雑な役割を示している。
図2は、出発材料の非生産的な消費から一連の塩基媒介加水分解反応および二量体化イベントをたどる種々の可能な反応経路を示す。様々な時間および温度実験により、KCO/Kryptofix(登録商標)222をKCOの存在下で用いる、図1に示されている求核性フッ素化反応と同等の加水分解およびフッ素化速度が確認された。それ故、より速い微分フッ素化速度を生起させる反応条件が、より効率的で化学選択的なプロセスを進展させる(換言すると、遅い加水分解速度および/または速いフッ素化速度)ために所望される。
上記のとおり、KCOは、ベースラインレベルを超えたフッ素化の促進にはほとんど関与せず、主に、反応において有害な役割を果たしていた。対照的に、添加したKHCOは、同一の動作範囲にわたり、フッ素化における著しい改善をもたらし、一方で、分解経路はほとんど変わらないままであった。これらの事実は、[18F]NaFのテトラアルキルアンモニウムカチオンとの交換は活性度の高い求核性フッ化物源を直接生成することが知られているという知識と相まって、フッ素化の速度を増幅させる関連する対イオン効果を特定するために一連の市販されている塩の調査を導いた(例えば、図1を参照のこと)。
以下の手法に従って、一連の異なる塩基を、フッ化物の供給源としてTBAF(上記に示されている)を用いるトシレート前駆体の求核性フッ素化において用いた。2mLガラスバイアルにBuNF(1.15μmol;13.4μLのHO中の85.9mM溶液)およびBuNHCO(10.4μmol;138μLのHO中の75.0mM溶液)の両方を仕込み、次いで、95℃に温め、乾燥した窒素流下で10分間保持した。得られた固体混合物を実施例8の生成物(MeCN中に11.5μmol;1.00mLの11.5mM溶液)で処理し、次いで、90℃に温め、10分間維持した。22℃に冷却した後、得られた溶液をHOで希釈し、次いで、0.1%HCOHを含有するHO/MeCN勾配を1.00mL/分の流量で用いるZorbax SB−C18カラム(4.6×50mm)でのHPLCにより、直接分析した。次いで、粗反応混合物における生成物に対する積分したピーク面積を、真性の標準生成物のものと比較して反応収率を算出し(表1);数々の代替的な塩形態の置換を介して得た結果もまた比較のために提供した。
フッ素化効率の増大を重炭酸塩アニオンの存在下で観察した。また、アルキル置換基のサイズに対するあまり大きくない依存関係をR=メチル→エチル→ブチル(データは図示せず)の場合に観察した。
塩が無添加の場合から、一当量の炭酸カリウムに、一当量の重炭酸カリウムに変更すると、KF−Kryptofix(登録商標)222方法を用いることで、約1.5倍の収率の向上が観察された。
Figure 0006254126
また、反応に対する塩添加剤濃度の影響を調べるために、出発材料(例えば、造影剤前駆体)の量に対して塩添加剤の量を変更した。図9は、(A)重炭酸塩のモル濃度に応じた生成物分布の変化を表しているグラフ、および、(B)反応時間に応じた生成物分布を表しているグラフを示す。塩化学量論の調査では、25mol%(または、造影剤前駆体に対して0.25当量)のテトラアルキル重炭酸アンモニウムが完全な転換に必要であることが明らかとなり、塩基濃度の上昇に伴って生じる出発材料の非生産的な消費で変更した反応条件に対する最適な化学量論範囲が明らかにされた。最適前駆体濃度の判定のための関連する研究がかなり明瞭な濃度閾値を明らかにした。図9Cには、>3mg/mlの閾値が図示されている。
求核性フッ素化の最中におけるKryptofix(登録商標)222の不在下での添加剤としてのテトラアルキル重炭酸アンモニウムの使用は、KCO/Kryptofix(登録商標)222法の使用に比して、所望の生成物への速い転換およびフッ素化に向かう化学選択性の顕著な向上をもたらした。粗反応混合物の詳細な評価により、テトラアルキル重炭酸アンモニウムを用いた場合の全体的な分解速度の大幅な低下が明らかとなり、これは、KCO/Kryptofix(登録商標)222を用いた場合に存在する4種の加水分解不純物が不在であることによって明証されている。理論に束縛されることは望まないが、これは、テトラアルキル重炭酸アンモニウムを使用することで、より低い絶対pH(例えば、約5〜6のpH)での反応の実施が可能とされる事実に起因している可能性がある。
実施例15
Figure 0006254126
以下の実施例は、求核性フッ素化反応における炭酸カリウムの存在の影響を調べている。炭酸カリウムの存在下では36%の収率が得られ、一方で、炭酸カリウムの不在下では35%の収率が得られた。
実施例16
Figure 0006254126
以下の実施例には、異なる塩添加剤が求核性フッ素化に対して有し得る効果が記載されている。炭酸カリウムの存在下では35%の収率が得られ、一方で、重炭酸カリウムの存在下では71%の収率が得られる。
実施例17
Figure 0006254126
以下の実施例には、求核性フッ素化反応において異なるフッ化物源を用いて得られる結果が記載されている。KF/Kryptofix(登録商標)222の存在下では71%の収率が得られ、一方で、テトラブチルアンモニウムフッ化物の存在下では83%の収率が得られる。
実施例18
Figure 0006254126
以下の実施例には、テトラブチルアンモニウムフッ化物をフッ化物塩として利用する求核性フッ素化反応において異なる塩基を用いて得られる結果が記載されている。重炭酸塩基の存在下では83%の収率が得られ、一方で、水酸化物塩基の存在下では36%の収率が得られる。
実施例19
心筋虚血の検出に関して、造影剤1および82Rb PETのSPECTに対する比較を以下に記載する。前臨床研究において、造影剤1の心筋摂取は、達成可能な流量範囲にわたって、201Tl、99mTcセスタミビおよび82Rbよりも強い心筋血流量との関連性を示している。以下の実験を実施して、82Rbに対して造影剤1によって、PET虚血検出とSPECT虚血検出との間で造影剤1の向上した抽出および保持に大きな差異がもたらされることとなるかを判定した。
方法:フェーズII臨床治験において、99mTcセスタミビSPECTおよび造影剤1 PETを6ヶ月以内に単一の医療機関で受けた26人の患者(20人の男性)を、臨床状態を変化させることなく99mTcセスタミビSPECTおよび82Rb PET(25〜50mCi)を6ヶ月以内に受けた23人の患者(SPECTでの可逆欠損スコア(SDS)により対応させた)と比較した。PETは、造影剤1を用いて、安静時(2.3〜3.9mCi)に、続いて、60分間後または24時間後に、運動またはアデノシン負荷(7.3〜8.6mCi)を伴って実施した。SPECTおよびPETにおける灌流欠損を、標準的な17つのセグメント、5点スコアモデル(0=通常;4=無摂取)を用いてコンピュータ−補助視覚的読影により査定した。虚血(SDS)の程度および重症度を負荷時欠損スコア(SSS)と安静時欠損スコア(SRS)との差から導いた。
結果:異常SPECT(SSS≧4)の14人の患者において、平均SDSは、SPECTよりも造影剤1で大きかった(9.6±1.8対5.4±0.7、p=0.02)。異常SPECTの13人の患者の対応群において、平均SDSは、82Rb PETおよびSPECTで同様であった(4.9±1.4対4.6±1.3、p=0.8)。正常SPECTの患者において(SSS<4)、SPECTと比した場合に、造影剤1(n=12)または82Rb(n=10)PETのいずれでもSDSにおける差異は観察されなかった。
造影剤1 PETは、同等の患者群において82Rb PETをSPECTに対して比較した際には見られなかった、99mTcセスタミビSPECTに比した検出された虚血量の増加を示した。これらの結果は、PETをSPECTと比較する場合、造影剤1は、心筋虚血の検出において、82Rbの使用に関連する場合よりも大きい向上を示すことを示唆する。
実施例20
負荷時および安静時心PETのための正常な灌流および機能限度の複数の医療機関での開発を以下に記載する。研究は、心臓灌流18F系の薬剤(造影剤1)により計測された正常な心機能の正常な灌流分布限度および特性付けの開発を含んでいた。
方法:正常な限度を、トレッドミル運動負荷時/安静時データセット(合計で30データセット)を有し、18F造影剤1灌流剤に係る臨床治験(フェーズ2)に採用され、Siemens Biograph−64 PET/CTスキャナでリスト方式で撮影した平均年齢54.7歳、平均重量74.2kgの15人の低尤度患者(7F/8M)から確立した。2.6×2.6×2.0(mm)のボクセルサイズで8−ビン同期での標準的な再構成(2D減弱補正オーダーサブセット期待値最大化)を同期再構成に用いた。5分間再構成は、負荷時および安静時の同位体注入のおよそ5分後に得られたとみなした。Cedars−Sinai QPET PET機能および灌流分析ソフトウェアを、すべての処理および正常な灌流データベースの生成に用いた。左心室(LV)の画定においてはマニュアルでの介入が同期研究については30回のスキャンの内2回(6.7%)、および、未同期研究については30回の内1回(3.3%)必要であったが、他のすべての処理は完全に自動であった。
結果:左心室のカウントは、33.33±6.44百万カウントであって、負荷時に係る範囲(22.76〜44.29)であると共に、7.56±1.86百万カウントであって、安静時に係る範囲(5.12〜11.77)であった。負荷時/安静時カウント比は、4.53±0.88(2.88〜6.16)であった。平均一過性虚血性心拡大(TID)は0.974±0.124であり、正常上限は1.22であった。QPET相対灌流正常限度を負荷時および安静時スキャンについて生成した。それぞれ80/79%の心尖カウントで、負荷時および安静時での心尖低下に対するエビデンスが存在した。正常データベースにおけるカウントの変動は、すべての17AHAセグメントにおいて5〜9%であった。機能性パラメータは表2に記載されている。
Figure 0006254126
実施例21
正常なおよび冠動脈疾患患者における造影剤1 PETでの安静時および負荷時心筋血流量の絶対定量化の結果を以下に記載する。造影剤1は、ミトコンドリア複合体1を標的とする新規の心筋灌流PETトレーサである。この研究においては、安静時(R)および負荷時(S)の心筋血流量(MBF)および冠動脈血流予備能(CFR)の定量化を正常なおよび冠動脈疾患(CAD)患者においてこのトレーサで調査した。
方法:11人の患者(8人はCADの尤度が低く、3人はCADを患っていると共に可逆性欠損を有していた)に、安静時およびアデノシン薬理学的血管拡張のピーク時に造影剤1をIV注入した。ダイナミックPET画像を、トレーサの投与を始点として10分間の間得た。再配向短軸画像において、関心領域を心筋層および左心室血液プールの正常な領域および欠損領域とし、これらから、時間放射能曲線(TAC)を生成した。入力関数として血液プールTACを用いてPatlak分析を心筋TACに適用(約0.4〜1.5分間)して、心筋層における摂取定数(K)を得た。部分容積および過剰量補正を血液プールおよび心筋TACに適用して、Patlakプロット上での回帰ラインの交点を確実にゼロに近くさせた。ヒトにおける造影剤1に係る最初の通過抽出画分を、前臨床研究において観察されたものと等しい0.94と仮定した(すなわち、MBF=K/0.94)(例えば、Huisman et al.,J Nucl Med 2008;49:630−6を参照のこと)。
結果:S MBFは、LL患者とCAD患者における正常な冠動脈(NCA)により供給された心筋領域とにおいて同様であった(p=NS)。しかしながら、R MBFは、LLに対してNCAにおいて高く(p<0.05)、NCA患者においてより低いCFR(p<0.05)がもたらされる。対照的に、S MBFおよびCFRは、CAD領域において顕著に低かった(表3を参照のこと)。これらの所見は、N−13アンモニアPETを用いる発行されている文献と一致している。
Figure 0006254126
研究データは、絶対MBFは、造影剤1心筋灌流PET造影を用いて、ヒトにおいて安静時および負荷時に定量化が可能であったことを示していた。
実施例22
18F−標識化した心筋灌流トレーサ造影剤1に対して注入したトレーサ投与量および撮影時間を最適化するための反復的技術を以下に記載する。公衆およびスタッフの被曝に関する懸念により、投与量と撮影時間との積(DATP)を最適化して、投与量、撮影時間および画像ノイズ間での最適なトレードオフを得ることが必要とされている。反復的アルゴリズムを、タスク限界ノイズレベルに基づいて最適な投与量および撮影時間を判定するために開発した。
方法:平均および標準偏差(SD)を心筋層の対象領域(ROI)から測定して、比:平均/SD(MSD)を定義した。SDおよび「ノイズ」の代わりの使用では制限がある:1)部分容積およびトレーサ摂取による内因性カウント変動性、ならびに、2)再構成し、ポストフィルタリングしたデータの非ポアソン性。反復的アルゴリズムを用いてモデルを制限MSDに適合させた。これにより、目標MSDに対して最適な撮影時間を判定して5%灌流欠損を検出した。
データの取得:患者分布と40%中隔欠損とをシミュレートするファントムデータを、30分間のリスト方式撮影を用いて、Biograph64スライスPET/CTスキャナで撮影した。技術を、18人の被験者でもテストした。患者に、安静時に2mCi、および、次の日に約2mCi stressを投与した。10、20、40、80、160および320秒で動的なシリーズを注入後に10分間撮影した。心筋ROIを、>70%の最大心筋ボクセル限度を用いて、個別の600秒撮影から取得した。
データ分析:ファントムデータは、9.5mCi(シミュレートした)×分の理論的DATPに収束した。患者において、反復的アルゴリズムは、18安定時、9Adおよび8Exにおける解に収束した。結果が表4にまとめられている。
Figure 0006254126
最適な投与量×撮影時間の積について解くための反復的技術は、ファントムおよび患者研究に収束した。この結果を用いて、安静時、アデノシンおよび運動負荷時に係る最適な撮影時間を判定した。しかも、アルゴリズムを用いて、代わりのフィルタリングおよび検出限界をテストし、ならびに、低感度スキャンの性能を推定するために用いられることが可能であることを判定した。
実施例23
放射性トレーサである造影剤1から計測されるとおり、広い範囲の撮影時間にわたる心筋機能性パラメータ(LVEF、EDVおよびESV)の独立性を以下に記載する。心筋灌流PETを用いる機能性パラメータの正確な計測は、適切なカウント密度を必要とする。機能性パラメータ[左心室駆出率(LVEF)、収縮末期用量(ESV)および拡張末期用量(EDV)]の相関性を撮影時間で試験した。
方法:カウント密度における変動に対する機能性計測のロバストネスを分析するために、「リスト方式」データから、低カウント[1、3、5分アデノシン(AD)、3、5分安静時、5、10分運動(EX)]から高カウント(15分AD、10分安静時、15分EX)までの一連のECG同期(16時間ビン)PETデータセットを生成した。QPET分析プログラムを用いてLVEF、ESVおよびEDVを計測した。
データ取得:2つの研究センターの23人の患者から。研究のためのデータは同日に、安静時負荷時研究で撮影した。患者らに、安静時に約2mCiを、および、「同日」に約6mCiの負荷(8EX、13AD)投与量をも投与した。より短いリビニング時間からの機能性値を最長の撮影時間データセットと比較した。線形回帰分析を用いて相関性を判定した。
結果:試験したすべての撮影時間について、回帰の傾きは、1の10%以内であった(1分アデノシンの20%を除く)。補正係数は表5のとおりである。
Figure 0006254126
心臓造影剤1心筋灌流PET画像中に存在する高カウント密度は、広い範囲のカウント密度にわたるロバストな機能性計測が可能であることを示した。BMIなどのカウント密度に作用するパラメータにおける中度の変動、および、投与量における変動が機能性計測を改変する可能性は低い。
実施例24
造影剤1PET心筋灌流での1日安静時−負荷時プロトコルに係る最低注入間間隔を判定する方法の開発を以下に記載する。心筋灌流画像法(MPI)に係る1日安静時−負荷時プロトコルは、より短い時間はより大きい負荷時/安静時投与比(DR)を必要とし、および、最低安静時投与量は画像統計によって指定されるため、注入間の待ち時間(WT)の最短化が必要とされている。DRのWTへの依存関係を判定し、および、許容可能な総投与量のためのWTを特定するための方法を開発した。
方法:既知の可逆性欠損を有する20人の患者からの、Tc−99m MPIでの心臓(5人のアデノシン(AD)負荷および5人の運動(EX)負荷)の2日安静時−負荷時造影剤1 PET画像データを組み合わせ、16%、23%、48%または100%の安静時画像を負荷時画像に加えることにより、擬似複合画像を生成した。これらを安静時画像、2日負荷時画像と対とし、3台の盲検検出器で読み取った。結果は、検出器応答(RR)(0〜4)および%低減での定量的欠損の重症度(QDS)としてセグメント毎に記録した。
結果:RRは、QDSと線形的に関連していることが見出された。普通、最大値の80%を超える低減は0とし、70%〜80%を1とし、60%〜70%を「2」とし、50%〜%を「3」とし、および、50%未満を「4」として読み取った。RRの分析は、通常、48%および100%複合画像セットについてのみ、2日データからの1ユニットを超える変化が検出器応答において観察されたことを示していた。従って、23%が、最大の容認可能な安静時−負荷時汚染であると考えた。安静時−負荷時汚染と投与との間の関係を用いて、ADに関しては、2.2の最低DRが0.5時間のWTで必要とされ、および、EXに関しては、3.0の最低DRが1−時間のWTで必要とされたことが見出された。
最大の容認される安静時−負荷時汚染レベルをモデル画像から判定した。高い冠動脈血流量での造影剤1の摂取特性により、AD研究に関して比較的低いDRおよび短いWTが容認可能とされ、一方で、EX研究に関しては、より長いWTおよびより高いDRが必要とされた。
実施例25
安静時および負荷時フェーズの両方に対する投与量および造影時間、ならびに、安静時投与と負荷時時投与との間の間隔の選択を必要とする1日安静時−負荷時PET MPIプロトコルの設計を以下に記載する。
これらのパラメータは、心筋灌流画像法における造影剤1の3つの特性:1)所与の撮影時間について診断に利用できる品質の画像が得られる安静時での注入投与量、2)安静時投与量の負荷時画像に対する許容可能な最大の寄与、および、3)放射線量の考慮に基づいて投与され得る最大合計注入投与量を用いて判定した。
カウント−関連シグナル/ノイズが検出器の誤差に有意に寄与しなかった所与の造影撮影時間に係る最低安静時投与量を判定した。これは、次第にデータ量が増える患者安静時研究のマルチリビニングを用いて投与量の増加をシミュレーションすることにより行った。この方法は、連続するリビニングにおける数が増える併発イベントを用いて、増える投与量および/または撮影時間をモデリングする画像を生成する。この方法は、ここで用いられるものなどの比較的低濃度の放射活性について有効である。
投与量と撮影時間との関連が既知である場合に、コホート2に対する安静時投与量を算出した。2分間から実質的に最長の10分間以下の様々な撮影時間に必要とされる投与を考慮した後、5分間を選択した。これにより、安静時撮影のために2.9mCiの初期投与量が可能となった。
所与の安静時投与量に対する負荷時投与量を判定するために、投与比を判定した。これを行うために、先ず、安静時投与量の−負荷時画像に対する容認可能な最大寄与を判定した。これを、研究第1日目安静時研究および研究第2日目負荷時研究からのデータの組み合わせを用いて、様々な安静時投与量寄与を伴うシミュレーション済みの負荷時画像を生成することにより査定した。
方法の最終ステップは、いくらかの追加的なマージンを伴って総線量を14mCiの限度未満とし、危険臓器については放射線量を5remに限定し、および、1rem実効線量(ED)以下に維持する必要性があることである。
分析からの負荷時画像に対する最大安静時寄与を用いることで、最短で15分間(実質的に直ぐ)から、最長実際的な限度である2時間までで様々な投与間隔を考慮した。これに基づいて、アデノシン負荷に対して30分間間隔を選択することが可能であり、これは、2.0の負荷時投与量対安静時投与量の対応する比をもたらした。
運動負荷に関しては、運動に伴う放射活性の総心筋摂取が低いために、より長い投与間隔とより大きい投与量比との組み合わせが必要とされた。それ故、60分間の投与間隔を選択したところ、これは、3.0の投与量比に対応していた。安静時撮影時間を7分間に延長し、安静時投与量を1.7mCiに減らすことで、総量を余裕を持って14mCi限度内に維持しつつも、必要とされる大きな負荷時/安静時投与量比を実現した。
いくらかの範囲での投与を可能とし、および、研究の完全性を脅かし得る投与の変動を防止するために、上記の投与量および投与量比の値を各可変項に係る15%〜20%範囲の下限とし、ならびに、撮影時間をすべての撮影について最短で15分間に延長して、2D PETスキャナの感度が低い可能性を考慮した。より短い撮影時間による画像を必要に応じて同一のデータから入手し得るよう、データ撮影をセクションに分けた。これにより、2.9mCi〜3.4mCi restの最終的な規定投与量がもたらされ、負荷時投与量は、アデノシン負荷に係る安静時投与量の2.0〜2.4倍であった。運動負荷に関しては、最終投与量を安静時で1.7mCi〜2.0mCiに設定し、負荷時投与量は、安静時投与量の3.0〜3.6倍であった。これらの投与量は実際に注入される放射活性の総量を反映していることが意図されており、従って、吸着およびシリンジの死容積に起因する損失を補償するために、注入の前のシリンジには追加の放射活性が必要とされる。
実施例26
18F−標識化造影剤1心筋灌流PETトレーサのヒトの安全性、線量測定、体内分布および安静時−負荷時心筋造影特徴を以下に記載する。18F−標識化造影剤1は、ミトコンドリア複合体1を標的とする新規な心筋灌流画像法PETトレーサである。このトレーサのヒトの安全性、線量測定、体内分布および心筋造影特徴の研究を評価した。
方法:25人の正常な被験者を2つの研究に登録した:13人が安静時(R)のみに222MBq I.V.を受け、および、さらに、12人の被験者が、Rで94MBqを受けると共に2日目に、ピークアデノシン負荷時(Adeno、n=6)またはピークトレッドミル運動(Ex、n=6)で124MBqを受けた。身体的試験、実験室、バイタルサイン、ECGおよびEEGを注入の前後で監視した。心筋(Myo)、肝臓、血液プールおよび肺標準化摂取値(SUV)を、経時的な連続PET画像から判定した。種々の器官に対する平均線量および平均実効線量(mSv/MBqでのED)を推定した。
結果:トレーサに関連する有害事象は見られなかった。最高線量器官は、Rでの腎臓、ならびに、AdenoおよびExでの心臓であった。EDは、RおよびAdenoで0.019であり、ならびに、Exで0.015であった。Myo SUVは、造影中は高いままであった。Ex myo SUVは、より高い骨格筋摂取により、Exでは低かった。Ex myo SUVは、より高い骨格筋摂取により、Exでは低かった。Myo/肝臓はExで最高であり、これに、AdenoおよびRが続いた(表6を参照のこと)。Myo/血液およびMyo/肺は高く、経時的に急速に向上した。
Figure 0006254126
実施例27
種々の条件下での造影剤1の投与プロトコルを判定するために被験者において研究を実施した。投与プロトコルの判定は、被験者の身体に注入される造影剤1のmCi;シリンジから注入される造影剤1のmCi;注入後の画像の撮影時間;安静時研究と負荷時研究との間の遅延等などのパラメータを査定するステップを含んでいた。パラメータは安静時および負荷時で変動し、例えば、運動負荷に係る注入投与量(体内)は、安静時での注入投与量(体内)の少なくとも3倍であった。加えて、薬理学的負荷に係る注入投与量(体内)は、安静時での注入投与量(体内)の少なくとも2倍であった。結果が表7に示されている。
Figure 0006254126
注入投与量、研究間の遅延、安静時投与対負荷時投与の比、および、シリンジから注入される量に比したシリンジ中の量を含む種々のパラメータを、ヒト被験者における造影剤1の投与について判定した。
実施例28
健常な被験者における、単一−投与量線量測定、体内分布および造影剤1の安全性治験に関する研究から得られた結果を以下に記載する。12人の健常なボランティアの全身PET画像データを、造影剤1を用い、注入後およそ10分間、30分間、50分間、2時間、2.5時間、3.83時間および4.5時間で得た。画像データを造影サイトで減弱補正すると共に、Dosimetry Analysis Laboratory,CDE Dosimetry Services (CDE)によるMedical Internal Radiation Dose(MIRD)16方法論に基づいて定量化して、活性の顕著な摂取を示すすべての器官における反応速度データを測定した。定量化した画像データの反応速度モデリングを介して線量測定推定値を生成して、残留時間および標準的なMIRD方法論を判定した。これらの推定値を、膀胱排尿間隔に関する3つの仮定(2.0、3.5および4.8時間)を用いて判定した。反応速度データ、残留時間および線量測定推定値が、個々について、および、簡易統計として報告されている。
用語法:実効線量(ED):業務上の放射線防護のためにICRPによって開発されたEDは、均一な外部線量および不均一な内部線量からの放射線傷害の比較を可能とする。不均一な内部線量について測定した1rem EDに対するリスクは、1remの均一な外部被曝からのリスクに等しい(合計身体線量)。ICRP刊行物60[ICRP−60 1991]に定義されているとおりである。
実効線量当量(EDE):業務上の放射線防護のためにICRPによって開発されたEDEは、均一な外部線量および不均一な内部線量からの放射線傷害の比較を可能とする。不均一な内部線量について測定した1rem EDEからのリスクは、1remの均一な外部被曝からのリスクと等しい(合計身体線量)。ICRP刊行物30[ICRP−30 1981]に定義されているとおりである。
MIRD方法論:放射線吸収線量の測定のためにMedical Internal Radiation Dose Committeeによって開発された方法論である。この方法論は、放射線移行係数(S−値)およびバイオ−反応速度パラメータ(残留時間)の使用を含んでいた。MIRD Primer,Society of Nuclear Medicine,1991に定義されているとおりである。
%CVは変動の係数である(標準偏差対平均の比×100)。
全身画像からの注入投与量割合対時間:時間に応じた注入した活性割合を、脳、心臓壁、腎臓、肝臓、肺、赤色骨髄(腰髄領域)、唾液腺、脾臓、胃壁、甲状腺および膀胱について測定した。平均では、最大のピーク摂取を示した器官は、注入した活性のおよそ19.1%(データ図示せず)で肝臓であった。次に大きいピーク摂取は、注入した活性のおよそ9.4%(データ図示せず)で腎臓で生じていた。
線量測定推定値:平均では、3.5時間の膀胱排尿間隔については、最大の吸収線量を受ける器官は、0.24rem/mCi(0.066mSv/MBq)で腎臓、および、0.18rem/mCi(0.048mSv/MBq)で心臓壁であった。平均ED(実効線量)は、0.071rem/mCi(0.019mSv/MBq)であった。表8に吸収線量推定値(rem/mCi)が示されている。列挙されている器官に対する平均吸収線量が表8の第1欄に見いだされる。
Figure 0006254126
実施例29
心筋灌流PET造影のための新規な18F−標識化トレーサである造影剤1のヒト研究に関連する結果;安静時での単一注入後の線量測定、体内分布、安全性および造影特徴を記載する。
方法:研究固体群.年齢18〜40歳の健常な成人(病歴、身体試験、バイタルサイン、ECG、EEG、神経学的試験および臨床実験テストにより判定)を研究に参加させた。登録のためには、被験者は、すべてのプロトコルにより特定される組み入れ基準を満たすと共に、除外基準に該当していない必要があった。
研究設計.これは、非無作為化、非盲検、単一−投与量研究であった。合計で13人の健常な成人被験者を登録し、米国における単一の研究センターで単一投与量の造影剤1を投与した。被験者を登録の前に14日間の間スクリーニングして被験者の適格性を確認し、研究薬物投与の前日に研究センターでベースラインアセスメントを開始した。被験者は、研究第2日目の安全性アセスメント(投与後24±8時間)が完了するまで研究センターに残っていた。投与後48±8時間に、有害事象(AE)の監視のために研究被験者に電話をかけた。すべての被験者が、投与後およそ1週間(5〜7日間)に経過観察安全性訪問のために研究センターに戻り、投与後およそ14〜17日間に、最終的な厳重なAE監視のために電話で接触した。
投与量および投与方法の決定:適切なカウント統計をもたらすために8mCi目標線量を選択したところ、前臨床データに基づく許容可能な最大被曝をかなり下回ることが予想された。これらのデータは、標的に50mSv(5rem)を超えることなくヒトに投与され得る造影剤1の最大投与量は742MBq(20.0mCi)であり、および、≦10mSv(1rem)の実効線量(ED)をもたらす注入投与量は666MBq(18.0mCi)であったことを実証した(Stabin,M G,Sparks,RB,et al,OLINDA/EXM:the second−generation personal computer software for internal dose assessment in nuclear medicine.”J Nucl Med 2005 46(6):1023−7)。
第1日目に、各被験者は、水中の≦50mg/mLアスコルビン酸ナトリウムを含有する≦5%エタノールの無菌溶液中の造影剤1の1〜3mL静脈内大量注入を受け、これは、注入時に略目標投与量の造影剤1を送達させると算出されていた。投与量を10秒未満で投与し、続いて、直ぐに3〜5mL生理食塩水でフラッシュした。
正味での注入投与量は、注入後のシリンジおよび注入チューブにおける減衰補正した放射活性を注入前のシリンジにおけるアッセイにかけおよび減衰補正した放射活性から減ずることにより算出した。
PET造影プロトコル.頭部から中大腿部までの全身PET造影をプロトコルにより特定された時間窓で実施した。
線量測定分析:成人男性モデルおよび女性モデルの標準的な器官、および、唾液腺に対する放射線線量測定の推定値、ならびに、実効線量当量(EDE)(International Commission on Radiological Protection(ICRP),Recommendations of the International Commission on Radiological Protection,Publication 26.Ann ICRP.1977;1(3))および実効線量(ED)(International Commission on Radiological Protection(ICRP),1990 Recommendations of the International Commission on Radiological Protection,60.Ann ICRP.1990;21(1−3))の推定値をOLINDA/EXMソフトウェアを用いて判定した(Stabin,M G,Sparks,RB,et al,OLINDA/EXM:the second−generation personal computer software for internal dose assessment in nuclear medicine.”J Nucl Med 2005 46(6):1023−7)。放射線線量測定のアセスメントは、MIRD Pamphlet no.16と整合性のある方法を用いる造影研究に由来するデータの伴うMIRD方法に基づいていた(Siegel JA,Thomas SR,Stubbs JB,et al.MIRD pamphlet no.16:Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.J Nucl Med.1999 Feb;40(2):37S−61S)。
特注のソフトウェアを用いて、各被験者および各時点について、減弱補正した横断画像データスライス面を単一の三次元画像マトリックスに複合化した。次いで、これらの画像を、各被験者について、各時点で、6つの画像セット(「腹側」、「背側」、「唾液」、「甲状腺」、「供給」および「完全」)の複合化した前頭面画像データに分けて、同様の腹側から背側までの深度で器官をグループ化した。これは、ROIの生成を最適化すると共に、複合化前頭面画像の各々に含まれている器官に対するバックグラウンドの寄与を最小化するために行った。「腹側」画像は、胃壁、心臓壁および膀胱を含んでいた。「背側」画像は、腎臓、腰椎および脾臓(視認可能な場合)を含んでいた。「唾液」画像は、唾液腺(耳下腺および顎下腺)を含んでいた。「甲状腺」画像は甲状腺を含んでいた。「完全」画像は、被験者画像データを含む冠状画像面のすべてが複合化されており、脳および肝臓の定量化に用いた。「供給源」画像は校正基準を含んでいた。
関心領域を、この目的のために開発され検査されている特注のソフトウェアを用いて、バックグラウンドを超える摂取を示したすべての器官の周囲に描写した。絶対放射活性を、校正基準から求めた校正係数によりROI和を標準化することにより判定した。領域カウントもまた、バックグラウンド関心領域の利用によって定量化されている器官または組織の一部ではない、上下に存在している活性を含む組織について調整した。全身領域カウントもまた、身体から外れるバックグラウンドカウントについて補正した。器官および隣接する領域に対する領域サイズの適切な標準化を行った。必要な場合には、他の活性を含む器官により顕著に重畳されている器官の遮蔽されていない領域をも採用した。下腿部(造影していない)における活性を推定するために、上腿部の対象領域を利用した。必要な場合には、活性もまた、注入した活性の100%を構成するよう、および、吸収線量の慎重な測定(わずかに過剰な−推定値)を保証するために標準化した。造影投与計画の終了時を超えて尿中排泄データが利用可能な場合、これらのデータを用いて全身保留を判定した。
研究における被験者の脳、心臓壁、腎臓、肝臓、赤色骨髄(腰椎領域を利用した)、唾液腺、脾臓、胃壁、甲状腺および膀胱に対する反応速度データを、画像定量化方法論を用いて判定した。投与した合計活性により除することにより、絶対活性を分割量に転換した。器官および組織データを、式1に示される形態の指数の和で非線形最小二乗回帰を用いてフィッティングした(式中、fおよびλは、フィッティングプロセスにおいて判定されるモデルパラメータであり、Fij(t)は、注入した活性の合計の画分であり、tは注入後の時間であり、iはi番目のROIであり、jはj番目の被験者であり、および、kはk番目の指数項である)。適切な場合、1〜4の指数項を採用した。
Figure 0006254126
反応速度データの一時的な変動およびユーザによって選択された種々の時間放射能シナリオに対する予め集計された推定値の使用に基づいて、初期パラメータ値を判定する特注のソフトウェアを用いて回帰を実施した。一旦これらのデータをフィッティングさせたら、ゼロから無限までの時間で、物理的崩壊を考慮に入れながらこれらの経験的に判定された関数を積分する(指数の和)ことにより残留時間を判定した。身体残留時間の残りを、適切な器官残留時間を全身残留時間から減ずることで判定した。膀胱残留時間は、OLINDA/EXMソフトウェアに実装されている3.5時間の膀胱排尿間隔の膀胱モデルに全身活性データをフィッティングすることによって判定したパラメータを用いて判定した。赤色骨髄残留時間は、腰椎の一部に描写された対象領域に基づいて判定した。腰椎は、赤色骨髄全体の16.1%を含むと仮定した(International Commission on Radiological Protection(ICRP)Publication 23,Report of the Task Group on Reference Man.Pergamon Press.1975,page 125)。
器官/組織線量測定推定値:すべての標的器官に対する吸収線量推定値を、成人「男性」モデルを用い、OLINDA/EXMソフトウェアを用いて判定した。得られる吸収線量推定値を、放射線輸送ファントムの合計体質量と相対的に個々の被験者の合計体質量に基づいて基準化した。唾液腺線量測定を、標準人の耳下腺および下顎唾液腺の合計質量に基づく唾液腺に対するS−値の慎重な推定値を用いると共に(International Commission on Radiological Protection(ICRP)Publication 23,Report of the Task Group on Reference Man.Pergamon Press.1975,page 125)、球状の形状を仮定して判定した。球に対するS−値をOLINDA/EXMソフトウェアにより生成したところ、これは、被験者に比した相対的な標準人の総体質量に基づいて線形に基準化されていた。次いで、これらのS−値に残留時間を乗じて採集唾液腺線量推定値を生成した。
統計的分析:すべての統計的分析およびすべての要約表および列挙をSAS(登録商標)リリース9.1.3(SAS Institute,Inc.,Cary,NC)を用いて準備した。標準的な説明用の要約は、N、平均、中央値、標準偏差(SD)および/または変動係数(%CV)、連続的可変要素に対する最低および最大、ならびに、カテゴリ変数に対する数およびパーセントを含んでいた。
結果:患者統計学:スクリーニングした26人の被験者の内、13人の被験者(12人の男性および1人の女性)に造影剤1を投与し、すべての安全性評価を完了した。平均年齢は23.4歳(範囲:19〜34歳)であり、平均BMIは23.4(範囲:20〜26)であった。1人の患者を、標準的な調製物に対する線量校正器アッセイデータを確認することができず、線量測定、体内分布および放射性反応速度の分析から除外した。
放射線線量測定:静脈内大量注入を計算して、注入時に8mCi以下の18Fを送達させた。平均(SD)最終減衰補正線量は、4.6〜6.6mCi(170〜244MBq)の範囲で6(0.6)mCiの18Fであった。目標線量と最終線量との差はシリンジにおける造影剤1の保持によるものであった。
吸収線量簡易統計が表9(mSv/MBq)に示されている。最大の平均吸収線量を受けた器官は0.066mSv/MBq(0.24rem/mCi)で腎臓であり、続いて、0.048mSv/MBq(0.18rem/mCi)で心臓壁であった。平均EDは、0.019mSv/MBq(0.072rem/mCi)であった。
Figure 0006254126
全器官体内分布.時間の関数としての注入された放射活性の全器官割合として算出した造影剤1の体内分布を、脳、心臓壁、腎臓、肝臓、肺、赤色骨髄(腰髄領域)、唾液腺、脾臓、胃壁、甲状腺および膀胱(表10および図11)について判定した。図11は、造影剤1の投与後の異なる時点での、代表的な被験者による心筋層レベルでの身体の全身冠状画像を示す。画像は18F崩壊について補正しておいた。心臓は、最も早期の画像から注入のおよそ5時間後まで、18Fの高レベルで持続的な保持を示すことが分かる。肝臓もまた、一般に心臓と同様の強度を示し、注入の10〜30分後にピークとなり、およそ2時間後までには掃去されると見られる。最も大きい平均ピーク摂取を示した器官は肝臓であって、注入した活性のおよそ19.1%であった。次に大きい平均ピーク摂取は、腎臓において注入した活性のおよそ9.4%で生じ、続いて、脳で注入した活性のおよそ8.3%で生じた。研究における被験者からのデータを用いて各被験者に対する排泄率を判定し、および、理論的に固定された投与後3.5時間の排尿間隔の標準的なモデルを用いて膀胱における放射活性の残留時間を判定した。最大の平均残留時間は、残りの組織(1.8時間)、肝臓(0.28時間)および脳(0.14時間)であった。簡易的な残留時間統計が表11に示されている。
Figure 0006254126
Figure 0006254126
尿における18Fの早期の排出.投与前に集めた尿(ベースライン)、および、投与後8時間までのすべての尿を集め、18Fについてアッセイした。しかしながら、血液回収のように、尿回収は、プロトコルにおいて指定されている最低である7時間後付近で終了した。およそ7時間の間の排尿間隔での平均尿中排泄は、64.7の%CVを伴う4.83%IDであって、および、0.64%ID〜12.41%IDの範囲であった。この所見は、PET造影で計測した5%の累積尿排泄と適度に合致する。
考察:造影剤1に対する危険臓器は腎臓であって、0.066mSv/MBq(0.24rem/mCi)の平均推定線量であった。危険臓器に50mSvを超えることなく投与され得る化合物の最大注入投与量は、従って770MBqである。これは、[18F]−FDGの生産に適用される設備のための推奨される添付文書語句表現を記載する広範に用いられているCenter for Drug Evaluation and Research(CDER)による指針において推奨されている185MBq〜370mBqよりもいくらか高い)(PET Drug Applications−Content and Format for NDAs and ANDAs:Fludeoxyglucose F 18 Injection,Ammonia N 13 Injection,Sodium Fluoride F 18 Injection,Attachment II,Sample Formats;Labeling for Ammonia N 13 Injection,Fludeoxyglucose F 18 Injection and Sodium Fluoride F 18 Injection,Attachment II(CDER 2000))。この挙動は、投与の直後での[18F]−FDGの大部分のきわめて急速な尿中排泄の結果であり、結果的に、造影剤1の場合と比して、その化合物に係る膀胱に対する実質的に高い被曝をもたらす。造影剤1によるED(0.019mSv/MBq)は18F]−FDGのEDと同じである(International Commission on Radiological Protection(ICRP),Radiation Dose to Patients from Radiopharmaceuticals,Addendum 2 to ICRP Publication 53,Publication 80,Ann ICRP.1999;28(3))。従って、造影剤1による放射線量は、[18F]−FDGによるものと同等またはそれ未満であると結論付けることが可能である。
造影剤1に係る平均推定実効線量(ED)は0.019mSv/MBq(0.072rem/mCi)であるため、10mSv EDを超えることなく投与され得る最大注入投与量は、従って、521MBqである。
この研究からの放射線量推定値は、非ヒト霊長類に由来するものと一致し(Lazewatsky J,Azure M,Guaraldi M et al.Dosimetry of BMS747158,a novel 18F labeled tracer for myocardial perfusion imaging,in nonhuman primates at rest.J Nucl Med.2009;49(Supplement 1):15p.)、および、心臓における造影剤1の高レベルで持続的な保持は、非ヒト霊長類および他の種の両方におけるデータと一致している(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K,Radeke H,Purohit A,Azure M,Casebier DS,Robinson SP.BMS−747158−02:a Novel PET Myocardial Perfusion Imaging Agent.Journal Nuclear Cardiology 2007 Nov−Dec;14(6):789−98)。霊長類由来の推定値における危険臓器は心臓壁であるように見られたが、この研究における心臓壁に係るヒト放射線量推定値は0.067mSv/MBqであり、これは、この研究において腎臓に見られた0.066mSv/MBqの危険臓器の値ときわめて類似している。両方の器官への投与量は非ヒト霊長類由来の結果および現行の研究の結果の両方において最高水準であり、互いに2標準偏差以内である。
造影剤1では良好な耐容性が示され、臨床的に顕著な安全性に関わる懸念は挙げられなかった。バイタルサイン、実験値(血液学、凝固、臨床化学および尿検査)、ECGおよびEEGにおけるベースラインからの変化は臨床的に顕著ではなかった。潜在的な心毒性(凝固研究およびトロポニン−Tレベルにおける変化によって示唆される)は示されなかった。物理的および神経学的試験では、如何なる投与前後の異常も明らかにはされなかった。DMCは、安全性データの周期的なレビュー後の安全性に関する懸念を提起しなかった。
この研究において得られた結果は、造影剤1は、安全であると見受けられ、良好な耐容性が示され、および、心筋層において相当なおよび持続的な保持を示すことを実証した。造影剤1の安静時の注入後の危険臓器は、0.066mSv/MBqで腎臓であると判定した。観察された平均EDに基づいて、1rem EDを超えずに投与され得る最大注入投与量は14mCi(521MBq)である。造影剤1由来のEDは18F]−FDGのものと同じであり、一方で、造影剤1の危険臓器(腎臓)投与量は、[18F]−FDGの危険臓器(膀胱)投与量よりも顕著に少ない。
実施例30
以下の実施例では、慢性心筋易傷害ウサギにおける新規なPET心筋灌流造影剤である造影剤1の心臓造影および安全性評価に関連する研究が記載されている。
造影剤1は、陽電子放出断層撮影(PET)での心筋灌流画像法(MPI)用の18F標識化造影剤である(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K et al.:a novel PET myocardial perfusion imaging agent.J Nucl Cardiol 2007;14:789−98)。この薬剤での心臓造影は、明瞭な心筋層、ならびに、急性冠動脈結紮および虚血性再灌流傷害の動物モデルにおける急性心筋虚血および組織壊死の識別を示す(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K et al.:a novel PET myocardial perfusion Imaging agent.J Nucl Cardiol 2007;14:789−98;Nekolla SG,Reder S,Higuchi T,Dzewas G,Poethko T,Preissl A et al.Assessment of Imaging Properties of a New F−18 Labelled Flow Tracer in a Pig Model.J Am Coll Cardiol 2008;51:A170;および、Maddahi J,Schiepers C,Czernin J,Huang H,Schelbert H,Wijatyk A et al.First human study of BMS747158,a novel F−18 labeled tracer for myocardial perfusion Imaging.J Nucl Med 2008;49:70P)。モデリングシステムにおいて、造影剤1は、現在利用可能であるMPI薬剤を超える優れた特徴を実証された。単光子放射型コンピュータ断層撮影法(SPECT)ベースの薬剤(99mTc−セスタミビおよび201タリウム)と比して、造影剤1は、減弱補正が正確であり、および、絶対項で心筋灌流が定量化されるというPETテクノロジーの利点を有する。しかも、造影剤1の心臓摂取は、インビトロ1での大きい範囲の流量およびインビボでの安静時および負荷時条件での心筋灌流とより良好に相間する(Nekolla SG,Reder S,Saraste A,Higuchi T,Dzewas G,Preissel A et al.Evaluation of the novel myocardial perfusion positron−emission tomography tracer 18F−BMS−747158−02:comparison to 13N−ammonia and validation with microspheres in a pig model.Circulation 2009;119:2333−42)。13N−アンモニアおよび82ルビジウムのような現在のPET薬剤と比して、18Fの長い半減期(110分間)は、造影剤1の直接標識化、および、中心的な供給を可能とする。薬理学的負荷に追加して運動負荷下での造影の機会をも提供する。
複数の通常の種における安全性および放射線量測定研究は、造影剤1が、臨床開発に対して許容可能な安全限界を有していることを示す(Mistry M,Onthank D,Green J,Cicio S,Casebier D,Robinson S et al. Toxicological Evaluation of BMS−747158,a PET Myocardial Perfusion Imaging Agent.The Toxicologist 2008;102:476;および、Lazewatsky J,Azure M,Guaraldi M,Kagan M,MacDonald J,Yu M et al.Dosimetry of BMS747158,a novel 18F labeled tracer for myocardial perfusion imaging,in nonhuman primates at rest.J Nucl Med 2009;49:15p)。放射線に対する危険臓器は心臓であり、放射線量は商業的に入手可能である薬剤である18F−フルオロデオキシグルコースと同等であった(Lazewatsky J,Azure M,Guaraldi M,Kagan M,MacDonald J,Yu M et al.Dosimetry of BMS747158,a novel 18F labeled tracer for myocardial perfusion imaging,in nonhuman primates at rest.J Nucl Med 2009;49:15p)。
方法:心筋梗塞のウサギモデル.オスのニュージーランドウサギ(体重2.5〜3.5kg)をHarlan(Oakwood,MI)から購入し、AAALAC−公認のLantheus Medical ImagingのAnimal Care Facilityで飼育した。研究プロトコルの承認を、Institutional Animal Care and Use Committeeにより受けた。心筋梗塞(MI)のウサギモデルを開発する手法は、既述の方法と同様であった(Fujita M,Morimoto Y,Ishihara M,Shimizu M,Takase B,Maehara T et al.A new rabbit model of myocardial infarction without endotracheal intubation.J Surg Res 2004;116:124−8)。簡潔には、ウサギをケタミン(40mg/Kg、im)およびキシラジン(9mg/Kg、im)で麻酔下とし、仰臥位で置いた。無菌的条件下で手術を行った。正中胸骨切開を壁側胸膜を傷つけないように注意して行った。心膜を露出させて切開した。左心室腹側および外側壁を露出させ、左冠動脈の主な分枝を結紮した。結紮が成功していることは、左心室壁の患部の色が蒼白に変化したことにより確認した。次いで、胸部を閉め、動物を回復させた。手術の4週間後、造影および心血管系評価研究にウサギを用いた。
造影および心血管系評価.PET画像および心血管系パラメータを、正常およびMIウサギの両方で評価した。造影に先だって、ウサギをケタミン(25mg/Kg、im)およびキシラジン(5mg/Kg、im)で麻酔下とし、耳末梢静脈に造影剤1注入剤用のカテーテルを挿入した。右大腿動脈を単離し、動脈圧計測のためにMillarカテーテル(SPC340,Millar Instruments,Houston,TX)でカニューレを挿入した。次いで、動物を、心臓造影のためにマイクロPETカメラ(Focus220,CTI Molecular Imaging,Inc.Knoxville,TN)に配置した。Millarカテーテルを、平均動脈圧(MAP)、ならびに、収縮期および拡張期動脈圧(SAPおよびDAP)を記録するために、コンピュータ駆動データ撮影システム(MP35,BIOPAC Systems,Goleta,CA)に接続した。加えて、心電図(ECG)もまた、BIOPACシステムを用いて、誘導II構成での3非侵襲性手先誘導で記録した。心拍数(HR)およびQT間隔をECG記録から導いた。安定期の後、心血管系パラメータ:MAP、SBP、DBPおよびECGを造影剤1の静脈注入(約1.5mCi)の前に5分間記録し、注入後もさらに20分間記録を続けた。ウサギを30分間造影に供した。
画像再構成および分析:撮影の後、画像を、95枚の横断スライスの256×256ピクセルのマトリックスにOSEM2Dアルゴリズムを用いて再構成し、減衰補正した(microPET Manager and ASIPro,CTI Molecular Imaging,Inc.Knoxville,TN)。ピクセルサイズは0.47mmであり、スライス厚は0.80mmであった。画像を心臓軸について再配向させ、次いで、20分から30分の間の10分間かけて、一連のトモグラフィー心画像フレームを生成した。次いで、極座標表示画像を、再構成した短軸心画像からQPS2008ソフトウェア(Cedars−Sinai Medical Center,Los Angles,CA)を用いて生成した。
放射性医薬品:造影剤1の化学構造および直接標識化については過去に記載されている(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K et al.:a novel PET myocardial perfusion imaging agent.J Nucl Cardiol 2007;14:789−98;および、Purohit A,Radeke H,Azure M,Hanson K,Benetti R,Su F et al.Synthesis and biological evaluation of pyridazinone analogues as potential cardiac positron emission tomography tracers.J Med Chem 2008;51:2954−70)。この研究において用いた放射化学純度は、99.1〜99.9%であり、比放射能は3265〜7016Ci/mmolであった。薬剤は、臨床的プロトコル後に、水中の5%エタノール(v/v)および50mg/mlアスコルビン酸中に調製した。
データ分析:データは、平均±SDとして表記し、独立スチューデントt検定(unpaired student t−test)(不等の分散を仮定)を用いて、対照とMIウサギとの間のベースライン値を比較した。p<0.05が統計的に有意であるとみなした。各時点(造影剤1注入剤の前、ならびに、1分後、5分後、10分後および20分後)で、MAP、SAPおよびDAPを10秒間毎の平均で動脈内で計測し、HRおよびQTc間隔を12の心拍動毎の平均でECG記録から導いた。QT間隔は1人の研究者により人為的に定義し、QTcは、Fridericia法(QTc=QT/RR1/3).9を用いてRR間隔により補正したQTから生成した。
結果:研究時の対照およびMIウサギの体重は同様であった(3.35±0.19対3.06±0.28kg)。
心画像:対照およびMIウサギの代表的な心臓短軸、長軸および極座標表示画像が図12に示されている。図12は、対照および慢性的心筋梗塞(MI)ウサギにおける造影剤1の代表的な心画像を示す。これらの画像は、造影剤1注入剤の20〜30分後に撮影し、心臓短軸および長軸図、ならびに、極座標表示で示されている。MIウサギにおいては欠損領域が明瞭に識別された。対照ウサギにおいては、心筋層は明瞭に視認可能であり、放射活性の分布は均一であると共にバックグラウンドの干渉は最低限であった。MIウサギにおいては、左心室壁における灌流欠損領域が、心臓短軸および長軸、ならびに、極座標表示図において明確に検出された。
ECG評価:表12に示されているとおり、誘導II構成で記録したベースラインECGトレーシング(造影剤1注入剤前)は、対照ウサギにおいては正のQRS群およびT波を有する正常な波形を示した。対照的に、MIウサギにおいては、QRS群およびT波は負でありQ波が拡大していた。研究では、対照および心筋梗塞(MI)ウサギにおいて、造影剤1注入剤の前、1分および5分後にECGトレーシングを得た。表12は、対照およびMIウサギにおける造影剤1注入剤の1分、5分、10分および20分後でのQTc間隔のベースライン値(Fridericia法により補正)およびベースラインからの平均化された変化を示す。対照と同様に、MIウサギにおいては、注入後にECG波形およびQTc間隔の変化は観察されなかった。
Figure 0006254126
しかしながら、QTcおよびHR(表12および表13)のベースライン値は、これらの2つ群において同等であった。造影剤1の静脈内投与は、対照またはMIウサギのいずれにおいても、注入の1分、5分、10分および20分後に、ECG波形、心臓律動、HRおよびQTc間隔をベースライン値から変化させなかった。この研究は、部分的に、造影剤1投与の5分前および20分後に、対照および心筋梗塞(MI)ウサギの平均心拍数(HR)トレーシングを示した。表13は、対照およびMIウサギにおける、HRのベースライン値、ならびに、注入の1、5、10および20分後のベースラインからの平均化された変化を示す。対照と同様に、MIウサギにおいては、注入後にHRにおける変化は観察されなかった。
Figure 0006254126
動脈圧計測:HRおよびQTcとは対照的に、MAP、SAPおよびDAPのベースライン値(表14および表15)は、対照ウサギにおけるものよりもMIウサギにおいて顕著に低かった。対照ウサギにおいて、造影剤1の注入は、MAP(表14)、SAPおよびDAP(表15)における変化を誘引しなかった。対照動物と同様に、造影剤1の投与中およびその後に、MIウサギにおいてこれらのパラメータの変化は観察されなかった。この研究は、部分的に、造影剤1投与の5分前および20分後の、対照および心筋梗塞(MI)ウサギの平均動脈圧(AP)トレーシングを実証した。表14は、対照およびMIウサギにおける、平均APのベースライン値、および、注入の1、5、10および20分後でのベースラインからの平均化された変化を示す。対照と同様に、MIウサギにおいては、注入後に平均APの変化は観察されなかった。*は、対照に対するp<0.05を示す。この研究は、部分的に、造影剤1投与の5分前および20分後での、対照および心筋梗塞(MI)ウサギの平均収縮期および拡張期動脈圧(AP)トレーシングを実証した。表15は、対照およびMIウサギにおける、収縮期および拡張期APのベースライン値、ならびに、注入後1、5、10、および20分後のベースラインからの平均化された変化を示す。対照と同様に、MIウサギにおいては、注入後の平均APにおける変化は観察されなかった。*は、対照に対するp<0.05を示す。
Figure 0006254126
Figure 0006254126
考察:この研究は、冠動脈性疾患の診断および生命予後における心筋灌流の評価のためのPET造影剤としての造影剤1を研究するために設計した。正常な動物における安全性のために評価され、急性心筋虚血および虚血−再灌流傷害により誘起されるMIの動物モデルにおいて造影された(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K et al.:a novel PET myocardial perfusion imaging agent.J Nucl Cardiol 2007;14:789−98;Nekolla SG,Reder S,Higuchi T,Dzewas G,Poethko T,Preissl A et al.Assessment of Imaging Properties of a New F−18 Labelled Flow Tracer in a Pig Model.J Am Coll Cardiol 2008;51:A170;および、Mistry M,Onthank D,Green J,Cicio S,Casebier D,Robinson S et al.Toxicological Evaluation of BMS−747158,a PET Myocardial Perfusion Imaging Agent.The Toxicologist 2008;102:476)。この研究は、慢性心臓傷害動物モデルにおいてこの薬剤をさらに査定するよう設計した。モデルは、ウサギにおける冠動脈の慢性的結紮により形成した。このウサギモデルは、以下の数々の特徴に基づいて選択した。1)ヒトと同様であり、および、他の種と比して、ウサギは、心臓における副行循環が小さく、および、冠動脈の急な閉塞後すぐにMIを発生させる(Bell DR.Special Circulations.In:Rhoades R,Bell DR,editors.Medical Physiology:Principles for Clinical Medicine.3rd ed.2008.p.290−304;および、Maxwell MP,Hearse DJ,Yellon DM.Species variation in the coronary collateral circulation during regional myocardial ischaemia:a critical determinant of the rate of evolution and extent of myocardial infarction.Cardiovasc Res 1987;21:737−46)。2)心筋傷害後の創傷の治癒に重要である心臓線維芽細胞およびコラーゲン生合成の調節が、ウサギにおいては、アンギオテンシン系に関してヒトにおいて観察されるものと同様である(Gallagher AM,Bahnson TD,Yu H,Kim NN,Printz MP.Species variability in angiotensin receptor expression by cultured cardiac fibroblasts and the infarcted heart.Am J Physiol 1998;274:H801−H809)。3)冠動脈結紮の後、血漿および心筋ノルエピネフリンレベルが上昇する(Makino T,Hattori Y,Matsuda N,Onozuka H,Sakuma I,Kitabatake A.Effects of angiotensin−converting enzyme inhibition and angiotensin II type 1 receptor blockade on beta−adrenoceptor signaling in heart failure produced by myocardial Infarction in rabbits:reversal of altered expression of beta−adrenoceptor kinase and G i alpha.J Pharmacol Exp Ther 2003;304:370−9;および、Fujii T,Yamazaki T,Akiyama T,Sano S,Mori H.Extraneuronal enzymatic degradation of myocardial interstitial norepinephrine in the ischemic region.Cardiovasc Res 2004;64:125−31)。ウサギの心臓におけるノルエピネフリンクリアランスが、主に神経性ノルエピネフリントランスポーターを介しており(Gao DW,Stillson CA,O’Connell JW.Absence of MIBG uptake in the denervated rabbit heart.J Nucl Med 1996;37:106p)、ヒトにおける場合と同様である(Eisenhofer G,Friberg P,Rundqvist B,Quyyumi AA,Lambert G,Kaye DM et al.Cardiac sympathetic nerve function in congestive heart failure.Circulation 1996;93:1667−76)。5)種サイズが、併存するECG監視が可能でありながら、マイクロPETカメラにおける高品質なPET造影に適切である。対照ウサギにおけるECG波形とは対照的に、Q波が拡大しT波が逆転している負のQRS群がMIウサギにおいて誘導II構成で観察され、異常な心室脱分極および再分極を示していた。冠動脈分枝(冠動脈結紮)を完全に閉塞した後、この領域に運ばれる酸素は副行循環に応じて減少するか失われて、細胞死および組織壊死がもたらされる。次いで、迅速な組織修復プロセスが開始され、初期の炎症に続く血管形成、線維芽細胞増殖の増加、ならびに、コラーゲン産生および沈着が含まれる。これらの変化は、最終的に、10の再建された心臓における壊死領域への瘢痕組織をもたらした(Abbate A,Biondi−Zoccai GG,Van Tassell BW,Baldi A.Cellular preservation therapy in acute myocardial infarction.Am J Physiol Heart Circ Physiol 2009;296:H563−H565;および、Sun Y,Weber KT.Infarct scar:a dynamic tissue.Cardiovasc Res 2000;46:250−6)。組織学的試験は、ウサギにおいては、線維芽細胞増殖の増加および瘢痕の形成が、冠動脈結紮後、それぞれ、約2日間および18日間で始まったことを示していた(Morales C,Gonzalez GE,Rodriguez M,Bertolasi CA,Gelpi RJ.Histopathologic time course of myocardial infarct in rabbit hearts.Cardiovasc Pathol 2002;11:339−45)。本研究における冠動脈結紮の4週間後のウサギの左心室における瘢痕組織の形成は、ECG20におけるQ波の拡大および他の同様の研究における所見と一致している(Gonzalez GE,Palleiro J,Monroy S,Perez S,Rodriguez M,Masucci A et al.Effects of the early administration of losartan on the functional and morphological aspects of postmyocardial infarction ventricular remodeling in rabbits.Cardiovasc Pathol 2005;14:88−95;および、Connelly CM,Vogel WM,Wiegner AW,Osmers EL,Bing OH,Kloner RA et al.Effects of reperfusion after coronary artery occlusion on post−infarction scar tissue.Circ Res 1985;57:562−77)。これまでにおいて、造影剤1は、ラット、ウサギおよびブタにおける急性心筋虚血、ならびに、冠動脈結紮および虚血性再灌流傷害によって誘起される壊死の領域を検出することが可能であることを実証していた(Yu M,Guaraldi MT,Mistry M,Kagan M,McDonald JL,Drew K et al.:a novel PET myocardial perfusion imaging agent.J Nucl Cardiol 2007;14:789−98l;Nekolla SG,Reder S,Saraste A,Higuchi T,Dzewas G,Preissel A et al.Evaluation of the novel myocardial perfusion positron−emission tomography tracer 18F−BMS−747158−02:comparison to 13N−ammonia and validation with microspheres in a pig model.Circulation 2009;119:2333−42;および、Higuchi T,Nekolla SG,Huisman MM,Reder S,Poethko T,Yu M et al.A new 18F−labeled myocardial PET tracer:myocardial uptake after permanent and transient coronary occlusion in rats.J Nucl Med 2008;49:1715−22)。慢性MIのウサギモデルでのこの研究における造影は、造影剤1による造影は、ECGおよび他の研究によって示唆されている、慢性MI、おそらくは瘢痕組織を検出することが可能であることを明らかに実証した。造影剤1はミトコンドリア複合体Iに対して高い親和性を有し、きわめて高い濃度(≧200μg/kg)で、正常なラットおよびイヌにおいて、呼吸促迫および努力性呼吸、活性減少、猫背の姿勢、排尿などの遷移性の臨床的徴候を誘起する(Mistry M,Onthank D,Green J,Cicio S,Casebier D,Robinson S et al.Toxicological Evaluation of BMS−747158,a PET Myocardial Perfusion Imaging Agent.The Toxicologist 2008;102:476)。しかしながら、これらの徴候は、投与量が100μg/kg以下の場合には観察されなかった。麻酔下にある未処置のイヌにおいては、心血管系の変化(MAP、HR、左心室収縮等)は、10μg/kg以下の投与量での造影剤1の静脈注入の最中およびその後には観察されなかった(未発表データ)。これは、0.07μg/kgの最大臨床造影剤1投与量に大きな安全限界があることを表している。
本研究において、MAP、SAPおよびDAPのベースライン値は対照ウサギよりもMIウサギにおいて低く、これは、これらのウサギにおいて、慢性MIが心血管系に傷害を生じさせたことを示す。ウサギ造影に用いた造影剤1の投与量は、臨床配合物中にあり、およそ0.5mCi/kg(3kgのウサギに約1.5mCi)であって、これはまた、臨床投与量(合計安静時および負荷時11投与量:60kgの個体に約10mCi)のおよそ3倍である。この投与量で、および、心臓傷害状態において、動脈圧、心拍数およびECG波形に変化は生じなかった。これらの所見は、造影剤1での造影は心臓傷害状態においても安全であることを示す。
これらの結果は、造影剤1での心PET造影が、急性状態下での心筋虚血および壊死に追加して慢性心筋梗塞(線維症および瘢痕形成)を検出することを示す。造影投与量レベルでは、造影剤1は、少なくともウサギにおいては、心臓傷害状態で用いられても安全である。
実施例31
以下の実施例は、ラットにおける造影剤1の脳造影および血液脳関門透過性の評価を記載している。動物およびヒトにおけるPET造影は、この化合物は正常な血液脳関門(BBB)を越えて、CNS疾患を造影することが可能であることを示す。現在までの研究では、造影剤1がBBBをどれほど効果的に越えるかは査定されていない。本研究では、ラットにおけるBBB阻害の在不在下での脳摂取を比較した。
方法:オスのSprague−Dawleyラットをペントバルビタールナトリウムで麻酔下とし、内・外頸動脈分岐部の近くで左外頚動脈にカニューレを挿入した。生理食塩水を対照として、および、25%D−マンニトールを高張溶液として用い、各々を、6匹の動物において、30秒、逆方向に灌流させた(0.3mL/kg/sec)。2分後、約1mCi造影剤1を尾静脈を介して注入し、脳をマイクロPETカメラで30分間造影した。Evans blue(2%、5mL/kg)もまた静脈内に注入し、Evans blue染色によって明らかなBBB阻害を示している動物のみを研究に含めた。造影が完了した後、脳を回収し、写真を撮り、および、左脳半球、右脳半球、小脳に解剖した。それぞれ、%注入投与量/1グラムの組織および1μgのEvan blue/1グラムの組織を算出するために、造影剤1放射活性の組織含有量をγカウンタにより計測し、および、Evans blueレベルを蛍光法により測定した。
結果:表16を参照のこと。25%D−マンニトールの点滴で、生理食塩水対照と比して、左脳半球におけるEvans blue摂取の顕著な増加(633%)、および、右脳半球(216%)および小脳(186%)における摂取のいくらかの増加がもたらされた。正常なラットおよび生理食塩水を注入した対照ラットにおいては、投与後直ぐに脳内に、造影剤1が高レベルで蓄積した。PET造影は、生理食塩水対照ラットにおけるこの造影剤1の高摂取は、BBB阻害後においても、脳領域において最低限でしか増加しなかったことを示した。
造影剤1は、阻害後においても最低限でしか増大しない高いBBB浸透性を有しており、脳造影に用いられ得る。
Figure 0006254126
実施例32
以下の実施例は、Tc−99mセスタミビSPECTよりも重症で広範囲の負荷時誘導心筋虚血を検出する18F標識化造影剤1 PET心筋灌流画像法に関する。この研究においては、安静時−負荷時Tc−99mセスタミビSPECTおよび造影剤1 PET MPIを、負荷時誘導心筋灌流異常の評価のために比較した。
方法:単一の医療機関からの13人の患者に、安静時−負荷時Tc−99mセスタミビSPECT MPI、安静時−負荷時造影剤1PET MPI、および、冠動脈造影を行った。各患者においては、17の心筋セグメントを、すべての他の結果を知らされていない独立した観察者により、安静時および負荷時画像に対して視覚的にスコアを評価した。各患者について、負荷時欠損スコア(SSS)、安静時欠損スコア(SRS)および可逆欠損スコア(summed difference scores)(SDS)をセグメントスコアから判定した。各冠動脈における狭窄割合を盲検評価したところ、70%管腔直径の狭窄が顕著であるとみなした。
結果:15本の冠動脈が疾患を患っていた;左前下行枝7本、左回旋枝5本、および、右冠動脈3本。患部冠動脈によって提供された心筋セグメントにおいては、SSSおよびSDSは、SPECTよりもPETにおいて顕著に高かった(表17)。
これらのデータは、セスタミビSPECTと比較して、安静時−負荷時18F標識化造影剤1 PET MPIは、患部冠動脈によって供給される心筋領域におけるより重症で広範囲の負荷時誘導灌流異常を実証したことを示していた。
Figure 0006254126
実施例33
以下の実施例には、造影剤1 PETに対して、99mTcセスタミビSPECTを用いた心筋負荷時灌流欠損アセスメントの比較が記載されている。造影剤1の心筋摂取は、達成可能な流量範囲にわたって、99mTcセスタミビよりも強い関係を心筋血流量と示している。造影剤1 PETおよび99mTcセスタミビSPECTによる心筋灌流欠損のアセスメントを比較した。
方法および結果:26人の患者(20人の男性)にSPECTおよびPETを6ヶ月以内に行った。PETを、造影剤1を用いて、安静時に実施し(2.3〜3.9mCi)、続いて、運動(n=16)またはアデノシン(n=10)負荷の60分後(n=18)または24時間後(n=8)に実施した(7.3〜8.6mCi)。SPECTおよびPETの画質を、2つの独立した盲検検出器により共感的に査定して、優、良または並として評価分けした。SPECTおよびPETでの負荷時および安静時灌流欠損を、標準的な17つのセグメント、5点スコアモデル(0=通常;4=無摂取)を用いて、コンピュータ−補助視覚的読影による同一の検出器によって査定した。虚血(可逆欠損スコア(SDS))の程度および重症度を、負荷時欠損スコア(SSS)と安静時欠損スコア(SRS)との差から導いた。PETでの画質は、24人の患者において優であると共に2人の患者において良であった。対照的に、SPECTによる質研究、p<0.001では、7人が優、18人が良および1人が並であった。異常SPECT(SSS≧4)での14人の患者においては、平均SDSは、SPECTよりPETにおいて大きかった(9.6±1.8対5.4±0.7,p=0.02)。正常SPECT(SSS<4)でのすべての12人の患者においては、SDSはPETおよびSPECTよってはゼロであった。
99mTcセスタミビSPECTと比較して、造影剤1 PETは、異常SPECTでの患者におけるSDSの顕著な増加においてより良好な画質および結果をもたらす。これらの結果は、造影剤1でのPET造影は、SPECTよりも心筋虚血の程度のより良好なアセスメントをもたらしたことを示した。
実施例34
造影剤1トレーサでの1日安静時/負荷時心筋灌流(MP1)PET造影に対する投与量注入パラメータの心臓ファントムシミュレーションを以下に記載する。造影剤1でのMPIのための1日安静時/負荷時(RS)プロトコルは、負荷時画像においてクロス汚染(CC)を起こす可能性がある。ファントムシミュレーションを実施して、一連の条件に係る画像特徴に対するCCの影響を査定した。
方法:正常な安静時をシミュレートする、心筋層(M)=0.21uCi/mlおよび肝臓(L)=0.22を有するF18ファントムを、Siemens Biograph−64 PET/CTで30分間スキャンした。これを洗浄し、隔壁に40%の欠損で、L=0.42、トルソ=0.09およびM=0.9で再充填し、次いで、さらに30分間スキャンした。フェーズII治験における12人の患者からのSUVを用いて、シミュレーションの現実性を保証した。登録したRS画像を複合化して、投与量比(DR=1〜5)およびRS注入間の待ち時間(WT=30〜120分間)の組み合わせに対するCCを、M−SUV、DR、安静時線量減衰およびWTにより判定した複合係数を用いてシミュレートした。各複合画像セットを、(SUV−SUV)/SUVを用いてコントラスト不足(DC)について、欠損におけるピクセル値>(SUV+SUV)/2を用いて欠損体積(DV)について、および、正常な壁における(SD/平均)を用いて壁均一性(WU)について計測した。DC、DVおよびWUに対して崩壊<10%を適用してDRに対する最低WTを判定した。
結果:いずれのタイプの負荷に対するWU(<7.6%)およびDV(<2%)も、いずれの組み合わせによっても顕著に影響されなかった。DC崩壊は、DR、WTまたは両方の増加により許容可能な範囲に低減した。
実施例35
新規の18F造影剤、造影剤1を用いる高解像度心臓灌流PETを以下に記載する。HDPETテクノロジーは、再構成したPET画像(IEEE TMI2006:25:7:907−921)における空間的解像度およびシグナル/ノイズを向上させるが、ルビジウムにより照射される陽電子の放熱経路が82Rb灌流画像におけるその有益性を限定させてしまう。その高解像度心臓造影に対する完全な潜在性を評価するために、新規の18F系の薬剤(造影剤1)で得た心筋灌流画像を伴うHDPETを評価した。
方法:造影剤1灌流剤の研究における15人の被験者の画像を4−環Siemens Biograph−64で撮影した。静止および8−ビンECG−同期画像を標準的な再構成(SR−2D減弱補正オーダーサブセット期待値最大化)およびHDPETを用いて生成した。壁/腔部コントラストおよびコントラスト−ノイズ比(CNR)および最大値対コントラスト不足を演算した。心臓の3つの異なるレベルでの壁厚(底部、中央部、先端部)、壁運動、壁厚化および駆出率(EF)もまた、自動定量化で推定した。
結果:HDPETは、SRと比較した顕著なコントラスト変化を示した(+32.3±17.9%、p<0.05)。CNRもまた、HDPETで向上した(+26.7±22.3%対SR、p<0.05)。心筋層における最大値と、15人の患者における22の欠損との間の平均コントラストはSR(3.2±1.2、p<0.05)と比してHDPET(4.0±1.7)と共に増加した。平均壁厚は、HDPET(p<0.05)での14.7±2.8mm、14.1±3,0minおよび13.0±1.7mmと比して、SRで16:3±2.9mm、16.7±2.9minおよび15.6±2.2min(底部、中央部、先端部)であった。EF、壁運動および壁厚化は、HD・PETに対して如何なる顕著な差異も示さなかった。
結論:造影剤1での灌流研究は、標準的な再構成技術と比して、HDPET再構成で顕著に向上した画像解像度、コントラストおよびコントラスト−ノイズを示している。
実施例36
造影剤1 PETを伴うトレーサ反応速度モデリングを用いることで、心筋血流量(MBF)の絶対定量化は大流量においても実行可能であることが分かった。研究は、保持およびSUV算出もまたブタモデルにおける冠動脈血流予備能(CFR)のアセスメントに対しても好適であるかを試験した。
方法:9匹のブタを、安静時および負荷時での100〜200MBq造影剤1のダイナミックPET造影に供した。MBFを造影剤1 PET3−コンパートメントモデルおよび一緒に注入した微小球の両方を用いて評価した。保持は、入力関数下での積分により除した5〜10および10〜20分間の摂取として算出した。同一の時点に係る標準SUV計算もまた用いた。
結果:MBFは、0.5〜2.8mL/分/gの範囲であった。保持およびSUVの両方は、造影剤1および微小球MBFの両方と良好な相関性を示した(5〜10分:保持に対して、r=0.69、p<0.05および0.69、p<0.05、SUVに対して、r=0.86、p<0.001および0.88、p<0.001)。線形回帰分析では、早期の間隔においてのみ良好な結果を明らかにしたが(保持については、y=8.27x+1.45および7.11x+3.63、SUVについては1.11x+0.01および0.99x+0.26)、後の間隔においては過小評価が見いだされた。保持およびSUVに対する負荷時/安静時比の算出は、CFRのアセスメントを可能とする。保持およびSUV由来のCFRと、両造影剤1および微小球CFRとの合致は、早期の間隔における大きくない平均差(保持については、0.1および−0.05、SUVについては、0.05および−0.09)、ならびに、後期の間隔においてはより大きい偏差(保持については−0.47および−0.62、SUVについては−0.4および−0.54)をもたらした。
造影剤1を用いることで、MBF指数およびCFRのアセスメントのための簡略化された反応速度分析モデルを実行可能である。しかも、SUV由来の値は、造影デバイス外でのトレーサ注入に好適であり、物理的負荷時テストを可能とした。これらの結果は、ルーチン臨床設定における簡略化された定量的アプローチに対する基礎を提供した。
実施例37
以下の実施例には、図3に示されているスキームに従う造影剤前駆体1の合成が記載されている。
実施例37A
2−(t−ブチル)−4,5−ジクロロピリダジン−3(2H)−オン(化合物11)の合成
固体t−ブチルヒドラジンヒドロ塩化物(1当量)を、水酸化ナトリウム(0.95当量)を10%水/トルエン混合物(6vol)に溶解させた撹拌溶液に、周囲温度で添加した。得られた白色懸濁液を、ムコクロロ酸(1当量)をゆっくりと添加している間にわずかに冷却した。添加が完了した後、反応混合物を周囲温度で20〜30分間撹拌し、続いて、酢酸(0.95当量)を滴下した。反応混合物を45〜50℃に加熱し、HPLCによる計測で出発材料が消費されるまで18時間撹拌した。反応溶液を周囲温度に冷却させ、次いで、水(約7vol)で希釈し、有機層を分離した。有機層を0℃に冷却し、30%NaOH(3.6vol)、続いて、35%HCl(3.6vol)および水(2×3.6vol)で洗浄した。有機溶液を減圧下で濃縮し、メタノール(1.5vol)で再度ストリップして化合物11を茶色の固体として得、これを減圧下に35℃で乾燥させた(65〜75%収率、HPLCで100%純度)。
実施例37B
2−(t−ブチル)−4−クロロ−5−((4−(ヒドロキシメチル)ベンジル)オキシ)ピリダジン−3(2H)−オン(化合物13)の合成
無水ジメチルホルムアミド(780mL)中の化合物11の溶液(222g)をゆっくりと添加して1,4−フェニレンジメタノール(化合物2、690g)および炭酸セシウム(1.3kg)の無水ジメチルホルムアミド(2.22L)中の混合物を撹拌し、65℃に加熱した。得られた混合物を65℃でさらに4時間撹拌し、反応が冷却したらろ過した。濾液を5%塩水で希釈し、トルエンで抽出した。組み合わせたトルエン抽出物を5%塩水で2回洗浄し、有機物を減圧下で濃縮した。得られた粗生成物を熱メタノール/水混合物から結晶化させ、ろ過し、メタノール/水で洗浄し、減圧下に40〜45℃で乾燥させて、化合物3(224g)をオフホワイトの粉末として69%収率で得たところ、これは、化合物12と化合物11とのジアルキル化の生成物6%で汚染されていた。
実施例37C
5−((4−(ブロモメチル)ベンジル)オキシ)−2−(t−ブチル)−4−クロロピリダジン−3(2H)−オン(化合物14)の合成
乾燥した容器に、無水ジクロロメタン(670mL)および化合物13(224g)を仕込んだ。三臭化リンのジクロロメタン(345mL)中の1.0M溶液を25℃で30分かけて混合物に添加し、溶液をさらに30分間撹拌した。反応をジクロロメタン(450mL)および水(670mL)で希釈し、層を分離し、および、水性相をジクロロメタン(670mL)で抽出した。組み合わせた有機層を5%塩水で2回洗浄し、減圧下で濃縮し、減圧下に40℃で34時間乾燥させて、化合物14をオフホワイトの固体として得た(258g、96%収率)。
実施例37D
2−(t−ブチル)−4−クロロ−5−((4−((2−ヒドロキシエトキシ)メチル)ベンジル)オキシ)ピリダジン−3(2H)−オン(化合物15)の合成
エチレングリコール(2.9L)を乾燥した容器に仕込み、固体カリウムt−ブトキシド(74g)で処理した。懸濁液を60℃に加熱して溶液を形成し、次いで、20〜25℃に冷却した。化合物14(290g)の無水THF(1.45L)中の溶液を一度に添加して、エチレングリコキシド溶液を攪拌した。得られた混合物を60℃に加熱し、この温度で16.5時間撹拌し、次いで25℃に冷却したら、水(2.9L)およびトルエン(4.35L)で希釈した。有機層を分離し、水で三回洗浄し、減圧下で濃縮した。他の仕込み分のトルエン(4.35L)を添加し、再度減圧下で濃縮して、粗化合物15を茶色の粘性の油として得た(260g、95%収率)。
粗化合物15(690g)をジクロロメタン(0.5kg/L)中に溶解させ、クロマトグラフィ(シリカカラム、1:1ヘプタン/酢酸エチル、流量=6L/分、10L画分)により精製した。組み合わせた画分を組み合わせ、減圧下で濃縮して、化合物15を清透な粘性の油として得た(520g、70%収率)。
実施例37D−1
以下の実施例には、実施例37Dと比較して代替的な合成方法を用いる化合物15の合成が記載されている。オーバーヘッド攪拌機および温度プローブを備えている清浄な乾燥した反応器に、無水エチレングリコール(2900mL)、続いて、カリウムt−ブトキシド(42.2g)を周囲温度で仕込んだ。溶液を55〜60℃に加熱してエチレングリコキシドの清透な溶液を形成し、次いで、不活性雰囲気下で20℃〜30℃に冷却した。この溶液を総塩基含有量について検定した。別の容器に無水テトラヒドロフラン(725mL)および化合物14(145g)を攪拌しながら仕込んで、周囲温度で溶液を形成した。この溶液を、20〜30℃でエチレングリコキシド溶液に直接、一度に添加した。混合物を60℃に加熱し、この温度で撹拌した。反応が完了したら、20℃に冷却し、トルエン(2200mL)および水(2200mL)を攪拌しながら添加して、静置で形成される2つの層を形成した。層を分離し、有機層を、各々2200mLの重炭酸ナトリウム溶液および水(2回)で洗浄した。有機層を減圧下に<50℃で濃縮して、化合物15を粘性の油として得た(133.4g、残存トルエンに対して補正した場合91%)。
実施例37E
造影剤前駆体1の合成
乾燥した反応器に、ジクロロメタン(6.6L)、ジクロロメタン(1.1L)に溶解した化合物15(510g)、トリエチルアミン(0.25L)、p−トルエンスルホニルクロリド(305g)およびジメチルアミノピリジン(7g)を続けて仕込んだ。溶液を周囲温度で28時間撹拌して、1.0M HCl(2×10L)、水(10L)、5%重炭酸ナトリウム(2×10L)および水(10L)で洗浄した。有機溶液をろ過し、ジクロロメタンを減圧下で除去して、造影剤前駆体1を濃い油として得た。
粗造影剤前駆体1(21.5g)をクメン(125mL)に添加し、60℃に加熱して固形分を溶解させた。これを40℃に冷却し、1%w/w造影剤前駆体1結晶を結晶化の種晶として添加した。溶液を35℃で3時間保持して結晶化させ、次いで、周囲温度に冷却し、6時間撹拌して、結晶化を完了させた。固形分をろ過し、減圧下で短時間乾燥させ、次いで、酢酸イソブチル(125mL)に添加した。70℃に加熱した後、固形分を溶解させ、次いで、溶液を40〜50℃に冷却させ、1%w/w造影剤前駆体1の種晶を加えた。40〜50℃で5時間保持した後、スラリーを2時間かけて周囲温度に冷却し、12時間保持した。得られた固形分をろ過し、冷酢酸イソブチルですすぎ、減圧下で乾燥させて、12.8gの造影剤前駆体1を得た(化合物15から60%)。
いくつかの場合において、トリエチルアミン化学量論を約1.15から約1.40当量に増やした。いくつかの場合において、p−トルエンスルホニルクロリド化学量論を約1.15から約1.20当量に増やした。いくつかの場合において、ジメチルアミノピリジン化学量論を約0.04から約0.10当量に増やした。
いくつかの実施形態においては、クメン結晶化を以下の条件下で完了させた:希釈:10.0体積;種晶を入れる温度:45℃;種晶を入れる温度での結晶化保持時間:3時間;冷却速度:5℃/h;顆粒形成温度:20℃;顆粒形成時間:>3時間;ろ過温度:20℃。
他の実施形態において、クメン結晶化は以下の条件下で完了させた:希釈:6.5体積;種晶を入れる温度:50℃;種晶を入れる温度での結晶化保持時間:6時間;冷却速度:10℃/h;顆粒形成温度:10℃;顆粒形成時間:>8時間;ろ過温度:10℃。
特定の実施形態において、化合物16(20.0g)をクメン(6.5体積)中に懸濁させ、次いで、68℃に温めた。得られた溶液を50℃に冷却し、次いで、化合物16の種晶を加えたところ;沈殿物のゆっくりとした形成が観察された。得られた懸濁液を50℃で6時間保持し、次いで、10℃/hで10℃に冷却し、12時間保持し、ろ過し、洗浄した。60℃で減圧中に乾燥させた後、16.4gの化合物6を得た(82%回収率;96%溶剤および純度調整した)。
いくつかの実施形態において、イソブチルアセテート結晶化を以下の条件下で実施した:希釈:8体積;種晶を入れる温度:50℃;種晶を入れる温度での結晶化保持時間:3時間;冷却速度:5℃/時間;顆粒形成温度:20℃;顆粒形成時間:>10時間;ろ過温度:20℃。
他の実施形態において、イソブチルアセテート結晶化を以下の条件下で実施した:希釈:5体積;種晶を入れる温度:48℃;種晶を入れる温度での結晶化保持時間:10時間;冷却速度:2.5℃/h;顆粒形成時間:0時間;ろ過温度:10℃。
特定の実施形態において、クメン結晶化化合物16(15.40g)を酢酸イソブチル(5体積)中に懸濁させ、次いで、68℃に温めた。得られた溶液を48℃に冷却し、次いで、BMS−747155−01(0.1%w/w)の種晶を加えたところ;直ぐに沈殿物の形成が観察された。得られた懸濁液を48℃で10時間保持し、次いで、2.5℃/hで10℃に冷却し、ろ過し、洗浄した。60℃で減圧中に乾燥させた後、13.10gの化合物16を得(85%回収率)、これはすべての仕様を合格した。
実施例38
以下の実施例には、図4に示されている、2−(t−ブチル)−4−クロロ−5−((4−(ヒドロキシメチル)ベンジル)オキシ)ピリダジン−3(2H)−オン(化合物13)の代替的な合成経路が記載されている。
実施例38A
2−(t−ブチル)−4−クロロ−5−ヒドロキシピリダジン−3(2H)−オン(化合物17)の合成
乾燥した容器に、攪拌しながら、化合物11(100g)、水酸化カリウム(76.1g)およびエチレングリコール(1L)を連続して仕込んだ。得られた懸濁液を115℃に加熱し、この温度で5時間撹拌した。茶色の溶液を0℃に冷却し、1M塩酸溶液(1L)を、攪拌しながら、添加の最中の温度を25℃未満に維持しながら60分間にわたってゆっくりと添加したところ、明るい茶色の固体が析出した。スラリーを2時間撹拌し、ろ過し、ケーキを冷水(4×500mL)およびエタノール(100mL)で洗浄した。次いで、このようにして得た粗化合物17を熱エタノール(1L)から再結晶させ、ろ過し、減圧下で34時間、45℃で乾燥させて、純粋な化合物17を得た(68.3g、75%収率)。
実施例38B
4−(((1−(t−ブチル)−5−クロロ−6−オキソ−1,6−ジヒドロピリダジン−4−イル)オキシ)メチル)安息香酸メチル(化合物18)の合成
窒素雰囲気下の乾燥した容器に、化合物17(66g)、ジメチルホルムアミド(660mL)および炭酸カリウム(45g)を連続して仕込んだ。これに、4−(ブロモメチル)安息香酸メチル(78g)を添加し、得られた懸濁液を20℃で18時間撹拌した。水(700mL)を30分間かけて添加して、生成物を析出させると共に残留している塩を溶解させた。スラリーを1.5時間撹拌し、得られた固形分をろ過し、水(4×300mL)およびシクロヘキサン(2×150mL)で洗浄し、減圧下に45℃で乾燥させて化合物18(112.8g、99%)を白色の粉末として得た。
実施例38C
2−(t−ブチル)−4−クロロ−5−((4−(ヒドロキシメチル)ベンジル)オキシ)ピリダジン−3(2H)−オン(化合物13)の代替的合成
無水窒素雰囲気下のオーバーヘッド撹拌を備える乾燥した容器に、2−メチルテトラヒドロフラン(500mL)および化合物18(50g)を、周囲温度で連続して仕込んだ。得られた懸濁液を−7℃に冷却し、水素化ジイソブチルアンモニウムのトルエン(1.5M、119mL)中の溶液を、温度を3℃未満に維持しながら1時間かけて滴下した。1.5時間、−5℃〜0℃で攪拌した後、4℃未満の温度を維持する流量でのプロパン−2−オール(50mL)の添加により反応を失活させた。次いで、失活させた反応混合物を、塩酸(2M、500mL)の溶液に、75分間かけて、温度を7℃未満に維持しながら滴下した。二相溶液を22℃に温め、層を分離した。次いで、有機層を、各々500mLの2M塩酸、飽和重炭酸ナトリウム溶液および水で洗浄し、次いで、減圧下で濃縮して、粗化合物13をオフホワイトの固体として得た(42.4g)。これを熱酢酸イソプロピル(200mL)から再結晶させ、65℃で溶液に種晶を加え、および、この温度で1時間保持し、続いて、4時間かけて0℃に冷却した。得られた白色の固体をろ過し、減圧下に45℃で乾燥させて化合物13を得た(35g、76%収率)。
いくつかの場合において、上記の実験は、水素化アルミニウムリチウムおよびナトリウムビス(2−メトキシエチルオキシ)アルミニウム水和物(Red Al)の両方、ならびに、水素化ジイソブチルアンモニウム(DIBAL−H)と共に実施した。いくつかの場合において、DIBAL−Hのジクロロメタン、トルエンおよびヘキサン中の溶液を採用した。いくつかの場合において、低い水性溶解度のために、2−MeTHF(対THF)を共溶剤として選択した。いくつかの場合において、負荷時研究では、特に、−15〜+10℃の温度でDIBALの低減が良好に実施されたことが明らかになった。いくつかの場合において、DIBAL−Hを、2.20当量、続いて、不完全な反応が観察されたら追加の試薬の2回に分けて仕込んだ。いくつかの場合において、残存水が、加水分解されたDIBAL−Hを含んでいることが見いだされ、不純物プロファイルは一定のままであった。
いくつかの実施形態において、反応は以下の条件下で実施した:−15〜+10℃;約2.35当量以下のDIBAL−H;前駆体中に5%以下のHO(w/w);完全な転換時に<0.75%前駆体の残留。
実施例39
以下の実施例には、図5に示されている、2−(t−ブチル)−4−クロロ−5−((4−((2−ヒドロキシエトキシ)メチル)ベンジル)オキシ)ピリダジン−3(2H)−オン(化合物15)に対する代替的な合成経路が記載されている。
実施例39A
4−(1,3−ジオキソラン−2−イル)安息香酸メチル(化合物19)の調製
4−ホルミル安息香酸メチル(3.28g、20.0mmol)をエチレングリコール(4.46mL、80.0mmol)中に懸濁させ、次いで、22℃で、オルトギ酸トリエチル(3.66mL、22.0mmol)およびMeNPhBr(376mg、1.00mmol)で連続して処理し;5分間以内にすべての固形分を溶解させた。得られたオレンジ色の溶液を0.5時間撹拌し、次いで、飽和水性NaHCO(50mL)で希釈し、分離漏斗に移し、EtOAcで洗浄した(3×50mL)。組み合わせたEtOAc洗浄液をMgSOで乾燥させ、ろ過し、減圧中で無色の油に濃縮した(4:1ペンタン/EtOAc中でR0.4,KMnO)。この材料をさらに精製すること無く、その後の還元ステップに用いた。
実施例39B
(4−(1,3−ジオキソラン−2−イル)フェニル)メタノール(化合物20)の調製
粗アセタール(20.0mmol理論的)を無水THF(100.0mL)中に溶解させ、0℃に冷却し、シリンジポンプを用いて1.0mL/分の流量で、LiAlH(20.00mmol;20.00mLのTHF中の1.0M溶液)で処理した。添加が完了したら、過剰量のLiAlHをHO(800μL)を注意深く添加することにより消費させた(注意:激しい気体の発生!)。得られた白色の懸濁液を15%水性NaOH(800μL)およびHO(2.40mL)で連続して処理し、次いで、微細な白色のスラリーに0.5時間撹拌した。固形分をセライトパッドを通したろ過により除去し、次いで、EtOで徹底的に洗浄した。組み合わせた濾液を減圧中で無色の油に濃縮し、1:1ペンタン/EtOAcを用いるシリカ(50×175mm)でのクロマトグラフィにより精製した。470〜790mLで溶離される主生成物ピークを回収し、プールし、減圧中で無色の油に濃縮し、これを、冷凍庫中で固化させた(2.46g、13.7mmol;2ステップで68.3%)。
実施例39C
(4−(1,3−ジオキソラン−2−イル)フェニル)メタノール(化合物20)の合成
4−ホルミル安息香酸メチル(4.92g、30.0mmol)を無水トルエン(50.0mL)中に溶解し、エチレングリコール(1.84mL、33.0mmol)およびp−TsOH・HO(57.1mg、0.30mmol)で連続して処理し、次いで、ディーンスターク条件下で還流に加熱し;アセタール形成を1時間以内で完了させた。次いで、溶液を22℃に冷却し、ナトリウムビス(2−メトキシエトキシ)アルミニウム水和物(45.0mmol;12.7mLのトルエン中の70.3wt.%溶液)で、シリンジポンプを用いて0.5mL/分の流量で、処理した(注意:激しい気体の発生!)。添加が完了したら、得られた溶液をさらに0℃に冷却し、K、Na−酒石酸塩(100ml)の飽和水溶液で注意深く処理し、次いで、1時間激しく撹拌し;清透な溶液の安定した形成が観察された。次いで、得られた2相をコニカル漏斗に移しながらEtOAc(50mL)で希釈し、層を分離した。次いで、水性層をEtOAcで洗浄し(3×50mL)、組み合わせたEtOAcおよびトルエン溶液をMgSOで乾燥させ、ろ過し、減圧中で無色の油に濃縮した。次いで、粗生成物を、1:1ペンタン/EtOAcを用いるシリカ(50×135mm)でのクロマトグラフィにより精製した。425〜725mLで溶離される主生成物ピークを回収し、プールし、減圧中で無色の油に濃縮し、これを、冷凍庫中で固化させた(4.50g、2ステップで83.2%)。
実施例39D
2−(t−ブチル)−4−クロロ−5−[(4−(1,3−ジオキソラン−2−イル)フェニル)メトキシ]−2−ヒドロピリダジン−3−オン(化合物21)の合成
2−(t−ブチル)−4,5−ジクロロ−2−ヒドロピリダジン−3−オン(829mg、3.75mmol)および化合物10(451mg、2.50mmol)の乾燥DMF(12.5mL)中の溶液を、一度にCsCO(1.63g、5.00mmol)で22℃で処理した。次いで、得られた懸濁液を予熱しておいた油浴(65℃)に浸漬させ、激しく攪拌しながら6時間保持した。周囲温度に冷却させた後、コニカル漏斗に移してから懸濁液をEtOAcとHOと(50mL各)の間に分割し、層を分離した。残った水性層を追加のEtOAc(3×50mL)で洗浄し、次いで、廃棄した。組み合わせたEtOAc溶液を飽和水性NaCl(5×50mL)でさらに洗浄し、次いで、MgSOで乾燥させ、ろ過し、および、減圧中でオフホワイトの固体に濃縮した。いくつかの場合において、数々の小分量のペンタンでの倍散を実施して固体を生成した。次いで、粗生成物を熱EtOAc/ヘキサンから再結晶させて無色の針を得、これを中度の孔隙率の焼結ガラス漏斗で回収し、ペンタンで完全に洗浄し、減圧中で乾燥させた(573mg、62.8%)。
実施例39E
2−(t−ブチル)−4−クロロ−5−[(4−(1,3−ジオキソラン−2−イル)フェニル)メトキシ]−2−ヒドロピリダジン−3−オン(化合物21)の合成
(4−(1,3−ジオキソラン−2−イル)フェニル)メタノール(20g、110mmol)、ベンジルトリエチル塩化アンモニウム(2.27g、10mmol)、トルエン(100mL)および水酸化ナトリウム(水中に50%、22mL、420mmol)を仕込んだ容器に、2−(t−ブチル)−4,5−ジクロロ−2−ヒドロピリダジン−3−オン(22.1g、100mmol)のトルエン(100mL)中の溶液を5分間かけて添加した。漸次的で加速的な発熱が生じて、最終的な内部温度は39℃に達した。2.5時間後、攪拌を止め、MTBE(50mL)および水(100mL)を添加した。相を分割し、有機層を水(100mL)および塩水(100mL)で洗浄した。有機抽出物を乾燥させ(MgSO)、ろ過し、減圧下で濃縮して淡褐色の固体(39g)を得た。固形分を40℃で2時間かけてトルエン/ヘプタン(430mL、1:1)中にスラリー化し、周囲温度に冷却し、ろ過し、減圧下に40℃で24時間乾燥させた(29.7g、69%)。
実施例39F
2−(t−ブチル)−4−クロロ−5−({4−[(2−ヒドロキシエトキシ)メチル]フェニル}メトキシ)−2−ヒドロピリダジン−3−オン(化合物15)の合成
化合物21(365mg、1.00mmol)の無水CHCl(10.0mL)中の溶液を、ドライアイス/MeCN浴を用いて−40℃に冷却し、次いで、シリンジポンプを用いて、0.25mL/分の流量で、DIBAL−H(4.00mmol;4.00mLのCHCl中の1.0M溶液)で処理した。冷却浴に定期的にドライアイスを添加しながら溶液を1時間保持し、次いで、含水MeOH(1mL)で注意深く処理し、22℃に温めた。得られた溶液をEtOAc(20mL)で希釈し、等体積の飽和水性K、Na−酒石酸塩で処理し、次いで、1時間激しく撹拌し;清透な溶液の安定した形成が観察されるべきである。コニカル漏斗に移しながら、得られた2相をHO(50mL)でさらに希釈し、層を分離した。次いで、水性層をEtOAcで洗浄(3×50mL)し、廃棄した。組み合わせたEtOAc洗浄液をMgSOで乾燥させ、ろ過し、減圧中で無色の油に濃縮した(1:1ペンタン/EtOAc中にR0.2、KMnO)。粗生成物を、1:1ペンタン/EtOAc(250mL)から3:2ペンタン/EtOAc(500mL)の段階的な勾配を用いるシリカ(30×190mm)でのクロマトグラフィによって精製した。415〜580mLの間に溶離された主生成物を回収し、プールし、減圧中で無色の油に濃縮した(286mg、0.780mmol;78.0%)。
実施例40
2−((4−(((1−(t−ブチル)−5−クロロ−6−オキソ−1,6−ジヒドロピリダジン−4−イル)オキシ)メチル)ベンジル)オキシ)エチル4−メチルベンゼンスルホネート(造影剤前駆体1)の合成
乾燥した反応器に、ジクロロメタン(6.6L)、ジクロロメタン(1.1L)中に溶解した化合物15(510g)、トリエチルアミン(0.25L)、p−トルエンスルホニルクロリド(305g)およびジメチルアミノピリジン(7g)を連続して仕込んだ。溶液を周囲温度で28時間撹拌し、1.0M HCl(2×10L)、水(10L)、5%重炭酸ナトリウム(2×10L)および水(10L)で洗浄した。有機溶液をろ過し、ジクロロメタンを酢酸エチルについて交換した。0〜5℃にゆっくりと冷却することにより、生成物を熱1:1ヘプタン/酢酸エチル(約11L)から結晶化させた。得られた固形分をろ過し、冷酢酸エチル/ヘプタンで洗浄し、減圧下に40℃で42時間乾燥させて造影剤前駆体1を得た(555g、77%収率)。
実施例41
標準的なファントム手法を用いる、造影剤1心筋灌流に係るPETおよびPET/CTスキャナの遠隔カメラ検定(RCQ)を以下に記載する。
当業者には公知であろうとおり、医学的造影臨床治験においては、カメラ検定は、個々の臨床サイト(CS)がプロトコルを実施する機能を有しているかの査定における重要なステップである。いくつかの場合において、課題に特異的であるファントム、および、特定のサイトのスキャナが治験に参加するために研究の要求を満たしているかを効果的に判定することが可能である関連する検定法をどのようにして標準化することが課題であった。
方法:種々のカメラを用いて、CSのために段階的に示した説明書を利用する、スキャナモデル毎にカスタマイズされた造影マニュアルでのRCQ手法は以下のとおりである。キャップの中にアクリルロッド(L=21cm、D=2cm)が封止された2リットルの炭酸ボトルを用いる低価格の標準的なファントムを各CSに提供した(さらなる詳細については、実施例42を参照のこと)。CSで3〜4mCi F18溶液を水で満たしたファントムに注入して、画像データを取得し、各システムにおける既存の心臓の位置ずれ(MR)補正ソフトウェアをテストした。必要に応じて電話でサポートを行いながら、RCQ手法をCSにより実施した。すべての画像データを造影主実験室に送って、定量的造影パラメータに関して分析した。最低性能判断基準を確立して、性能が許容される基準に合致しないカメラを特定した。結果が表18に示されている。
Figure 0006254126
結論:遠隔カメラ検定は、標準的なファントム、包括的な造影マニュアル、完全な技術支援および集中型データ分析で統合された場合、大規模臨床治験におけるPETおよびPET/CTスキャナの性能を査定するための経済的および効率的な方法であることが可能である。
実施例42
以下の実施例には、PETスキャナの標準化のための低価格で補充可能なファントムが記載されている。
造影方法論およびスキャナ性能の規格化および調和化が、PETを用いる臨床研究の成功に重要である(例えば、実施例41に記載のとおり)。一般に、これは、適切な量の放射性材料が充填されていると共に、各スキャナで同じ様に造影されるファントムと呼ばれるテスト対象で達成され得る。ファントムは、長寿命陽電子エミッタが埋設された固体材料で構成されていてもよく、または、これらは、水が充填されていると共に必要に応じて短寿命放射活性が添加されていてもよい。観察される造影性能における差異により、方法が調整されるか、必要に応じて器具の補修がなされて、すべての用いられるシステム間の画質の均一性を保証することが可能である。固体および補充可能なタイプの両方の従来のファントムは、多数のサイトでの同時アセスメントの費用が高額になりすぎるほどに高価であった。この実施例に記載されているデバイスは、容易に入手可能な材料を用いる単純な課題に特異的である心PET用ファントムであって、従来の補充可能なファントムのおよそ1%の価格で構成することが可能である。ルーチンの品質管理と組み合わせれることで、PET心臓臨床治験における規格化のため、多数のPETおよびPET−CTシステムの同時の特性決定が可能となる。
材料および方法:ファントムを、標準的な2−リットル炭酸ボトルから構成した。全長81/4インチおよび直径3/4インチのアクリルプラスチック製のロッドの中心をとり、ボトルのキャップの内側に外部からスクリューを用いて固定した。ロッドの端部とキャップの内側との間であって、スクリューヘッドの下にある表面を、最終的にスクリューを締める前に適切な接着剤で材料にシールし、ファントムから漏れがないかテストした。
ファントムは以下の様に充填した。
1.ファントムを吸収剤の表面の上に置くか、または、好ましくは、流し台の中に入れ、ファントムに水道水を一番上まで充填した。ボトルへの水の流速を遅くして泡を最低限とした。
2.アクリルロッド(キャップに取り付けられている)を炭酸ボトル内に完全に挿入し、キャップを所定の位置まで締めた。溢流はすべてファントムから流出させた。この際、ファントムをつぶさないことが重要であった。キャップを弛め、ロッドをゆっくりと取り出して、ロッドの表面に付着している水をすべてファントム中に戻させた。
3.清浄なシリンジを用いてファントムから水を2mL抜いた。およそ10滴の液体石鹸をファントムに添加して、FDGまたは他のF18化合物のボトルの内表面またはロッドへの付着を防止した。少なくとも30秒間、ファントムを傾けて垂直に上下に振盪して、確実に液体石鹸を均一に分布させた。
4.シリンジ中の18F活性(3〜4mCi)および体積(数ml)を計測し、次いで、体積およびアッセイ時間を含めて記録した。
5.18Fをファントム中にゆっくりと注入し、シリンジを激しく3回前後に動かして、残留している放射能をシリンジからフラッシュした。
6.同一のシリンジを用いて、中に注入した18F溶液の体積+1mLに等しい体積の液体をファントムから注意深く抜き出した。これにより、ロッドが戻された時に溶液が溢れることがなくなり、混合を促進させる小さな泡が混入されることとなる。
7.シリンジ中の18F活性を計測し、放射活性およびアッセイ時間を記録した。
8.ロッドをファントム中に再度挿入し、キャップを手で所定の位置に締めて、キャップを確実に固定し、漏れを無くした。
9.ファントムの表面を紙タオルで拭き、廃棄前には放射能汚染のチェックをした。
10.次いで、画像データを、いずれかの条件下で、または、評価されるべき撮影設定で、評価されるべきいずれかのPETスキャナを用いて撮影した。
得られた画像データを従来のツールを用いて査定した。数スライスの中央の60%を含む大きい対象領域であってアクリルロッドを含まないものを用いて、均一性の程度および校正係数の正確性を判定してもよい。また、アクリルロッドを含む1つ以上のスライスでの関心領域分析を用いて、放射活性充填体積と放射活性が除外されているアクリルロッド内の領域との間のコントラストを判定してもよい。ロッドと液体との間の縁部を含むラインプロファイルの積分を用いて解像度を査定し得る。校正の直線性、および、容量、および、適切なデータの取得を用いるPET−CT不整合補正の正確性を含む多様な他の要因もまた査定され得る。
実施例43
以下の実施例には、ラットにおける心筋梗塞後の左心室バイアビリティのアセスメントに係る造影剤1と18Fフルオロデオキシグルコース(FDG)との比較が記載されている。
心臓の18Fフルオロデオキシグルコース(FDG)造影が心筋生存能の査定に用いられている。この実施例には、造影剤1造影によって判定される清浄なラットおよび心筋梗塞(MI)ラットの左心室における生存組織の体積と、FDG造影によって検出されるものとの比較が記載されている。
方法:30分間の冠動脈閉塞に続く再灌流によってラットにMIを誘導した。2日間隔での造影剤1(1mCi)およびFDG(1mCi)心臓造影を、手術前、術後2日(早期MI)および4週間(後期MI)のラットで実施した。グルコースおよびインスリンのレジメンをFDG造影前に注入して、高レベルでの心臓摂取を保証した。生存左心室を、最大活性の≧50%である体積として画像において定量化した。
結果:対照ラットにおいては、造影剤1およびFDGの両方での心臓造影は、良好に画定された左心室壁を示し、左心室体積を計測したところ術前では、それぞれ、1.17±0.04および1.11±0.07cm3であった。前記および後期ステージMIラットにおいては、両方の薬剤での造影で心筋欠損領域が明瞭に識別された。造影剤1で計測した生存左心室組織体積は、FDGで計測した生存組織領域よりもわずかに大きかった(早期および後期ステージMIで、0.94±0.01対0.75±0.04および1.18±0.04対0.99±0.09cm3)。加えて、造影剤1造影では、注入後20分および80分(再充填なし)で、早期および後期ステージMIの両方で同様の検出可能な左心室領域を示した。この実施例は、造影剤1は、FDGのような心筋生存能の査定に用いられる可能性を有しているが、しかしながら、インスリン前処置の必要性を伴わないことを示す。
実施例44
以下に、定量的な欠損の重症度および知覚される欠損の重症度が、造影剤1 PET心筋灌流画像法と比例的であることを実証する。
造影剤1の最低安静時投与量を特定するために、正常な心筋層におけるカウント−関連変動と、検出器がセグメントスコアを1だけ変える50%の確率をもたらす欠損の重症度における最低変化との比較を行った。欠損の重症度における制限的な変化を判定するために、盲検読取値と対応する定量的な欠損の重症度とからの検出器スコア間で比較を行った。
方法:SPECT研究で1つ以上の少なくとも部分的な可逆性欠損について選択された患者を、造影剤1のフェーズ2研究における第1のコホートの一部として評価した。安静時および負荷時画像を3台の盲検検出器のパネルにより読み取った。17−セグメントモデルを用いた、第1の20人の患者に由来する安静時画像データのみからの検出器のスコアを、標準的な心臓MPI分析ソフトウェア(Cedars QPS)により算出した各画像における最大値からの低減割合と比較した。値をプロットし、線形回帰を各検出器からのデータについて算出した(図13を参照のこと)。
結果:各検出器スコア値(%SDは画像最大値の約20%)での定量的重症度値においては顕著な範囲が存在していたが、データは単純な線形回帰で良好にモデリングされており、検出器1、2および3について、それぞれ、1.00、0.978および0.984のR値をもたらした。交点値は、それぞれ、84.18%、82.33%および84.96%であった一方で、傾きは、それぞれ、−13.8、−9.86および−8.53であった。
考察:これらの結果は、少なくとも造影剤1では、単純な線形関係および最大値の量分数を用いて、通常のデータベースを必要とすることなく検出器応答を推定することが可能であり得ることを示唆している。−10.7の平均傾きに基づいて、検出器スコアにおいて1変化する50%の確率は、定量的重症度における5.4%の変化に相当すると推定した。
実施例45
以下の実施例には、フェーズ2臨床治験において負荷時誘導心筋虚血の重症度および程度を識別するための造影剤1およびTc−99m標識化SPECT心筋灌流画像法の比較が記載されている。
この多医療機関フェーズ2研究においては、造影剤1およびTc−99m標識化SPECT安静時−負荷時MPIを、冠動脈疾患(CAD)を患っている患者(Pts)における負荷時誘導心筋灌流異常の評価のために比較した。
方法:中〜高CADテスト前尤度を示している21の医療機関からの84人のPtsに、安静時−負荷時Tc−99m標識化SPECT MPI、造影剤1 PET MPIおよび冠動脈造影を行った。患者らの平均年齢は64.5歳(範囲:36〜85歳)であり、68人が女性であった。各患者において、17の心筋セグメントについて、3台の独立した盲検検出器による安静時および負荷時画像で、視覚的にスコアを評価した。各ptについて、可逆欠損スコア(summed difference scores)(SDS)をセグメントスコアから判定した。各冠動脈における狭窄割合を定量的および盲検式に判定したところ、>50%管腔直径の狭窄を顕著であるとみなした。84人のPtsのうち、52人がCADを有しており、32人が極軽度のCAD/正常な冠動脈を有していた。
結果:52人の患者における105本の冠動脈が疾患を患っていた;左前下行枝40本、左回旋枝30本、および、右冠動脈35本。少なくとも1本の患部動脈を有する患者において、平均(SD)PET SDSスコアは、3台の検出器において、6.8(5.75)〜9.4(7.51)の範囲であり、平均(SD)SPECT SDSスコアは、4.1(4.75)〜5.7(6.51)の範囲であった。PETとSPECTとの間のSDSスコアにおける差は、すべての検出器において統計的に顕著であった(p<0.01)。多血管疾患を患っている52人の患者および多検出器においては、調整済平均PET SDSスコアは、SPECT SDSスコアのものよりも顕著に高かった(p<0.001)。
結論:これらのデータは、Tc−99m SPECTと比較して、安静時−負荷時造影剤1 PET MPIは、患部冠動脈によって供給される心筋領域におけるより重症で広範囲の負荷時誘導灌流異常を実証していたことを示唆している。
実施例46
以下の実施例には、冠動脈疾患の診断のための造影剤1注入剤PETおよびTc−99m標識化SPECT心筋灌流画像法のフェーズ2臨床的比較が記載されている。
フェーズ2研究においては、造影剤1注入剤の臨床安全性を評価し、冠動脈疾患(CAD)の検出に係るその診断上の性能を、安静時−負荷時Tc−99m標識化SPECT MPIと比較した。
方法:広範なCADテスト前尤度を示している、21の医療機関からの143人の患者(Pts)に、安静時−負荷時Tc−99m標識化SPECT MPIおよび造影剤1 PET MPIを行った。中〜高CAD尤度を有していた84/143人で冠動脈造影を行った。患者らの平均年齢は64.5歳(範囲:36〜85歳)であり、68人が男性であった。各冠動脈における%狭窄を盲検的に定量化した。52/84人のPtsが顕著なCAD(>50%管腔直径の狭窄)を有しており、32/84人が極軽度のCAD/正常な冠動脈を有していた。各患者において、17の心筋セグメントを、3台の独立した盲検検出器による安静時および負荷時画像で視覚的にスコアを評価し、多数決原理的解釈を各患者においてPETおよびSPECT研究の両方について判定した。PETの診断上の性能を、ROC分析を用いてSPECTのものと比較した。
結果:画像の顕著に高い%を、PET対SPECT負荷時画像(99.2%対88.8%、p<0.01)および安静時画像(96.8%対64.8%、p<0.01)で優または良と評価した。解釈の診断上の確実性(明確に異常/正常解釈の事例の割合)は、PET対SPECT(92.0%対76.8%、P<0.01)については顕著に高かった。CADの診断全体に対するROC曲線下の面積は、PET対SPECT(0.79+0.05対0.67+0.05、p<0.05)について顕著に高かった。61/143人の患者から100の処置による有害事象(AE)が報告された。これらのうち、2人の患者において報告された7つのAEは、治験薬に関連するが、深刻ではないものと判断した。ベースラインからの臨床実験変更はTEAEとして報告されておらず、または、臨床的に顕著であるとはみなさなかった。安静時のECGデータでは、心拍数、房室伝導(PR間隔)、脱分極(QRS期間)または再分極(QTcF期間)に対する如何なる臨床に関連する影響のエビデンスは明らかにされなかった。
結論:このフェーズ2臨床治験においては、造影剤1は安全であり、画質、画像解釈の確実性およびCADの全体的な診断に関して、Tc−99m標識化SPECTよりも優れているように見受けられた。
実施例47
正常な被験者および冠動脈疾患を患っている患者における、造影剤1注入剤PETを伴う安静時および負荷時での絶対心筋血流量の簡素化された定量化が以下に記載されている。
目的:正常な被験者および冠動脈疾患(CAD)患者(Pts)における、臨床用途のための造影剤1を伴う安静時(R)および負荷時(S)心筋血流量(MBF)および冠動脈血流予備能(CFR)の簡素化された定量化の実行可能性を評価した。
方法:10人のPts(6人がCADの尤度が低く、4人がCAD(>50%狭窄症)および可逆性欠損を患っていた)にピークアデノシンSでのRandで造影剤1注入剤を与え、続いて、10分間ダイナミック撮影を行った。R−S造影プロトコルを、5人のPtsに同日に、および、5人のPtsに別の日に行った。Rand S極座標表示を積算ダイナミックスキャン(注入後0.5〜2分)から自動的に生成し、3つの冠動脈領域(LAD、RCA、LCX)および左心室血液プール(LV)を自動的に画定した。可逆性欠損を手作業で極座標表示上に指定し、これから、時間放射能曲線(TAC)を生成した。不可逆摂取定数(K)および血液プール活性からの溢流を含んでいた単一−コンパートメントモデルを用いて、早期(0〜2分間)に組織TACをフィッティングした。LV TACを入力関数として用いた。心筋層の部分容積効果による回収係数を(1−spf)と推定し、ここで、spfは、モデルフィッティングから判定される血液溢流画分を示す。ヒトにおける造影剤1に係る最初の通過抽出画分を、前臨床研究において観察されたものと等しい0.94と仮定した。CFRをS/R MBFとして算出した。
結果:MBFおよびCFRを、18個の正常な領域(6人の低尤度Ptsにおける)と、CAD冠動脈(表19、*=p<0.05)により供給された5個の可逆性欠損領域とを比較した。結果は、N−13アンモニアPETを用いる発行されている文献と合致している。
Figure 0006254126
結論:造影剤1注入剤PET心筋灌流画像法を用いるMBFの定量化は、臨床応用において簡素化してロバストなMBF結果をもたらすことが可能である。
実施例48
5−((4−((2−ブロモエトキシ)メチル)ベンジル)オキシ)−2−(t−ブチル)−4−クロロピリダジン−3(2H)−オンの合成
造影剤前駆体1(0.521g、1.00mmol)の乾燥アセトン(10.0mL)中の溶液を、22℃で、LiBr(0.261g、3.00mmol)で一度に処理し、次いで56℃に温め、2.5時間保持した。ここで、不均質反応混合物を周囲温度に冷却し、すべての揮発物を減圧中で除去した。次いで、粗生成物を、3:1ペンタン/EtOAcを用いるシリカ(30×190mm)でのクロマトグラフィにより精製した。180〜360mLで溶離される主生成物ピークを回収し、プールし、減圧中で無色の油に濃縮した。温かいEtOAcおよびペンタンからの再結晶を介した最終的な精製で白色の結晶性固体を得た(0.369g、0.859mmol;85.9%)。
実施例48
造影剤1のシリンジ吸着
3本の2つの部品から構成されるシリンジ(Henke Sass Wolf)、ならびに、3本の3つの部品から構成されるシリンジ(Becton and Dickinson)の各々に造影剤1の1mL溶液(<50mg/mLアスコルビン酸を含有するHO中の<5体積%EtOH)を充填した;各シリンジにおける合計初期放射活性は同等であった。2組の充填したシリンジを周囲温度および湿度で、3時間の間保持し、この時点で、内容物を清浄な5ccガラスバイアルに注入したところ;一定体積の造影剤1(0.1mL)が各シリンジのハブ中に残留した。バイアルおよびシリンジの両方の合計放射性内容物を計測し、減衰補正し、および、保持割合を算出した。各シリンジ中に保持された放射活性の値が表20にまとめられている。保持された活性の割合における差は、95%信頼係数(すなわち、Prob>|t|0.0005)で統計的に顕著である。
Figure 0006254126
実施例49
造影剤1のシリンジ部分吸着
造影剤1のシリンジ保持に起用していた接触面材料をさらに特定するために、3本の追加のB&Dシリンジの各々に造影剤1の1mL溶液を充填し、次いで、周囲温度および湿度で3時間の間保持した。個々の投与物を実施例1に記載のとおり移した後に、シリンジバレルおよびブチルゴムチッププランジャーを分離し、保持された放射活性を計測し、減衰補正した。各シリンジの部品に対する保持された放射活性の割合値が表21にまとめられている。保持された活性の割合における差は、95%信頼係数(すなわち、Prob>|t|0.0017)で統計的に顕著である。
Figure 0006254126
本開示が前述の例示的な実施例に限定されることはなく、その基本的な特質から逸脱することなく他の特定の形態において実施されることが可能であることは当業者に明らかであろう。従って、これらの実施例は限定的ではなく、例示されているすべての観点において検討されており、前述の実施例ではなく添付の特許請求の範囲に対して参照が成されており、特許請求の範囲の等価の意味の内および範囲内であるすべての変更は、従って、その中に包含されることが意図されることが所望される。
本明細書においては本発明の数々の実施形態が説明および例示されているが、当業者は、本明細書に記載の機能を実施し、ならびに/または、結果および/あるいは1つ以上の利点を得るための多様な他の手段および/または構造を容易に予期し、このような変形および/または変更の各々は、本発明の範囲内であるとみなされる。より一般に、当業者は、本明細書に記載のパラメータ、寸法、材料および構成のすべては例示的であることが意図され、実際のパラメータ、寸法、材料および/または構成は本発明の教示が用いられている特定の用途に応じることとなることを評価するであろう。当業者は、本発明の本明細書に記載の特定の実施形態に対する多くの均等物を、認識するか、または、通常のものと同程度の実験により確かめるであろう。従って、前述の実施形態は単なる一例として提示され、添付の特許請求の範囲の範囲内およびその均等物において、本発明は、特定的に記載および特許請求されているもの以外の方法により実施され得ることが理解される。本発明は、本明細書に記載の個々の機構、システム、物品、材料、キットおよび/または方法の各々に関する。加えて、このような機構、システム、物品、材料、キットおよび/または方法が相互に適合していない場合、このような機構、システム、物品、材料、キットおよび/または方法の2つ以上の組み合わせのいずれも本発明の範囲内に包含される。
本明細書において用いられるところ、明細書および特許請求の範囲中の不定冠詞「a」および「an」は、明らかに反対の意が示されていない限りに置いて、「少なくとも1つの」を意味すると理解されるべきである。
本明細書において用いられるところ、明細書および特許請求の範囲中の句「および/または」は、これにより接続されている要素であって、すなわち、いくつかの場合においては接続されて存在している要素、および、他の場合においては離接して存在している要素の「一方または両方」を意味すると理解されるべきである。節「および/または」によって特定的に示されている要素以外の他の要素が、相反すると明白に示されていない限りにおいては、これらの要素に対して関連しているか、もしくは、関連していないかに関わらず、任意により存在していてもよい。それ故、非限定的な例として、「を含んでいる(comprising)」などのオープンエンド形式の言語と併用される場合、「Aおよび/またはB」に対する参照は、一実施形態においては、Bを含まないA(任意により、B以外の要素を含む);他の実施形態においては、Aを含まないB(任意により、A以外の要素を含む);さらに他の実施形態においては、AおよびBの両方(任意により、他の要素を含む)等を指している可能性がある。
本明細書および特許請求の範囲において用いられるところ、「または」は、上記に定義されている「および/または」と同じ意味を有していると理解されるべきである。例えば、列挙中において項目を分離している場合、「または」もしくは「および/または」は、包含的である、すなわち、要素の数もしくは列挙の少なくとも1つを包含するが、2つ以上をも包含し、および、任意により、列挙されていない追加の項目を包含すると解釈されるべきである。「〜の1つのみ」もしくは「〜の厳密に1つ」などの相反すると明白に示されている用語、または、特許請求の範囲において用いられている場合には「からなる」のみが、厳密に1つの要素、または、要素の列挙の包含を指していることとなる。普通、本明細書において用いられるところ、「または」という用語は、単に、排他的に「いずれか」、「〜の一方」、「〜の一方のみ」、または、「〜の厳密に1つ」などの用語が先行している場合、排他的な代替(すなわち、「両方ではなくいずれか一方」)を示していると解釈されるべきである。特許請求の範囲において用いられている場合、「〜から基本的になる」は、特許法の分野において用いられるその通常の意味を有するであろう。
本明細書および特許請求の範囲において用いられるところ、「少なくとも1つ」という句は、1つ以上の要素の列挙に対する参照において、要素の列挙におけるいずれか1つ以上の要素から選択される少なくとも1つの要素を意味すると理解されるべきであるが、要素の列挙内に特定的に列挙されている各々の少なくとも1つおよびすべての要素を包含している必要性はなく、また、要素の列挙における要素のいずれかの組み合わせも排除されていない。この定義においてはまた、特に特定されている要素に関連しているか、もしくは、関連していないかに関わらず、「少なくとも1つ」という句により参照されている要素の列挙において特に特定されている要素以外の要素が任意により存在していてもよい。それ故、非限定的な例として、「AおよびBの少なくとも1つ」(または、等しくは、「AまたはBの少なくとも1つ」、もしくは、等しくは「Aおよび/またはBの少なくとも1つ」)は、一実施形態においては、Bが伴わない少なくとも1つ(任意により2つ以上を含む)のA(および、任意により、B以外の要素を含む);他の実施形態においては、Aが伴わない少なくとも1つ(任意により2つ以上を含む)のB(および、任意により、A以外の要素を含む);さらに他の実施形態においては、少なくとも1つ(任意により2つ以上を含む)のA、および、少なくとも1つ(任意により2つ以上を含む)のB(および、任意により、他の要素を含む)等を指していることが可能である。
特許請求の範囲、ならびに、上記明細書において、「を含んでいる(comprising)」、「を含んでいる(including)」、「有している(carrying)」、「有している(having)」、「含有している」、「関与している」、「保持している」等などのすべての移行句は、オープンエンド形式である、すなわち、特にこれらに限定されないがを含んでいることを意味していると理解されるべきである。「からなる」および「基本的に〜からなる」という移行句のみが、米国特許商標庁特許審査基準2111.03節に規定されているとおり、それぞれ、クローズドまたはセミクローズド形式の移行句であるべきである。

Claims (9)

  1. (i)造影剤前駆体を含む容器、
    (ii)重炭酸塩を含む容器であって、該重炭酸塩対造影剤前駆体のモル比は、1.5:1〜0.25:1の間の範囲であり、
    iii18Fの供給源を添加するための流路
    を含む造影剤の調製用カセットであって、
    該造影剤前駆体は、式(I):
    Figure 0006254126
    (式中:
    は、アルキルであり;
    は、ハロゲンであり;および
    は、スルホネート含有基で置換されているアルコキシアルキルである)
    を含
    該造影剤は、式:
    Figure 0006254126
    (式中:
    は、アルキルであり;
    は、ハロゲンであり;および
    は、 18 Fで置換されているアルコキシアルキルである)
    を含んでいる、該カセット。
  2. 該造影剤が、式:
    Figure 0006254126
    を含む、請求項1に記載のカセット。
  3. 該造影剤前駆体が、式:
    Figure 0006254126
    を含む、請求項に記載のカセット。
  4. が、t−Buである、請求項1に記載のカセット。
  5. が、Clである、請求項4に記載のカセット。
  6. が、Clである、請求項1に記載のカセット。
  7. 重炭酸塩が、テトラアルキルアンモニウム重炭酸塩である、請求項1〜6のいずれか1項に記載のカセット。
  8. 請求項1〜請求項7のいずれか1項に記載のカセットを含む自動反応システムであって、該自動反応システムは、
    18O]HO採収システム、ガス入口、造影剤前駆体の溶液を有する貯蔵タンク、バイアル、アニオン交換カートリッジ、C−18カートリッジ、シリンジ、溶剤貯蔵タンク、反応容器、HPLCシステム、回収容器、アスコルビン酸またはその塩の溶液用貯蔵タンクおよび排出出口からなる群から選択される構成要素の1つ以上に接続されている、線形に配置された複数の止め栓マニホールドを含む、
    該自動反応システム。
  9. 重炭酸塩が、テトラアルキルアンモニウム重炭酸塩である、請求項8記載の自動反応システム。
JP2015181159A 2010-02-08 2015-09-14 造影剤およびその中間体を合成するための方法および装置 Active JP6254126B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US30247710P 2010-02-08 2010-02-08
US61/302,477 2010-02-08
US31537610P 2010-03-18 2010-03-18
US61/315,376 2010-03-18
US33369310P 2010-05-11 2010-05-11
US61/333,693 2010-05-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012552155A Division JP6092628B2 (ja) 2010-02-08 2011-02-08 造影剤およびその中間体を合成するための方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017229034A Division JP6685269B2 (ja) 2010-02-08 2017-11-29 造影剤およびその中間体を合成するための方法および装置

Publications (2)

Publication Number Publication Date
JP2016029059A JP2016029059A (ja) 2016-03-03
JP6254126B2 true JP6254126B2 (ja) 2017-12-27

Family

ID=44356121

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012552155A Active JP6092628B2 (ja) 2010-02-08 2011-02-08 造影剤およびその中間体を合成するための方法および装置
JP2015181159A Active JP6254126B2 (ja) 2010-02-08 2015-09-14 造影剤およびその中間体を合成するための方法および装置
JP2017229034A Active JP6685269B2 (ja) 2010-02-08 2017-11-29 造影剤およびその中間体を合成するための方法および装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012552155A Active JP6092628B2 (ja) 2010-02-08 2011-02-08 造影剤およびその中間体を合成するための方法および装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017229034A Active JP6685269B2 (ja) 2010-02-08 2017-11-29 造影剤およびその中間体を合成するための方法および装置

Country Status (20)

Country Link
US (5) US8936777B2 (ja)
EP (3) EP4046990A1 (ja)
JP (3) JP6092628B2 (ja)
KR (5) KR20180055933A (ja)
CN (3) CN113058046A (ja)
AU (3) AU2011213568B2 (ja)
BR (1) BR112012019789A2 (ja)
CA (1) CA2789044C (ja)
DK (2) DK2534136T3 (ja)
ES (2) ES2909318T3 (ja)
HK (1) HK1255702A1 (ja)
IL (2) IL221253B (ja)
MX (1) MX348958B (ja)
NO (1) NO2534136T3 (ja)
NZ (1) NZ602291A (ja)
PT (2) PT3323810T (ja)
RU (1) RU2631500C2 (ja)
SG (2) SG10201500929XA (ja)
TW (4) TWI660947B (ja)
WO (1) WO2011097649A2 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344702B2 (en) 2004-02-13 2008-03-18 Bristol-Myers Squibb Pharma Company Contrast agents for myocardial perfusion imaging
US7485283B2 (en) 2004-04-28 2009-02-03 Lantheus Medical Imaging Contrast agents for myocardial perfusion imaging
AU2007339954B2 (en) 2006-12-26 2013-06-20 Lantheus Medical Imaging, Inc. Ligands for imaging cardiac innervation
CA2967254C (en) 2008-02-29 2019-03-26 Lantheus Medical Imaging, Inc. Contrast agents for applications including imaging cancer
DK2419096T3 (da) 2009-04-15 2020-02-03 Lantheus Medical Imaging Inc Stabilisering af radiofarmaceutiske sammensætninger under anvendelse af ascorbinsyre
US10109385B2 (en) 2009-09-23 2018-10-23 Abt Molecular Imaging, Inc. Dose synthesis card for use with automated biomarker production system
CN113058046A (zh) 2010-02-08 2021-07-02 兰休斯医疗成像公司 用于合成显像剂和其中间体的方法和装置
BR122020018186B1 (pt) 2010-05-11 2021-07-27 Lantheus Medical Imaging, Inc Uso de agentes de imagiologia para preparação de uma composição para detecção do transportador de norepinefrina (net) e método para a detecção de net
EP2704577A4 (en) * 2011-05-05 2014-10-15 Cedars Sinai Medical Center EVALUATION OF A CORONARY HEART DISEASE WITH CARBON DIOXIDE
US11129911B2 (en) 2011-05-05 2021-09-28 Cedars-Sinai Medical Center Assessment of coronary heart disease with carbon dioxide
SG2014013767A (en) * 2011-09-09 2014-05-29 Lantheus Medical Imaging Inc Compositions, methods, and systems for the synthesis and use of imaging agents
US20140328757A1 (en) * 2011-10-21 2014-11-06 Lantheus Medical Imaging, Inc. Compositions comprising ascorbic acid and an imaging agent and related methods
US20150023873A1 (en) 2011-11-11 2015-01-22 Lantheus Medical Imaging, Inc. Evaluation of presence of and vulnerability to atrial fibrillation and other indications using matrix metalloproteinase-based imaging
EP2836241B1 (en) 2012-04-10 2019-02-20 Lantheus Medical Imaging, Inc. Radiopharmaceutical synthesis methods
CA2794281C (en) * 2012-04-30 2019-07-02 Elazar A. Bienenstock Single photon emission computed tomography imaging method
US9789211B2 (en) 2012-05-14 2017-10-17 University Of Southern California Methods and compositions for positron emission tomography myocardial perfusion imaging
AU2013203000B9 (en) 2012-08-10 2017-02-02 Lantheus Medical Imaging, Inc. Compositions, methods, and systems for the synthesis and use of imaging agents
US10471094B2 (en) 2013-08-05 2019-11-12 Cedars-Sinai Medical Center Methods for reducing ischemia-reperfusion injury via targeted control of blood gases
JP6190240B2 (ja) 2013-10-16 2017-08-30 浜松ホトニクス株式会社 癌に対する治療効果の診断剤
US9031300B1 (en) 2013-10-25 2015-05-12 General Electric Company System and method reconstructing a nuclear medicine image using deformed attenuation image
CN107530455A (zh) * 2015-02-10 2018-01-02 Abt分子成像公司 与自动化生物标记物生产系统联用的剂量合成卡
NL2014828B1 (en) * 2015-05-20 2017-01-31 Out And Out Chemistry S P R L Method of performing a plurality of synthesis processes of preparing a radiopharmaceutical in series, a device and cassette for performing this method.
CN105553594B (zh) * 2015-12-09 2018-02-16 沈阳东软医疗系统有限公司 一种pet时钟同步方法和装置
WO2017180492A1 (en) * 2016-04-11 2017-10-19 The General Hospital Corporation System and method for quantitatively mapping mitochondrial membrane potential
JP6060302B1 (ja) * 2016-06-10 2017-01-11 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置
TWI649067B (zh) * 2017-03-01 2019-02-01 醫百科技股份有限公司 Positioning corrector
CN108129673B (zh) * 2017-12-26 2020-10-13 武汉大学 一种高灵敏度水溶性树枝状大分子f19显影剂的制备及其应用
GB201805253D0 (en) * 2018-03-29 2018-05-16 Ge Healthcare Ltd Ip Solid phase extraction
CN108658868A (zh) * 2018-05-07 2018-10-16 四川大学 一种碳酸氢盐离子液体及其制备方法以及一种三氨基三硝基苯的重结晶方法
EP3671511B1 (en) 2018-12-19 2022-07-06 Rohde & Schwarz GmbH & Co. KG Communication system and method
CN109806822B (zh) * 2019-01-30 2021-07-30 杭州吉蕊科技有限公司 一种模块化、多功能的pet探针自动化合成系统
CN109896934A (zh) * 2019-03-08 2019-06-18 山东省药学科学院 一种高纯度2-苄氧基溴乙烷的制备方法
GB201915206D0 (en) 2019-10-21 2019-12-04 Ge Healthcare Ltd Use of cyclodextrins as a radiostabilizer
GB201919016D0 (en) * 2019-12-20 2020-02-05 Ge Healthcare Ltd Apparatus and method for solid phase extraction
CN111333638A (zh) * 2020-03-17 2020-06-26 四川大学华西医院 18f标记的异喹啉并哒嗪酮类化合物及其合成方法和应用
JP7362561B2 (ja) * 2020-07-30 2023-10-17 富士フイルム株式会社 放射線画像処理装置、方法およびプログラム
CA3208261A1 (en) * 2021-06-11 2022-12-15 Albert SINUSAS Non-invasive imaging methods of diagnosing peripheral arterial disease
GB202108608D0 (en) 2021-06-16 2021-07-28 Ge Healthcare Ltd Preparation of a ph-adjusted ascorbic acid solution
GB202108605D0 (en) 2021-06-16 2021-07-28 Ge Healthcare Uk Ltd Effect of water content
CN116351339A (zh) * 2022-06-07 2023-06-30 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN114716415B (zh) * 2022-06-09 2022-09-02 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114732918B (zh) * 2022-06-10 2022-09-13 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN114773179B (zh) * 2022-06-23 2022-09-16 北京先通国际医药科技股份有限公司 一种化合物ⅰ液体组合物的制备方法、及其在心肌代谢pet显像上的用途

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073999A (en) 1965-01-29 1967-06-28 Ncr Co Process for forming stable images in photochromic material
US4510125A (en) 1982-12-08 1985-04-09 Mallinckrodt, Inc. Process for making lyophilized radiographic imaging kit
JPS604173A (ja) 1983-06-23 1985-01-10 Nissan Chem Ind Ltd ピリダジノン誘導体,その製造法および殺虫・殺ダニ・殺菌剤
EP0169375B1 (en) 1984-06-23 1989-12-20 Nissan Chemical Industries Ltd. Process for producing 2-tert.-butyl-4,5-dichloro-3(2h)-pyridazinone
JPH07116161B2 (ja) 1984-07-04 1995-12-13 日産化学工業株式会社 ピリダジノン誘導体
JPS61130275A (ja) 1984-11-29 1986-06-18 Nissan Chem Ind Ltd ピリダジノン誘導体,その製造法および殺虫・殺ダニ・殺菌剤
DE3578304D1 (de) 1984-11-29 1990-07-26 Nissan Chemical Ind Ltd Pyridazinonderivate, deren herstellung und insektizidische, acaricidische, nematicidische, fungizidische zusammensetzungen.
EP0186817B1 (en) 1984-12-10 1989-08-02 Nissan Chemical Industries Ltd. 3(2h)pyridazinone, process for its preparation and anti-allergic agent containing it
US5393512A (en) 1985-01-14 1995-02-28 Vanderheyden; Jean-Luc Stable therapeutic radionuclide compositions and methods for preparation thereof
JPH0641454B2 (ja) 1985-02-27 1994-06-01 日産化学工業株式会社 ピリダジノン誘導体
JPS61260018A (ja) * 1985-05-14 1986-11-18 Nissan Chem Ind Ltd 抗アレルギ−剤
YU134686A (en) 1985-07-30 1988-02-29 Nissan Chemical Ind Ltd Process for preparing new derivatives 3-(2h)-pyridazinone
JPH0739397B2 (ja) 1985-07-30 1995-05-01 日産化学工業株式会社 ピリダジノン誘導体および害虫防除剤
WO1987002893A1 (en) 1985-11-18 1987-05-21 Board Of Regents, The University Of Texas System Polychelating agents for image and spectral enhancement (and spectral shift)
JPS6315974A (ja) 1986-07-09 1988-01-23 小泉コンピユ−タ−株式会社 ボ−リングゲ−ム点数表表示装置
US5252317A (en) 1986-11-10 1993-10-12 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Amplifier molecules for diagnosis and therapy derived from 3,5-bis[1-(3-amino-2,2-bis (aminomethyl)-propyl) oxymethyl] benzoic acid
US5567411A (en) 1986-11-10 1996-10-22 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Dendritic amplifier molecules having multiple terminal active groups stemming from a benzyl core group
JPS63159372A (ja) 1986-12-24 1988-07-02 Nissan Chem Ind Ltd ピリダジノン化合物および殺虫、殺ダニ、殺線虫剤
JPS63159374A (ja) 1986-12-24 1988-07-02 Nissan Chem Ind Ltd ピリダジノン誘導体および殺虫、殺ダニ、殺線虫剤
JPS63159373A (ja) 1986-12-24 1988-07-02 Nissan Chem Ind Ltd ピリダジノン類および殺虫、殺ダニ、殺線虫剤
DE3824210A1 (de) 1988-07-16 1990-01-18 Basf Ag 3(2h)-pyridazinonderivate zur bekaempfung von schnecken
IT1229684B (it) 1989-04-05 1991-09-06 Mini Ricerca Scient Tecnolog Piridazinoni ad attivita' insetticida ed acaricida
JPH02279676A (ja) 1989-04-19 1990-11-15 Otsuka Chem Co Ltd ピリダジノン誘導体
US5087440A (en) 1989-07-31 1992-02-11 Salutar, Inc. Heterocyclic derivatives of DTPA used for magnetic resonance imaging
GB8923843D0 (en) 1989-10-23 1989-12-13 Salutar Inc Compounds
US5377681A (en) 1989-11-13 1995-01-03 University Of Florida Method of diagnosing impaired blood flow
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5228446A (en) 1989-12-22 1993-07-20 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5088499A (en) 1989-12-22 1992-02-18 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5679810A (en) 1990-01-19 1997-10-21 Salutar, Inc. Linear oligomeric polychelant compounds
JPH03220177A (ja) 1990-01-25 1991-09-27 Nissan Chem Ind Ltd 殺虫、殺ダニ剤組成物
WO1992017215A1 (en) 1990-03-28 1992-10-15 Nycomed Salutar, Inc. Contrast media
GB9006977D0 (en) 1990-03-28 1990-05-23 Nycomed As Compositions
JPH04235975A (ja) 1991-01-21 1992-08-25 Nissan Chem Ind Ltd ピリダジノン誘導体および害虫防除剤
US5205290A (en) 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5093105A (en) 1991-04-09 1992-03-03 Merck Frosst Canada, Inc. Radiopharmaceutical bacteriostats
US5306482A (en) 1991-04-09 1994-04-26 Merck Frosst Canada, Inc. Radiopharmaceutical bacteriostats
DE69231469T2 (de) 1991-08-29 2001-01-25 Mallinckrodt Medical Inc Verwendung von gentisinsäure oder gentisylalkohol zur stabilisierung von radio-markierten peptiden und proteinen
US5169942A (en) 1991-11-21 1992-12-08 General Electric Company Method for making 2-(18F)fluoro-2-deoxy-D-glucose
EP0627424A4 (en) 1992-12-03 1995-03-29 Otsuka Kagaku Kk PYRIDAZINE DERIVATIVES AND INCENTICIDES AND MITICIDES.
US5760191A (en) 1993-02-05 1998-06-02 Nycomed Imaging As Macrocyclic complexing agents and targeting immunoreagents useful in therapeutic and diagnostic compositions and methods
WO1994021653A1 (en) 1993-03-22 1994-09-29 General Electric Company Method for making 2-fluoro-2-deoxyglucose
AU6493894A (en) 1993-03-31 1994-10-24 Mallinckrodt Medical, Inc. Radiopharmaceutical formulations having non-stannous reductants
US5417959A (en) 1993-10-04 1995-05-23 Mallinckrodt Medical, Inc. Functionalized aza-crytand ligands for diagnostic imaging applications
US5493026A (en) 1993-10-25 1996-02-20 Organix, Inc. Substituted 2-carboxyalkyl-3-(fluorophenyl)-8-(3-halopropen-2-yl) nortropanes and their use as imaging for agents for neurodegenerative disorders
EP0665223A1 (en) 1994-01-28 1995-08-02 Takeda Chemical Industries, Ltd. Antitumor agent, novel 3(2H)-pyridazinone derivatives and their preparation
JPH07252236A (ja) 1994-01-28 1995-10-03 Takeda Chem Ind Ltd 抗癌剤
JPH10501218A (ja) 1994-06-03 1998-02-03 マリンクロッド・メディカル・インコーポレイテッド 迅速に消失するテクネチウム−99mホスホネート骨格イメージング剤
US5520904A (en) 1995-01-27 1996-05-28 Mallinckrodt Medical, Inc. Calcium/oxyanion-containing particles with a polymerical alkoxy coating for use in medical diagnostic imaging
EP0727225A3 (en) 1995-02-14 1997-01-15 Sonus Pharma Inc Compositions and methods for directed ultrasonic imaging
US5587491A (en) 1995-03-15 1996-12-24 Regents Of The University Of Minnesota Method for the synthesis of bis-tetrahydrofuranyl Annonaceous acetogenins
US5801228A (en) 1995-06-07 1998-09-01 Nycomed Imaging As Polymeric contrast agents for medical imaging
US5811073A (en) 1995-06-19 1998-09-22 President And Fellows Of Harvard College Method for radioisotopic detection and localization of inflammation in a host
US5827073A (en) 1995-07-05 1998-10-27 Ludwig Institute For Cancer Research Photoreactive peptide derivatives
US6066309A (en) 1996-02-02 2000-05-23 Rhomed Incorporated Post-labeling stabilization of radiolabeled proteins and peptides
US5804161A (en) 1996-05-14 1998-09-08 Nycomed Salutar Inc. Contrast agents
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
US6565889B2 (en) 1996-12-02 2003-05-20 The Regents Of The University Of California Bilayer structure which encapsulates multiple containment units and uses thereof
US5961955A (en) 1997-06-03 1999-10-05 Coulter Pharmaceutical, Inc. Radioprotectant for peptides labeled with radioisotope
WO2000009115A1 (en) 1998-08-14 2000-02-24 Smithkline Beecham Corporation Grp receptor ligands
US6056939A (en) 1998-08-28 2000-05-02 Desreux; Jean F. Self-assembling heteropolymetallic chelates as imaging agents and radiopharmaceuticals
AU1309100A (en) 1998-09-29 2000-04-17 Merck & Co., Inc. Radiolabeled neurokinin-1 receptor antagonists
US6645508B1 (en) 1999-06-18 2003-11-11 Jivn-Ren Chen Stable L-ascorbic acid composition
AU2001261728A1 (en) 2000-05-17 2001-11-26 Bristol-Myers Squibb Pharma Company Use of small molecule radioligands for diagnostic imaging
GB0019357D0 (en) 2000-08-07 2000-09-27 Melacure Therapeutics Ab Novel phenyl guanidines
WO2002020008A1 (en) 2000-09-06 2002-03-14 The Scripps Research Institute Inhibitors of nadh:ubiquinone oxidoreductase
TWI247609B (en) 2001-01-23 2006-01-21 Nihon Mediphysics Co Ltd Agent for diagnosis of tissue proliferation activity or the treatment of proliferative disease
GB0115927D0 (en) 2001-06-29 2001-08-22 Nycomed Amersham Plc Solid-phase nucleophilic fluorination
US7344702B2 (en) 2004-02-13 2008-03-18 Bristol-Myers Squibb Pharma Company Contrast agents for myocardial perfusion imaging
US20030044354A1 (en) 2001-08-16 2003-03-06 Carpenter Alan P. Gas microsphere liposome composites for ultrasound imaging and ultrasound stimulated drug release
US20030082191A1 (en) 2001-08-29 2003-05-01 Poduslo Joseph F. Treatment for central nervous system disorders
AU2002353790A1 (en) * 2001-10-03 2003-04-14 Medical Instill Technologies, Inc. Syringe and reconstitution syringe
JP2005529840A (ja) 2001-10-16 2005-10-06 ヒプニオン, インコーポレイテッド Cns標的モジュレータを使用するcns障害の治療
NZ534496A (en) 2002-02-06 2006-08-31 Univ Johns Hopkins Non-invasive diagnostic imaging technology for mitochondria dysfunction using radiolabeled lipophilic salts
EA009334B1 (ru) 2002-03-29 2007-12-28 Янссен Фармацевтика Н.В. Меченные радиоактивными изотопами производные хинолина и их применение в качестве лигандов метаботропного глутаматного рецептора
AU2003224747A1 (en) 2002-04-08 2003-10-27 Biostream, Inc. Technetium-labeled rotenone derivatives, and methods of use thereof
GB0229683D0 (en) 2002-12-20 2003-01-29 Imaging Res Solutions Ltd Preparation of radiopharmaceuticals
WO2005003100A2 (en) 2003-07-03 2005-01-13 Myriad Genetics, Inc. 4-arylamino-quinazolines as activators of caspases and inducers of apoptosis
WO2005007632A1 (en) 2003-07-18 2005-01-27 Pharmacia Corporation Substituted pyridazinones as inhibitors of p38
CA2783275A1 (en) 2003-07-24 2005-02-03 Bracco Imaging S.P.A. Stable radiopharmaceutical compositions and methods for their preparation
GB0317920D0 (en) 2003-07-31 2003-09-03 Amersham Plc Solid-phase synthesis
US7927616B2 (en) 2004-01-16 2011-04-19 Thomas T. Yamashita Pesticide compositions and methods for their use
WO2005082425A1 (en) * 2004-02-24 2005-09-09 The General Hospital Corporation Catalytic radiofluorination
CN1930126A (zh) 2004-03-05 2007-03-14 万有制药株式会社 吡啶酮衍生物
AT500838B1 (de) 2004-04-20 2007-11-15 Veterinaermedizinische Uni Wie Multiple hse
US7485283B2 (en) 2004-04-28 2009-02-03 Lantheus Medical Imaging Contrast agents for myocardial perfusion imaging
US20060083681A1 (en) 2004-10-18 2006-04-20 Ajay Purohit Compounds for myocardial perfusion imaging
US7534418B2 (en) 2004-12-10 2009-05-19 The Regents Of The University Of Michigan Imaging agents
KR100789847B1 (ko) 2004-12-15 2007-12-28 (주)퓨쳐켐 알코올 용매하에서 유기플루오로 화합물의 제조방법
JP2009505947A (ja) 2005-06-23 2009-02-12 エモリー・ユニバーシティ 画像化剤
US7824659B2 (en) * 2005-08-10 2010-11-02 Lantheus Medical Imaging, Inc. Methods of making radiolabeled tracers and precursors thereof
JP2007112725A (ja) * 2005-10-18 2007-05-10 Inst Nuclear Energy Research Rocaec 無支持体の18Fで標識したアミノ酸O−(2−[18F]fluoroethyl)−L−Tyrosineの製造方法。
GB0524851D0 (en) * 2005-12-06 2006-01-11 Ge Healthcare Ltd Radiolabelling method using polymers
US7871623B2 (en) * 2005-12-21 2011-01-18 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for imaging pain and stress in vivo
US7700616B2 (en) 2006-05-08 2010-04-20 Molecular Neuroimaging, Llc. Compounds and amyloid probes thereof for therapeutic and imaging uses
MX2008016344A (es) 2006-06-21 2009-02-12 Ge Healthcare Ltd Productos radiofarmaceuticos.
CA2657183A1 (en) 2006-08-25 2008-02-28 Boehringer Ingelheim International Gmbh New pyridone derivatives with mch antagonistic activity and medicaments comprising these compounds
GB0625523D0 (en) 2006-12-21 2007-01-31 Ge Healthcare Ltd In vivo imaging agents
AU2007339954B2 (en) 2006-12-26 2013-06-20 Lantheus Medical Imaging, Inc. Ligands for imaging cardiac innervation
JP5504563B2 (ja) 2006-12-27 2014-05-28 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
KR101523257B1 (ko) 2007-04-05 2015-05-27 쓰레솔드 파마슈티컬스, 인코포레이티드 니트로-이미다졸 저산소증 영상화제
GB0718386D0 (en) 2007-09-21 2007-10-31 Ge Healthcare As Improved radiopharmaceutical formulation
CN101157649A (zh) * 2007-10-23 2008-04-09 江苏省原子医学研究所 18F-Fallypride自动化合成的方法
KR101068835B1 (ko) * 2007-10-26 2011-09-30 한국과학기술연구원 베타-아밀로이드 집적체 및 피브릴에 우수한 결합 친화도를가지는 이소인돌론 화합물 및 이의 제조 방법
CL2008003785A1 (es) 2007-12-21 2009-10-09 Du Pont Compuestos derivados de piridazina; composiciones herbicidas que comprenden a dichos compuestos; y método para controlar el crecimiento de la vegetación indeseada.
WO2009103478A1 (en) 2008-02-19 2009-08-27 Boehringer Ingelheim International Gmbh Pyridone and pyridazinone derivatives as mch antagonists
WO2010011367A2 (en) 2008-02-22 2010-01-28 Illinois Institute Of Technology Bimodal ligands with macrocyclic and acyclic binding moieties, complexes and compositions thereof, and methods of using
CA2967254C (en) 2008-02-29 2019-03-26 Lantheus Medical Imaging, Inc. Contrast agents for applications including imaging cancer
AU2008352050B2 (en) * 2008-03-05 2015-07-02 Rhino Technologies Llc Tensionable spiral bolt with resin nut and related method
US8258134B2 (en) 2008-04-16 2012-09-04 Hoffmann-La Roche Inc. Pyridazinone glucokinase activators
WO2009146388A1 (en) 2008-05-28 2009-12-03 The Trustees Of Columbia University In The City Of New York Voxel-based methods for assessing subjects using positron emission tomography
CA2750579A1 (en) * 2009-02-25 2010-09-02 Focal Technologies Corporation Low-loss collimators for use in fiber optic rotary joints
WO2010104818A1 (en) 2009-03-09 2010-09-16 Bristol-Myers Squibb Company Aza pyridone analogs useful as melanin concentrating hormone receptor-1 antagonists
DK2419096T3 (da) 2009-04-15 2020-02-03 Lantheus Medical Imaging Inc Stabilisering af radiofarmaceutiske sammensætninger under anvendelse af ascorbinsyre
CN101555232B (zh) * 2009-05-21 2011-01-05 北京师范大学 氟-18标记哒嗪酮类化合物及制备方法和应用
WO2011006610A1 (en) 2009-07-11 2011-01-20 Bayer Schering Pharma Aktiengesellschaft Non-polar and polar leaving groups
CN113058046A (zh) 2010-02-08 2021-07-02 兰休斯医疗成像公司 用于合成显像剂和其中间体的方法和装置
BR122020018186B1 (pt) 2010-05-11 2021-07-27 Lantheus Medical Imaging, Inc Uso de agentes de imagiologia para preparação de uma composição para detecção do transportador de norepinefrina (net) e método para a detecção de net
DE102010036356A1 (de) * 2010-07-12 2012-01-12 Abx Advanced Biochemical Compounds Gmbh Vorrichtung zur Synthese radioaktiv markierter Verbindungen
JP5842594B2 (ja) 2010-12-27 2016-01-13 住友化学株式会社 ピリダジノン化合物、それを含有する除草剤及び有害節足動物防除剤
CN102336741B (zh) 2011-07-06 2013-04-10 北京师范大学 氟-18标记的心肌灌注显像剂及其制备方法和应用
SG2014013767A (en) 2011-09-09 2014-05-29 Lantheus Medical Imaging Inc Compositions, methods, and systems for the synthesis and use of imaging agents
US20140328757A1 (en) 2011-10-21 2014-11-06 Lantheus Medical Imaging, Inc. Compositions comprising ascorbic acid and an imaging agent and related methods
AU2013203000B9 (en) 2012-08-10 2017-02-02 Lantheus Medical Imaging, Inc. Compositions, methods, and systems for the synthesis and use of imaging agents
CA2920334A1 (en) 2012-08-13 2014-02-20 The General Hospital Corporation System and method for quantitative mapping of mitocondrial complex 1
US11730430B2 (en) 2012-09-21 2023-08-22 The General Hospital Corporation System and method for single-scan rest-stress cardiac pet

Also Published As

Publication number Publication date
KR20210132243A (ko) 2021-11-03
SG183134A1 (en) 2012-09-27
PT2534136T (pt) 2017-12-15
DK3323810T3 (da) 2022-03-28
IL263543B (en) 2019-08-29
CN102858752A (zh) 2013-01-02
CN109200296B (zh) 2021-12-14
SG10201500929XA (en) 2015-04-29
EP2534136B1 (en) 2017-09-06
EP2534136A2 (en) 2012-12-19
JP6685269B2 (ja) 2020-04-22
IL263543A (en) 2019-01-31
US9603951B2 (en) 2017-03-28
KR20120130293A (ko) 2012-11-30
US10022462B2 (en) 2018-07-17
TW201706252A (zh) 2017-02-16
ES2651466T3 (es) 2018-01-26
EP4046990A1 (en) 2022-08-24
US20130064769A1 (en) 2013-03-14
ES2909318T3 (es) 2022-05-06
DK2534136T3 (en) 2017-12-04
MX2012009174A (es) 2012-11-12
EP3323810B1 (en) 2022-01-05
AU2011213568A1 (en) 2012-09-27
AU2018201916B2 (en) 2020-04-30
HK1255702A1 (zh) 2019-08-23
KR102438133B1 (ko) 2022-08-31
KR20180055933A (ko) 2018-05-25
EP3323810A3 (en) 2018-07-04
US20210187131A1 (en) 2021-06-24
AU2016213781A1 (en) 2016-09-01
CN113058046A (zh) 2021-07-02
CA2789044A1 (en) 2011-08-11
AU2018201916A1 (en) 2018-04-12
MX348958B (es) 2017-07-04
KR101709372B1 (ko) 2017-02-22
AU2018201916C1 (en) 2020-10-29
PT3323810T (pt) 2022-04-14
US20190290788A1 (en) 2019-09-26
WO2011097649A3 (en) 2011-12-15
AU2011213568B2 (en) 2016-05-12
NZ602291A (en) 2014-10-31
TWI686370B (zh) 2020-03-01
TWI589302B (zh) 2017-07-01
NO2534136T3 (ja) 2018-02-03
US20170258947A1 (en) 2017-09-14
WO2011097649A2 (en) 2011-08-11
TW201134491A (en) 2011-10-16
US8936777B2 (en) 2015-01-20
CA2789044C (en) 2020-09-15
TW201741288A (zh) 2017-12-01
CN109200296A (zh) 2019-01-15
EP3323810A2 (en) 2018-05-23
RU2012138262A (ru) 2014-03-20
IL221253B (en) 2018-12-31
US10842892B2 (en) 2020-11-24
CN102858752B (zh) 2018-10-16
JP2018076328A (ja) 2018-05-17
KR20190067255A (ko) 2019-06-14
RU2631500C2 (ru) 2017-09-25
BR112012019789A2 (pt) 2016-08-09
JP2016029059A (ja) 2016-03-03
KR20170033873A (ko) 2017-03-27
IL221253A0 (en) 2012-10-31
JP6092628B2 (ja) 2017-03-08
TWI664169B (zh) 2019-07-01
TWI660947B (zh) 2019-06-01
EP2534136A4 (en) 2013-07-24
TW201843128A (zh) 2018-12-16
US20150165074A1 (en) 2015-06-18
JP2013518913A (ja) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6254126B2 (ja) 造影剤およびその中間体を合成するための方法および装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171129

R150 Certificate of patent or registration of utility model

Ref document number: 6254126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250