JP6025933B2 - 発光ダイオードの製造方法 - Google Patents

発光ダイオードの製造方法 Download PDF

Info

Publication number
JP6025933B2
JP6025933B2 JP2015153856A JP2015153856A JP6025933B2 JP 6025933 B2 JP6025933 B2 JP 6025933B2 JP 2015153856 A JP2015153856 A JP 2015153856A JP 2015153856 A JP2015153856 A JP 2015153856A JP 6025933 B2 JP6025933 B2 JP 6025933B2
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
substrate
semiconductor
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015153856A
Other languages
English (en)
Other versions
JP2016006896A (ja
Inventor
チョル ソ,ウォン
チョル ソ,ウォン
ソン チョ,デ
ソン チョ,デ
フン リ,チュン
フン リ,チュン
ブム ナム,キ
ブム ナム,キ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul Viosys Co Ltd
Original Assignee
Seoul Viosys Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110134130A external-priority patent/KR20130067515A/ko
Priority claimed from KR1020110135513A external-priority patent/KR101899479B1/ko
Priority claimed from KR1020120026948A external-priority patent/KR101899474B1/ko
Priority claimed from KR1020120026879A external-priority patent/KR20130104921A/ko
Application filed by Seoul Viosys Co Ltd filed Critical Seoul Viosys Co Ltd
Publication of JP2016006896A publication Critical patent/JP2016006896A/ja
Application granted granted Critical
Publication of JP6025933B2 publication Critical patent/JP6025933B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Weting (AREA)
  • Led Device Packages (AREA)

Description

本発明は、半導体素子及びそれを製造する方法に関し、より詳細には、発光ダイオード及びそれを製造する方法に関する。
一般に、窒化ガリウム(GaN)、窒化アルミニウム(AlN)などのIII族元素の窒化物は、熱的安定性に優れ、直接遷移型のエネルギーバンド構造を有するので、近来、可視光線及び紫外線領域の発光素子用物質として多くの脚光を浴びている。特に、窒化インジウムガリウム(InGaN)を用いた青色及び緑色の発光素子は、大規模な天然色平板表示装置、信号灯、室内照明、高密度光源、高解像度出力システム及び光通信などの多様な応用分野に活用されている。
このようなIII族元素の窒化物半導体層は、それを成長させ得る同種の基板を製作することが難しいので、類似する結晶構造を有する異種基板で金属有機化学気相蒸着法(MOCVD)または分子線蒸着法(molecular beam epitaxy;MBE)などの工程を通じて成長してきた。異種基板としては、六方晶系の構造を有するサファイア基板、特に、C面を成長面として有するサファイア基板が主に使用される。近年、サファイアなどの異種基板上に窒化物半導体層などの各エピ層を成長させ、各エピ層に支持基板をボンディングした後、レーザーリフトオフ技術などを用いて異種基板を分離することによって垂直型構造の高効率発光ダイオードを製造する技術が開発されている。サファイアなどの異種基板とその上に成長したエピ層は、互いに異なる物性を有するので、これらの間の界面を用いて成長基板を容易に分離することができる。
しかし、異種基板上に成長したエピ層は、成長基板との格子不整合及び熱膨張係数差に起因して転位密度が相対的に高い。サファイア基板上に成長したエピ層は、一般に1E8/cm以上の転位密度を有することで知られている。このような高い転位密度を有するエピ層では、発光ダイオードの発光効率を改善するのに限界がある。
さらに、C軸方向に成長した窒化ガリウム系化合物半導体は、自発分極及び圧電分極による極性を示し、その結果、電子と正孔との再結合率が低くなり、発光効率の改善に限界がある。
一方、最近、窒化ガリウム基板を成長基板として使用してエピ層を成長させ、発光ダイオードを製造する研究が試みられている。ところが、窒化ガリウム基板は、その上に成長したエピ層と同種であるので、エピ層から窒化ガリウム基板を分離して垂直型構造の高効率発光ダイオードを製造することが難しい。
また、a面またはm面に成長した窒化ガリウム系化合物半導体は、非極性を有するので、自発分極や圧電分極を発生させない。しかし、a面またはm面に窒化ガリウム系化合物半導体を成長させることは、解決すべき課題が多く残っているので、未だに広く適用されていない。
本発明が解決しようとする課題は、成長基板を除去した垂直型構造の高効率発光ダイオード及びそれを製造する方法を提供することにある。
本発明が解決しようとする他の課題は、特に、窒化ガリウム成長基板を除去した垂直型構造の高効率発光ダイオードを製造する方法を提供することにある。
本発明が解決しようとする更に他の課題は、光抽出効率が改善された高効率発光ダイオード及びそれを製造する方法を提供することにある。
本発明が解決しようとする更に他の課題は、非極性または半極性発光ダイオードを製造する方法を提供することにある。
本発明が解決しようとする更に他の課題は、成長させようとする半導体層と同一又は類似する物質、格子定数または熱膨張係数を有するシード層を含む半導体素子基板及びそれを用いて半導体素子を製造する方法を提供することにある。
本発明は、半導体素子、特に、発光ダイオード及びそれを製造する方法を提供する。本発明の一態様に係る発光ダイオードは、支持基板と、前記支持基板上に位置し、窒化ガリウム系列のp型半導体層、窒化ガリウム系列の活性層及び窒化ガリウム系列のn型半導体層を含む半導体積層構造体と、前記支持基板と前記半導体積層構造体との間で前記p型半導体層にオーミックコンタクトするp電極層と、前記半導体積層構造体上に位置し、凹凸パターンを有する透明酸化物層と、を含み、前記半導体積層構造体は、5×10/cm以下の転位密度を有するように形成される。
低い転位密度及び各半導体層の結晶品質により、電流密度の増加と共に発生する発光ダイオードのドループ現象を緩和することができる。前記半導体積層構造体は、窒化ガリウム基板上に成長した各半導体層で形成することができる。併せて、凹凸パターンを有する透明酸化物層を用いて光を抽出することができ、発光ダイオードの光抽出効率を改善することができる。
本発明の他の態様に係る発光ダイオードは、支持基板と、前記支持基板上に位置し、窒化ガリウム系列のp型半導体層、窒化ガリウム系列の活性層及び窒化ガリウム系列のn型半導体層を含む半導体積層構造体と、前記支持基板と前記半導体積層構造体との間で前記p型半導体層にオーミックコンタクトするp電極層と、前記支持基板と前記半導体積層構造体との間に位置し、前記p型半導体層及び活性層を貫通する貫通ホールを介して前記n型半導体層に接続されたn電極層と、前記p電極層と前記n電極層とを絶縁させる絶縁層と、を含み、前記半導体積層構造体は、5×10/cm以下の転位密度を有するように形成される。
p電極層及びn電極層を半導体積層構造体と支持基板との間に配置することによって、光放出面から光の損失が発生することを防止することができる。
本発明の更に他の態様に係る発光ダイオードの製造方法は、窒化ガリウム基板上に第1の窒化ガリウム層、前記窒化ガリウム層に比べて狭いバンドギャップを有する犠牲層及び第2の窒化ガリウム層を形成し、前記第2の窒化ガリウム層及び前記犠牲層を貫通する溝を形成し、前記第2の窒化ガリウム層上に窒化ガリウム系列の各半導体層を成長させることによって半導体積層構造体を形成し、前記半導体積層構造体上に支持基板を形成し、前記犠牲層をエッチングすることによって前記半導体積層構造体から前記窒化ガリウム基板を除去することを含む。
前記犠牲層は、光強化化学エッチング技術を用いてエッチングすることができる。
本発明の更に他の態様に係る発光ダイオードの製造方法は、窒化ガリウム基板上に窒化ガリウム層及び犠牲層を形成することを含む。前記犠牲層は、前記窒化ガリウム層に比べて狭いバンドギャップを有する窒化ガリウム系半導体で形成される。また、前記製造方法は、前記犠牲層上に窒化ガリウム系列の各半導体層を成長させることによって半導体積層構造体を形成し、前記半導体積層構造体及び前記犠牲層を貫通する溝を形成し、前記半導体積層構造体上に支持基板を形成し、前記犠牲層をエッチングすることによって前記半導体積層構造体から前記窒化ガリウム基板を分離することを含む。
前記犠牲層はInGaNで形成することができる。また、前記犠牲層をエッチングすることは、光強化化学エッチング技術を用いて行うことができる。例えば、前記犠牲層をエッチングすることは、KOHまたはNaOH溶液内で前記窒化ガリウム基板を介して前記犠牲層に光を照射することによって行うことができる。
一方、前記窒化ガリウム基板を除去した後、前記n型半導体層上に凹凸パターンを有する透明酸化物層を形成することができる。
前記半導体積層構造体は、窒化ガリウム系列のn型半導体層、窒化ガリウム系列の活性層及び窒化ガリウム系列のp型半導体層を含む。前記発光ダイオードの製造方法は、前記支持基板を形成する前に、前記半導体積層構造体のp型半導体層にオーミックコンタクトするp型電極層を形成することをさらに含むことができる。
いくつかの実施例において、前記発光ダイオードの製造方法は、前記支持基板を形成する前に、前記溝を充填する充填材を形成することをさらに含むことができる。p電極層は、前記充填材を形成する前に、前記半導体積層構造体上に限定して形成することができ、または、前記充填材を形成した後、前記半導体積層構造体及び前記充填材を覆うように形成することができる。
また、前記発光ダイオードの製造方法は、前記支持基板の下部にボンディングパッドを形成することをさらに含むことができる。
本発明の更に他の態様に係る発光ダイオードは、導電性基板と、前記基板上に位置する窒化ガリウム系列の半導体積層体と、を含む。ここで、前記半導体積層体は半極性半導体層の活性層を含む。
また、前記窒化ガリウム系列の半導体積層体は、半極性窒化ガリウム基板上で成長した各半導体層を含む。さらに、前記半極性窒化ガリウム基板は、C面に対して15゜〜85゜範囲の角度だけ傾斜した主面を有するミスカット(miscut)半極性窒化ガリウム基板であり得る。
いくつかの実施例において、前記導電性基板が前記半極性窒化ガリウム基板であり得るが、これに限定されることはない。例えば、前記基板は、半導体積層体に貼りつけられた金属基板であり得る。さらに、反射層は、前記基板と前記半導体積層体との間に位置し得る。
一方、前記発光ダイオードは、前記半導体積層体上に位置する透明酸化層をさらに含むことができ、この透明酸化層は凹凸パターンを有することができる。また、前記透明酸化層と接する前記半導体積層体の上部面は凹凸パターンを有することができる。
本発明の他の態様に係る発光ダイオードの製造方法は、C面に対して15゜〜85゜範囲の角度だけ傾斜した主面を有するミスカット半極性窒化ガリウム基板を準備し、前記基板上に半極性窒化ガリウム系列の各半導体層を成長させることによって半導体積層体を形成することを含む。
さらに、前記方法は、前記半導体積層体上に透明酸化層を形成することをさらに含むことができ、前記透明酸化層は凹凸パターンを有することができる。
いくつかの実施例において、前記方法は、前記半導体積層体上に反射層を形成し、前記反射層上に支持基板を貼りつけ、前記半極性窒化ガリウム基板を除去することをさらに含むことができる。
また、前記半極性窒化ガリウム基板上に半導体積層体を形成する前に、電気化学的エッチング技術を用いて前記基板上に多孔構造の窒化物層を形成することができ、前記半極性窒化ガリウム基板は、前記多孔構造の窒化物層を用いて前記半導体積層体から分離することができる。
前記半極性窒化ガリウム基板を除去した後、前記半導体積層構造体の表面に凹凸パターンを形成することができる。
本発明の更に他の態様に係る半導体素子の製造方法は、支持基板とバルク基板を用意し、前記支持基板の一側表面上に接合層を形成し、前記接合層を用いて前記支持基板の一側表面上に前記バルク基板を接合し、前記バルク基板を前記接合層から一定厚さになるように切断・分離することによってシード層を形成することを含む。
前記バルク基板はGaNを含むことができる。
前記バルク基板は、HVPE(Hydride Vapor Phase Epitaxy)法、ナトリウムフラックス(Na flux)法またはアモノサーマル(Ammonothermal)法で製造することができる。
前記接合層は、Zn、Si、Ga及びAlのうち少なくとも一つを含む酸化物またはSi、Ga及びAlのうち少なくとも一つを含むことができる。
前記半導体素子の製造方法は、前記支持基板とバルク基板を接合する前に、前記接合層上に金属中間層を形成することをさらに含むことができる。
前記金属中間層は、前記支持基板とバルク基板とを接合するとき、アイランド形態に形成することができる。
前記支持基板は、サファイア基板、AlN基板、Ge基板またはSiC基板であり得る。
前記支持基板は、その一側表面に凹凸パターンを備えることができる。
前記半導体素子の製造方法は、前記シード層を形成した後、前記シード層上に少なくとも第1の導電型半導体層、活性層及び第2の導電型半導体層を含む複数の半導体層を形成し、前記各半導体層をパターニングし、第1型半導体層の一部が露出した半導体積層構造体を形成し、前記半導体積層構造体の第2の導電型半導体層上にTCO層を形成し、前記の露出した第1の導電型半導体層上に第1の電極を形成し、前記TCO層上に第2の電極を形成することをさらに含むことができる。
前記半導体素子の製造方法は、前記複数の半導体層を形成する前に、前記シード層の表面を平坦化することをさらに含むことができる。
前記TCO層は、その表面に凹凸を含むことができる。
前記第2の導電型半導体層上にTCO層を形成することは、前記半導体積層構造体上に第1のTCO層を形成し、前記第1のTCO層上にフォトレジストパターンを形成し、前記フォトレジストパターンが形成された第1のTCO層上に第2のTCO層を形成し、前記フォトレジストパターン、及び前記フォトレジストパターン上に形成された前記第2のTCO層の一部をリフトオフ(lift off)法で除去して形成することを含むことができる。
前記第2の導電型半導体層上にTCO層を形成することは、前記TCO層上に複数のオープン領域を有するフォトレジストパターンを形成し、前記フォトレジストパターンをマスクとして前記TCO層の表面を一定の深さにウエットエッチングし、前記TCO層の表面に凹凸を形成することを含むことができる。
前記半導体素子の製造方法は、前記シード層を形成した後、前記シード層上に少なくとも第1の導電型半導体層、活性層及び第2の導電型半導体層を含む複数の半導体層を形成し、前記複数の半導体層の第2の導電型半導体層上にエッチングストップパターンを形成し、前記エッチングストップパターンが形成された前記シード層上に金属ボンディング層を形成し、前記金属ボンディング層上に金属基板を形成し、前記支持基板を分離し、前記複数の半導体層をパターニングすることによって半導体積層構造体を形成し、前記支持基板を分離し、露出した表面上にTCO層を形成し、前記TCO層上に電極パッドを形成することをさらに含むことができる。
前記半導体素子の製造方法は、前記支持基板を分離した後、前記TCO層を形成する前に、前記シード層を除去することをさらに含むことができる。
前記半導体素子の製造方法は、前記複数の半導体層を形成した後、前記金属ボンディング層を形成する前に、前記複数の半導体層と金属ボンディング層との間にオーミック反射パターンを形成することをさらに含むことができる。
前記オーミック反射パターンは、前記エッチングストップパターンのオープン領域に位置し得る。
前記半導体素子の製造方法は、前記複数の半導体層を形成する前に、前記シード層の表面を平坦化することをさらに含むことができる。
前記TCO層は、その表面に凹凸を含むことができる。
前記支持基板が分離された表面上にTCO層を形成することは、前記支持基板が分離された表面上に第1のTCO層を形成し、前記第1のTCO層上にフォトレジストパターンを形成し、前記フォトレジストパターンが形成された第1のTCO層上に第2のTCO層を形成し、前記フォトレジストパターン、及び前記フォトレジストパターン上に形成された前記第2のTCO層の一部をリフトオフ法で除去して形成することを含むことができる。
前記支持基板が分離された表面上にTCO層を形成することは、前記支持基板が分離された表面上に複数のオープン領域を有するフォトレジストパターンを形成し、前記フォトレジストパターンをマスクとして前記TCO層の表面を一定の深さにウエットエッチングし、前記TCO層の表面に凹凸を形成することを含むことができる。
本発明によると、窒化ガリウム基板を成長基板として使用して各半導体層を成長させることによって、転位密度の低い半導体積層構造体を形成することができる。さらに、半導体積層構造体から窒化ガリウム基板を除去して垂直型構造の発光ダイオードを製造することによって、高効率発光ダイオードを提供することができる。また、窒化ガリウム基板上に成長した各半導体層は、転位密度が非常に低いので、従来の光強化化学エッチング(photo−enhanced chemical etching)では粗い表面を提供するのに限界があり、光抽出効率を改善しにくいが、本発明によると、凹凸パターンを有する透明酸化物層を用いて発光ダイオードの光抽出効率を改善することができる。
さらに、犠牲層をエッチングすることによって窒化ガリウム基板を半導体積層構造体から分離するので、窒化ガリウム基板を再使用することができる。
一方、半極性半導体層の活性層を含む発光ダイオードを提供することによって、分極を緩和または除去することができ、発光効率を改善することができる。さらに、ミスカットGaN基板を用いて各半導体層を成長させることによって、半極性半導体層を相対的に容易に成長させることができる。また、電気化学エッチングを用いてGaN基板を分離することによって、GaN基板を再使用することができ、生産コストを節減することができる。
また、成長させようとする半導体層と同一または類似する格子定数または熱膨張係数の物質を有するシード層を含む半導体素子基板を提供することができ、この半導体素子基板を用いて半導体素子を製造することができる。
本発明の一実施例に係る発光ダイオードを説明するための断面図である。 本発明の一実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の一実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の一実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の一実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の一実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の一実施例に係る窒化ガリウム基板の分離工程を説明するための概略図である。 本発明の他の実施例に係る発光ダイオードを説明するための断面図である。 本発明の他の実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の他の実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の他の実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の他の実施例に係る発光ダイオードの製造方法を説明するための断面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の更に他の実施例に係る発光ダイオードの製造方法を説明するための断面図及び平面図である。 本発明の一実施例に係る窒化ガリウム基板の分離工程を説明するための概略図である。 ミスカット窒化ガリウム基板を説明するための断面図である。 本発明の一実施例に係る発光ダイオードを説明するための断面図である。 本発明の更に他の実施例に係る発光ダイオードを説明するための断面図である。 図23の発光ダイオードを製造するための方法を説明するための断面図である。 図23の発光ダイオードを製造するための方法を説明するための断面図である。 図23の発光ダイオードを製造するための方法を説明するための断面図である。 分離されたGaN基板を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 本発明の半導体素子の製造方法で利用可能な他の形態の支持基板を示した断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 TCO層の表面に凹凸を形成する方法を説明するための断面図である。 TCO層の表面に凹凸を形成する方法を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。 本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。
以下では、添付の各図面を参照して本発明の各実施例を詳細に説明する。次に紹介する各実施例は、当業者に本発明の思想を十分に伝達するために例として提供されるものである。したがって、本発明は、以下で説明する各実施例に限定されるものではなく、他の形態に具体化することもできる。そして、各図面において、同一の参照番号は同一の構成要素を示し、構成要素の幅、長さ、厚さなどは、便宜のために誇張して表現する場合がある。
図1は、本発明の一実施例に係る発光ダイオードを説明するための断面図である。
図1を参照すると、発光ダイオードは、支持基板31、半導体積層構造体30、p電極層27、ボンディングメタル33、透明酸化物層35及びn−電極パッド37を含む。また、発光ダイオードはボンディングパッド39を含むことができる。
支持基板31は、各化合物半導体層を成長させるための成長基板と区分されるものであって、既に成長した各化合物半導体層に貼りつけられた2次基板である。支持基板31は、導電性基板、例えば、金属基板または半導体基板であり得る。
半導体積層構造体30は、支持基板31上に位置し、p型化合物半導体層25、活性層23及びn型化合物半導体層21を含む。ここで、半導体積層構造体30は、p型化合物半導体層25がn型化合物半導体層21に比べて支持基板31側の近くに位置する。
n型化合物半導体層21、活性層23及びp型化合物半導体層25は、III−N系列の化合物半導体、例えば、(Al,Ga,In)N半導体で形成することができる。n型化合物半導体層21及びp型化合物半導体層25はそれぞれ単一層または多重層であり得る。例えば、n型化合物半導体層21及び/またはp型化合物半導体層25は、コンタクト層及びクラッド層を含むことができ、また、超格子層を含むことができる。また、活性層23は、単一量子井戸構造または多重量子井戸構造であり得る。
半導体積層構造体30は、5×10/cm以下の転位密度を有するように形成することができる。サファイア基板上に成長する各半導体層は、一般に1×10/cm以上の高い転位密度を有する。その一方、本発明に係る半導体積層構造体30は、窒化ガリウム基板を成長基板として使用して成長した各半導体層21、23、25を用いることによって、5×10/cm以下の低い転位密度を有するように形成することができる。転位密度の下限は、特別に限定されないが、1×10/cm以上または1×10/cm以上であり得る。半導体積層構造体30内の転位密度を低下させることによって、電流の増加と共に発生するドループを緩和することができる。
p−電極層27は、p型化合物半導体層25と支持基板31との間に位置する。p−電極層27は、p型化合物半導体層25にオーミックコンタクトし、反射金属層及びバリア金属層を含むことができる。反射金属層は、例えば、Agなどの反射層を含むことができる。また、バリア金属層は、反射金属層を覆い、反射金属層の金属物質、例えば、Agの拡散を防止する。バリア金属層は、例えば、Ni層を含むことができる。
一方、支持基板31は、p−電極層27上にボンディングメタル33を通じてボンディングすることができる。ボンディングメタル33は、例えば、Au−Snであって、共晶ボンディングを用いて形成することができる。その一方、支持基板31は、例えば、めっき技術を用いてp−電極層27上に形成することもできる。
ボンディングパッド39は、支持基板31の下部に形成される。ボンディングパッド39は、Au−Snなどの共晶ボンディングに適した金属物質で形成することができる。ボンディングパッド39は、発光ダイオードを印刷回路基板やリードフレームなどに実装するときに使用されており、熱伝導率の高い金属物質で形成され、発光ダイオードの放熱特性を改善する。
一方、半導体積層構造体30上に、すなわち、n型化合物半導体層21上に透明酸化物層35が位置し得る。透明酸化物層35は、その表面に凹凸パターンを有するようにパターニングすることができる。透明酸化物層35は、例えば、ZnOやITOなどの導電性酸化物層またはSiO2などの絶縁性酸化物層に形成することができる。透明酸化物層35は、凹凸パターンによって半導体積層構造体30で生成された光を外部に良好に放出することができる。
一方、透明酸化物層35上にn−電極パッド37が位置し得る。n−電極パッド37は、透明酸化物層35を介してn型化合物半導体層21に電気的に接続することができる。その一方、n−電極パッド37は、n型化合物半導体層21に直接接触することができ、このために、透明酸化物層35にn型化合物半導体層21を露出させる開口部を形成することができる。
本実施例において、n型化合物半導体層21上に凹凸パターンを有する透明酸化物層35が位置する場合を説明したが、透明酸化物層35の代わりにまたは透明酸化物層35に加えて、n型化合物半導体層21の表面に粗い表面または光抽出のための凹凸パターンを形成することもできる。
図2ないし図6は、本発明の一実施例に係る発光ダイオードを製造する方法を説明するための断面図である。
図2を参照すると、窒化ガリウム基板11上に第1の窒化ガリウム層13、犠牲層15及び第2の窒化ガリウム層17が成長する。ここで、犠牲層15は、第1の窒化ガリウム層13に比べてバンドギャップの狭い窒化ガリウム系の層、例えばInGaNで形成することができる。第1の窒化ガリウム層13は、意図的に不純物をドーピングすることなくアンドープ−GaNで形成し、犠牲層15は、Siなどのn型不純物をドーピングして形成することができる。第1の窒化ガリウム層13は、犠牲層15がエッチングされるときに窒化ガリウム基板11へのダメージを防止する機能を行う。
一方、第2の窒化ガリウム層17は、意図的に不純物をドーピングすることなくアンドープ−GaNで形成することができ、今後、エピ層の成長のためのシード層として使用することができる。
図3を参照すると、第2の窒化ガリウム層17及び犠牲層15をパターニングすることによって溝19を形成する。溝19は、第1の窒化ガリウム層13を貫通することもできる。溝19は、ドライエッチング技術またはレーザースクライビング技術を用いて形成することができる。第2の窒化ガリウム層17及び第1の窒化ガリウム層13を用いるので、溝19の深さは犠牲層15の厚さより大きい。
溝19は、ストライプ状に配列されるように複数形成することもでき、メッシュ状に互いに連結することもできる。各溝19の間の間隔は約1cm以下であることが好ましい。さらに、溝19は、発光ダイオードのチップサイズに対応するように形成することもでき、より稠密に形成することもできる。
図4を参照すると、第2の窒化ガリウム層17上には、窒化ガリウム系列のn型半導体層21、窒化ガリウム系列の活性層23及び窒化ガリウム系列のp型半導体層25を含む半導体積層構造体30が形成される。n型半導体層21は、第2の窒化ガリウム層17上に成長し、横成長(lateral growth)によって溝19を覆う。活性層23及びp型半導体層25は、n型半導体層21上で成長する。
n型及びp型半導体層21、25は、それぞれ単一層または多重層に形成することができる。また、活性層23は、単一量子井戸構造または多重量子井戸構造に形成することができる。窒化ガリウム基板11上で成長することによって、半導体層21、23、25は、約5×10/cm以下の転位密度を有するように形成することができる。
第1及び第2の窒化ガリウム層13、17、犠牲層15及び各化合物半導体層21、23、25は、金属有機化学気相蒸着法(MOCVD)または分子線蒸着法(molecular beam epitaxy;MBE)などの工程によって成長することができる。
図5を参照すると、半導体積層構造体30上にp電極層27が形成される。p電極層27は、p型半導体層25にオーミックコンタクトする。また、p電極層27は、反射金属層及びバリア金属層を含むことができる。
続いて、p電極層27上に支持基板31が貼りつけられる。支持基板31は、半導体積層構造体30と別途に製作した後、ボンディングメタル33を通じてp電極層27上にボンディングすることができる。その一方、支持基板31は、p電極層27上でめっきして形成することができる。支持基板31は、導電性基板、例えば、金属または半導体基板であり得る。
図6を参照すると、支持基板31が形成された後、窒化ガリウム基板11が除去され、第2の窒化ガリウム層17が除去されることによって半導体積層構造体30のn型半導体層21の表面が露出する。第2の窒化ガリウム層17は、ドライエッチング、研磨またはポリッシング技術を用いて除去することができる。
窒化ガリウム基板11は、光強化化学エッチング(photo−enhanced chemical etching)技術を用いて半導体積層構造体30から分離することができる。図7は、窒化ガリウム基板11の分離工程を説明するための概略図である。
図7を参照すると、まず、図5で説明したように、支持基板31が形成された後、KOHまたはNaOHの溶液110が入った水槽100に窒化ガリウム基板11を含む全体の対象物を入れる。一方、UVランプ40を用いて窒化ガリウム基板11を介して光を照射する。このとき、UVランプ40で発生する光L1のうち犠牲層15に吸収される波長の光L2を除いて、窒化ガリウム基板11に吸収される波長の光は、フィルター45を用いて予めフィルタリングする。フィルター45は、例えば、サファイア基板41上に窒化ガリウム層43を成長させて形成することができる。したがって、窒化ガリウム層43は、窒化ガリウム基板11に吸収される波長の光を予め遮断する。
これによって、窒化ガリウム基板11を透過する光L2が水槽100内の窒化ガリウム基板11を介して犠牲層15に照射される。犠牲層15は、溝19の内壁に側面が露出しており、また、光L2を吸収する。その結果、溝19内に浸透したKOHまたはNaOH溶液110によって犠牲層15がエッチングされる。
UVランプ40の代わりに、特定波長の光、すなわち、窒化ガリウム基板11を透過し、犠牲層15に吸収される波長の光を放出するレーザーまたは発光ダイオードを用いて光を照射することもできる。
本実施例によると、基板11上に溝19が形成されるので、犠牲層15が基板11の縁部領域のみならず、内側領域でもエッチングされる。したがって、基板11のサイズが相対的に大きい場合にも、窒化ガリウム基板11を半導体積層構造体30から容易に分離することができる。さらに、各溝19の間の間隔を調節することによって、犠牲層15の各時間を適当に調節することができる。
窒化ガリウム基板11を除去した後、上述したように、第2の窒化ガリウム層17を除去することができる。その結果、n型半導体層21の表面が露出し、このn型半導体層21を部分的にエッチングすることによって、粗い表面または凹凸パターンを形成することもできる。また、n型半導体層21上に透明酸化物層(図1の35)を蒸着し、これをパターニングすることによって凹凸パターンを形成することもできる。その後、n電極パッド37及びボンディングパッド39を形成することができ、個別の発光ダイオードに分割することによって図1の発光ダイオードが完成する。
従来のサファイア基板を成長基板として使用する場合、サファイア基板は、その上に成長した各半導体層と異なる物性を有するので、基板と各半導体層との間の界面を用いてサファイア基板を容易に分離することができる。しかし、窒化ガリウム基板11を成長基板として使用した場合、窒化ガリウム基板11とその上に成長した各半導体層21、23、25は同種の材料であるので、基板11と各半導体層21、23、25との間の界面を用いて基板11を分離することが難しい。
これによって、本発明では、犠牲層15を用いて窒化ガリウム基板11を分離する。したがって、窒化ガリウム基板11にダメージを与えずに半導体積層構造体30から分離することができる。分離された窒化ガリウム基板11はダメージを受けないので、成長基板として再使用することができる。
図8は、本発明の他の実施例に係る発光ダイオードを説明するための断面図である。
図8を参照すると、発光ダイオードは、支持基板51、半導体積層構造体30、p電極層27a、絶縁層29、n電極層47、ボンディングメタル53、透明酸化物層55及びp−電極パッド57を含む。また、発光ダイオードは、ボンディングパッド59を含むことができる。
ここで、半導体積層構造体30、支持基板51、ボンディングメタル53、透明酸化物層55及びボンディングパッド59は、図1の発光ダイオードと類似するので、それについての詳細な説明は省略する。但し、半導体積層構造体30は、支持基板51の一部領域上に位置し得る。すなわち、支持基板51が半導体積層構造体30に比べて相対的に広い面積を有し、半導体積層構造体30は支持基板51の一部領域上に位置する。さらに、半導体積層構造体30は、p型半導体層25及び活性層23を貫通する貫通ホール30aを有する。一つ以上の貫通ホール30aを形成することができ、複数の貫通ホール30aを均一に分散させて位置させることができる。
一方、p電極層27aは、図1を参照して説明したp電極層27と同様に、p型半導体層25にオーミックコンタクトし、反射金属層及びバリア金属層を含むことができる。p電極層27aは、p型半導体層25にコンタクトし、貫通ホール30aを露出させる開口部を有する。
一方、n電極層47は、半導体積層構造体30と支持基板51との間に位置し、貫通ホール30aを介してn型半導体層21に電気的に接続する。n電極層47は、p電極層27a、p型半導体層25及び活性層23から絶縁されるように離隔して位置する。
絶縁層29は、n電極層47とp電極層27aとの間に位置し、n電極層47とp電極層27aとを離隔させる。例えば、絶縁層29は、p電極層27aの下部面を覆う。さらに、絶縁層29は、貫通ホール30aの内壁を覆い、p型半導体層25と活性層23をn電極層47から絶縁させる。
一方、p電極層27aは、半導体積層構造体30の下部領域の外側に延長し、p電極パッド57は、延長されたp電極層27a上に位置する。
本実施例によると、n電極層47が支持基板51と半導体積層構造体30との間に位置する。したがって、活性層23から透明酸化物層55を介して放出される光が図1に示したn電極パッド37によって損失されることを防止することができる。さらに、複数の貫通ホール30aを用いる場合、n電極層47がn型半導体層21の多数の地点で接触し得るので、発光ダイオードの内部で電流を均一に分散させることができる。
図9ないし図12は、本発明の他の実施例に係る発光ダイオードの製造方法を説明するための断面図である。
図9を参照すると、図2ないし図4を参照して説明したように、窒化ガリウム基板11上に第1の窒化ガリウム層13、犠牲層15及び第2の窒化ガリウム層17を成長させた後、溝19を形成し、第2の窒化ガリウム層17上にn型半導体層21、活性層23及びp型半導体層25を含む半導体積層構造体30を成長させる。
その後、半導体積層構造体30上にp電極層27aを形成する。p電極層27aは、開口部を有するように形成される。続いて、半導体積層構造体30をパターニングすることによって、p型半導体層25及び活性層23を貫通する貫通ホール30aを形成する。p電極層27aは、貫通ホール30aを形成した後で形成することもできる。貫通ホール30aは、一つの発光ダイオード領域内に一つまたは複数形成することができる。
図10を参照すると、p電極層27aを覆う絶縁層29が形成される。また、絶縁層29は、貫通ホール30aの内壁を覆うことができる。絶縁層29は、シリコン酸化膜やシリコン窒化膜で形成することができ、さらに、SiO2とTiO2を交互に蒸着し、分布ブラッグ反射器になるように形成することもできる。絶縁層29は、貫通ホール30aの底でn型半導体層21を露出させる開口部を有する。
絶縁層29上にn電極層47が形成される。n電極層47は、貫通ホール30aを介してn型半導体層21に電気的に接続される。n電極層47は、絶縁層29によってp電極層27aから電気的に絶縁される。また、n電極層47は、p型半導体層25及び活性層23からも離隔する。
その後、n電極層47上に支持基板51が貼りつけられる。支持基板51は、半導体積層構造体30と別途に製作した後、ボンディングメタル53を通じてn電極層47上にボンディングすることができる。その一方、支持基板51は、n電極層47上でめっきして形成することができる。支持基板51は、導電性基板、例えば、金属または半導体基板であり得る。
図11を参照すると、支持基板51が形成された後、図6を参照して説明したように、窒化ガリウム基板11が除去され、第2の窒化ガリウム層17が除去されることによって半導体積層構造体30のn型半導体層21の表面が露出する。
窒化ガリウム基板11は、図7を参照して説明したように、光強化化学エッチング技術を用いて半導体積層構造体30から分離することができ、重複を避けるために詳細な説明は省略する。
図12を参照すると、露出したn型半導体層21上に凹凸パターンを有する透明酸化物層55が形成される。一方、半導体積層構造体30の一部が除去されることによってp電極層27aが露出し、露出したp電極層27a上に図8に示したようにp電極パッド57が形成される。また、支持基板51の下部にボンディングパッド59を形成することができ、個別の発光ダイオードに分割することによって図8の発光ダイオードが完成する。
本実施例によると、半導体積層構造体30と支持基板51との間にn電極層47を配置することによって、光放出面での光の損失を防止できる発光ダイオードを提供することができる。
図13ないし図19は、本発明の更に他の実施例に係る発光ダイオードを製造する方法を説明するための図面であって、図15は平面図で、残りの図面は断面図である。
図13を参照すると、窒化ガリウム基板11上に窒化ガリウム層13及び犠牲層15が成長する。ここで、犠牲層15は、窒化ガリウム層13に比べてバンドギャップの狭い窒化ガリウム系層、例えば、InGaNで形成することができる。窒化ガリウム層13は、意図的に不純物をドーピングすることなくアンドープ−GaNで形成し、犠牲層15は、Siなどのn型不純物をドーピングして形成することができる。窒化ガリウム層13は、犠牲層15がエッチングされるときに窒化ガリウム基板11へのダメージを防止する機能を行うことができる。
犠牲層15上に窒化ガリウム系列のn型半導体層21、窒化ガリウム系列の活性層23及び窒化ガリウム系列のp型半導体層25を含む半導体積層構造体30が形成される。
n型及びp型半導体層21、25は、それぞれ単一層または多重層に形成することができる。また、活性層23は、単一量子井戸構造または多重量子井戸構造に形成することができる。窒化ガリウム基板11上で成長することによって、半導体層21、23、25は約5×10/cm以下の転位密度を有するように形成することができる。
窒化ガリウム層13、犠牲層15及び各化合物半導体層21、23、25は、金属有機化学気相蒸着法(MOCVD)または分子線蒸着法(molecular beam epitaxy;MBE)などの工程によって成長させることができる。
図14を参照すると、半導体積層構造体30及び犠牲層15をパターニングすることによって溝30aを形成する。溝30aは、窒化ガリウム層13を貫通することもできる。溝30aは、ドライエッチング技術またはレーザースクライビング技術を用いて形成することができる。
図15に示したように、溝30aは、ウエハー10で半導体積層構造体30を4等分するように形成することができる。しかし、溝30aの形状は、図15の形状に限定されるものではなく、基板11のサイズに応じて多様に変更することができる。但し、溝30aによって定義される各領域または溝30aとウエハー10の縁部によって定義される各領域は、発光ダイオードチップのサイズと同一であるか、それより相対的に大きい。
図16を参照すると、半導体積層構造体30上にp電極層27が形成される。p電極層27は、p型半導体層25にオーミックコンタクトする。また、p電極層27は、反射金属層及びバリア金属層を含むことができる。
いくつかの実施例において、p電極層27を形成する前に、溝30aを充填する充填材29を形成することができる。充填材29は、例えば、フォトレジストまたはSOGなどをスピンコーティングして形成することができる。
他の実施例において、p電極層27を半導体積層構造体30上に限定的に形成した後、充填材29を形成することもできる。すなわち、p電極層27が溝30aを露出させるように半導体積層構造体30上に形成され、充填材29が半導体積層構造体30とp電極層27によって形成された溝を充填することができる。
図17を参照すると、続いて、p電極層27上に支持基板31が貼りつけられる。支持基板31は、半導体積層構造体30と別途に製作した後、ボンディングメタル33を通じてp電極層27上にボンディングすることができる。支持基板31は、p電極層27のめっき工程によって形成することもできる。支持基板31は、導電性基板、例えば、金属または半導体基板であり得る。支持基板31は、互いに分割された半導体積層構造体30上に位置し、これらを結合させる。
図18を参照すると、ウエットエッチング技術を用いて充填材29を除去する。充填材29は、その物質に応じてBOE、HFまたはアセトンなどの有機溶媒を適宜選択して除去することができる。例えば、充填材がSOGで形成された場合、BOEやHFを使用することができ、充填材がフォトレジストである場合、アセトンなどの有機溶媒を使用することができる。充填材29を除去することによって、窒化ガリウム基板11と支持基板31との間に溝30aによる通路が形成される。
図19を参照すると、その後、半導体積層構造体30から窒化ガリウム基板11が分離され、n型半導体層21の表面が露出する。窒化ガリウム基板11は、光強化化学エッチング技術を用いて半導体積層構造体30から分離することができる。図20は、窒化ガリウム基板11の分離工程を説明するための概略図である。
図20を参照すると、まず、図18を参照して説明したように、溝30aによって通路が形成された後、KOHまたはNaOHの溶液110が入った水槽100に窒化ガリウム基板11を含む全体の対象物を入れる。一方、UVランプ40を用いて窒化ガリウム基板11を介して紫外線を照射する。このとき、UVランプ40で発生する光L1のうち犠牲層15に吸収される波長の光L2を除いて、窒化ガリウム基板11に吸収される波長の光はフィルター45を用いて予めフィルタリングする。フィルター45は、例えば、サファイア基板41上に窒化ガリウム層43を成長させて形成することができる。したがって、窒化ガリウム層43は、窒化ガリウム基板11に吸収される波長の光を予め遮断する。
これによって、窒化ガリウム基板11を透過する光L2が水槽100内の窒化ガリウム基板11を介して犠牲層15に照射される。犠牲層15は、溝30aの内壁に側面が露出しており、また、光L2を吸収する。その結果、溝30a内に浸透したKOHまたはNaOH溶液110によって犠牲層15がエッチングされる。
UVランプ40の代わりに、特定波長の光、すなわち、窒化ガリウム基板11を透過し、犠牲層15に吸収される波長の光を放出するレーザーまたは発光ダイオードを用いて光を照射することもできる。
本実施例によると、基板11上に溝30aが形成されるので、犠牲層15が基板11の縁部領域だけでなく、内側領域でもエッチングされる。したがって、基板11のサイズが相対的に大きい場合にも、窒化ガリウム基板11を半導体積層構造体30から容易に分離することができる。
窒化ガリウム基板11が除去されることによって、n型半導体層21の表面が露出し、このn型半導体層21を部分的にエッチングすることによって、粗い表面または凹凸パターンを形成することもできる。また、n型半導体層21上に透明酸化物層(図1の35)を蒸着し、これをパターニングして凹凸パターンを形成することもできる。その後、n電極パッド37及びボンディングパッド39を形成することができ、個別の発光ダイオードに分割することによって図1の発光ダイオードが完成する。
従来のサファイア基板を成長基板として使用する場合、サファイア基板は、その上に成長した各半導体層と異なる物性を有するので、基板と各半導体層との間の界面を用いてサファイア基板を容易に分離することができる。しかし、窒化ガリウム基板11を成長基板として使用した場合、窒化ガリウム基板11とその上に成長した各半導体層21、23、25は同種の材料であるので、基板11と各半導体層21、23、25との間の界面を用いて基板11を分離することが難しい。
その結果、本発明では、犠牲層15を用いて窒化ガリウム基板11を分離する。したがって、窒化ガリウム基板11にダメージを与えずに半導体積層構造体30から分離することができる。分離された窒化ガリウム基板11は、ダメージを受けないので、成長基板として再使用することができる。
図21は、本発明の各実施例で成長基板として使用可能なミスカット窒化ガリウム基板を説明するための断面図である。
図21を参照すると、基板210は、主面がC軸に対して15゜〜85゜だけ傾斜した半極性面を有する窒化ガリウム基板である。また、基板210は、主面に対して一方向に傾斜したミスカット表面210aを有する。
ミスカット表面210aを形成することによってキンク(kink)が形成される。キンクは、窒化ガリウム系列の半導体層の成長時に核生成サイトを提供し、半導体層を容易に成長させる。ミスカット表面210aは、特別に限定されなく、c面であってもよい。
基板210の主面は、例えば、(20−21)、(20−2−1)、(10−11)、(10−1−1)、(11−22)、(11−2−2)、(30−31)、(30−3−1)などの半極性面またはこれらのファミリーであり得る。
基板210上に窒化ガリウム系列の半導体層を成長させることによって、基板210と同じ半極性面を有する各半導体層を成長させることができる。特に、自発分極だけでなく、圧電分極が極性半導体層に比べて相対的に小さいので、発光効率を高めることができる。
図22は、本発明の一実施例に係る発光ダイオードを説明するための断面図である。
図22を参照すると、発光ダイオードは、 基板210、バッファー層230、第1の導電型半導体層250、超格子層270、活性層290、第2の導電型半導体層310及び透明酸化層330を含む。また、発光ダイオードは、透明酸化層330の上部に電極パッド(図示せず)をさらに含むことができる。
基板210は、図21を参照して説明した基板であるので、それについての詳細な説明は省略する。ここで、基板210は、導電性基板であって、電極として使用することもでき、基板210の下部に電極を形成することもできる。
バッファー層230、第1の導電型半導体層250、超格子層270、活性層290及び第2の導電型半導体層310は、基板210上に成長した各エピ層であって、基板210上に成長する。
各エピ層、特に、活性層290は、半極性基板210上に成長することによって半極性半導体層に成長し、その結果、極性半導体層に比べて分極が相対的に小さくなる。
バッファー層230は、基板210上で成長するエピ層のストレーンを緩和し、結晶性を向上させるために形成される。バッファー層230は、基板21と同一の組成の窒化ガリウム層であり得るが、必ずしもこれに限定されることはない。バッファー層230は省略することもできる。
第1の導電型半導体層250は、例えば、n型不純物がドーピングされた窒化ガリウム層に成長させることができ、超格子層270は、バンドギャップが互いに異なる各窒化ガリウム系層、例えば、窒化ガリウム層とインジウム窒化ガリウム層を互いに積層して形成することができる。
一方、活性層290は、電子と正孔との再結合のために相対的に狭いバンドギャップを有する井戸層を含み、単一量子井戸構造または多重量子井戸構造を有することができる。
一方、第2の導電型半導体層310は、例えば、p型不純物がドーピングされた窒化ガリウム層に成長させることができ、さらに、電子ブロック層を含むこともできる。
各エピ層は、MBEまたはMOCVD技術を用いて成長させることができる。
透明酸化層330は、第1の導電型半導体層250、活性層290及び第2の導電型半導体層310を含む半導体積層体上に位置する。透明酸化層330は、電流分散のために形成される。また、透明酸化層330は、上部表面に凹凸パターン330aを有することができる。電流分散及び凹凸パターン330aを形成するために、透明酸化層330の全体厚さは約1μm以上であって、凹部の厚さは0.5μm以上であり得る。
透明酸化層330は、ITOまたはZnOで形成することができる。例えば、1次的に透明酸化層の一部を形成した後、リフトオフ工程によって凸部を形成することにより、凹凸パターンを有する透明酸化層330を形成することができる。
凹凸パターン330aを有する透明酸化層330は、活性層290で生成された光の抽出効率を向上させ、発光ダイオードの発光効率を改善する。
図23は、本発明の更に他の実施例に係る発光ダイオードを説明するための断面図である。
図23を参照すると、本実施例に係る発光ダイオードは、基板510、ボンディング金属370、反射層350、第1の導電型半導体層250、超格子層270、活性層290、第2の導電型半導体層310及び透明酸化層530を含む。また、発光ダイオードは、透明酸化層530の上部に電極パッド550をさらに含むことができる。
基板510は、導電性基板であって、例えば、金属基板であり得る。基板510は、成長基板と区別されるものであって、既に成長が完了した半導体積層体上に貼りつけられた2次基板である。
ボンディング金属370は、基板510と半導体積層体とを結合するために使用されたものであって、例えば、AuSnであり得る。一方、反射層350は、活性層290から放出されて基板510側に進行する光を反射させるために形成されたものであって、Agで形成することができ、Agの拡散を防止するためのバリア金属層を含むことができる。
一方、第1の導電型半導体層250、超格子層270、活性層290及び第2の導電型半導体層310は、図22を参照して説明した半導体積層体の各層と同一の構成要素であって、同一の指示番号を使用して示している。したがって、各層、特に、活性層290は半極性半導体層に形成される。但し、本実施例において、半導体積層体は、図22の実施例と対比すると、ひっくり返った構造を有しており、第1の導電型半導体層250は、上部表面に凹凸パターン250aを有することができる。
一方、透明酸化層530は、第1の導電型半導体層250上に位置し、凹凸パターン530aを有することができる。透明酸化層530は、上述した透明酸化層330と類似するので、それについての詳細な説明は省略する。
透明酸化層530上に電極パッド550が位置する。電極パッド550は、通常、ボンディングワイヤをボンディングするために提供される。
図24ないし図26は、図23の発光ダイオードを製造するための方法を説明するための断面図である。
図24を参照すると、まず、C面に対して15゜〜85゜範囲の角度だけ傾斜した主面を有するミスカット半極性窒化ガリウム基板210が準備される。基板210は、図21を参照して説明した基板210と同一であるので、それについての詳細な説明は省略する。
基板210上にバッファー層230が成長する。バッファー層230は、不純物がドーピングされていない窒化物層、例えば、窒化ガリウム層に成長させることができる。ここで、バッファー層230は、その上にエピ層を成長させるための層として使用されるだけでなく、基板210を分離するために要求される。
バッファー層230上には、各空隙240aを有する多孔構造の窒化物層240が形成される。例えば、Siが1×1018/cm以上、10×1019/cm以下でドーピングされたGaN層を成長させ、窒化物層を、電気化学的エッチングを用いてエッチングすることによって多孔構造の窒化物層240を形成することができる。電気化学的エッチングは、例えば、約10℃のシュウ酸溶液(0.3Mのシュウ酸)内に不純物がドーピングされた窒化物層を有する基板210とPt電極を浸し、窒化物層に陽極を、Ptに陰極をそれぞれ連結してDC電圧(25V〜60V)を印加することによって行うことができる。
多孔構造は、図24に示したように、窒化物層240の表面からバッファー層230に至るナノスケールのロッド形態の各空隙240aを有することができる。
図25を参照すると、多孔構造の窒化物層24上に各エピ層、例えば、第1の導電型半導体層250、超格子層270、活性層290、第2の導電型半導体層310を成長させることによって半導体積層体を形成する。これら各エピ層は、図22を参照して説明した各エピ層と同一であるので、それについての詳細な説明は省略する。
一方、各エピ層を相対的に高温で成長させる間、各空隙240aが成長し、窒化物層240内に各ボイド240bが形成される。併せて、窒化物層240内の各ボイド240bのサイズをさらに増加させるために、約1000℃の熱工程を追加的に行うことができる。
続いて、半導体積層体上に反射層350を形成する。反射層350は、Agなどの反射金属で形成することができ、Agの拡散を防止するためにバリア金属層を含むことができる。その後、反射層350上にボンディング金属370を介在して基板510が貼りつけられる。ボンディング金属370は、例えば、AuSnであって、基板510は金属基板であり得る。
図26を参照すると、基板510が貼りつけられた後、各ボイド240bが形成された窒化物層240を用いて半極性窒化ガリウム基板210を除去する。例えば、化学的エッチング技術を用いて窒化物層240をエッチングすることによって半極性窒化ガリウム基板210を分離することもでき、または、機械的な力を加えることによって半極性窒化ガリウム基板210を分離することもできる。
その後、露出した半導体積層構造体の表面、例えば、第1の導電型半導体層250の表面をパターニングすることによって凹凸パターン(図23の250a)を形成することができる。露出した半導体積層構造体の表面は、各ボイド240bによって相対的に粗い表面を有する。この粗い表面を有する上部部分を化学的にエッチングまたは機械的に研磨した後、ドライエッチングを用いて凹凸パターン250aを形成することができる。また、粗い表面を維持した状態で凹凸パターン250aをさらに形成することもできる。
その後、第1の導電型半導体層250上に透明酸化層530を形成する。透明酸化層530は、図23を参照して説明したように、凹凸パターン530aを有するように形成することができ、それについての詳細な説明は省略する。
続いて、透明酸化層530上に電極パッド550が形成され、その結果、垂直構造の発光ダイオードが提供される。
図27は、図26で分離された半極性GaN基板を説明するための断面図である。
図27を参照すると、半極性GaN基板210は、バッファー層230と共に半導体積層構造体から分離される。この半極性GaN基板210は、初期基板と同一の形態を維持し、その結果、再びミスカッティングすることによって成長基板として再使用することができる。
半極性GaN基板210を再使用することによって半極性GaN基板210の製造コストを減少させることができ、その結果、発光ダイオード製造コストを節減することができる。
図28ないし図30は、本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。
図28を参照すると、本実施例に係る半導体素子の製造方法は、まず、支持基板1100とバルク基板1200を準備することを含む。
支持基板1100は、バルク基板1200を貼りつけられ得るいずれの基板であっても構わないが、バルク基板1200の熱膨張係数などを考慮して、サファイア基板、AlN基板、Ge基板またはSiC基板であることが好ましい。
バルク基板1200は、(Al,Ga,In)N系列のIII族窒化物半導体、すなわち、窒化物半導体単結晶基板であり得る。バルク基板1200はGaNを含むことができ、好ましくはGaN単結晶であり得る。
また、バルク基板1200は、不純物がドーピングされたP型またはN型GaN単結晶であり得る。
バルク基板1200は、HVPE(Hydride Vapor Phase Epitaxy)法、ナトリウムフラックス(Na flux)法またはアモノサーマル(Ammonothermal)法などを用いて製造されたGaN単結晶であり得る。バルク基板1200は、少なくとも100μm以上の厚さを有することができる。
続いて、支持基板1100の一側表面上に接合層1110を形成する。接合層1110は、Zn、Si、Ga及びAlのうち少なくとも一つを含む酸化物であり得る。また、接合層1110は、Si、Ga及びAlのうち少なくとも一つを含む窒化物であり得る。
接合層1110は、化学的気相蒸着法(chemical vapor deposition)、電子ビーム法(E−beam)または化学溶液法(chemical solution method)などを用いて形成することができる。また、接合層1110は、単層または複数層に形成することができる。接合層1110が複数層である場合、各層は、互いに同一の種類の物質であって、組成が異なるか、またはそれぞれ互いに種類が異なる物質であり得る。
このとき、図面には示していないが、接合層1110上に金属中間層(図示せず)を形成することができる。金属中間層(図示せず)は、1000℃以上の融点を有する物質を含むことができる。
このとき、支持基板1100は、図31に示したように、その一側表面に凹凸パターン1120を備えることができる。凹凸パターン1120は、ストライプ形態に形成することもできる。
凹凸パターン1120は、支持基板1100とバルク基板1200とを接合した後で発生するストレスを解消する役割をすることができる。また、凹凸パターン1120は、支持基板1100を分離するとき、エッチング溶液の浸透通路として使用することができる。
図29を参照すると、支持基板1100の一側表面上にバルク基板1200を接合する。支持基板1100とバルク基板1200は高温高圧下で接合することができる。
接合層1110上に金属中間層(図示せず)が備えられる場合、金属中間層(図示せず)は、アイランド形態に形成される。金属中間層(図示せず)は、支持基板1100とバルク基板1200との接合温度で溶融またはリフローして層形態からアイランド形態に変形しながら、支持基板1100とバルク基板1200との間の接合力を高めるのに寄与する。
図30を参照すると、バルク基板1200を接合層1110から一定厚さになる領域で切断・分離することによって、分離されたバルク基板1220と共に、接合層1110によって支持基板1100に貼りつけられたシード層1210を形成することができる。
すなわち、バルク基板1200を一定の厚さに切断・分離することによってシード層1210を形成する。そして、分離されたバルク基板1220を用いて上述した過程を繰り返すことによって、シード層1210が貼りつけられた支持基板1100を複数形成することができる。
上述した過程を通じて、半導体素子を形成できる半導体素子基板を形成することができる。このとき、シード層1210は、非極性(non−polar)または半極性(semi−polar)であり得る。特に、支持基板1100とは関係なく、シード層1210を高価な非極性または半極性に備えることができる。すなわち、シード層1210がバルク基板1200から分離・切断されて形成されるので、バルク基板1200を成長させる方向または切断する方向を調節することによって、所望の形態のシード層1210を得ることができる。
図32及び図33は、本発明の更に他の実施例に係る半導体素子の製造方法を説明するための断面図である。
図32を参照すると、本実施例に係る半導体素子の製造方法、例えば、発光ダイオード素子を製造する方法は、まず、図28ないし図30を参照して説明したように、支持基板1100上にシード層1210が形成された半導体素子基板を形成することを含む。
続いて、分離されたシード層1210の一側表面を平坦化する工程を進行することができる。これは、シード層1210がバルク基板1200から切断・分離されることによって、シード層1210の一側表面は分離面になり、シード層1210の一側表面が非常に粗くなり得るためである。もちろん、シード層1210の一側表面が粗くない場合、平坦化工程は省略することができ、また、必要に応じて省略することもできる。
続いて、半導体素子基板のシード層1210上に少なくとも第1の導電型半導体層1310、活性層1320及び第2の導電型半導体層1330を含む複数の半導体層を形成する。
複数の半導体層は、超格子層(図示せず)または電子ブロッキング層(図示せず)をさらに含むことができる。このとき、複数の半導体層において、活性層1320を除外した他の層は省略することができる。
第1の導電型半導体層1310は、第1の導電型不純物、例えば、N型不純物がドーピングされたIII−N系列の化合物半導体、例えば、(Al,Ga,In)N系列のIII族窒化物半導体層であり得る。第1の導電型半導体層1310は、N型不純物がドーピングされたGaN層、すなわち、N−GaN層であり得る。また、第1の導電型半導体層1310は、単一層または多重層であって、例えば、第1の導電型半導体層1310が多重層からなる場合、超格子構造を含むことができる。
活性層1320は、III−N系列の化合物半導体、例えば(Al,Ga,In)N半導体層からなり、活性層1320は、単一層または複数層からなり、少なくとも一定波長の光を発光することができる。また、活性層1320は、一つのウェル層(図示せず)を含む単一量子井戸構造で備えることもでき、ウェル層(図示せず)とバリア層(図示せず)とが交互に繰り返されて積層された構造である多重量子井戸構造で備えることもできる。このとき、ウェル層(図示せず)またはバリア層(図示せず)は、それぞれまたは二つとも超格子構造からなり得る。
第2の導電型半導体層1330は、第2の導電型不純物、例えば、P型不純物がドーピングされたIII−N系列の化合物半導体、例えば、(Al,In,Ga)N系列のIII族窒化物半導体であり得る。第2の導電型半導体層1330は、P型不純物がドーピングされたGaN層、すなわち、P−GaN層であり得る。また、第2の導電型半導体層1330は、単一層または多重層からなり得る。例えば、第2の導電型半導体層1330は超格子構造を含むことができる。
超格子層(図示せず)は、第1の導電型半導体層1310と活性層1320との間に備えることができ、III−N系列の化合物半導体、例えば(Al,Ga,In)N半導体層が複数層に積層された層、例えば、InN層とInGaN層が繰り返して積層された構造であり、超格子層(図示せず)は、活性層1320を形成する前に形成され、活性層1320に転位または欠陥などが伝達されることを防止し、活性層1320の転位または欠陥などの形成を緩和させる役割をし、活性層1320の結晶性を優秀にする役割をすることができる。
電子ブロッキング層(図示せず)は、活性層1320と第2の導電型半導体層1330との間に備えることができ、電子及び正孔の再結合効率を高めるために備えることができ、相対的に広いバンドギャップを有する物質で備えることができる。電子ブロッキング層(図示せず)は、(Al,In,Ga)N系列のIII族窒化物半導体で形成することができ、MgがドーピングされたP−AlGaN層からなり得る。
このとき、複数の半導体層は、シード層1210から成長することによって、シード層1210の特性をそのまま受け継ぐ形態に成長させることができる。
すなわち、シード層1210が非極性である場合は、複数の半導体層も非極性に成長させ、シード層1210が半極性である場合は、複数の半導体層も半極性に成長させ、シード層1210がc−面、a−面またはm−面半導体層である場合は、複数の半導体層も、c−面、a−面またはm−面半導体層に成長させることができる。
図33を参照すると、複数の半導体層をパターニングし、第1の導電型半導体層1310の一部が露出した半導体積層構造体1300を形成する。
続いて、半導体積層構造体1300の第2の導電型半導体層1330上に透明導電性酸化物(TCO)層1400を形成する。
続いて、露出した第1の導電型半導体層1310上に第1の電極1510を形成し、TCO層1400上に第2の電極1520を形成することによって発光ダイオード素子を製造することができる。
このとき、TCO層1400は、半導体積層構造体1300を形成した後で形成する場合を説明しているが、TCO層1400を先に形成し、TCO層1400の一部と複数の半導体層の一部をエッチングし、第1の導電型半導体層1310の一部を露出させる工程を進行することによって半導体積層構造体1300を形成する工程を進行することもできる。
TCO層1400は、ITOまたはZnOなどの透明な金属酸化物を含んで構成することができ、その厚さは数μmないし数十μmになり得る。
このとき、TCO層1400は、その表面に凹凸1410を形成することができる。表面に凹凸1410が形成されたTCO層1400は、図34及び図35に示した各方法で形成することができる。
すなわち、TCO層1400は、図34に示したように、半導体積層構造体1300上に一定厚さの第1のTCO層1420を形成し、第1のTCO層1420上にフォトレジストパターン1430を形成する。
続いて、フォトレジストパターン1430が形成された第1のTCO層1420上に一定厚さの第2のTCO層1440を形成した後、リフトオフ法でフォトレジストパターン1430及びフォトレジストパターン1430上に形成された第2のTCO層1440の一部を除去し、その表面に凹凸1410が備えられたTCO層1400を形成することができる。
また、TCO層1400は、図35に示したように、半導体積層構造体1300上に一定厚さの第3のTCO層1450を形成し、第3のTCO層1450上にフォトレジストパターン1460を形成する。
続いて、フォトレジストパターン1460をマスクとして第3のTCO層1450の表面を一定の深さにウエットエッチングし、その表面に凹凸1410が備えられたTCO層1400を形成することができる。このとき、凹凸1410は、ウエットエッチングによってTCO層1400の表面が結晶面に沿って選択的にエッチングされ、結晶面が露出する形態にエッチングされる結果、凹凸1410は多角錐形態に形成することができる。
図36及び図37は、本発明の更に他の実施例に係る半導体素子の製造方法を説明するための概略的な断面図である。
図36を参照すると、本実施例に係る半導体素子の製造方法、例えば、発光ダイオード素子を製造する方法は、図28ないし図30を参照して説明したように、支持基板1100上にシード層1210が形成された半導体素子基板を形成することを含む。
続いて、図32を参照して説明した半導体素子の製造方法と同様に、分離されたシード層1210の一側表面を平坦化する工程を行い、半導体素子基板のシード層1210上に少なくとも第1の導電型半導体層1310、活性層1320及び第2の導電型半導体層1330を含む複数の半導体層を形成する。このとき、複数の半導体層は、超格子層(図示せず)または電子ブロッキング層(図示せず)をさらに含むことができ、複数の半導体層において、活性層1320を除外した他の層は省略することができる。
続いて、第2の導電型半導体層1330上にエッチングストップパターン1610を形成する。
エッチングストップパターン1610は、シリコン酸化膜またはシリコン窒化膜などの絶縁膜で形成することができる。エッチングストップパターン1610は、複数の半導体層をパターニングするとき、エッチングの完了時点を知らせる役割をするだけでなく、後で説明する電極パッド1720の直下方向に位置し、電極パッド1720から注入される電流が分散され、半導体積層構造体1300、特に活性層1320に電流が全体的に均一に供給されるようにする役割をすることができる。
一方、第2の導電型半導体層1330上にオーミック反射パターン1620を形成することができる。オーミック反射パターン1620は、第2の導電型半導体層1330とのオーミック接触をするだけでなく、活性層1320から発光された光を反射させる反射膜としての役割をするパターンであり得る。
このとき、エッチングストップパターン1610は、オープン領域を備えており、エッチングストップパターン1610のオープン領域にオーミック反射パターン1620が埋め込まれている。すなわち、エッチングストップパターン1610とオーミック反射パターン1620が一つの層をなすことができる。
続いて、エッチングストップパターン1610またはオーミック反射パターン1620上に金属ボンディング層1630を形成することができる。金属ボンディング層1630は、エッチングストップパターン1610またはオーミック反射パターン1620と後で形成される金属基板1640とをボンディングする役割をする。金属ボンディング層1630は導電性物質からなり得る。
続いて、金属基板1640を形成する。
金属基板1640は、導電性の金属基板であって、金属ボンディング層1630にボンディングすることによって形成することができる。
一方、金属基板1640は、第2の導電型半導体層1330上に直接形成することもできる。すなわち、第2の導電型半導体層1330上に形成されるエッチングストップパターン1610、オーミック反射パターン1620及び金属ボンディング層1630のうちいずれか一つの形成を省略し、金属基板1640を形成することができる。このとき、金属基板1640は、めっき法、蒸着法または化学溶液法などを通じて形成することができる。
このとき、金属基板1640は導電性物質からなり、好ましくはCu/WまたはCu/Moを含んで構成することができる。
図37を参照すると、金属基板1640を形成した後、支持基板1100を除去する。
支持基板1100は、分解を通じて接合層1110を除去することができる。すなわち、接合層1110が上述したように窒化物または酸化物からなっている場合、接合層1110を分解できる溶液、すなわち、HF、BOE(Buffer oxide etchant)または硝酸などを用いて分解することができる。
また、支持基板1100の一側表面に、図31に示したように凹凸パターン1120を備えている場合、凹凸パターン1120を通じて接合層1110を分解できる溶液がより容易に浸透し、支持基板1100を容易に分解して除去することができる。
支持基板1100はレーザーを用いて分離することができる。すなわち、接合層1110にレーザーを照射し、支持基板1100をシード層1210から分離することができる。
続いて、シード層1210を除去する工程を進行することができる。
このとき、シード層1210を除去せずに次の工程を進行することができる。シード層1210を除去しない場合、シード層1210の表面を平坦化する工程を進行した後、次の工程を進行することができる。
また、シード層1210は、ウエットエッチング工程またはドライエッチング工程を用いて一部のみ除去し、他の一部は残留させることができる。
続いて、複数の半導体層をパターニングすることによって半導体積層構造体1300を形成することができる。このとき、エッチングストップパターン1610の露出をエッチング完了時点とし、複数の半導体層をエッチングすることができる。
一方、本実施例において、複数の半導体層をパターニングする工程は、シード層1210を除去する工程とその後のTCO層1700を形成する工程との間に進行する場合を説明しているが、支持基板1100を除去した後、電極パッド1720を形成する前ならいつでも実施することができる。
続いて、支持基板1100が分離されて露出した表面、例えば、シード層1210の表面または第1の導電型半導体層1310の表面上にTCO層1700を形成することができる。
このとき、TCO層1700は、その表面に凹凸1710を形成することができる。このとき、TCO層1700の凹凸1710は、図34及び図35を参照して説明した凹凸1410が形成されたTCO層1400を形成する方法と同一の方法で形成できるので、それについての詳細な説明は省略する。
続いて、TCO層1700上に電極パッド1720を形成することによって発光ダイオードを形成することができる。
電極パッド1720を形成する前に、TCO層1700を含む半導体積層構造体1300を保護するためのパッシベーション層(図示せず)を形成する工程をさらに含むことができる。
このとき、電極パッド1720が形成されるTCO層1700の一定領域には凹凸1710が形成されない場合もあり、電極パッド1720の直下方向にはエッチングストップパターン1610を備えることができる。
電極パッド1720のサイズは、電極パッド1720の直下方向に位置したエッチングストップパターン1610のサイズに比べて小さくなり得る。すなわち、電極パッド1720の直下方向に位置したエッチングストップパターン1610は、電極パッド1720のサイズより大きくなり得る。これは、電極パッド1720に供給される電流が、電極パッド1720とエッチングストップパターン1610との間に位置した半導体積層構造体1300、特に、活性層1320で均一に流れるようにするためである。
以上では、本発明の多様な実施例及び特徴を説明したが、本発明は、以上で説明した実施例及び特徴に限定されるものではなく、本発明の思想を逸脱しない範囲内で多様に変形することができる。

Claims (11)

  1. 窒化ガリウム基板上に第1の窒化ガリウム層、前記窒化ガリウム層に比べて狭いバンドギャップを有する窒化ガリウム系半導体で形成された犠牲層及び第2の窒化ガリウム層を形成し、
    前記第2の窒化ガリウム層及び前記犠牲層を貫通する溝を形成し、
    前記第2の窒化ガリウム層上に窒化ガリウム系列の各半導体層を成長させることによって半導体積層構造体を形成し、
    前記半導体積層構造体上に支持基板を形成し、
    前記犠牲層をエッチングすることによって前記半導体積層構造体から前記窒化ガリウム基板を除去することを含む発光ダイオードの製造方法。
  2. 前記犠牲層はInGaNで形成された、請求項1に記載の発光ダイオードの製造方法。
  3. 前記犠牲層をエッチングすることは、光強化化学エッチング技術を用いて行われる、請求項1に記載の発光ダイオードの製造方法。
  4. 前記犠牲層をエッチングすることは、KOHまたはNaOH溶液内で前記窒化ガリウム基板を介して前記犠牲層に光を照射することによって行われる、請求項3に記載の発光ダイオードの製造方法。
  5. 前記窒化ガリウム基板が除去された後、前記n型半導体層上に凹凸パターンを有する透明酸化物層を形成することをさらに含む、請求項1に記載の発光ダイオードの製造方法。
  6. 前記支持基板を形成する前に、前記半導体積層構造体にオーミックコンタクトするp型電極層を形成することをさらに含み、
    前記半導体積層構造体は、窒化ガリウム系列のn型半導体層、窒化ガリウム系列の活性層及び窒化ガリウム系列のp型半導体層を含み、
    前記p電極層は前記p型半導体層にオーミックコンタクトする、請求項1に記載の発光ダイオードの製造方法。
  7. 前記支持基板を形成する前に、
    前記p型半導体層及び前記活性層を貫通する貫通ホールを形成し、
    前記貫通ホールの内壁及び前記p電極層を覆う絶縁層を形成し、
    前記貫通ホールを介して前記n型半導体層に電気的に接続するn電極層を形成することをさらに含む、請求項6に記載の発光ダイオードの製造方法。
  8. 前記窒化ガリウム基板を除去した後、前記半導体積層構造体の一部を除去することによって前記p電極層を露出させ、
    前記p電極層上にp電極パッドを形成することをさらに含む、請求項7に記載の発光ダイオードの製造方法。
  9. 前記溝は、メッシュ状に形成された溝、または、ストライプ状に形成された複数の溝を含む、請求項1に記載の発光ダイオードの製造方法。
  10. 前記支持基板の下部にボンディングパッドを形成することをさらに含む、請求項1に記載の発光ダイオードの製造方法。
  11. 窒化ガリウム基板上に、窒化ガリウム層、及び前記窒化ガリウム層に比べて狭いバンドギャップを有する窒化ガリウム系半導体で形成された犠牲層を形成し、
    前記犠牲層上に窒化ガリウム系列の各半導体層を成長させることによって半導体積層構造体を形成し、
    前記半導体積層構造体及び前記犠牲層を貫通する溝を形成し、
    前記半導体積層構造体上に支持基板を形成し、
    前記犠牲層をエッチングすることによって前記半導体積層構造体から前記窒化ガリウム基板を分離することを含む発光ダイオードの製造方法。
JP2015153856A 2011-12-14 2015-08-04 発光ダイオードの製造方法 Expired - Fee Related JP6025933B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2011-0134130 2011-12-14
KR1020110134130A KR20130067515A (ko) 2011-12-14 2011-12-14 반도체 소자 제조 방법
KR1020110135513A KR101899479B1 (ko) 2011-12-15 2011-12-15 반극성 발광 다이오드 및 그것을 제조하는 방법
KR10-2011-0135513 2011-12-15
KR1020120026948A KR101899474B1 (ko) 2012-03-16 2012-03-16 고효율 발광 다이오드 제조 방법
KR10-2012-0026879 2012-03-16
KR10-2012-0026948 2012-03-16
KR1020120026879A KR20130104921A (ko) 2012-03-16 2012-03-16 고효율 발광 다이오드 및 그것을 제조하는 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014547101A Division JP5956604B2 (ja) 2011-12-14 2012-12-13 発光ダイオード

Publications (2)

Publication Number Publication Date
JP2016006896A JP2016006896A (ja) 2016-01-14
JP6025933B2 true JP6025933B2 (ja) 2016-11-16

Family

ID=48612829

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014547101A Active JP5956604B2 (ja) 2011-12-14 2012-12-13 発光ダイオード
JP2015153856A Expired - Fee Related JP6025933B2 (ja) 2011-12-14 2015-08-04 発光ダイオードの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014547101A Active JP5956604B2 (ja) 2011-12-14 2012-12-13 発光ダイオード

Country Status (4)

Country Link
US (1) US20140339566A1 (ja)
JP (2) JP5956604B2 (ja)
CN (1) CN104025319B (ja)
WO (1) WO2013089459A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2529394A4 (en) 2010-01-27 2017-11-15 Yale University Conductivity based selective etch for gan devices and applications thereof
JP2015177030A (ja) * 2014-03-14 2015-10-05 スタンレー電気株式会社 発光装置
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
DE102014106505A1 (de) 2014-05-08 2015-11-12 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Halbleiterschichtenfolge
KR20160037060A (ko) * 2014-09-26 2016-04-05 서울바이오시스 주식회사 발광소자 및 그 제조 방법
KR102425935B1 (ko) * 2014-09-30 2022-07-27 예일 유니버시티 GaN 수직 마이크로캐비티 표면 방출 레이저(VCSEL)를 위한 방법
TWM506378U (zh) * 2014-10-15 2015-08-01 Paragon Sc Lighting Tech Co 用於提供照明的發光結構及用於承載發光二極體的電路基板
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
KR20160084570A (ko) * 2015-01-05 2016-07-14 에스케이하이닉스 주식회사 반도체 메모리 소자의 제조방법
WO2016187421A1 (en) 2015-05-19 2016-11-24 Yale University A method and device concerning iii-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
JP6570312B2 (ja) * 2015-05-22 2019-09-04 スタンレー電気株式会社 半導体発光素子及び半導体発光装置
US11527519B2 (en) * 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
CN113066812B (zh) * 2017-12-21 2023-05-05 厦门市三安光电科技有限公司 微发光元件
US11380765B2 (en) * 2018-03-02 2022-07-05 Sciocs Company Limited Structure and intermediate structure
DE102018107293A1 (de) * 2018-03-27 2019-10-02 Osram Opto Semiconductors Gmbh Verfahren zur bearbeitung einer halbleiterschichtenfolge und optoelektronischer halbleiterchip
KR102575569B1 (ko) * 2018-08-13 2023-09-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
US10886447B2 (en) 2018-09-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting device
CN113632200A (zh) * 2019-03-01 2021-11-09 加利福尼亚大学董事会 平坦化外延横向生长层上的表面的方法
KR20200137540A (ko) * 2019-05-30 2020-12-09 서울바이오시스 주식회사 수직형 발광 다이오드
CN110600435A (zh) * 2019-09-05 2019-12-20 方天琦 多层复合基板结构及其制备方法
CN110600436A (zh) * 2019-09-05 2019-12-20 方天琦 多层复合基板结构及其制备方法
GB2593693B (en) * 2020-03-30 2022-08-03 Plessey Semiconductors Ltd LED precursor

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744071B2 (en) * 2002-01-28 2004-06-01 Nichia Corporation Nitride semiconductor element with a supporting substrate
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7932111B2 (en) * 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
KR100631981B1 (ko) * 2005-04-07 2006-10-11 삼성전기주식회사 수직구조 3족 질화물 발광 소자 및 그 제조 방법
JP2007214500A (ja) * 2006-02-13 2007-08-23 Mitsubishi Chemicals Corp 半導体部材及びその製造方法
JP2007266571A (ja) * 2006-02-28 2007-10-11 Mitsubishi Cable Ind Ltd Ledチップ、その製造方法および発光装置
KR100816841B1 (ko) * 2006-08-14 2008-03-26 삼성전기주식회사 수직구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
US7842963B2 (en) * 2006-10-18 2010-11-30 Koninklijke Philips Electronics N.V. Electrical contacts for a semiconductor light emitting apparatus
DE102007022947B4 (de) * 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
US20080303033A1 (en) * 2007-06-05 2008-12-11 Cree, Inc. Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates
JP5196111B2 (ja) * 2007-07-02 2013-05-15 日亜化学工業株式会社 半導体発光素子
US9754926B2 (en) * 2011-01-31 2017-09-05 Cree, Inc. Light emitting diode (LED) arrays including direct die attach and related assemblies
JP5003527B2 (ja) * 2008-02-22 2012-08-15 住友電気工業株式会社 Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
CN101257075B (zh) * 2008-03-13 2010-05-12 鹤山丽得电子实业有限公司 一种发光二极管器件及其制造方法
WO2009120044A2 (ko) * 2008-03-27 2009-10-01 Song June O 발광소자 및 그 제조방법
US8008683B2 (en) * 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
TWI592996B (zh) * 2009-05-12 2017-07-21 美國伊利諾大學理事會 用於可變形及半透明顯示器之超薄微刻度無機發光二極體之印刷總成
JP5381439B2 (ja) * 2009-07-15 2014-01-08 住友電気工業株式会社 Iii族窒化物半導体光素子
CN104600167B (zh) * 2009-09-07 2017-12-12 崇高种子公司 半导体发光元件
KR101072034B1 (ko) * 2009-10-15 2011-10-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101114047B1 (ko) * 2009-10-22 2012-03-09 엘지이노텍 주식회사 발광소자 및 그 제조방법
TW201118946A (en) * 2009-11-24 2011-06-01 Chun-Yen Chang Method for manufacturing free-standing substrate and free-standing light-emitting device
JP5423390B2 (ja) * 2009-12-26 2014-02-19 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
TWI470832B (zh) * 2010-03-08 2015-01-21 Lg Innotek Co Ltd 發光裝置
EP2387081B1 (en) * 2010-05-11 2015-09-30 Samsung Electronics Co., Ltd. Semiconductor light emitting device and method for fabricating the same
KR101252032B1 (ko) * 2010-07-08 2013-04-10 삼성전자주식회사 반도체 발광소자 및 이의 제조방법
JP5582054B2 (ja) * 2011-02-09 2014-09-03 豊田合成株式会社 半導体発光素子

Also Published As

Publication number Publication date
US20140339566A1 (en) 2014-11-20
JP2016006896A (ja) 2016-01-14
CN104025319A (zh) 2014-09-03
JP5956604B2 (ja) 2016-07-27
JP2015500573A (ja) 2015-01-05
WO2013089459A1 (en) 2013-06-20
CN104025319B (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6025933B2 (ja) 発光ダイオードの製造方法
US9871164B2 (en) Nanostructure light emitting device and method of manufacturing the same
JP5097532B2 (ja) 化合物半導体発光素子の製造方法
TWI434433B (zh) 形成發光二極體裝置的方法
JP2010205988A (ja) 窒化物半導体素子及びその製造方法
JP6018219B2 (ja) 発光ダイオードの製造方法
JP4804930B2 (ja) 窒化物半導体素子の製造方法
JP2010219310A (ja) 光デバイスおよび光デバイス構造
TW201306301A (zh) 製造半導體發光二極體的方法
JP2007200932A5 (ja)
KR100982988B1 (ko) 수직구조 반도체 발광소자 및 그 제조방법
KR101134493B1 (ko) 발광 다이오드 및 이의 제조 방법
KR20090076163A (ko) 질화물 반도체 발광소자 제조방법 및 이에 의해 제조된질화물 반도체 발광소자
JP5758481B2 (ja) 半導体装置の製造方法
JP2010165983A (ja) 発光チップ集積デバイスおよびその製造方法
JP2009123836A (ja) 窒化物半導体発光素子
JP5051319B2 (ja) 半導体発光素子、半導体発光素子の製造方法、及び半導体発光装置
KR101923671B1 (ko) 에피층과 성장 기판 분리 방법 및 이를 이용한 반도체 소자
KR20130067514A (ko) 반도체 소자 제조 방법
JP2003060233A (ja) 半導体発光素子、半導体発光素子の製造方法、及び半導体発光装置
KR101254520B1 (ko) 반도체 발광 소자
KR101868423B1 (ko) 질화물계 박막을 갖는 발광 소자, 이의 제조 방법 및 반도체 소자 제조용 템플릿
KR101899474B1 (ko) 고효율 발광 다이오드 제조 방법
KR20110113311A (ko) 기판 분리 기술을 이용한 발광 다이오드 제조방법
KR20130104921A (ko) 고효율 발광 다이오드 및 그것을 제조하는 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees