JP5858242B2 - Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス - Google Patents

Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス Download PDF

Info

Publication number
JP5858242B2
JP5858242B2 JP2012549900A JP2012549900A JP5858242B2 JP 5858242 B2 JP5858242 B2 JP 5858242B2 JP 2012549900 A JP2012549900 A JP 2012549900A JP 2012549900 A JP2012549900 A JP 2012549900A JP 5858242 B2 JP5858242 B2 JP 5858242B2
Authority
JP
Japan
Prior art keywords
single crystal
atppm
garnet single
rare earth
earth iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012549900A
Other languages
English (en)
Other versions
JPWO2012086819A1 (ja
Inventor
健一 白木
健一 白木
貴志 福原
貴志 福原
憲士 成田
憲士 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2012549900A priority Critical patent/JP5858242B2/ja
Publication of JPWO2012086819A1 publication Critical patent/JPWO2012086819A1/ja
Application granted granted Critical
Publication of JP5858242B2 publication Critical patent/JP5858242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、鉛フリーなBi置換希土類鉄ガーネット単結晶とその製造方法、及びそのBi置換希土類鉄ガーネット単結晶を備えた光デバイスに関するものである。
光アイソレータや光サーキュレータ等に使用されるファラデー回転子には、LPE(Liquid Phase Epitaxy:液相エピタキシャル)法により育成されたBi置換希土類鉄ガーネット単結晶(以下、必要に応じて、「ガーネット単結晶」という)が用いられる。LPE法は、原料を坩堝に投入して溶融することで融液とし、その融液に育成用基板を接触させてガーネット単結晶をエピタキシャル成長させる単結晶育成方法である。融液にはB2O3やBi2O3等と共にPbOが使われるため、育成されたガーネット単結晶中へのPb(鉛)の含有が避けられなかった。
近年、有害性が大きい化学物質が環境へ与える悪影響を避けるために、製品中への有害物質の含有を規制しようという動きが世界的な規模で進んでおり、鉛も有害物質として指定されている。このような有害物質の規制の一例として、ヨーロッパ連合(EU)で施行されているRoHS指令(Restriction of Hazardous Substances)等が挙げられる。これに伴い、ガーネット単結晶においても少量ではあるが含有される鉛が環境汚染の要因になり得るとして問題になってきた。
そこでガーネット単結晶中への鉛の含有を無くすために、鉛を含まない融液からのガーネット単結晶の育成が必要とされている。特に、光アイソレータに組み込まれるガーネット単結晶の場合には、ファラデー回転角の関係から波長1.3μm〜1.55μm帯の光通信用途で、光の偏光面を45度程度回転させる厚さが必要であった。
更に前記所定の厚さと共に、45度のファラデー回転角を生じる厚さで換算したときの挿入損失(Insertion Loss:以下、「IL」という)を、光アイソレータとしての市場要求値である0.10dB以下に低減することが肝要である。従来の鉛含有融液からガーネット単結晶を育成する場合には、原料を溶融する坩堝には耐熱性並びに耐食性等の観点からPt(白金)が用いられている。この場合ガーネット単結晶の育成が大気中で行われると、坩堝材の白金が酸化して融液に溶解し、育成したガーネット単結晶中に前記白金も4価の白金イオン(Pt4+)として微少量含有される。
そして、ガーネット単結晶中に含有した2価の鉛イオン(Pb2+)と4価の白金イオン(Pt4+)が光吸収を引き起こし、それらに誘発された2価又は4価の鉄イオン(Fe2+又はFe4+)が1.3μm〜1.55μmの波長帯域において光吸収を増大させ、ILの増大を招くとされている。
ガーネット単結晶では3価が安定なので、2価の不純物が過剰な場合には4価の添加物で電荷補償を行い、4価の不純物が過剰な場合には2価の添加物で電荷補償が行われる。従来のガーネット単結晶はPbを含有していたために、このPbが2価イオン(Pb2+)及び4価イオン(Pb4+)としてガーネット単結晶中に存在し、ガーネット単結晶全体として2価イオン(Pb2+)と4価イオン(Pt4+およびPb4+)の含有バランスがほぼ等しく保たれていたものと思われる。その結果、従来のガーネット単結晶では光吸収を増大させるFe2+やFe4+の発生が少なかったため、ILの増大が抑制されていたものと考えられる(Pb2+含有量>Pb4+含有量と推定)。
しかし鉛を含まない融液ではPb2+及びPb4+が皆無となるため、その融液から育成されたガーネット単結晶中では相対的にPt4+が過剰になる。従って、この過剰なPt4+と電荷補償を行うために2価イオンであるFe2+が発生するため光吸収が増大し、ILの増大も招いてしまう。
そこで、坩堝材に白金ではなくAu(金)を使用すると共に、鉛を含まない融液によるガーネット単結晶の育成方法が考案されている。例えば、特許文献1には鉛を使わない融液成分として、Pbの代わりにNaといったアルカリ金属を添加することが示唆されている。
またPb2+の代わりに、同じ2価であるCaを添加してILの増大を抑制する技術が提案されている(例えば、特許文献2を参照)。
特開2006−169093号公報(第5−9頁) 特開2007−153696号公報(第3−7頁)
しかしながら、特許文献1に記載の製造方法で育成したガーネット単結晶では、Naの含有量によってはファラデー回転子のILが増大してしまう。更に、特許文献1では、坩堝や攪拌用冶具の材料として主に金を用いているので、ガーネット単結晶中にPt4+は含有されずPt4+による光吸収は発生しないが、耐熱性及び機械的強度などの観点からLPE法では白金材を用いる必要があった。更に、特許文献1ではNaの添加をNaOHで行う製造方法が示されているが、火傷や失明のおそれがあるため、NaOHは扱いづらいという課題もある。
又、特許文献2に記載の製造方法では、Bi2O3-B2O3溶剤にCaが少量でも添加されると結晶育成条件が変化して、量産性に重要な結晶の成長速度が低下してしまうため、鉛を全く含まないガーネット単結晶を量産ベースで製造することは困難であった。更に、Caの含有量によってはガーネット単結晶の品質劣化やILの増大を招いてしまっていた。
本発明は上記課題に基づいて為されたものであり、その目的は白金製の坩堝を使用しながら鉛を含有せず、品質劣化も無く量産性に富み、且つ0.10dB以下のILを可能とするガーネット単結晶を提供することである。
本発明は、融液の無鉛化により過剰となったPt4+と電荷補償を行うために、同じ2価であるMn又は第2族元素の少なくとも1つの元素を投入すると共に、無鉛化されたTbを含むガーネット単結晶に取り込まれる、Mn又は第2族元素(Be, Mg, Ca, Sr, Ba, Ra)の少なくとも1つの元素の濃度と、Pt濃度との差分に対する、前記ガーネット単結晶のIL値との関係に基づき、ILの低減、量産性の確保、並びに品質向上を図ることを基本概念とするものである。
本発明のBi置換希土類鉄ガーネット単結晶は、
R3-xBixFe5-wAwO12(但し、前記RはTb, Y, Eu, Gd, Ho, Yb, Lu, Nd, Tm, La, Sm, Dy, Er, Ce, Prからなる群から選ばれる一種又は二種以上の希土類元素で前記Tbを必ず含み、前記AはGa, Al, In, Sc, Co, Ni, Cr, V, Ti, Si, Ge, Mg, Zn, Nb, Ta, Sn, Zr, Hf, Pt, Rh, Te, Os, Ce, Luからなる群から選ばれる一種又は二種以上の元素であり、前記xは0.7<x≦1.5、前記wは0<w≦1.5)で表される組成を有すると共に、
Pbを含有せず且つPtを含有し、
更に、Mn又は第2族元素の少なくとも1つの元素を含有し、
前記Mn又は第2族元素の少なくとも1つの元素をMで表すと共に、
前記Bi置換希土類鉄ガーネット単結晶中の、M濃度(atppm)を[M]、Pt濃度(atppm)を[Pt]と表し、[M]と[Pt]との関係式Δを
Figure 0005858242

と表したときに、係数αが0.91±0.05の数値範囲内の何れかの値に設定され、且つ、Δが-7.23atppm以上1.64atppm以下に設定されることを特徴とする。
更に、本発明のBi置換希土類鉄ガーネット単結晶の他の実施形態は、
前記Δが0atppmに設定されることが好ましい。
又、本発明の光アイソレータ、光サーキュレータ、光アッテネータ、ファラデーミラー、電流センサ、磁界センサ、磁気光学スイッチは、前記の何れかのBi置換希土類鉄ガーネット単結晶を備えることを特徴とする。
又、本発明に係るBi置換希土類鉄ガーネット単結晶の製造方法は、
Pt製の坩堝に、少なくともBi2O3 を含むと共に鉛化合物を含まない溶媒とFe2O3とTb4O7、及び前記Fe2O3と前記Tb4O7以外の溶質を入れ、
前記溶媒に更にMO又はMO2又はM2O3(但し、MはMn又は第2族元素の少なくとも1つ)の何れかの混合物を投入し、
Bi置換希土類鉄ガーネット単結晶中の、M濃度(atppm)を[M]、Pt濃度(atppm)を[Pt]と表し、[M]と[Pt]との関係式Δを
Figure 0005858242

と表したときに、係数αが0.91±0.05の数値範囲内の何れかの値に設定され、且つ、Δが-7.23atppm以上1.64atppm以下に設定される前記Bi置換希土類鉄ガーネット単結晶を、磁性ガーネット結晶基板上に育成することを特徴とする。
又、本発明に係るBi置換希土類鉄ガーネット単結晶の製造方法の他の実施形態は、
前記Δが0atppmに設定されることが好ましい。
本発明に係るBi置換希土類鉄ガーネット単結晶に依れば、その結晶中に鉛を含まないため環境に悪影響を与えることが無い。又、請求項1に記載されたBi置換希土類鉄ガーネット単結晶を、請求項3の製造方法によって製造することで、Mn又は第2族元素の少なくとも1つの元素を含有すると共に、Pt濃度に対する最適なMn又は第2族元素濃度をΔ値で-7.23atppm以上1.64atppm以下と設定することにより、Tbを含むBi置換希土類鉄ガーネット単結晶中におけるFe2+の発生を抑制して光吸収を低減し、光の波長1.3μm〜1.55μm帯におけるILを0.10dB以下とすることが可能となった。更にPt濃度を、Mn又は第2族元素濃度以下とすることにより、光の波長1.3μm〜1.55μm帯における急峻なIL増加を抑制することも出来る。
更に、請求項2に記載されたBi置換希土類鉄ガーネット単結晶を、請求項4の製造方法によって製造し、前記Δ値を0atppmとなるように、Pt濃度とMn又は第2族元素濃度を設定することにより、Tbを含むガーネット単結晶中におけるFe2+の発生が最も抑制されて光吸収が低減されると共に、光の波長1.3μm〜1.55μm帯におけるILを最小値に設定することが可能となる。
又、請求項5に記載の各光デバイスに依れば、前記請求項1又は2の何れかに記載のBi置換希土類鉄ガーネット単結晶を備えることにより、各光デバイス中に搭載されるBi置換希土類鉄ガーネット単結晶が鉛を含まないため、環境に悪影響を与えることが無い。
前記の通り融液に含有される4価のイオンとして、坩堝材の白金からのPt4+含有が考えられる。更に、Bi置換希土類鉄ガーネット単結晶(以下、必要に応じて単に「ガーネット単結晶」と表記)の無鉛化に伴い、Pb2+及びPb4+が皆無になると相対的にPt4+が過剰になる。その結果、Fe2+が発生して光吸収が発生しILを増大させると考えられる。そこで、本発明者等はこの過剰なPt4+と2価イオンとのガーネット単結晶中における含有バランスを図るために、Pb2+に替わる別の2価イオンとしてMn2+を添加し、Fe2+の発生を抑制しつつ前記含有バランスを保つことでILを低減するべく、鋭意検討を重ねた。
その結果、本発明者等はガーネット単結晶に取り込まれる、Mn又は第2族元素(Be, Mg, Ca, Sr, Ba, Ra)の少なくとも1つの元素の濃度と、Pt濃度との濃度差に対する、ガーネット単結晶のIL値との関係を見出し、本発明を完成させた。
以下、本発明の実施形態について説明する。本発明のガーネット単結晶はLPE法で育成され、溶媒としてB(B2O3)やBi(Bi2O3)を用いると共に、溶質であるガーネット成分としてBi(Bi2O3), Tb(Tb4O7), Ho(Ho2O3), Fe(Fe2O3), Ga(Ga2O3), Al(Al2O3)を用いる。更に、溶媒として鉛化合物(PbO, PbF2)は用いない。
本発明に係るガーネット単結晶は、R3-xBixFe5-wAwO12の組成式で表される。Biはガーネット単結晶の主要な構成元素でもあり、溶媒と溶質の両方の役割を兼ねている。そして主な溶質(ガーネット成分)には各種希土類元素の酸化物、Fe2O3、及びFeと置換可能な元素の酸化物が用いられる。本願における希土類元素Rは、単独で安定してFeとガーネット単結晶を作ることができるTb, Y, Eu, Gd, Ho, Yb, Lu, Nd, Tm, La, Sm, Dy, Er, Ce, Prからなる群から選ばれる一種又は二種以上の元素などである。但し、Tbは必ず選ばれて含まれることとする。又、Feと置換可能な元素Aは、Ga, Al, In, Sc, Co, Ni, Cr, V, Ti, Si, Ge, Mg, Zn, Nb, Ta, Sn, Zr, Hf, Pt, Rh, Te, Os, Ce, Luからなる群から選ばれる一種又は二種以上の元素などである。
更にPbを皆無としたことで、溶媒にPb2+の代わりに2価のMnイオン(Mn2+)を適量投入する。2価のMnイオン(Mn2+)を適量投入することで、Mn2+とPt4+が電荷補償し合ってガーネット単結晶に入り込んでイオンバランスを取り、Fe3+がFe2+やFe4+になって引き起こされる光吸収の発生を防止し、ILが抑制される。
2価イオンには前記Mn2+の他にも種々存在し、これらはガーネット単結晶の成分イオンと置換して入るので、成分イオンに近いイオン半径を持つ2価イオンが好ましい。これらのイオンを生成する酸化物としてCaO, MgO, MnO, MnO2, Mn2O3等を原料中に投入してガーネット単結晶を育成する。又、その他の第2族元素の何れかを用いても良い。
ガーネット単結晶中のBi含有量はファラデー回転係数に影響を与え、Bi含有量が多いほどファラデー回転係数は大きくなる。しかし、Bi含有量が組成式で1.5を超えると育成用基板との格子定数の整合が取れなくなり、結晶欠陥や亀裂が増加する。一方0.7以下では、ファラデー効果が小さくなるため十分なファラデー回転係数(deg/cm)が得られず、波長1.5μm帯における45度回転に必要なガーネット単結晶の厚さが500μmを超えてしまう。厚さの増大はガーネット単結晶の育成時間の増大や結晶欠陥、亀裂の増大に繋がり不適切である。このことから組成式におけるBi含有量xは0.7<x≦1.5の範囲とする。
一方、前記Ga, Al, In等とFeが置換されることによりファラデー回転係数(deg/cm)が小さくなり、45度回転に必要な厚さが増加する。組成式におけるこれらの元素のFe置換量wは、0<w≦1.5とする。
次に、本発明のガーネット単結晶の製造方法の一例を示すが、本発明のガーネット単結晶の製造方法は以下に限定されるものではない。
まずPt製の坩堝を用意し、その中に溶媒と溶質(ガーネット成分)の元素の酸化物粉末を投入する。溶媒として酸化ホウ素(B2O3)を、又、ガーネット単結晶のエピタキシャル膜を形成させる金属酸化物の一例として、ガーネット原料成分(溶質)の酸化テルビウム(Tb4O7)、酸化ビスマス(Bi2O3)、酸化ホルミウム(Ho2O3)、酸化ガリウム(Ga2O3)、アルミナ(Al2O3)、酸化鉄(Fe2O3)の各粉末を混合して白金坩堝内に入れて加熱溶融する。更に溶媒の添加物としてMO、MO2、M2O3の何れか1つの各粉末を混合する。但し、MはMn又は第2族元素の少なくとも1つの元素を示す。融液の組成は種々の異なるものを用いる。ここで本発明では、従来溶媒として使用されている鉛化合物(酸化鉛(PbO)など)を投入しない。
次に、坩堝を1000〜1200℃に加熱して溶媒と溶質の各粉末を溶融して十分に撹拌し、融液を均一に混合したのち温度を700〜950℃に下げて融液を過冷却状態にする。この融液の液面に、直径76〜85mm,厚さ0.5mm,格子定数12.475〜12.515Åで、組成(GdCa)3(GaMgZr)5O12又はNd3Ga5O12を持つ面方位{111}の非磁性ガーネット結晶基板(以下、SGGG基板という)を回転させながら接触させ、LPE法によって前記{111}面上にガーネット単結晶を810℃程度、雰囲気内で育成させた。成長速度は約0.2μm/分以上が確保された。
前記雰囲気内においてガーネット単結晶を所定の厚さ(例.約500μm)まで育成する。又、育成されたガーネット単結晶の結晶格子定数はSGGG基板の格子定数に依存し、12.488Åであった。これらの格子定数を有する、(TbHoBi)3(FeGaAl)5O12で示される組成のガーネット単結晶からSGGG基板を除去し、厚さ232μm以上480μm以下の範囲まで研磨し、両面に無反射膜を蒸着してIL特性を評価した。
複数のガーネット単結晶を評価した結果、本発明者らは溶媒にMO、MO2、M2O3の何れか1つの各粉末を混合した融液から育成されたガーネット単結晶に含有される、Mn又は第2族元素の少なくとも1つの元素の濃度とPt濃度との差分を、以下のような数式で関係づけることにより、前記差分をガーネット単結晶のIL値を所望の値に設定するためのパラメータとして使用出来ることを導き出した。
Figure 0005858242
上記数式において、[M]をガーネット単結晶中におけるM濃度(atppm)、[Pt]を同じくガーネット単結晶中におけるPt濃度(atppm)とする。なお、前記の通りMはMn又は第2族元素の少なくとも1つの元素を表す。
前記数式の係数αは0.91±0.05の数値範囲内の何れかの値に設定される。即ち係数αは、0.86〜0.96の数値範囲内の何れかの値に設定される。本発明において、係数αに±0.05の増減幅を設定した理由は、次の通りである。Bi置換希土類鉄ガーネット単結晶をICP・MS分析法など所望の分析法により分析すると、その分析法の分析精度に影響を受けて係数αの値にばらつきが発生してしまう。そのばらつき分を考慮して±0.05の増減幅を設定しているものである。
本発明に係るTbを含むガーネット単結晶では、Pt濃度に対する最適なMn又は第2族元素濃度をΔ値で-7.23atppm以上1.64atppm以下と設定することにより、Tbを含むガーネット単結晶中におけるFe2+の発生を抑制して光吸収を低減し、光の波長1.3μm〜1.55μm帯におけるILを0.10dB以下とすることが可能となる。更にPt濃度を、Mn又は第2族元素濃度以下とすることにより、光の波長1.3μm〜1.55μm帯における急峻なIL増加を抑制することも出来る。
係数αが0.91±0.05(即ち0.86〜0.96)の数値範囲内の何れかの値に設定されたときに、Δ値は-7.23atppm以上1.64atppm以下に設定されれば良い。つまり、係数αが0.91±0.05の数値範囲内のどれか1つの値のとき、Δ値が-7.23atppm以上1.64atppm以下に設定されたBi置換希土類鉄ガーネット単結晶が、本発明に係るBi置換希土類鉄ガーネット単結晶である。なお、Δ値が-7.23atppm以上1.64atppm以下のBi置換希土類鉄ガーネット単結晶において、最も好ましいBi置換希土類鉄ガーネット単結晶は、係数αが0.91±0.05(即ち0.86〜0.96)数値範囲内で如何なる値に設定されても、常にΔ値が-7.23atppm以上1.64atppm以下に設定されたBi置換希土類鉄ガーネット単結晶である。
更に好ましくは、Δ値を0atppmと設定する。即ち、係数αを掛けたPt濃度と、Mn又は第2族元素濃度を等しくする。Δ値が0atppmとなるように、Pt濃度と、Mn又は第2族元素濃度を設定することにより、Tbを含むガーネット単結晶中におけるFe2+の発生が最も抑制されて光吸収が低減されると共に、光の波長1.3μm〜1.55μm帯におけるILを最小値に設定することが可能となる。
係数αが0.91±0.05(即ち0.86〜0.96)の数値範囲内の何れかの値に設定されたときに、Δ値0atppmが設定されれば良い。つまり、係数αが0.91±0.05の数値範囲内のどれか1つの値のとき、Δ値が0atppmに設定されたBi置換希土類鉄ガーネット単結晶が、本発明に係るBi置換希土類鉄ガーネット単結晶である。
(実施例1〜4)
以下、前記製造方法により作製された、本発明に係るガーネット単結晶の実施例を示すが、本発明はこれらに限定されるものではない。表1に、本発明に係るガーネット単結晶の一例であるTb系ガーネット単結晶の各組成式と、Mn濃度(atppm)、Pt濃度(atppm)、Δ値(atppm)、及び中心波長1.55μmにおけるIL値(dB)をそれぞれ示す。なお、係数αは0.91で統一するものとし、Δ値(atppm)は小数点以下第3位を四捨五入した。表1において上から順に各々実施例1〜4とした。又、作製したガーネット単結晶の組成分析と、Mn濃度及びPt濃度の分析は、ICP・MS分析法で行った。
Figure 0005858242
実施例1,2の結果から、Δ値を-7.23atppm以上1.64atppm以下の範囲内である、1.55atppm,及び-7.21atppmに設定することにより、IL0.10dB以下を実現可能であることが確認された。
更に、Δ値を0atppmに近づけた0.04atppm(実施例3)ではIL値が他の実施例1,2よりも低下することが確認されたと共に、Δ値を0atppmに設定した実施例4のIL値が0.060dBとなり、他の実施例1〜3に比べてIL値が最小値となり最も好ましいことが確認された。
なお、実施例1において係数αを0.86、実施例2において係数αを0.96と設定してΔ値を再度算出すると、それぞれ2.16atppm,-8.05atppmとなり、-7.23atppm以上1.64atppm以下の範囲外となる。しかし係数αが0.91では範囲内であるため実施例1と2は本発明に係る実施例となる。
更に、実施例3において係数αを0.86〜0.96と設定して、Δ値を再度算出すると-0.50atppm〜0.58atppmとなる。従って、実施例3においては、係数αが0.91±0.05(即ち0.86〜0.96)の範囲内で如何なる値に設定されても、常にΔ値が-7.23atppm以上1.64atppm以下に設定されることが分かる。よって、実施例3が、実施例1と2よりもより好ましいと結論付けられる。
(比較例1〜2)
ガーネット単結晶中のMn濃度及びPt濃度を変更して、Δ値を変更した以外は、前記実施例1〜4と同様の条件で比較例1〜2のガーネット単結晶を作製した。そして、作製したガーネット単結晶を前記実施例1〜4と同様に評価した。比較例1はΔ値が1.64atppmを超えるようにMn濃度及びPt濃度を設定し、比較例2はΔ値が-7.23atppm未満となるように設定した。
比較例1よりΔ値が2.37atppm、即ち1.64atppmを超えると、IL値が0.10dB超となることが確認された。
又、比較例2よりΔ値が-8.16atppm、即ち-7.23atppmを下回ると、IL値が0.10dB超となることが確認された。
なお、比較例1において係数αを0.86〜0.96と設定してΔ値を再度算出すると1.67atppm〜3.06atppmとなり、-7.23atppm以上1.64atppm以下の範囲外となる。即ち比較例1においては、係数αが0.91±0.05(即ち0.86〜0.96)の範囲内で如何なる値に設定されても、常にΔ値が-7.23atppm以上1.64atppm以下の範囲外となるため、比較例1は本発明に係らないと結論付けられる。
同様に、比較例2において係数αを0.86〜0.96と設定してΔ値を再度算出すると-9.08atppm〜-7.24atppmとなり、-7.23atppm以上1.64atppm以下の範囲外となる。従って、比較例2も本発明に係らないと結論付けられる。
なお、ガーネット単結晶中におけるM濃度の設定は、M原料粉末の坩堝への投入量を変更することで変化させることが出来る。坩堝へ投入された量から育成されたガーネット単結晶中に含有される比率は一定の値を示す。従って、この比率に従って坩堝への投入量を制御することにより、前記M濃度を所望の範囲内に収めることが可能となる。
以上のガーネット単結晶を搭載して作製された光アイソレータ、光サーキュレータ、光アッテネータ、ファラデーミラー、電流センサ、磁界センサ、及び磁気光学スイッチの何れかである光デバイスは、その光デバイス中に搭載されるガーネット単結晶が鉛を含まないため、環境に悪影響を与えることが無い。

Claims (5)

  1. R3-xBixFe5-wAwO12(但し、前記RはTb, Y, Eu, Gd, Ho, Yb, Lu, Nd, Tm, La, Sm, Dy, Er, Ce, Prからなる群から選ばれる一種又は二種以上の希土類元素で前記Tbを必ず含み、前記AはGa, Al, In, Sc, Co, Ni, Cr, V, Ti, Si, Ge, Mg, Zn, Nb, Ta, Sn, Zr, Hf, Pt, Rh, Te, Os, Ce, Luからなる群から選ばれる一種又は二種以上の元素であり、前記xは0.7<x≦1.5、前記wは0<w≦1.5)で表される組成を有すると共に、
    Pbを含有せず且つPtを含有し、
    更に、Mn又は第2族元素の少なくとも1つの元素を含有し、
    前記Mn又は第2族元素の少なくとも1つの元素をMで表すと共に、
    前記Bi置換希土類鉄ガーネット単結晶中の、M濃度(atppm)を[M]、Pt濃度(atppm)を[Pt]と表し、[M]と[Pt]との関係式Δを
    Figure 0005858242

    と表したときに、係数αが0.91±0.05の数値範囲内の何れかの値に設定され、且つ、Δが-7.23atppm以上1.64atppm以下に設定されることを特徴とするBi置換希土類鉄ガーネット単結晶。
  2. 前記Δが0atppmに設定されることを特徴とする請求項1に記載のBi置換希土類鉄ガーネット単結晶。
  3. Pt製の坩堝に、少なくともBi2O3 を含むと共に鉛化合物を含まない溶媒とFe2O3とTb4O7、及び前記Fe2O3と前記Tb4O7以外の溶質を入れ、
    前記溶媒に更にMO又はMO2又はM2O3(但し、MはMn又は第2族元素の少なくとも1つ)の何れかの混合物を投入し、
    Bi置換希土類鉄ガーネット単結晶中の、M濃度(atppm)を[M]、Pt濃度(atppm)を[Pt]と表し、[M]と[Pt]との関係式Δを
    Figure 0005858242

    と表したときに、係数αが0.91±0.05の数値範囲内の何れかの値に設定され、且つ、Δが-7.23atppm以上1.64atppm以下に設定される前記Bi置換希土類鉄ガーネット単結晶を、磁性ガーネット結晶基板上に育成することを特徴とするBi置換希土類鉄ガーネット単結晶の製造方法。
  4. 前記Δが0atppmに設定されることを特徴とする請求項3に記載のBi置換希土類鉄ガーネット単結晶の製造方法。
  5. 請求項1又は2に記載のBi置換希土類鉄ガーネット単結晶を備えた、光アイソレータ、光サーキュレータ、光アッテネータ、ファラデーミラー、電流センサ、磁界センサ、磁気光学スイッチ。
JP2012549900A 2010-12-25 2011-12-23 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス Active JP5858242B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549900A JP5858242B2 (ja) 2010-12-25 2011-12-23 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010288990 2010-12-25
JP2010288990 2010-12-25
JP2012549900A JP5858242B2 (ja) 2010-12-25 2011-12-23 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
PCT/JP2011/079946 WO2012086819A1 (ja) 2010-12-25 2011-12-23 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス

Publications (2)

Publication Number Publication Date
JPWO2012086819A1 JPWO2012086819A1 (ja) 2014-06-05
JP5858242B2 true JP5858242B2 (ja) 2016-02-10

Family

ID=46314084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012549900A Active JP5858242B2 (ja) 2010-12-25 2011-12-23 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス

Country Status (4)

Country Link
US (1) US9201167B2 (ja)
JP (1) JP5858242B2 (ja)
CN (1) CN103282556B (ja)
WO (1) WO2012086819A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012283A (ja) * 2010-05-31 2012-01-19 Namiki Precision Jewel Co Ltd Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
WO2012170259A2 (en) 2011-06-06 2012-12-13 Skyworks Solutions, Inc. Rare earth reduced garnet systems and related microwave applications
JP6744143B2 (ja) * 2015-06-15 2020-08-19 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 合成ガーネット材料、改質された合成ガーネット組成物、および合成ガーネットを製造する方法
US10773972B2 (en) 2016-07-13 2020-09-15 Skyworks Solutions, Inc. Temperature insensitive dielectric constant garnets
CN108233165B (zh) * 2018-01-22 2020-03-17 暨南大学 面向0.95~1.65微米全固体激光器的近红外铋钽双掺激光晶体
WO2020018572A1 (en) 2018-07-18 2020-01-23 Skyworks Solutions, Inc. Magnetic materials with high curie temperatures and dielectric constants
JP7246340B2 (ja) * 2020-04-21 2023-03-27 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶、ファラデー回転子、光アイソレータ、およびビスマス置換希土類鉄ガーネット単結晶の製造方法
JP7348142B2 (ja) * 2020-07-03 2023-09-20 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法
CN111751357B (zh) * 2020-07-22 2022-05-24 攀钢集团研究院有限公司 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法
CN114318536B (zh) * 2021-12-30 2023-04-07 长飞光纤光缆股份有限公司 铋掺杂稀土铁石榴石单晶薄膜、其制备方法以及光学器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627631A (ja) 1985-06-29 1987-01-14 Toshiba Corp 磁気光学素子
JP3959099B2 (ja) 2004-11-19 2007-08-15 Tdk株式会社 磁性ガーネット単結晶の製造方法
JP4650943B2 (ja) 2005-12-07 2011-03-16 株式会社グラノプト ビスマス置換希土類鉄ガーネット単結晶の製造方法
JP5033945B2 (ja) 2007-10-11 2012-09-26 株式会社グラノプト 希土類鉄ガーネット単結晶
JP5311474B2 (ja) 2009-02-03 2013-10-09 Fdk株式会社 磁性ガーネット単結晶
JP5439931B2 (ja) 2009-04-24 2014-03-12 株式会社グラノプト ファラデー回転子の製法
JP5292543B2 (ja) * 2009-07-02 2013-09-18 並木精密宝石株式会社 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP5292544B2 (ja) * 2009-07-08 2013-09-18 並木精密宝石株式会社 Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP2012012283A (ja) * 2010-05-31 2012-01-19 Namiki Precision Jewel Co Ltd Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス

Also Published As

Publication number Publication date
US9201167B2 (en) 2015-12-01
US20140021418A1 (en) 2014-01-23
JPWO2012086819A1 (ja) 2014-06-05
CN103282556A (zh) 2013-09-04
CN103282556B (zh) 2016-06-29
WO2012086819A1 (ja) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5858242B2 (ja) Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JPWO2011152333A1 (ja) Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP5292544B2 (ja) Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP3959099B2 (ja) 磁性ガーネット単結晶の製造方法
JP5292543B2 (ja) Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP4720730B2 (ja) 光学素子の製造方法
JP6481552B2 (ja) ビスマス置換型希土類鉄ガーネット結晶膜の製造方法、ビスマス置換型希土類鉄ガーネット結晶膜
JP4942029B2 (ja) 磁性ガーネット単結晶及びその製造方法
JP4802995B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
JP3490143B2 (ja) 酸化物ガーネット単結晶
WO2021215047A1 (ja) ビスマス置換希土類鉄ガーネット単結晶、ファラデー回転子、光アイソレータ、およびビスマス置換希土類鉄ガーネット単結晶の製造方法
JP4807288B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法
JP4821344B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
JP4874921B2 (ja) 磁気光学素子とその製造方法およびそれを用いて作製した光学デバイス
JP7246341B2 (ja) ビスマス置換希土類鉄ガーネット単結晶、ファラデー回転子、光アイソレータ、およびビスマス置換希土類鉄ガーネット単結晶の製造方法
JP4432896B2 (ja) ガーネット単結晶の製造方法
JP2010180071A (ja) 磁性ガーネット単結晶
JP2005247590A (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
JP4432875B2 (ja) ガーネット単結晶の製造方法
JP5507934B2 (ja) ファラデー回転子とその製造方法
JP2008021691A (ja) ビスマス置換希土類鉄ガーネット単結晶の製造方法
JP2005247589A (ja) 磁性ガーネット単結晶及びそれを用いた光学素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5858242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250