CN111751357B - 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法 - Google Patents

测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法 Download PDF

Info

Publication number
CN111751357B
CN111751357B CN202010710520.7A CN202010710520A CN111751357B CN 111751357 B CN111751357 B CN 111751357B CN 202010710520 A CN202010710520 A CN 202010710520A CN 111751357 B CN111751357 B CN 111751357B
Authority
CN
China
Prior art keywords
edta
icp
aes
solution
denitration liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010710520.7A
Other languages
English (en)
Other versions
CN111751357A (zh
Inventor
成勇
刘力维
袁金红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Research Institute Co Ltd
Original Assignee
Pangang Group Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Research Institute Co Ltd filed Critical Pangang Group Research Institute Co Ltd
Priority to CN202010710520.7A priority Critical patent/CN111751357B/zh
Publication of CN111751357A publication Critical patent/CN111751357A/zh
Application granted granted Critical
Publication of CN111751357B publication Critical patent/CN111751357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample

Abstract

本发明公开了一种测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,属于分析检测技术领域。本发明为实现EDTA络合脱硝液中多形态铁离子共存体系下测定Fe2+与Fe3+浓度,提供了一种检测新方法,包括:样品溶液经金属置换剂预处理,将Fe2+游离:再分别测定铁离子浓度总量和Fe2+浓度分量,最后计算Fe3+浓度分量。本发明通过预处理和LC与ICP‑AES联用,能够快速、准确、高精度地测定脱硝溶液中多形态铁离子与EDTA络合共存体系下Fe2+和Fe3+的浓度分量,从而有效指导脱硝作业。

Description

测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含 量的方法
技术领域
本发明属于分析检测技术领域,具体涉及一种基于高效液相色谱分离技术与电感耦合等离子体原子发射光谱检测技术相联用的测定EDTA络合脱硝液中多形态铁离子共存体系下二价铁离子与三价铁离子含量的方法。
背景技术
工业烟气中所含有的氮氧化物(NOX)是大气主要污染物之一,不仅是酸雨的主要形成因素,而且也是危险致癌物质,严重危害自然生态环境和人类身体健康,近年来世界范围内日益高度重视工业烟气中NOX的达标排放。因此,为了适应更高更严的环保达标排放标准的需要,各工业企业均面临加强控制NOX排放的挑战,尤其冶金烧结烟气自身固有的低温、高湿度等特性,更加需要针对性开发出适宜于冶金烧结烟气的低温湿法脱硝技术,对冶金企业的绿色及可持续发展具有重要意义。
工业烟气中95%左右的氮氧化物(NOx)为在水中溶解度极低的NO,这导致脱除烟气中NOx非常困难,为此各行各业均对烟气脱硝方法进行了广泛的开发研究。近年来,络合吸收法已逐渐成为烟气脱硝的重点研究方向,其基本原理是通过络合剂配位氮氧化物,促使其在液相中溶解度增大从而达到有效脱除的目的,常用络合剂分为亚铁类和钴类。其中亚铁类脱硝方法中Fe(Ⅱ)-EDTA络合脱硝技术由于可直接络合NO,从而推动对烟气中NOx的络合脱除,近年已发展成为治理烟气中NOx排放的重要方法。
由于Fe2+与EDTA形成络合物后显著地降低了其氧化-还原电位,Fe(Ⅱ)-EDTA络合脱硝剂极易被氧气氧化为Fe(Ⅲ)-EDTA,通常原始配制的pH约6~8呈弱碱性的脱硝溶液中含有约0.0X mol/L的二价铁离子和稍过量的EDTA以及抗氧化等其它辅助添加剂,本应不含有三价铁离子,但是由于脱硝溶液在脱硝生产运行过程中二价铁离子会被氧化成三价铁离子,而且随着二价铁离子逐渐被氧化生成了三价铁离子从而逐渐失去脱除NOX氮氧化物的活性能力。因此,为避免在脱硝工艺运行过程中二价铁离子逐渐被氧化生成三价铁离子而失去脱除NOX氮氧化物的活性能力,需要快速准确地掌握脱硝溶液中二价铁离子或三价铁离子的浓度含量,用以根据溶液中二价铁离子与三价铁离子的浓度变化情况,及时指导通过再生方法将脱硝液中被氧化生成的三价铁离子还原回原本的二价铁离子的形态,恢复脱硝液的脱除 NOX的能力,实现脱硝液的高效和循环利用,为此需要相关用于测定脱硝溶液的EDTA介质下二价铁离子与三价铁离子共存溶液中二价铁离子含量的方法。
通常络合滴定、氧化还原滴定等化学分析方法或ICP-AES、ICP-MS等仪器分析方法均无法有效测定不同价态铁离子的浓度分量,只能测定铁离子的总量。而且,虽然近年来液相色谱与电感耦合等离子体质谱联用是环保检测领域中分离和测定不同存在价态金属离子 (Cr3+与Cr6+,As3+与As5+、Fe2+与Fe3+等)的研究热门分析方法,但是现行该类方法只适宜于测定水相中以简单游离离子形态存在的金属离子。由于在以EDTA作为主要构成组分的脱硝溶液有机络合体系中,二价铁离子和三价铁离子均完全与EDTA络合反应形成了非常稳定的有机金属络合物,铁离子与EDTA反应形成的大分子络合物离子完全改变了其在无机体系下简单水相中多以单质游离态存在的铁离子在液相色谱柱中的吸附、解析等形式,络合物离子中大体积大基团分子结构的EDTA对其色谱分离流动速率等起到了关键的决定作用,因此液相色谱也无法直接从二价铁离子的EDTA络合物与三价铁离子的EDTA络合物的共存混合物中将二价铁离子、三价铁离子有效分离出来,也即,同一时刻从LC色谱柱中流出的仍然是二价铁离子EDTA络合物与三价铁离子EDTA络合物的混合物,故而,现有色谱联用检测技术也只能测定脱硝溶液中多形态铁离子的浓度总量,无法有效分离和分别测定脱硝溶液中多形态铁离子与EDTA络合共存体系下Fe2+和Fe3+的含量。
而且,如若专门研制用于分离EDTA体系下Fe2+与Fe3+的特效色谱柱,不仅应用范围狭窄而且难度大费用高。
因此,目前亟待开发一种适用于测定EDTA脱硝溶液中多形态铁共存体系下不同价态铁离子的新检测方法。
发明内容
本发明的目的在于建立一种EDTA络合脱硝液中多形态铁离子共存体系下不同形态铁离子的分离方法以及测定Fe2+与Fe3+浓度含量的检测方法。
为了实现上述目的,本发明提供了一种测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其包括以下步骤:
A、样品检测溶液预处理:分取EDTA络合脱硝液,加入金属离子置换剂,在pH为0.5~ 4条件下,超声振荡反应,得待测液;
B、测定铁离子浓度总量:采用ICP-AES测定步骤A所得待测液中铁元素含量,或者测定稀释20~50倍后EDTA络合脱硝液中铁元素含量,得EDTA络合脱硝液中Fe2+与Fe3+的浓度总量,记为C(TFe);
C、测定Fe2+浓度分量:采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量,得EDTA络合脱硝液中Fe2+的浓度分量,记为C(Fe2+);
D、计算Fe3+浓度分量,通过C(TFe)减C(Fe2+),得EDTA络合脱硝液中Fe3+的浓度分量,记为C(Fe3+);
步骤A中,所述金属离子置换剂为:在pH1~6的酸性条件下,其所含金属离子与EDTA 生成的络合物的稳定常数大于Fe3+与EDTA生成的络合物的稳定常数的金属离子溶液。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述分取EDTA络合脱硝液,加入金属离子置换剂的操作为:
按照稀释20~50倍的比例关系取EDTA络合脱硝液,先加入水稀释10~15倍,然后再加入金属离子置换剂,最后再加入水稀释定容,盖好塞子。
具体的,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述分取EDTA络合脱硝液,加入金属离子置换剂的操作为:
取EDTA络合脱硝液1.0~2.5mL于50mL容量瓶中,先加入水稀释10~15倍,然后再加入金属离子置换剂,最后以水稀释定容,盖好塞子。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述金属离子置换剂中金属离子的浓度为1~2g/L。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述金属离子置换剂的pH为1~2。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述金属离子置换剂的用量为分取EDTA络合脱硝液体积的2~4倍。
优选的,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述金属离子置换剂为铋离子溶液。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤A中,所述超声振荡反应条件为:常温,频率52KHz,振荡时间20~40min。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤B和C中,ICP-AES测定铁离子浓度总量和Fe2+浓度分量的工作参数为:分析谱线Fe239.562nm,射频功率1150W,辅助气0.2L/min,等离子体气12L/min,雾化气流量0.60L/min,观测高度15.0mm。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤C中,采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量的操作为:将LC色谱分离柱的出口端,联接到ICP-AES的气动雾化器的样品溶液入口端,然后将步骤A所得待测液注射进入LC,通过色谱柱将溶液中Fe3+-EDTA络合离子、游离Fe3+、游离Fe2+的不同形态分离,然后依序逐一分别从色谱柱中流出,最后由气动雾化器导入ICP-AES,通过ICP-AES 测定从色谱柱中依次逐一流出组分的铁元素分析谱线的光谱信号强度,其中以所测得的最后一个铁元素光谱峰的信号强度计算Fe2+的浓度分量。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,步骤C中,LC色谱分离条件为:取30~70μL步骤A所得待测液,注射进入高效液相色谱仪,通过金属阳离子色谱柱进行不同形态铁离子的有效分离;淋洗溶液为由0.0660mol/L氢氧化钾、0.0740mol/L甲酸、0.0070mol/L吡啶-2,6-二羧酸和0.0056mol/L硫酸钾组成的pH=4.1~ 4.3的缓冲溶液,淋洗溶液流速控制为1.0~2.5mL/min,色谱分离总时间5~14min。
其中,上述测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,若LC与ICP-AES操作软件不能自动联机使用,采用如下操作:在启动LC进样后,立即运行ICP-AES以扫描方式采集铁的分析谱线的光谱信号强度,其中ICP-AES检测参数:冲洗时间10~20s,积分时间0.1s,重复扫描次数700~800次,其中扫描所得的最一个铁元素光谱信号峰即为二价铁离子所产生。
本发明的有益效果是:
本发明首先通过加入金属置换剂将脱硝溶液中Fe2+完全从Fe2+-EDTA络合物中置换出来,以游离的亚铁离子形态存在于溶液之中,同时避免亚铁离子不被氧化,保证Fe2+和Fe3+含量准确性;然后采用高效液相色谱分离技术将二价铁离子从混合溶液中分离,再导入ICP-AES测得二价铁离子的浓度分量,根据铁离子浓度总量和二价铁离子浓度分量,计算获得三价铁离子的浓度分量。
本发明方法能够快速、准确、高精度地测定脱硝溶液中多形态铁离子与EDTA络合共存体系下Fe2+和Fe3+的浓度分量,从而有效指导脱硝作业。
附图说明
图1为实施例1中铋离子置换反应预处理溶液经LC与ICP-AES联用进行铁元素分析光谱扫描图。
图2为实施例1中未经铋离子置换反应预处理溶液经LC与ICP-AES联用进行铁元素分析光谱扫描图。
具体实施方式
具体的,测定EDTA络合脱硝液中多形态铁离子共存体系下二价铁离子与三价铁离子含量的方法,包括以下步骤:
A、样品检测溶液预处理:分取EDTA络合脱硝液,加入金属离子置换剂,在pH为0.5~ 4条件下,超声振荡反应,得待测液;
B、测定铁离子浓度总量:采用ICP-AES测定步骤A所得待测液中铁元素含量,或者测定稀释20~50倍后EDTA络合脱硝液中铁元素含量,得EDTA络合脱硝液中Fe2+与Fe3+的浓度总量,记为C(TFe);
C、测定Fe2+浓度分量:采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量,得EDTA络合脱硝液中Fe2+的浓度分量,记为C(Fe2+);
D、计算Fe3+浓度分量,通过C(TFe)减C(Fe2+),得EDTA络合脱硝液中Fe3+的浓度分量,记为C(Fe3+);
步骤A中,所述金属离子置换剂为:在pH1~6的酸性条件下,其所含金属离子与EDTA 生成的络合物的稳定常数大于Fe3+与EDTA生成的络合物的稳定常数的金属离子溶液。
EDTA络合脱硝液主要由0.0X mol/L的Fe2+与稍过量的EDTA,以及亚硫酸钠等抗氧化剂组成,pH为6-8;溶液在应用于吸收工业烟气中NOx氮氧化物的过程中,由于Fe(Ⅱ)与EDTA 生成的金属络合物离子的氧化还原电位被降低,也即Fe2+-EDTA比Fe2+更易被氧化,因此虽然有抗氧化剂的保护作用,但是Fe2+-EDTA络离子仍然容易被O2等氧化为Fe3+-EDTA络离子,从而失去吸收NOx氮氧化物的能力。脱硝液使用前后其铁离子的浓度、pH等均不存在太大的变化,只是铁离子由原来的Fe2+逐渐变为Fe3+。为保证脱硝液吸收氮氧化物的能力,必须及时掌握溶液中Fe2+与Fe3+的动态变化情况,以便适时启动还原工艺将脱硝液中的 Fe3+-EDTA络离子还原恢复其原有的Fe2+-EDTA络离子的存在形态,从而保障脱硝液应有的功能作用。
本发明为使EDTA络合脱硝液中游离Fe(Ⅱ)-EDTA络合物和Fe(Ⅲ)-EDTA络合物能够有效分离,研究了一种EDTA络合脱硝液的预处理方法:采用加入呈强酸性的金属离子置换剂,控制在pH值约0.5~4的反应体系下,通过增大溶液中H+浓度从而显著降低了Fe(Ⅱ)-EDTA 的络合稳定性,然后通过与EDTA生成络合物的稳定常数大于Fe(Ⅲ)-EDTA的金属离子转换剂进行超声波振荡反应,促使与EDTA络合能力更强的置换剂金属离子完全取代了 Fe(Ⅱ)-EDTA络合物中Fe2+的位置和部分(或完全)Fe(Ⅲ)-EDTA络合物Fe3+的位置,将Fe2+完全从Fe(Ⅱ)-EDTA络合物离子中被置换游离出来,以及部分或全部Fe3+从Fe(Ⅲ)-EDTA络合物离子中被置换游离出来,以Fe2+、Fe3+的简单形态存在于溶液之中,从而得到检测所用的待测液。
为保证Fe2+的完全游离,以及匹配后续LC与ICP-AES检测条件,本发明按照20~50倍的稀释比例关系分取EDTA络合脱硝液,并且先以水将其稀释10~15倍后,再加入呈酸性(pH1~2)的金属离子置换剂,最后以水稀释定容,立即密闭定容容器以隔绝空气,置于超声波振荡器中进行置换反应。金属离子置换剂的浓度与脱硝溶液中铁离子的浓度总量基本一致(金属离子置换剂中金属离子的浓度为1~2g/L),且其加入体积是脱硝溶液分取体积的2~ 4倍,从而能保证将Fe2+的完全游离。所述金属离子置换剂为:在pH1~6的酸性条件下,其所含金属离子与EDTA生成的络合物的稳定常数大于Fe3+与EDTA生成的络合物的稳定常数的金属离子溶液;优选铋离子标准溶液用作金属离子置换剂。
通常优选地,分取EDTA络合脱硝液1.0~2.5mL于50mL容量瓶之中,加入水10~37mL (稀释10~15倍)后混匀,再加入浓度与铁离子浓度总量基本一致的pH值1~2的铋标准溶液2~10mL,以水稀释定容,盖好塞子,最后置于超声波振荡器中在常温和频率52KHz(选用该频率振荡反应利于缩短置换时间,避免长时间反应导致置换同的Fe2+被氧化转变成Fe3+) 条件下振荡反应20~40min,待测。
分取的EDTA络合脱硝液先以水稀释降低了铁离子的实际浓度,以及结合在酸性条件下 H+提高Fe2+的电极电位抵制其被氧化,避免了在加入置换剂将Fe2+从其与EDTA反应生成的络合物离子中置换析出以后,高浓度的游离态的Fe2+易被氧化形成Fe3+等问题,同时通过在常温和隔绝空气条件下采用超声波振荡方式进行置换反应,不仅确保将Fe2+从其与EDTA反应生成的络合物中完全置换出来,而且在较长的反应过程中置换出来的Fe2+也不会被氧化为 Fe3+,从而确保了Fe2+、Fe3+的浓度分量检测结果的准确可靠性。
本发明步骤B中采用ICP-AES测定溶液铁离子浓度总量,此时不需要分离溶液中共存的不同存在形态铁;此时,可直接测定步骤A所得待测液,或者仅以水将EDTA络合脱硝液稀释20~50倍的溶液(即与待测液浓度相同的溶液),从而测得Fe2+与Fe3+的浓度总量,即为C(TFe)。步骤B中,ICP-AES测定铁离子浓度总量的工作参数为:分析谱线Fe 239.562nm,射频功率1150W,辅助气0.2L/min,等离子体气12L/min,雾化气流量0.60L/min,观测高度15.0mm。
本发明通过步骤A预处理,步骤C中将溶液中共存的不同存在形态的游离态Fe2+、游离态Fe3+以及Fe3+与EDTA生成的Fe(Ⅲ)-EDTA有机络合物离子分别有效分离,促使不同铁离子形态的组分按照时间先后顺序依次独立从液相色谱柱中流出的分离方法,从而能够通过ICP-AES准确测得待测液中游离态Fe2+浓度。
步骤C中,采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量的操作为:将 LC色谱分离柱的出口端,联接到ICP-AES的气动雾化器的样品溶液入口端,然后将步骤A 所得待测液注射进入LC,通过色谱柱将溶液中Fe3+-EDTA络合离子、游离Fe3+、游离Fe2+的不同形态分离,然后依序逐一分别从色谱柱中流出,最后由气动雾化器导入ICP-AES,通过ICP-AES测定从色谱柱中依次逐一流出组分的铁元素分析谱线的光谱信号强度,其中以所测得的最后一个铁元素光谱峰的信号强度计算Fe2+的浓度分量。
步骤C中,LC色谱分离条件为:取30~70μL步骤A所得待测液,注射进入高效液相色谱仪,通过金属阳离子色谱柱进行不同形态铁离子的有效分离;淋洗溶液为由0.0660mol/L氢氧化钾、0.0740mol/L甲酸、0.0070mol/L吡啶-2,6-二羧酸和0.0056mol/L硫酸钾组成的pH=4.1~4.3的缓冲溶液,淋洗溶液流速控制为1.0~2.5mL/min,色谱分离总时间5~14min。
步骤C中,ICP-AES测定Fe2+的浓度分量的工作参数与步骤B相同,为:分析谱线Fe239.562nm,射频功率1150W,辅助气0.2L/min,等离子体气12L/min,雾化气流量0.60L/min,观测高度15.0mm。
此外,本发明对色谱分离柱没有特殊要求或者专门制作特效色谱柱,也即可以应用市场上购买的通用商品化的金属阳离子色谱柱就能实现不同形态铁离子的有效分离,例如,本方案试验采用的是市售的美国赛默飞世尔公司CS5A型阳离子色谱柱。
最后,根据Fe2+与Fe3+的浓度总量(C(TFe))减去Fe2+浓度分量(C(Fe2+))的方式,计算获得EDTA络合脱硝液中Fe3+的浓度分量(C(Fe3+)),也即C(Fe3+)=C(TFe)-C(Fe2+)。
此外,若LC与ICP-AES操作软件不能自动联机使用,采用如下操作:在启动LC进样后,立即运行ICP-AES以扫描方式采集铁的分析谱线的光谱信号强度,其中ICP-AES检测参数:冲洗时间10~20s,积分时间0.1s,重复扫描次数700~800次,其中重复扫描所测得的最后一个铁元素的光谱信号峰即为二价铁离子所产生。
下面通过实施例对本发明作进一步详细说明,但并不因此将本发明保护范围限制在所述的实施例范围之中。
本发明实施例中,作为金属离子置换剂的铋元素标准溶液采用金属铋或其氧化物(纯度≥99.99%)以硝酸溶解完全后稀释定容配制而成;水为满足实验室二级水要求的蒸馏水或去离子水;设备为:美国PE公司Avio200型电感耦合等离子体原子发射谱仪(ICP-AES),美国PE公司Flexar型高效液相色谱仪(LC)以及美国赛默飞世尔公司CS5A型阳离子色谱柱。
实施例1
A、EDTA络合脱硝液预处理:
分取EDTA络合脱硝液(1号试样)1.0mL于50mL容量瓶中,加水10mL混匀,加入铋元素标准溶液2mL,以水稀释定容,盖好塞子,置于超声波振荡器中在常温和频率52KHz 条件下振荡反应20min,得待测液;铋元素标准溶液为采用硝酸溶解高纯金属铋所配制的pH 值1~2的浓度1.2g/L。
B、ICP-AES测定铁离子浓度总量:
直接采用ICP-AES测定上述待测液中铁离子的浓度总量,记为C(TFe);ICP-AES工作参数为:分析谱线Fe 239.562nm,射频功率1150W,辅助气0.2L/min,等离子体气12L/min,雾化气流量0.60L/min,观测高度15.0mm。。
C、LC与ICP-AES联用测定Fe2+浓度分量:
将LC的色谱分离柱的出口端联接到ICP-AES的气动雾化器的样品溶液入口端,吸取 30μL预处理溶液注射进入高效液相色谱仪,立即运行ICP-AES以扫描方式测定从色谱柱中分别流出的各组分的Fe分析谱线的光谱信号强度,其中以所测得的第三个光谱峰的信号强度计算Fe2+的浓度分量,C(Fe2+);
其中,色谱淋洗溶液为由0.0660Mol/L氢氧化钾、0.0740Mol/L甲酸、0.0070mol/L吡啶-2,6- 二羧酸(PDCA)和0.0056Mol/L硫酸钾组成的pH=4.1~4.3的缓冲溶液,淋洗溶液流速控制为1.0~2.5mL/min,色谱分离的总时间14min;ICP-AES测定操作:冲洗时间10~20s,积分时间0.1s,重复扫描次数700次,其中重复扫描400~700次之间的光谱信号峰即为二价铁离子;ICP-AES工作参数与上述ICP-AES测定铁离子浓度总量相同。
D、计算Fe3+浓度分量:
通过铁离子(C(TFe))浓度总量减去Fe2+浓度分量(C(Fe2+)),计算得到Fe3+浓度分量,C(Fe3+)=C(TFe)-C(Fe2+)。
图1为铋离子置换反应预处理溶液经LC与ICP-AES联用进行铁元素分析光谱扫描图;由图1可知,其存在三种存在形态的铁离子光谱峰,其中第三个光谱峰就是铋离子将Fe2+从其与EDTA生成的Fe2+-EDTA络合物中完全置换游离出来所产生的Fe2+峰,从而达到了测定Fe2+浓度分量的检测目的;第二个光谱峰是铋离子将部分Fe3+从其与EDTA生成的Fe3+-EDTA络合物中置换出来所产生的Fe3+峰,第一个光谱峰是尚未被铋离子有效置换出来的Fe3+与EDTA生成的Fe3+-EDTA络合物所产生的Fe3+峰;因此本发明方法通过测定完全由Fe2+所产生的光谱信号所形成的第三个铁离子光谱峰,即可获得Fe2+的浓度分量。
图2为除未加入铋金属离子预处理以外,其余操作与图1完全相同的铁元素分析光谱扫描图;由图2可知,其仅有一个铁离子光谱峰,这是因为Fe2+、Fe3+均与EDTA反应生成了Fe2+-EDTA和Fe3+-EDTA络合物,液相色谱无效将两种组分有效分离,该谱峰是由Fe3+与Fe2+的混合信号强度总和所形成,也即通过该谱峰不能够获得Fe3+或Fe2的浓度分量,故只能计算出铁离子的浓度总量。
图1和图2的对比试验结果表明,本方法能够有效地分离和测定脱硝溶液中多形态铁离子与EDTA络合共存体系下Fe2+的浓度分量,进而计算获得Fe3+的浓度分量。
实施例2
分取脱硝溶液(2号试样)2.5mL于50mL容量瓶,以水稀释定容后ICP-AES测定铁离子的浓度总量,C(TFe);重新分取脱硝溶液2.5mL于50mL容量瓶,加水37mL混匀,加入 Bi标准溶液10mL,以水定容后超声波振荡反应40min,吸取70μL预处理溶液注入LC分离,淋洗溶液流速1.2mL/min。除此之外,按照与实施例1的方法相同的方法预处理制备脱硝样品检测溶液、LC分离-ICP-AES测定Fe2+浓度分量,以及计算Fe3+浓度分量。
实施例3
分取脱硝溶液(3号试样)1.5mL于50mL容量瓶,加水15mL混匀,加入Bi标准溶液4.5mL,以水定容后超声波振荡反应30min;直接采用ICP-AES测定预处理溶液中铁离子的浓度总量,C(TFe);然后吸取60μL预处理溶液注入LC分离,淋洗溶液流速1.5mL/min。除此之外,按照与实施例1的方法相同的方法预处理制备脱硝样品检测溶液、LC分离-ICP-AES 测定Fe2+浓度分量,以及计算Fe3+浓度分量。
实施例4
分取脱硝溶液(4号试样)2.0mL于50mL容量瓶,加水30mL混匀,加入Bi标准溶液8.0mL,以水定容后超声波振荡反应40min;直接采用ICP-AES测定预处理溶液中铁离子的浓度总量,C(TFe);然后吸取50μL预处理溶液注入LC分离,淋洗溶液流速1.1mL/min。除此之外,按照与实施例1的方法相同的方法预处理制备脱硝样品检测溶液、LC分离-ICP-AES 测定Fe2+浓度分量,以及计算Fe3+浓度分量。
实施例5:精密度评估
对实施例1、实施例2分别重复进行8次独立的样品预处理和元素含量测定,并且分别统计计算8次测量结果的平均值和相对标准偏差(RSD),以评估本方法的检测精密度水平。结果见表1。
表1精密度试验(n=8)
Figure GDA0002641959280000091
表1可见,本发明方法测定结果的相对标准偏差RSD<5.0%,表明多次重复测定结果一致,方法的重复性、再现性良好,方法具有较高的精密度水平。
实施例6:准确度评估
本发明通过加标回收试验用以验证方法的准确性:首先通过实施例3和实施例4测得3 号试样与4号样品中Fe2+和Fe3+的原始含量;然后在分别在3号试样、4号试样中加入相应浓度的Fe2+、Fe3+的标准溶液,全流程重复实施例3和实施例4的样品溶液预制备和检测操作,试验结果见表2。
表2回收率试验
Figure GDA0002641959280000101
表2可见,本发明方法回收率为95%~105%,表明分析结果具有较高的准确性和可靠性。

Claims (11)

1.测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:包括以下步骤:
A、样品检测溶液预处理:分取EDTA络合脱硝液,加入金属离子置换剂,在pH为0.5~4条件下,超声振荡反应,得待测液;
B、测定铁离子浓度总量:采用ICP-AES测定步骤A所得待测液中铁元素含量,或者测定稀释20~50倍后EDTA络合脱硝液中铁元素含量,得EDTA络合脱硝液中Fe2+与Fe3+的浓度总量,记为C(TFe);
C、测定Fe2+浓度分量:采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量,得EDTA络合脱硝液中Fe2+的浓度分量,记为C(Fe2+);
D、计算Fe3+浓度分量,通过C(TFe)减C(Fe2+),得EDTA络合脱硝液中Fe3+的浓度分量,记为C(Fe3+);
步骤A中,所述金属离子置换剂为:在pH1~6的酸性条件下,其所含金属离子与EDTA生成的络合物的稳定常数大于Fe3+与EDTA生成的络合物的稳定常数的金属离子溶液。
2.根据权利要求1所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤A中,所述分取EDTA络合脱硝液,加入金属离子置换剂的操作为:
按照稀释20~50倍的比例关系取EDTA络合脱硝液,先加入水稀释10~15倍,然后再加入金属离子置换剂,最后再加入水稀释定容,盖好塞子。
3.根据权利要求2所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤A中,所述分取EDTA络合脱硝液,加入金属离子置换剂的操作为:
取EDTA络合脱硝液1.0~2.5mL于50mL容量瓶中,先加入水稀释10~15倍,然后再加入金属离子置换剂,最后以水稀释定容,盖好塞子。
4.根据权利要求1所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤A中,至少满足下列的一项:
所述金属离子置换剂中金属离子浓度为1~2g/L;
所述金属离子置换剂的pH为1~2;
所述金属离子置换剂的用量为分取EDTA络合脱硝液体积的2~4倍。
5.根据权利要求1~4任一项所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤A中,所述金属离子置换剂为铋离子溶液。
6.根据权利要求1所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤A中,所述超声振荡反应条件为:常温,频率52KHz,振荡时间20~40min。
7.根据权利要求1所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤B和C中,ICP-AES测定铁离子浓度总量和Fe2+浓度分量的工作参数为:分析谱线Fe 239.562nm,射频功率1150W,辅助气0.2L/min,等离子体气12L/min,雾化气流量0.60L/min,观测高度15.0mm。
8.根据权利要求1所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤C中,采用LC与ICP-AES联用测定步骤A所得待测液中Fe2+含量的操作为:将LC色谱分离柱的出口端,联接到ICP-AES的气动雾化器的样品溶液入口端,然后将步骤A所得待测液注射进入LC,通过色谱柱将溶液中Fe3+-EDTA络合离子、游离Fe3+、游离Fe2+的不同形态分离,然后依序逐一分别从色谱柱中流出,最后由气动雾化器导入ICP-AES,通过ICP-AES测定从色谱柱中依次逐一流出组分的铁元素分析谱线的光谱信号强度,其中以所测得的最后一个铁元素光谱峰的信号强度计算Fe2+的浓度分量。
9.根据权利要求8所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:步骤C中,LC色谱分离条件为:取30~70μL步骤A所得待测液,注射进入高效液相色谱仪,通过金属阳离子色谱柱进行不同形态铁离子的有效分离;淋洗溶液为由0.0660mol/L氢氧化钾、0.0740mol/L甲酸、0.0070mol/L吡啶-2,6-二羧酸和0.0056mol/L硫酸钾组成的pH=4.1~4.3的缓冲溶液,淋洗溶液流速控制为1.0~2.5mL/min,色谱分离总时间5~14min。
10.根据权利要求1~4或6~9任一项所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:若LC与ICP-AES操作软件不能自动联机使用,采用如下操作:在启动LC进样后,立即运行ICP-AES以扫描方式采集铁的分析谱线的光谱信号强度,其中ICP-AES检测参数:冲洗时间10~20s,积分时间0.1s,重复扫描次数700~800次,其中扫描测得的最后一个铁元素光谱信号峰即为二价铁离子所产生。
11.根据权利要求5所述的测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法,其特征在于:若LC与ICP-AES操作软件不能自动联机使用,采用如下操作:在启动LC进样后,立即运行ICP-AES以扫描方式采集铁的分析谱线的光谱信号强度,其中ICP-AES检测参数:冲洗时间10~20s,积分时间0.1s,重复扫描次数700~800次,其中扫描测得的最后一个铁元素光谱信号峰即为二价铁离子所产生。
CN202010710520.7A 2020-07-22 2020-07-22 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法 Active CN111751357B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010710520.7A CN111751357B (zh) 2020-07-22 2020-07-22 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010710520.7A CN111751357B (zh) 2020-07-22 2020-07-22 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法

Publications (2)

Publication Number Publication Date
CN111751357A CN111751357A (zh) 2020-10-09
CN111751357B true CN111751357B (zh) 2022-05-24

Family

ID=73451127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010710520.7A Active CN111751357B (zh) 2020-07-22 2020-07-22 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法

Country Status (1)

Country Link
CN (1) CN111751357B (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108615A (en) * 1989-11-28 1992-04-28 Bio-Recovery Systems, Inc. Method for recovery of a metal ion from electroless plating solutions
EP1301625A2 (en) * 2000-03-28 2003-04-16 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
CN101688857A (zh) * 2007-06-29 2010-03-31 杰富意钢铁株式会社 金属试样的分析方法
CN102507854A (zh) * 2011-10-18 2012-06-20 攀钢集团江油长城特殊钢有限公司 稀盐酸浸取-edta容量法测定炼钢发热剂中金属铝含量
CN102519894A (zh) * 2011-12-21 2012-06-27 陕西省石油化工研究设计院 一种酸化用铁离子稳定剂稳定铁离子能力测定方法
CN102590411A (zh) * 2012-01-16 2012-07-18 中国水产科学研究院黄海水产研究所 Hplc-icp-ms联用技术检测水产品中二价镉离子的方法
CN103123976A (zh) * 2013-02-27 2013-05-29 上海大学 基于微生物燃料电池的Fe(II)EDTA再生方法
CN103357260A (zh) * 2012-03-29 2013-10-23 北京北科欧远科技有限公司 应用亚铁络合剂增强尿素的烟气脱硫脱硝一体化工艺
CN103387506A (zh) * 2013-07-07 2013-11-13 浙江树人大学 回收FeIIEDTA湿法络合脱硝废液生成EDTA铁钠盐的方法
CN103721550A (zh) * 2014-01-23 2014-04-16 环境保护部华南环境科学研究所 烟气同时脱硫脱硝脱VOCs吸收剂及其制备和应用
CN104086464A (zh) * 2014-06-13 2014-10-08 通辽市龙盛化工有限公司 一种h酸脱硝废气资源化利用的方法
CN104132933A (zh) * 2014-08-22 2014-11-05 武钢集团昆明钢铁股份有限公司 一种测定碳化硅耐火材料中游离铝含量的方法
CN104428249A (zh) * 2012-07-18 2015-03-18 UniZeo株式会社 Fe(II)置换β型沸石、包含其的气体吸附剂及其制造方法、以及一氧化氮及烃的除去方法
EP2916123A1 (en) * 2014-03-07 2015-09-09 Reagecon Diagnostics Ltd Use of nanoparticles in the preparation of calibration standards
CN104931485A (zh) * 2015-06-05 2015-09-23 天津市茂联科技有限公司 一种铜钴合金及铁矿合金中微量锗的检测方法
CN105833695A (zh) * 2016-05-03 2016-08-10 浙江天蓝环保技术股份有限公司 一种燃煤锅炉烟气湿法脱硫脱硝及废水处理装置及工艺
CN108693177A (zh) * 2017-04-12 2018-10-23 宁夏澍侍信息科技有限公司 一种快速测定脱硫体系中络合铁降解的方法
CN109001313A (zh) * 2018-07-04 2018-12-14 肇庆市创业帮信息技术有限公司 一种食品中重金属含量检测方法
EP3425375A1 (en) * 2017-07-05 2019-01-09 ARKRAY, Inc. Plasma spectroscopy analysis method
CN109655454A (zh) * 2019-01-28 2019-04-19 江苏澳华生物科技研究院有限公司 一种测定饲料中不同价态铁离子含量的方法
CN110672785A (zh) * 2019-11-05 2020-01-10 阳春新钢铁有限责任公司 一种焦炭中微量金属元素的检测方法及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285419B2 (en) * 2002-06-11 2007-10-23 The Board Of Trustees Of The University Of Illinois Analysis of mercury containing samples
CA2575675A1 (en) * 2004-07-30 2006-03-09 Adeza Biomedical Corporation Oncofetal fibronectin as a marker for disease and other conditions and methods for detection of oncofetal fibronectin
US7946155B2 (en) * 2007-09-19 2011-05-24 Albion Laboratories, Inc. Method for quantitatively determining unbound metal in formulations containing chelates
JP2010078588A (ja) * 2008-08-26 2010-04-08 Yazaki Corp 6価クロムの定量分析方法
CN103282556B (zh) * 2010-12-25 2016-06-29 并木精密宝石株式会社 Bi置换稀土类铁石榴石单晶和光学器件
US20160320381A1 (en) * 2011-09-25 2016-11-03 Theranos, Inc. Systems and methods for multi-analysis
CN110007036A (zh) * 2019-05-17 2019-07-12 河北省地质环境监测院 基于hplc-icp-ms联用技术的环境水体中不同砷形态的检测
CN111077136A (zh) * 2019-12-21 2020-04-28 邯郸钢铁集团有限责任公司 Icp-oes测定电镀锌预渡液中铁、锰含量的方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108615A (en) * 1989-11-28 1992-04-28 Bio-Recovery Systems, Inc. Method for recovery of a metal ion from electroless plating solutions
EP1301625A2 (en) * 2000-03-28 2003-04-16 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
CN101688857A (zh) * 2007-06-29 2010-03-31 杰富意钢铁株式会社 金属试样的分析方法
CN102507854A (zh) * 2011-10-18 2012-06-20 攀钢集团江油长城特殊钢有限公司 稀盐酸浸取-edta容量法测定炼钢发热剂中金属铝含量
CN102519894A (zh) * 2011-12-21 2012-06-27 陕西省石油化工研究设计院 一种酸化用铁离子稳定剂稳定铁离子能力测定方法
CN102590411A (zh) * 2012-01-16 2012-07-18 中国水产科学研究院黄海水产研究所 Hplc-icp-ms联用技术检测水产品中二价镉离子的方法
CN103357260A (zh) * 2012-03-29 2013-10-23 北京北科欧远科技有限公司 应用亚铁络合剂增强尿素的烟气脱硫脱硝一体化工艺
CN104428249A (zh) * 2012-07-18 2015-03-18 UniZeo株式会社 Fe(II)置换β型沸石、包含其的气体吸附剂及其制造方法、以及一氧化氮及烃的除去方法
CN103123976A (zh) * 2013-02-27 2013-05-29 上海大学 基于微生物燃料电池的Fe(II)EDTA再生方法
CN103387506A (zh) * 2013-07-07 2013-11-13 浙江树人大学 回收FeIIEDTA湿法络合脱硝废液生成EDTA铁钠盐的方法
CN103721550A (zh) * 2014-01-23 2014-04-16 环境保护部华南环境科学研究所 烟气同时脱硫脱硝脱VOCs吸收剂及其制备和应用
EP2916123A1 (en) * 2014-03-07 2015-09-09 Reagecon Diagnostics Ltd Use of nanoparticles in the preparation of calibration standards
CN104086464A (zh) * 2014-06-13 2014-10-08 通辽市龙盛化工有限公司 一种h酸脱硝废气资源化利用的方法
CN104132933A (zh) * 2014-08-22 2014-11-05 武钢集团昆明钢铁股份有限公司 一种测定碳化硅耐火材料中游离铝含量的方法
CN104931485A (zh) * 2015-06-05 2015-09-23 天津市茂联科技有限公司 一种铜钴合金及铁矿合金中微量锗的检测方法
CN105833695A (zh) * 2016-05-03 2016-08-10 浙江天蓝环保技术股份有限公司 一种燃煤锅炉烟气湿法脱硫脱硝及废水处理装置及工艺
CN108693177A (zh) * 2017-04-12 2018-10-23 宁夏澍侍信息科技有限公司 一种快速测定脱硫体系中络合铁降解的方法
EP3425375A1 (en) * 2017-07-05 2019-01-09 ARKRAY, Inc. Plasma spectroscopy analysis method
CN109211877A (zh) * 2017-07-05 2019-01-15 爱科来株式会社 等离子体分光分析方法
CN109001313A (zh) * 2018-07-04 2018-12-14 肇庆市创业帮信息技术有限公司 一种食品中重金属含量检测方法
CN109655454A (zh) * 2019-01-28 2019-04-19 江苏澳华生物科技研究院有限公司 一种测定饲料中不同价态铁离子含量的方法
CN110672785A (zh) * 2019-11-05 2020-01-10 阳春新钢铁有限责任公司 一种焦炭中微量金属元素的检测方法及其应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Alternative dissolution methods for analysis of niobium containing samples;Motlalepula Nete.et;《S. Afr. J. Chem》;20101231;第130-134页 *
Determination of chromium cobalt nickel gallium niobium scandium and zirconium in the blast furnace slag of vanadium titanium magnetite by inductively coupled plasma atomic emission spectrometry;Cheng Yong;《Materials Science and Engineering》;20181231;第1-8页 *
EDTA-(NH_4)_2FeSO_4络合剂脱除烟气中的氮氧化物;耿春香等;《环境工程学报》;20121205(第12期);第4615-4618页 *
EDTA掩蔽-络合物吸附催化波极谱法测定锌电解液中钴;杜娟等;《冶金分析》;20180315(第03期);第22-28页 *
EDTA络合滴定法测定硫酸铜废液中的铝;白小叶等;《黄金》;20141215(第12期);第74-76页 *
Evaluation of Fe(III)EDTA reduction with ascorbic acid in a wet denitrification system;Xinyu Zhu.et;《RSC Advances》;20191231;第24386–24393页 *
The regeneration of Fe-EDTA denitration solutions by nanoscale zero-valent iron;Wei Jiang.et;《RSC Advances》;20191231;第132-138页 *
光度法EDTA滴定法联合测定铌铁合金中铌和铝;王际祥等;《莱钢科技》;20160415(第02期);第46-48页 *
电感耦合等离子体光谱法测定黄铁矿和黄铜矿中的铁铜硫;马新荣等;《岩矿测试》;20111215(第06期);第756-760页 *
电感耦合等离子体原子发射光谱法测定钒钛高炉渣中钡;成勇等;《冶金分析》;20141115(第11期);第18-23页 *
电感耦合等离子体发射光谱法测定钕铁硼镀镍液中铁和铜;邹龙等;《电镀与涂饰》;20151015(第19期);第1112-1114页 *
铁络合物混合吸收体系脱除氮氧化物的研究;朱怀志等;《山东化工》;20190523(第10期);第237-239+242页 *

Also Published As

Publication number Publication date
CN111751357A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Bi et al. Analytical methodologies for aluminium speciation in environmental and biological samples–a review
CN103196880B (zh) 氢化物发生-原子荧光光谱法测定铁矿石中砷含量的方法
CN103499558A (zh) 一种用于测定水中汞浓度的系统及方法
Leśniewska et al. Elimination of interferences in determination of platinum and palladium in environmental samples by inductively coupled plasma mass spectrometry
CN108982379A (zh) 一种测定样品中硝酸盐和亚硝酸盐氮总量的方法和应用
Ferreira et al. Separation and preconcentration of cobalt after sorption onto Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-p-cresol
Ojeda et al. Automated on-line separation–preconcentration system for platinum determination by electrothermal atomic absorption spectrometry
WO2024016761A1 (zh) 一种饮用水中卤乙酸的气相色谱-质谱分析方法
Beiraghi et al. Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry
CN111751357B (zh) 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法
García et al. On-line removal of mass interferences in palladium determination by ICP-MS using modified capillaries coupled to micro-flow nebulizers
CN111751355B (zh) 测定Fe(Ⅱ)-EDTA络合脱硝液中二价铁离子含量的方法
CN111751356B (zh) 同时测定Fe-EDTA络合脱硝溶液中二价与三价铁离子浓度分量的方法
CN103776953A (zh) 一种锂电池三元正极材料中钴含量的测定方法
CN111189956B (zh) H2o2氧化离子色谱检测氯化钠样品中亚硝酸盐含量的方法
Tan et al. Determination of arsenic (III) and arsenic (V) in ferric chloride-hydrochloric acid leaching media by ion chromatography
CN105486801A (zh) 一种水玻璃旧砂表面粘结膜有害成分的测定方法
Coetzee et al. The separation and simultaneous determination of V (IV) and V (V) species complexed with EDTA by IC-ICP-OES
Gong et al. Synthesis of polyacrylacylaminourea chelating fiber and properties of concentration and separation of trace metal ions from samples
JP3422219B2 (ja) セレンの分析方法及びセレンの分析装置
Xu et al. Determination of gold in sludge and soil by sequential ICP-AES after preconcentration and separation with thiol-cotton fibre
CN103776910B (zh) 一种废气中氮氧化物分析系统
CN102901765B (zh) 用于测定溶液中Hg2+含量的电位滴定法
CN103308509A (zh) 高炉烟尘中镓和钪含量的测定方法
Tokalīoğlu et al. Determination of copper, cadmium, lead and bismuth in high-purity zinc metal samples by atomic absorption spectrometry after preconcentration using Amberlite XAD-1180 resin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant