JP5857344B2 - プラズマポーリング装置及び圧電体の製造方法 - Google Patents

プラズマポーリング装置及び圧電体の製造方法 Download PDF

Info

Publication number
JP5857344B2
JP5857344B2 JP2012526229A JP2012526229A JP5857344B2 JP 5857344 B2 JP5857344 B2 JP 5857344B2 JP 2012526229 A JP2012526229 A JP 2012526229A JP 2012526229 A JP2012526229 A JP 2012526229A JP 5857344 B2 JP5857344 B2 JP 5857344B2
Authority
JP
Japan
Prior art keywords
plasma
poling
substrate
electrode
poled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012526229A
Other languages
English (en)
Other versions
JPWO2012014278A1 (ja
Inventor
本多 祐二
祐二 本多
健 木島
健 木島
阿部 浩二
浩二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youtec Co Ltd
Original Assignee
Youtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co Ltd filed Critical Youtec Co Ltd
Publication of JPWO2012014278A1 publication Critical patent/JPWO2012014278A1/ja
Application granted granted Critical
Publication of JP5857344B2 publication Critical patent/JP5857344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based

Description

本発明は、プラズマによってポーリング処理を行うポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法に関する。
図3は、従来のポーリング装置を示す模式図である。
結晶33を10×10mmの2枚の平行平板からなる1対の電極35の中心に、機械的ポーリングが施されていない方向に電場が印加されるように挟持する。そして、電極35ごと結晶33をオイルバス37内のオイル36中に浸漬し、結晶33を浸漬したオイル36をヒーター38によって125℃まで加熱する。所定の温度に達した後、高圧電源39からリード線40を介して電極35間に1kV/cmの直流電場を10時間印加する。これにより、結晶33にポーリング処理が施される(例えば特許文献1参照)。
特開平10−177194(段落0018、図4)
前述した従来のポーリング処理方法では、被ポーリング物を、1対の電極の中心に挟持した状態でオイルに浸漬するという湿式的方法であるため、ポーリング処理が煩雑になるという課題がある。
本発明の一態様は、乾式法によって簡易的にポーリング処理を行えるポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法のいずれかを提供することを課題とする。
本発明の一態様は、被ポーリング基材に対向する位置にプラズマを形成することにより、前記被ポーリング基材にポーリング処理を行うことを特徴とするポーリング処理方法である。
また、本発明の一態様において、前記被ポーリング基材は誘電体を有する基材であることも可能である。
また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であることも可能である。
また、本発明の一態様において、前記ポーリング処理を行う際の前記被ポーリング基材の温度は250℃以下であることも可能である。
また、本発明の一態様において、前記被ポーリング基材に対向する位置に直流プラズマを形成した際の直流電圧または前記被ポーリング基材に対向する位置に高周波プラズマを形成した際の直流電圧成分が±50V〜±2kVであることも可能である。
また、本発明の一態様において、前記プラズマを形成する際の圧力が0.01Pa〜大気圧であることも可能である。
また、本発明の一態様において、前記プラズマを形成する際のプラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることが好ましい。
本発明の一態様は、上述したいずれかのポーリング処理方法によって前記強誘電体を有する基材にポーリング処理が行われ、前記強誘電体に圧電活性が与えられたことを特徴とする圧電体である。
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記電源及び前記ガス供給機構を制御する制御部と、
を具備し、
前記制御部は、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源及び前記ガス供給機構を制御することを特徴とするプラズマポーリング装置である。
本発明の一態様は、ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
前記第1の電源、前記第2の電源及び前記ガス供給機構を制御する制御部と、
を具備し、
前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電極及び前記ガス供給機構を制御することを特徴とするプラズマポーリング装置である。
また、本発明の一態様において、前記被ポーリング基材を加熱する加熱機構をさらに具備し、前記被ポーリング基材は誘電体を有する基材であることも可能である。
また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であることも可能である。
また、本発明の一態様において、前記ポーリング処理を行う際の前記ポーリング基材の温度を250℃以下に制御する温度制御機構を具備することも可能である。
また、本発明の一態様において、前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V〜±2kVであることも可能である。
また、本発明の一態様において、前記ポーリング処理を行う際の前記ポーリングチャンバー内の圧力を0.01Pa〜大気圧に制御する圧力制御機構を具備することも可能である。
また、本発明の一態様において、前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることが好ましい。ただし、Hを使用してポーリングする場合は被ポーリング材の表面をH還元に強い被膜で覆うことが望ましい。
本発明の一態様は、上述したいずれかのプラズマポーリング装置によって前記強誘電体を有する基材にポーリング処理が行われ、前記強誘電体に圧電活性が与えられたことを特徴とする圧電体である。
本発明の一態様は、強誘電体を有する基材を用意し、
前記基材に対向する位置にプラズマを形成することにより前記強誘電体にポーリング処理を行うことで、前記強誘電体に圧電活性を与えて圧電体を形成することを特徴とする圧電体の製造方法である。
また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
前記プラズマポーリング装置は、
ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、前記基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基材に対向して配置された対向電極と、
前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
を具備することも可能である。
また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
前記プラズマポーリング装置は、
ポーリングチャンバーと、
前記ポーリングチャンバー内に配置され、前記基材が保持される保持電極と、
前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基材に対向して配置された対向電極と、
前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
を具備することも可能である。
本発明の一態様によれば、乾式法によって簡易的にポーリング処理を行えるポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法のいずれかを提供することができる。
本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。 本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。 従来のポーリング装置を示す模式図である。
以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(第1の実施形態)
<プラズマポーリング装置>
図1は、本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。このプラズマポーリング装置はポーリング処理を行うための装置である。
プラズマポーリング装置はポーリングチャンバー1を有しており、ポーリングチャンバー1内の下方には被ポーリング基材2を保持する保持電極4が配置されている。被ポーリング基材2の詳細は後述するが、被ポーリング基材2は、例えば強誘電体を有する基材であり、種々の形状の基材を用いることができる。
保持電極4は高周波電源6に電気的に接続されており、保持電極4はRF印加電極としても作用する。保持電極4の周囲及び下部はアースシールド5によってシールドされている。なお、本実施形態では、高周波電源6を用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
ポーリングチャンバー1内の上方には、保持電極4に対向して平行の位置にガスシャワー電極(対向電極)7が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極は接地電位に接続されている。なお、本実施形態では、保持電極4に電源を接続し、ガスシャワー電極に接地電位を接続しているが、保持電極4に接地電位を接続し、ガスシャワー電極に電源を接続しても良い。
ガスシャワー電極7の下面には、被ポーリング基材2の表面側(ガスシャワー電極7と保持電極4との間の空間)にシャワー状のプラズマ形成用ガスを供給する複数の供給口(図示せず)が形成されている。プラズマ形成用ガスとしては、例えばAr、He、N、O、F、C、エアーなどを用いることができる。
ガスシャワー電極7の内部にはガス導入経路(図示せず)が設けられている。このガス導入経路の一方側は上記供給口に繋げられており、ガス導入経路の他方側はプラズマ形成用ガスの供給機構3に接続されている。また、ポーリングチャンバー1には、ポーリングチャンバー1の内部を真空排気する排気口が設けられている。この排気口は排気ポンプ(図示せず)に接続されている。
また、プラズマポーリング装置は、高周波電源6、プラズマ形成用ガスの供給機構3、排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述するポーリング処理を行うようにプラズマポーリング装置を制御するものである。
また、プラズマポーリング装置は、ポーリング処理を行う際のポーリング基材2の温度を250℃以下に制御する温度制御機構を有することが好ましい。
<ポーリング処理方法>
次に、上記プラズマポーリング装置を用いて被ポーリング基材にポーリング処理を行う方法について説明する。ここで、本発明によるポーリング処理方法とは、いわゆる強電界によるポーリング処理(即ち分極処理とは、電極を設けたセラミック片に直流高電界を印加し、強誘電体に圧電活性を与えるプロセス)の事を指すだけではなく、熱ポーリングまでを含めるものとする。この熱ポーリングは、中でも特に、誘電体を加熱しながら、直流電圧又は高周波を印加し、電圧又は高周波をきることで、予め誘電体に異方性を持たせることができる。熱エネルギーを与えることで誘電体内のイオンが運動しやすい状態となり、そこに電圧が印加されることでイオンの移動及び分極が誘起される結果、基材の全体が早くポーリングされる。
なお、熱ポーリング処理を行う場合は、上記のプラズマポーリング装置に加熱機構を付加し、この加熱機構によって被ポーリング基材を加熱する必要がある。
[1]被ポーリング基材
まず、被ポーリング基材2を用意する。被ポーリング基材2はポーリング処理が施される基材、例えば強誘電体を有する基材であるが、このポーリング処理は、超伝導性、誘電性、圧電性、焦電性、強誘電性、非線形光学特性を有する、全ての無機物、有機物に有効であるので、種々の被ポーリング基材を用いることも可能である。
被ポーリング基材2となり得る材料の具体例は、以下のとおりである。
TiO、MgTiO−CaTiO系、BaTiO系、CaSnO、SrTiO、PbTiO、CaTiO、MgTiO、SrTiO、CaTiO系:BaTiO系、BaO−R2O3−nTiO2系(R=Nd、Sm・・・、n=4、5・・・)、Al、ダイヤモンド系(ダイヤモンドライクカン等)、BN、SiC、BeO、AlN、BaTi5O11、Ba2Ti9O20、タングステンブロンズABO:Ba2NaNb5O15(BNN)、Ba2NaTa5O15 (BNT)、Sr2NaNb5O15 (SNN)、K3Li2Nb5O15 (KLN)、K2BiNb5O15 (KBN)、ペロブスカイト系、(K,Na,Li)(Nb,Ta,Sb)O、BixNa1−xTiO(BNT)、BixK1−xTiO(BKT)、BiFeO、SrBi2Ta29(SBT)、Bi4Ti312、Bi4―xLaTi12(BLT)、SrBiNb(SBN)、BiWO(BWO)、SiO2、LiNbO3、LiTaO3、Sr0.5Ba0.5Nb、KDP(KH2PO4)、C4H4O6NaK・4H2O、NaNO2、(NH2)2CS、K2SeO4、PbZrO3、(NH2)2CS、(NH4)SO4、NaNbO3、BaTiO、PbTiO、SrTiO、KNbO、NaNbO、BiFeO、(Na、La)(Mg、W)O、La1/3NbO、La1/3TaO、BaMgTa、SrNaSb12、ABRO(A:アルカリ土類、B:Fe,Ln、R:Mo,Mn,W,Ru,でBとRの原子価差2以上)、Bi2NiMnO6、Sr2FeMoO6、BaLnMn、NaxWO、Ln1/3NbO、Ba2In25、Sr2Fe25、SrNd、SrTa、LaTi、MgSiO、CaIrO、CuNMn、GaNMn、ZnNMn、CuNMn、CaMnO、FeTiO、LiNbO3、LiTaO3、Gd(MoO、SrTiO、KTaO、RFe2O4、La2-x Srx CuO4 、、Me13X(Meはイオン半径0.97Å(Cd2+)〜0.66Å(Mg2+)、X:ハロゲン)、Ni13I、BiFeO3、BiMnO3、Pb(Co1/21/2)O、Pb(Fe1/2Nb1/2)O、ABRO(A:アルカリ土類、B:Fe、Ln、R:Mo、Mn、W、Ru、BとRの原子価2以上)、Bi2NiMnO6 、YMnO、YbMnO、HoMnO、BaMnF、BaFeF、BaNiF、BaCoF、YFe、LuFe、TbMnO、DyMnO、Ba2Mg2Fe12O22、CuFeO、Ni、LiCu、LiV、LiCr、NaV、NaCr、CoCr、LiFeSi、NaCrSi、LiFeSi、NaCrSi、MnWO、TbMn、DyMn、HoMn、YMn R=Tb、Dy、Ho、Y、RbFe(MoO、PrGaSiO14、NdGaSiO14、Nd3Ga5SiO14、ABFeSi14 A=Ba、Sr、Ca B=Nb、T各種パイロクロア酸化物、水晶(SiO2)、LiNbO3、BaTiO3、PbTiO3(PT)、Pb(Zr,Ti)O3( PZT )、Pb(Zr,Ti,Nb)O3(PZTN)、PbNb2O6、PVF2、PMN-PZT, マグネシウムニオブ酸鉛-PZT系 >Pb(Mg1/3Nb2/3)O3 (PMN)-PZT、Pb(Ni1/3Nb2/3)O3 (PNN)-PZT、Pb(Mg1/3Nb2/3)O3 (PMN)-PT、Pb(Ni1/3Nb2/3)O3 (PNN)-PT、Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)、BaTiO3、(Sr1-x, Bax)TiO3、(Pb1-y, Bay)(Zr1-x, Tix)O3 (ただしx=0〜1、y=0〜1)、CdTiO3、HgTiO3、CaTiO3、GdFeO3、SrTiO3、PbTiO3、BaTiO3、PbTiO3、PbZrO3、Bi0.5Na0.5TiO3、Bi0.5K0.5TiO3、KNbO3、LaAlO3、FeTiO3,MgTiO3,CoTiO3,NiTiO3, CdTiO3、(K1-xNax)NbO3、K(Nb1-xTax)O3、(K1-xNax)(Nb1-yTay)O3、KNbO3、RbNbO3、TlNbO3、CsNbO3、AgNbO3、Pb(Ni1/3Nb2/3)O3, Ba(Ni1/3Nb2/3)O3、Pb(Sc1/2Nb1/2)O3、(Na1/2Bi1/2)TiO3, (K1/2Bi1/2)TiO3, (Li1/2Bi1/2)TiO3、Bi(Mg1/2Ti1/2)O3, Bi(Zn1/2Ti1/2)O3, Bi(Ni1/2Ti1/2)O3, (Bi,La)(Mg1/2Ti1/2)O3、 (A1+ 1/2A3+ 1/2)(B2+ 1/3B5+ 2/3)O3 (ここでA及びBには、A1+ = Li, Na, K, Ag、A2+=Pb, Ba, Sr, Ca、A3+= Bi, La, Ce, Nd、B1+= Li, Cu、B2+=Mg, Ni, Zn, Co, Sn, Fe, Cd, Cu, Cr、B3+= Mn, Sb, Al, Yb, In, Fe, Co, Sc, Y, Sn、B4+= Ti, Zr、B5+= Nb, Sb, Ta, Bi、B6+= W, Te, Re といった元素が入る。)、Pb(Mg1/3Nb2/3)O3 (PMN)、Pb(Mg1/3Ta2/3)O3 (PMTa)、Pb(Mg1/2W1/2)O3 (PMW)、Pb(Ni1/3Nb2/3)O3 (PNN)、Pb(Ni1/3Ta2/3)O3 (PNTa)、Pb(Ni1/2W1/2)O3 (PNW)、Pb(Zn1/3Nb2/3)O3 (PZN)、Pb(Zn1/3Ta2/3)O3 (PZTa)、Pb(Zn1/2W1/2)O3 (PZW)、Pb(Sc1/2Nb1/2)O3 (PScN)、Pb(Sc1/2Ta1/2)O3 (PScTa)、Pb(Cd1/3Nb2/3)O3 (PCdN)、Pb(Cd1/3Ta2/3)O3 (PCdT)、Pb(Cd1/2W1/2)O3 (PCdW)、Pb(Mn1/3Nb2/3)O3 (PMnN)、Pb(Mn1/3Ta2/3)O3 (PMnTa)、Pb(Mn1/2W1/2)O3 (PMnW)、Pb(Co1/3Nb2/3)O3 (PCoN)、Pb(Co1/3Ta2/3)O3 (PCoTa)、Pb(Co1/2W1/2)O3 (PCoW)、Pb(Fe1/2Nb1/2)O3 (PFN)、Pb(Fe1/2Ta1/2)O3 (PFTa)、Pb(Fe2/3W1/3)O3 (PFW)、Pb(Cu1/3Nb2/3)O3(PCuN)、Pb(Yb1/2Nb1/2)O3 (PYbN)、Pb(Yb1/2Ta1/2)O3 (PYbTa)、Pb(Yb1/2W1/2)O3 (PYbW)、Pb(Ho1/2Nb1/2)O3 (PHoN)、Pb(Ho1/2Ta1/2)O3 (PHoTa)、Pb(Ho1/2W1/2)O3? (PHoW)、Pb(In1/2Nb1/2)O3 (PInN)、Pb(In1/2Ta1/2)O3 (PInTa)、Pb(In1/2W1/2)O3 (PInW)、Pb(Lu1/2Nb1/2)O3 (PLuN)、Pb(Lu1/2Ta1/2)O3 (PLuTa)、Pb(Lu1/2W1/2)O3 (PLuW)、Pb(Er1/2Nb1/2)O3 (PErN)、Pb(Er1/2Ta1/2)O3 (PErT)、Pb(Sb1/2Nb1/2)O3 (PSbN)、Pb(Sb1/2Ta1/2)O3 (PSbT)、BaZrO3-BaTiO3、BaTiO3-SrTiO3、Pb(Mg1/3Nb2/3)O3、Pb(Sc1/2Nb1/2)O3、Pb(Mg1/3Nb2/3)O3(PMN)、PMN-PbTiO3、PMN-PZT、非線形光学材料(無機物質)例えば、ガーネット結晶( Y A G , Y A O , Y S O , G SG G , G G G ) でもよいし、フッ化物結晶( Y L F 、L i S A F 、L i C A F ) でも、タングステート結晶( K G W 、K Y W ) 、バナデート結晶( Y V O 4 、G d V O 4 など) でも良い。他にB B O 、C B O 、C L B O 、YC O B 、G d C O B 、G d Y C O B 、K T P 、K T A 、K D P 、L i N b O 3 でもよい。
また、有機非線形光学材料として、(R)-(+)-2-(α-メチルベンジルアミノ)-5-ニトロピリジン(分子式/分子量:C13H13N3O2=243.26)、(S)-(-)-2-(α-メチルベンジルアミノ)-5-ニトロピリジン(分子式/分子量:C13H13N3O2=243.26)、(S)-(-)-N-(5-ニトロ-2-ピリジル)アラニノール(分子式/分子量:C8H11N3O3=197.19)、(S)-(-)-N-(5-ニトロ-2-ピリジル)プロリノール(分子式/分子量:C10H13N3O3=223.23)、(S)-N-(5-ニトロ-2-ピリジル)フェニルアラニノール(分子式/分子量:C14H15N3O3=273.29)、1,3-ジメチル尿素(分子式/分子量:C3H8N2O=88.11)、2-(N,N-ジメチルアミノ)-5-ニトロアセトアニリド(分子式/分子量:C10H13N3O3=223.23)、2-アミノ-3-ニトロピリジン(分子式/分子量:C5H5N3O2=139.11)、2-アミノ-5-ニトロピリジン(分子式/分子量:C5H5N3O2=139.11)、2-アミノフルオレン(分子式/分子量:C13H11N=181.23)、2-クロロ-3,5-ジニトロピリジン(分子式/分子量:C5H2ClN3O4=203.54)、2-クロロ-4-ニトロ-N-メチルアニリン(分子式/分子量:C7H7ClN2O2=186.60)、2-クロロ-4-ニトロアニリン(分子式/分子量:C6H5ClN2O2=172.57)、2-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)、2-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、3-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)、3-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、4-アミノ-4'-ニトロビフェニル(分子式/分子量:C12H10N2O2=214.22)、4-ジメチルアミノ-4'-ニトロビフェニル(分子式/分子量:C14H14N2O2=242.27)、4-ジメチルアミノ-4'-ニトロスチルベン(分子式/分子量:C16H16N2O2=268.31)、4-ヒドロキシ-4'-ニトロビフェニル(分子式/分子量:C12H9NO3=215.20)、4-メトキシ-4'-ニトロビフェニル(分子式/分子量:C13H11NO3=229.23)、4-メトキシ-4'-ニトロスチルベン(分子式/分子量:C15H13NO3=255.27)、4-ニトロ-3-ピコリンN-オキシド(分子式/分子量:C6H6N2O3=154.12)、4-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、5-ニトロインドール(分子式/分子量:C8H6N2O2=162.15)、5-ニトロウラシル(分子式/分子量:C4H3N3O4=157.08)、N-(2,4-ジニトロフェニル)-L-アラニンメチル(分子式/分子量:C10H11N3O6=269.21)、N-シアノメチル-N-メチル-4-ニトロアニリン(分子式/分子量:C9H9N3O2=191.19)、N-メチル-4-ニトロ-o-トルイジン(分子式/分子量:C8H10N2O2=166.18)、N-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)などがあり、これらを被ポーリング基材2として用いても良いが、これらに限定されるものではない。
[2]ポーリング処理
次に、被ポーリング基材2をポーリングチャンバー1内に挿入し、このポーリングチャンバー1内の保持電極4上に被ポーリング基材2を保持する。
次いで、被ポーリング基材2にポーリング処理を施す。
詳細には、排気ポンプによってポーリングチャンバー1内を真空排気する。次いで、ガスシャワー電極7の供給口からシャワー状のArなどのプラズマ形成用ガスを、ポーリングチャンバー1内に導入して被ポーリング基材2の表面に供給する。この供給されたプラズマ形成用ガスは、保持電極4とアースシールド5との間を通ってポーリングチャンバー1の外側へ排気ポンプによって排気される。そして、プラズマ形成用ガスの供給量と排気のバランスにより、所定の圧力、プラズマ形成用ガス流量に制御することによりポーリングチャンバー1内をプラズマ形成用ガス雰囲気とし、高周波電源6により例えば380kHz、13.56MHzの高周波(RF)を印加し、プラズマを発生させることにより被ポーリング基材2にポーリング処理を行う。このポーリング処理は、圧力が0.01Pa〜大気圧で、電源が直流電源、高周波電源又はマイクロ波電源で、処理温度250℃以下で、プラズマを形成する際の直流電圧成分が±50V〜±2kVである条件で行うことが好ましい。次いで、ポーリング処理を所定時間行った後に、ガスシャワー電極7の供給口からのプラズマ形成用ガスの供給を停止し、ポーリング処理を終了する。
例えば被ポーリング基材2として強誘電体を有する基材を用いた場合、上記のようなポーリング処理を行うことで、強誘電体に圧電活性を与えることができ、圧電体を製造することができる。
本実施形態によれば、被ポーリング基材2に対向する位置にプラズマを形成することにより、被ポーリング基材2にポーリング処理を行うことができる。つまり、乾式法によって簡易的にポーリング処理を行うことが可能となる。
また、図3に示す従来のポーリング装置は、バルク材にポーリング処理を行う装置であり、強誘電体膜のような薄膜からなる基材にポーリング処理を行うことは困難であるのに対し、本実施形態によるプラズマポーリング装置は、強誘電体膜のような薄膜からなる基材にポーリング処理を行うことが容易である。
また、本実施形態によるプラズマポーリング装置では、ウエハ上に形成した強誘電体膜にポーリング処理を行う際にチップ状に個片化しなくてもポーリング処理を行うことができる。
また、被ポーリング基材の厚さに応じて電源に必要な電圧は異なるが、本実施形態によるプラズマポーリング装置では、従来のポーリング装置に比べて低い電源電圧でポーリング処理が可能であるため、従来のポーリング装置より大きな電源設備を必要としない。
また、本実施形態によるプラズマポーリング装置では、プラズマを用いてポーリング処理を行うため、従来のポーリング装置に比べてポーリング処理時間を短くすることができ、圧電体の生産性を向上させることができる。
また、本実施形態によるプラズマポーリング装置では、従来のポーリング装置のようにオイルを使用しないため、オイルが気化して作業者の作業環境を悪化させることがない。
(第2の実施形態)
<プラズマポーリング装置>
図2は、本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図であり、図1と同一部分には同一符号を付し、異なる部分についてのみ説明する。
保持電極4は切り替えスイッチ8aを介して高周波電源6a及び接地電位に電気的に接続されており、切り替えスイッチ8aによって保持電極4には高周波電力又は接地電位が印加されるようになっている。また、ガスシャワー電極7は切り替えスイッチ8bを介して高周波電源6b及び接地電位に電気的に接続されており、切り替えスイッチ8bによってガスシャワー電極7には高周波電力又は接地電位が印加されるようになっている。なお、本実施形態では、高周波電源6a,6bを用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
また、プラズマポーリング装置は、切り替えスイッチ8a,8b、高周波電源6a,6b、プラズマ形成用ガスの供給機構3、排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述するポーリング処理を行うようにプラズマポーリング装置を制御するものである。
<ポーリング処理方法>
次に、上記プラズマポーリング装置を用いて被ポーリング基材にポーリング処理を行う方法について説明する。
[1]被ポーリング基材
まず、被ポーリング基材2を用意する。被ポーリング基材2は第1の実施形態と同様の基材を用いることができる。
[2]ポーリング処理
次に、第1の実施形態と同様に、ポーリングチャンバー1内の保持電極4上に被ポーリング基材2を保持する。
(1)第1の接続状態によって高周波電源6a,6b及び接地電位を保持電極4及びガスシャワー電極7に接続してポーリング処理を施す場合
第1の接続状態は、切り替えスイッチ8aによって高周波電源6aと保持電極4を接続し、切り替えスイッチ8bによって接地電位とガスシャワー電極7を接続した状態である。この状態によって被ポーリング基材2にポーリング処理を施す具体的な方法は、第1の実施形態と同様であるので説明を省略する。
(2)第2の接続状態によって高周波電源6a,6b及び接地電位を保持電極4及びガスシャワー電極7に接続してポーリング処理を施す場合
第2の接続状態は、切り替えスイッチ8aによって接地電位と保持電極4を接続し、切り替えスイッチ8bによって高周波電源6bとガスシャワー電極7を接続した状態である。この状態によって被ポーリング基材2にポーリング処理を施す具体的な方法は以下のとおりである。
排気ポンプによってポーリングチャンバー1内を真空排気する。次いで、ガスシャワー電極7の供給口からシャワー状のArなどのプラズマ形成用ガスを、ポーリングチャンバー1内に導入して被ポーリング基材2の表面に供給する。この供給されたプラズマ形成用ガスは、保持電極4とアースシールド5との間を通ってポーリングチャンバー1の外側へ排気ポンプによって排気される。そして、プラズマ形成用ガスの供給量と排気のバランスにより、所定の圧力、プラズマ形成用ガス流量に制御することによりポーリングチャンバー1内をプラズマ形成用ガス雰囲気とし、高周波電源6bにより例えば380kHz、13.56MHzの高周波(RF)をガスシャワー電極7に印加し、プラズマを発生させることにより被ポーリング基材2にポーリング処理を行う。このポーリング処理は、圧力が0.01Pa〜大気圧で、電源が直流電源、高周波電源又はマイクロ波電源で、処理温度250℃以下で、プラズマを形成する際の直流電圧成分が±50V〜±2kVである条件で行うことが好ましい。次いで、ポーリング処理を所定時間行った後に、ガスシャワー電極7の供給口からのプラズマ形成用ガスの供給を停止し、ポーリング処理を終了する。
例えば被ポーリング基材2として強誘電体を有する基材を用いた場合、上記のようなポーリング処理を行うことで、強誘電体に圧電活性を与えることができ、圧電体を製造することができる。
本実施形態においても第1の実施形態と同様の効果を得ることができる。
25重量%Pb15%過剰ゾルゲルPZT溶液(Pb/Zr/Ti=115/52/48)を用いてスピンコートを行った。これにより、ウエハ上にPZT溶液を塗布した。一回当たり塗布量は500μLとし、スピン条件は以下の条件を用いてPZT厚膜塗布を行った。
(スピン条件)
0〜300rpmまで3秒で上昇、3秒保持
300〜500rpmまで5秒で上昇、5秒保持
500〜1500rpmまで5秒で上昇、90秒保持
塗布毎に、乾燥(水分除去)工程として250℃に加熱したホットプレート上で30秒保持し、水分除去を行った。次に、仮焼成工程としてロータリポンプで真空引きを行い、到達真空度は10‐1 Pa とした。次にN2を大気圧まで満たし、450℃、90秒間加熱して有機分の分解除去を行った。
上記の塗布、乾燥、仮焼成を3、6、9、12、15回繰り返し、焼結炉で酸素雰囲気下で、700℃、5分間の結晶化処理を行い、それぞれ全膜厚1、2、3、4、5umのPZT厚膜を作製した。
上記のゾルゲル法で作成したPZT厚膜に対して、図1に示すプラズマポーリング装置を用い、分極処理を行った。
電源は、380kHzおよび13.56MHzのRF電源を使用した。PZTの膜厚で処理条件は変化するが、圧力1〜30Pa、RF出力70〜700w、Arガス15〜30sccm、温度は25℃、処理時間1〜5分の条件で処理を行う。基本的にはRF電源のVdcモニターを参考に、膜厚1μmに対しVdc=50vの条件で処理を行った。つまり、膜厚1、2、3、4、5μmの場合で、それぞれ、Vdc=50、100、150、200、250Vであった。時間は全て1分間行った。
その結果、分極処理前の圧電特性d33は、それぞれ市販のd33メーターで測定したところ、d33=14、23、14、8、13pm/Vであった数値が、分極処理後は、d33=450、420、350、440、400pm/Vと格段に向上した。従って、PZT厚膜に対向する位置にプラズマを形成することにより、PZT厚膜にポーリング処理を行うことで、圧電特性が格段に向上することを確認した。
1…ポーリングチャンバー
2…被ポーリング基材
3…プラズマ形成用ガスの供給機構
4…保持電極
5…アースシールド
6,6a,6b…高周波電源
7,7a,7b…ガスシャワー電極(対向電極)
8a,8b…切り替えスイッチ
33…結晶
35…1対の電極
36…オイル
37…オイルバス
38…ヒーター
39…高圧電源
40…リード線

Claims (8)

  1. ポーリングチャンバーと、
    前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
    前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
    前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
    前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
    前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
    前記第1の電源、前記第2の電源及び前記ガス供給機構を制御する制御部と、
    を具備し、
    前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
    前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
    前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電極及び前記ガス供給機構を制御することを特徴とするプラズマポーリング装置。
  2. 請求項1において、
    前記被ポーリング基材を加熱する加熱機構をさらに具備し、
    前記被ポーリング基材は誘電体を有する基材であることを特徴とするプラズマポーリング装置。
  3. 請求項1において、
    前記被ポーリング基材は強誘電体を有する基材であることを特徴とするプラズマポーリング装置。
  4. 請求項において、
    前記ポーリング処理を行う際の前記ポーリング基材の温度を250℃以下に制御する温度制御機構を具備することを特徴とするプラズマポーリング装置。
  5. 請求項またはにおいて、
    前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V〜±2kVであることを特徴とするプラズマポーリング装置。
  6. 請求項乃至のいずれか一項において、
    前記ポーリング処理を行う際の前記ポーリングチャンバー内の圧力を0.01Pa〜大気圧に制御する圧力制御機構を具備することを特徴とするプラズマポーリング装置。
  7. 請求項乃至のいずれか一項において、
    前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることを特徴とするプラズマポーリング装置。
  8. 強誘電体を有する基材を用意し、
    前記基材に対向する位置にプラズマを形成することにより前記強誘電体にポーリング処理を行うことで、前記強誘電体に圧電活性を与えて圧電体を形成し、
    前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
    前記プラズマポーリング装置は、
    ポーリングチャンバーと、
    前記ポーリングチャンバー内に配置され、前記基材が保持される保持電極と、
    前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基材に対向して配置された対向電極と、
    前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
    前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
    前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
    を具備することを特徴とする圧電体の製造方法。
JP2012526229A 2010-07-27 2010-07-27 プラズマポーリング装置及び圧電体の製造方法 Active JP5857344B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062599 WO2012014278A1 (ja) 2010-07-27 2010-07-27 ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2012014278A1 JPWO2012014278A1 (ja) 2013-12-12
JP5857344B2 true JP5857344B2 (ja) 2016-02-10

Family

ID=45529526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526229A Active JP5857344B2 (ja) 2010-07-27 2010-07-27 プラズマポーリング装置及び圧電体の製造方法

Country Status (3)

Country Link
US (1) US20130153813A1 (ja)
JP (1) JP5857344B2 (ja)
WO (1) WO2012014278A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20070350A1 (it) * 2007-02-23 2008-08-24 Univ Milano Bicocca Metodo di lavorazine a plasma atmosferico per il trattamento dei materiali
CN109336586B (zh) * 2018-11-30 2022-05-20 江西科技学院 BFO-ReFeO3-PZT多铁性固溶体及其制备方法
US11283004B2 (en) 2018-12-27 2022-03-22 Areesys Technologies, Inc. Method and apparatus for poling polymer thin films
US11910715B2 (en) 2018-12-27 2024-02-20 Creesense Microsystems Inc. Method and apparatus for poling polymer thin films
US11282729B2 (en) 2018-12-27 2022-03-22 Areesys Technologies, Inc. Method and apparatus for poling polymer thin films
CN109809815B (zh) * 2019-03-18 2021-10-01 中国科学院上海硅酸盐研究所 一种具有高饱和极化以及低剩余极化的无铅铌酸钠基反铁电陶瓷及其制备方法
TWI751524B (zh) * 2020-04-10 2022-01-01 馗鼎奈米科技股份有限公司 壓電薄膜之電極化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130277A (ja) * 1985-08-09 1987-06-12 Toa Nenryo Kogyo Kk アモルフアスシリコン薄膜製造方法および装置
JPH04154967A (ja) * 1990-10-16 1992-05-27 Nikon Corp 対向磁極式スパッタリング装置
JP2000115895A (ja) * 1998-03-23 2000-04-21 Hosiden Corp エレクトレットコンデンサマイクロホン及びその製造方法
JP2000507392A (ja) * 1996-03-21 2000-06-13 アライドシグナル・インコーポレーテッド 改良された圧電セラミック―ポリマー複合材料
JP2005262108A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 成膜装置及び圧電材料の製造方法
JP2007121933A (ja) * 2005-10-31 2007-05-17 Fujikura Ltd 分極反転構造の作製方法
JP2009129942A (ja) * 2007-11-20 2009-06-11 Utec:Kk プラズマ処理装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH342980A (de) * 1950-11-09 1959-12-15 Berghaus Elektrophysik Anst Verfahren zur Diffusionsbehandlung von Rohren aus Eisen und Stahl oder deren Legierungen
US3150880A (en) * 1963-04-01 1964-09-29 Jimmy A Gust Snow sled
US3761746A (en) * 1971-11-08 1973-09-25 Zenith Radio Corp Poling of ferro-electric substrates
FR2446045A1 (fr) * 1979-01-04 1980-08-01 Thomson Csf Transducteur piezo-electrique a element en polymere et son procede de fabrication
FR2465320A1 (fr) * 1979-09-14 1981-03-20 Thomson Csf Film de materiau composite piezo-electrique et son procede de fabrication
US4392178A (en) * 1980-10-16 1983-07-05 Pennwalt Corporation Apparatus for the rapid continuous corona poling of polymeric films
JPS6015134A (ja) * 1983-07-07 1985-01-25 Unitika Ltd 圧電性,焦電性フイルムの製造方法
US4565615A (en) * 1984-11-01 1986-01-21 Pennwalt Corporation Glow discharge stabilization of piezoelectric polymer film
US4824724A (en) * 1985-06-05 1989-04-25 Tdk Corporation Magnetic recording medium
FR2583579B1 (fr) * 1985-06-14 1987-08-07 Thomson Csf Procede d'obtention d'un materiau piezoelectrique et dispositif de mise en oeuvre
JP2532209B2 (ja) * 1986-04-04 1996-09-11 ティーディーケイ株式会社 磁気記録媒体
JPH03150880A (ja) * 1989-11-08 1991-06-27 Toyota Motor Corp 圧電セラミックスの製造方法
JP3227522B2 (ja) * 1992-10-20 2001-11-12 株式会社日立製作所 マイクロ波プラズマ処理方法及び装置
JP3476932B2 (ja) * 1994-12-06 2003-12-10 シャープ株式会社 強誘電体薄膜及び強誘電体薄膜被覆基板並びに強誘電体薄膜の製造方法
JP3133922B2 (ja) * 1995-06-09 2001-02-13 シャープ株式会社 強誘電体薄膜被覆基板、その製造方法、及びキャパシタ構造素子
JPH09167755A (ja) * 1995-12-15 1997-06-24 Nec Corp プラズマ酸化膜処理装置
KR100197157B1 (ko) * 1996-07-16 1999-06-15 박원훈 마이크로파를 이용한 강유전, 고유전, 전왜, 반도성, 또는 전도성 세라믹 박막의 급속 열처리 방법
US5951908A (en) * 1998-01-07 1999-09-14 Alliedsignal Inc. Piezoelectrics and related devices from ceramics dispersed in polymers
US6376090B1 (en) * 1998-09-25 2002-04-23 Sharp Kabushiki Kaisha Method for manufacturing a substrate with an oxide ferroelectric thin film formed thereon and a substrate with an oxide ferroelectric thin film formed thereon
JP2000328223A (ja) * 1999-05-25 2000-11-28 Agency Of Ind Science & Technol 積層構造体及びその原料粉、及び、圧電アクチュエータ
JP3967603B2 (ja) * 2001-07-10 2007-08-29 株式会社クラレ 活性炭及びその製造方法並びに電気二重層キャパシタ用分極性電極
KR100737759B1 (ko) * 2002-12-20 2007-07-10 에이에스엠엘 네델란즈 비.브이. 리소그래피 투영장치의 구성요소의 표면을 세정하는 방법, 리소그래피 투영장치, 디바이스 제조방법, 및 세정장치
US20040151978A1 (en) * 2003-01-30 2004-08-05 Huang Wen C. Method and apparatus for direct-write of functional materials with a controlled orientation
US7391706B2 (en) * 2003-10-31 2008-06-24 Samsung Electronics Co., Ltd. Data storage device including conductive probe and ferroelectric storage medium
JP4603348B2 (ja) * 2004-12-20 2010-12-22 エア・ウォーター株式会社 高分子フィルム表面の親水化処理方法およびそれにより得られる高分子フィルム、ならびにそれを用いた偏光板
JP4691366B2 (ja) * 2005-02-18 2011-06-01 株式会社アルバック 有機圧電焦電体膜の形成方法
US7558913B2 (en) * 2006-06-20 2009-07-07 Microsoft Corporation Atomic commit of cache transfer with staging area
JP4844750B2 (ja) * 2007-03-20 2011-12-28 セイコーエプソン株式会社 圧電素子、インクジェット式記録ヘッド、およびインクジェットプリンター
DE102007027738B4 (de) * 2007-06-15 2009-07-09 Siemens Ag Verfahren und Vorrichtung zur Visualisierung eines tomographischen Volumendatensatzes unter Nutzung der Gradientenmagnitude
US20090230089A1 (en) * 2008-03-13 2009-09-17 Kallol Bera Electrical control of plasma uniformity using external circuit
JP5410686B2 (ja) * 2008-03-21 2014-02-05 富士フイルム株式会社 圧電体膜の製造方法、成膜装置および圧電体膜
US8529987B2 (en) * 2009-08-04 2013-09-10 The Boeing Company In-process orientation of particles in a direct-write ink to control electrical characteristics of an electrical component being fabricated

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130277A (ja) * 1985-08-09 1987-06-12 Toa Nenryo Kogyo Kk アモルフアスシリコン薄膜製造方法および装置
JPH04154967A (ja) * 1990-10-16 1992-05-27 Nikon Corp 対向磁極式スパッタリング装置
JP2000507392A (ja) * 1996-03-21 2000-06-13 アライドシグナル・インコーポレーテッド 改良された圧電セラミック―ポリマー複合材料
JP2000115895A (ja) * 1998-03-23 2000-04-21 Hosiden Corp エレクトレットコンデンサマイクロホン及びその製造方法
JP2005262108A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 成膜装置及び圧電材料の製造方法
JP2007121933A (ja) * 2005-10-31 2007-05-17 Fujikura Ltd 分極反転構造の作製方法
JP2009129942A (ja) * 2007-11-20 2009-06-11 Utec:Kk プラズマ処理装置

Also Published As

Publication number Publication date
JPWO2012014278A1 (ja) 2013-12-12
US20130153813A1 (en) 2013-06-20
WO2012014278A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5764780B2 (ja) ポーリング処理方法及び圧電体の製造方法
JP5857344B2 (ja) プラズマポーリング装置及び圧電体の製造方法
JP5313792B2 (ja) ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置
JP5507097B2 (ja) ペロブスカイト型酸化物とその製造方法、圧電体、圧電素子、液体吐出装置
EP2549558B1 (en) Epitaxial oxide film, piezoelectric film, piezoelectric film element, liquid discharge head using the piezoelectric film element, and liquid discharge apparatus
JP5290551B2 (ja) ペロブスカイト型酸化物とその製造方法、圧電体、圧電素子、液体吐出装置
JP5253894B2 (ja) 強誘電体膜、圧電素子、及び液体吐出装置
JP5253895B2 (ja) 強誘電体膜、圧電素子、及び液体吐出装置
JP5623134B2 (ja) ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置
JP2009252789A (ja) 圧電材料および圧電素子
JP2009252790A (ja) 圧電材料および圧電素子
JP5838417B2 (ja) ポーリング処理方法、磁場ポーリング装置及び圧電体膜
JP5927475B2 (ja) ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
Benabdallah et al. Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering
JP6149208B2 (ja) ポーリング処理方法、磁場ポーリング装置及び圧電体膜
JP4905640B2 (ja) 圧電素子、液体噴射ヘッド、および液体噴射装置
Zhong et al. Electrical properties of Pb (Mg1/3Nb2/3) O3–PbTiO3 ceramics modified with WO3
JPWO2004079059A1 (ja) (001)配向したペロブスカイト膜の形成方法、およびかかるペロブスカイト膜を有する装置
JP5345868B2 (ja) ペロブスカイト型酸化物膜、強誘電体、圧電素子、液体吐出装置
Tantigate et al. Preparation of Pb (Mg13Nb23) O3 PbTiO3 thin films on silicon substrates by pulsed laser deposition
Park et al. Relaxor-based ferroelectric single crystals for electromechanical actuators
JP5110703B2 (ja) ペロブスカイト型酸化物膜、強誘電体、圧電素子、液体吐出装置
Xie et al. Phase transition, domain structure and electrical properties of Mn-doped 0.3 Pb (In1/2Nb1/2) O3-0.4 Pb (Mg1/3Nb2/3) O3-0.3 PbTiO3 crystals
JP2013179318A (ja) 圧電材料、液体噴射ヘッドおよび液体噴射装置
JP5408192B2 (ja) 液体噴射ヘッドおよび液体噴射装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151113

R150 Certificate of patent or registration of utility model

Ref document number: 5857344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250