JP3227522B2 - マイクロ波プラズマ処理方法及び装置 - Google Patents

マイクロ波プラズマ処理方法及び装置

Info

Publication number
JP3227522B2
JP3227522B2 JP28168092A JP28168092A JP3227522B2 JP 3227522 B2 JP3227522 B2 JP 3227522B2 JP 28168092 A JP28168092 A JP 28168092A JP 28168092 A JP28168092 A JP 28168092A JP 3227522 B2 JP3227522 B2 JP 3227522B2
Authority
JP
Japan
Prior art keywords
electrode
vacuum vessel
substrate
frequency
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28168092A
Other languages
English (en)
Other versions
JPH06128749A (ja
Inventor
琢也 福田
淳二 佐藤
史幸 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28168092A priority Critical patent/JP3227522B2/ja
Priority to KR1019930021517A priority patent/KR940010866A/ko
Priority to US08/137,974 priority patent/US5449411A/en
Publication of JPH06128749A publication Critical patent/JPH06128749A/ja
Application granted granted Critical
Publication of JP3227522B2 publication Critical patent/JP3227522B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10S156/916Differential etching apparatus including chamber cleaning means or shield for preventing deposits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はプラズマを用いた基板処
理装置及び方法に係り、特に薄膜を形成するマイクロ波
プラズマCVD装置に好適な、稼動率の向上、メンテナ
ンス容易化に関する。
【0002】
【従来の技術】従来のマイクロ波プラズマ処理装置にお
いて、薄膜形成等のプラズマ処理をした後に、装置内部
を、大気開放せずに洗浄する方策として、特開平1−2
31320〜231323号公報に記載のように基板を
処理する真空容器壁に高周波を印加し、壁面付着物をエ
ッチングにより除去するものがある。
【0003】
【発明が解決しようとする課題】上記従来方法は、高周
波を印加する真空容器内壁の洗浄については考慮されて
いるが、最も洗浄を必要とする基板ホルダ周りの洗浄に
ついては考慮されておらず、また、印加周波数の最適化
がなされていないため、高周波を印加しても洗浄効果が
上がらない、あるいは洗浄を進めると内壁のスパッタが
進み、金属汚染が広がるといった問題があった。また真
空容器壁を電極とするため、他の装置部品との絶縁を取
るのに多大な費用がかかるといった他に、安全性に対し
ても問題があった。
【0004】本発明の目的は、基板ホルダまわりの洗浄
を十分に行えるようにすること、内壁のスパッタによる
金属汚染を防止すること、及び絶縁のためのコストアッ
プを抑制することにある。
【0005】
【課題を解決するための手段】上記の目的は、 1)洗浄の際に印加する高周波をイオンが追随できる周
波数にする、 2)主に高周波を印加する箇所は基板ホルダ部にする、 3)洗浄の際に高周波を印加する電極は、その電極の表
面に立てた法線が真空容器内壁面の洗浄を要する面に達
する形状とする、 4)複数の電極を用いる場合にはそれぞれの電極を独立
に制御する、 ことで達成される。
【0006】
【作用】真空容器内壁面をプラズマにより洗浄する場
合、洗浄にはプラズマ中のイオンとラジカルが関与す
る。ラジカルは拡散方程式に従い広がっていくが、イオ
ンの運動は電界により左右される。洗浄、すなわち、壁
面付着物のエッチングによる除去では、付着物の材質に
よりエッチング特性は異なる。一般的には、ラジカルだ
けよりはイオンが付着物に到達した方が、エッチングエ
ネルギーとして衝突エネルギーが与えられるため、エッ
チング速度はより速くなる。特に絶縁物、例えば、Si
2,SiN等はイオンの衝突エネルギーばかりでな
く、イオンそのものとの反応によりエッチングが進行す
る。このため、洗浄には付着物のある所にイオンを到達
させることが効果的である。
【0007】プラズマ中のイオンに電界が作用すると、
イオンは電界により移動する。しかし印加される電界が
高周波となり、その周波数fがある程度高く(f>1M
Hz)なると、イオンはその電界の変化に追随できなく
なり、イオンは高周波電界に対しては動かなくなる。一
般に、イオンが電界の変化に追随できるというのは、イ
オンが電界の方向に1mm以上動く場合をいう。イオン
が追随できる周波数の限界は、イオンの質量によっても
異なるが、たとえば、Fイオンの場合、1MHz以下であ
る。一方、電子は質量が小さいため、イオンが追随でき
ない高周波電界にも追随できる。したがって、高周波を
印加している電極には電子のみが到達するようになる。
このため電極電位はプラズマに対し負の電位を有するよ
うになる。この誘起直流電位によりイオンが電極に引か
れて衝突する。従って洗浄の際にイオンが追随できない
周波数の電界が印加された場合には、高周波が印加され
る箇所は、直流電位に引かれて到達したイオンにより洗
浄が進行するが、高周波が印加されない所ではほとんど
イオンによる洗浄が進まない状況となる。一方、イオン
が追随できる高周波を印加した場合には、電極にかかる
高周波電界によりプラズマ中のイオンは、電極の法線方
向に平行な往復運動をする。このため、この場合には電
極ばかりでなく、電極表面の法線方向にある物体面にも
イオンが到達し、その面の洗浄も進行する。ただし、そ
のイオンの到達速度及びその到達量は、高周波を印加す
る側の方が大きくなるため、高周波を印加する箇所は付
着物が多い所が望ましい。プラズマ処理装置は基板を処
理するのが目的であるため、必然的に基板及び基板ホル
ダ部に多量に付着物がつく。従って基板ホルダ及び真空
容器内壁面を洗浄する場合には、基板ホルダ部に設置し
た電極にイオンが追随できる高周波を印加することが効
果がある。逆に真空容器内壁に電極を設置した場合に
は、この電極への付着物がとれても、基板ホルダ部には
付着物が残る状況となり、洗浄の効果は半減する。ホル
ダ部の洗浄のため過度に洗浄を進めると、露出した容器
内壁部の電極がエッチング及びイオンによりスパッタさ
れ、あらたな異物発生を引き起こすことになる。
【0008】基板ホルダ部に洗浄用に電極を設置した場
合、イオンはその電極の法線方向に往復運動をするた
め、その法線が真空容器内壁面のほぼ全面と交叉するよ
うな状況にあると、真空容器内の洗浄はより均一に、効
果的に行われる。
【0009】さらに洗浄に用いる電極が複数であれば、
それらの電極に対向する面、及びその法線方向の面の付
着量に合わせた洗浄ができるのでより効果的である。こ
の場合、それぞれの電極に印加する高周波電力及び印加
時間等を独立に制御するとさらに効果があることは言う
までもない。
【0010】また、電子サイクロトロン共鳴(ECR)
を利用した装置の場合、ECR部で活性度の高い、すな
わち洗浄効果の高いプラズマ種が生成されるため、EC
R部を付着量の多い、あるいは洗浄しにくい場所に触れ
させる、あるいは近付けるとさらにいい効果が得られ
る。
【0011】また真空容器内の粒子あるいは状況を洗浄
中観測できる手段を設けると、過剰の洗浄を防止でき
る。
【0012】
【実施例】以下、本発明の実施例を図面を用いて説明す
る。 実施例1 図2は本発明の第1の実施例を示す装置断面模式図であ
る。本装置は、マイクロ波3を透過されるμ波導入窓4
を有した真空容器5、該真空容器5の底部のμ波導入窓
4に対向する位置に配置された円筒状の基板ホルダ2、
真空容器5に接続され該真空容器5内に基板処理用のガ
スを導入する反応ガス導入管6,7、真空容器5に接続
され該真空容器5内に洗浄用ガスを導入する洗浄用ガス
導入管8、真空容器5の壁面に形成された排気口9、及
びμ波導入窓4近傍の真空容器5外部に配置され真空容
器5内に磁界を発生させる磁界コイル10及び基板ホル
ダ2に接続された高周波源12を含んで構成されてい
る。基板ホルダ2は125〔mmφ〕基板用であり、そ
のμ波導入窓4に対向する軸方向端面に処理対象の基板
1が装着されるようになっている。基板ホルダ2は基板
が装着される面の他は絶縁用石英カバー11で被覆さ
れ、さらにホルダの円周(絶縁用石英カバー11の外
側)にはアースに接続したステンレススチール(以下S
USと略称)製の円筒状の接地電極14が設置されてい
る。本装置では基板ホルダには高周波源12が接続され
ており、ほぼ基板が装着される面に高周波が実効的に印
加されるようになっている。
【0013】本装置を用い、反応ガス導入管6,7よ
り、SiH4を20〔ml/min〕、O2を200〔m
l/min〕、それぞれ導入し、真空容器5内の圧力を
0.3〔Pa〕になるように排気し、磁界コイルにより
基板にほぼ垂直方向に875〔Gauss〕以上の磁束
密度を有した磁力を印加し、600〔W〕のマイクロ波
を導入して基板1にSiO2膜を形成した。マイクロ波
の導入時間は5分であり、基板上には1〔μm〕膜厚の
SiO2膜が形成された。成膜後の、図2に示した〜
の各位置におけるSiO2膜の付着量を図3に示す。
図4は、SiO2成膜後に基板1を取り出した後、反応
ガスの代りに洗浄用ガス導入管8よりC26を導入し、
先と同様にμ波を導入して成膜時と同じ5分間プラズマ
を生成させ、真空容器を洗浄(エッチング)した後での
〜の各位置におけるSiO2膜の付着量を示す。洗
浄において重要なことは、真空容器内の付着物が速く、
かつ均一に同一時間内に取り除けることである。各測定
位置における付着量とそのエッチング量には違いがある
ため、図3と図4を見くらべながら、各測定位置におけ
る洗浄が均一かどうかを見極めるのは難しい。
【0014】洗浄が均一か、あるいはどの部分が遅いか
速いかを簡単に見極めるため、各位置におけるエッチン
グ量/付着量の値を図5に示す。図中、実線Aが図3、
図4の値より求めたものである。図5から、成膜と洗浄
ガスを異ならせただけでは、付着物を洗浄する時間の方
が、成膜よりも約3倍近く要すること、及び測定位置の
,すなわち基板ホルダ側面及びその対向面でその洗
浄効率が特に悪いことがわかる。
【0015】次に、洗浄するにあたり基板ホルダ2に周
波数13.56〔MHz〕の高周波100〔W〕を高周
波電源12より供給した。この結果を図5中の破線Bで
示す。高周波が印加された基板ホルダ2の一部である測
定位置でのみ洗浄速度が向上したものの、他の場所で
の効果は見られなかった。次に高周波電源を交換し、4
00〔KHz〕の高周波を同じく100〔W〕印加して
洗浄を行なった。この結果を図5中Cで示す。400
〔KHz〕の高周波を用いた場合、プラズマ中のフッ
素、Fイオンはこの周波数に追随して移動出来る。この
ため高周波が印加された部分から高周波電界が及ぶ範囲
では、イオンが電気力線上を動くことが可能となる。結
果を見ると高周波電界が高い基板ホルダ上面(側面はア
ース面)及びそれに対向する面の洗浄速度が約2倍に向
上していることがわかる。このことにより、プラズマ洗
浄においては、真空容器内に、プラズマ中の洗浄に関与
するイオンが追随できる周波数を印加することが、洗浄
速度の向上に著しい効果をもたらすことがわかる。
【0016】実施例2 図1は本発明の第2の実施例である装置の主要断面を示
す。本装置は、図2に示した装置の接地電極14をSU
S製の高周波印加電極13に交換したもので、その他は
図2に示した装置と同じである。本装置を用い第1の実
施例と同一条件でSiO2成膜後の洗浄実験をした。こ
の際、基板ホルダ周囲に設置した円筒状の高周波印加電
極13には、第1の実施例の場合に基板ホルダに印加し
た高周波と同じく、13.56〔MHz〕と400〔K
Hz〕で、それぞれ100〔W〕の高周波を印加した。
洗浄後の各位置におけるエッチング量/付着量の値を図
6に示す。図中、破線B′は13.56〔MHz〕の高
周波を用いた時、実線Dは400〔KHz〕の高周波を
用いた時の結果を示す。尚参考のため高周波を印加しな
い時の値も実線Aで表示してある。
【0017】図6の結果より、第1の実施例と同じく、
Fイオンが追随できない13.56〔MHz〕の高周波
を印加した時には、印加面のみしか洗浄効果の向上が見
られないが、Fイオンが追随できる周波数である400
〔KHz〕の高周波を印加した時には、印加効果が印加
面以外にもわたって大きくなっていることがわかる。ま
た、本実施例においては第1の実施例に比較して印加高
周波電界が真空容器で広い範囲に広がっているため、す
なわち、先の例では高周波電界がほぼ真空容器上面にし
か及ばないのに比較して、本例では高周波電界が基板設
置面の上面(測定位置と)を除いたその他の部分に
時に効果的に形成されるため、洗浄の均一性が向上して
いることがわかる。このことより、基板ホルダ部にイオ
ンが追随できる高周波を印加することは、洗浄において
処理速度の向上のみならず均一化にも効果があることが
わかる。
【0018】実施例3 図7は従来装置の構造の主要部の断面(ガス供給管、排
気口、磁界コイルは省略)の例を示す。本装置において
はSUS製の高周波印加電極15は真空容器内壁面に設
置されている。他の装置仕様な図1に示すものと同じで
ある。本装置を用い、第1、第2の実施例と同一条件プ
ラズマ条件で成膜後の洗浄実験をした。洗浄実験の結果
を図8に示す。図中、実線Eは400〔KHz〕の高周
波を印加した時の、破線B′は13.56〔MHz〕の
高周波を印加した時の、実線Aは高周波を印加しない時
の、結果をそれぞれ示す。図8に示された結果から、第
2の実施例と同様に、13.56〔MHz〕の高周波印
加の場合には印加部である容器内壁の一部分面のみ洗浄
効果の向上が見られるが他の面では効果が上がってない
ことがわかる。一方、400〔KHz〕の高周波印加の
場合には、より広い領域で大きな効果が得られているこ
とがわかるものの、第2の実施例に示した基板ホルダ外
周に高周波を印加した時と大きな違いが見られないこと
がわかる。
【0019】表1は、本装置及び図1に示した装置を用
いて洗浄した後、125〔mmφ〕Si基板を搬入し1
分後に搬出した基板上の0.3,0.5,1.0μm径の
異物数及びFeカウント数を示したものである。
【0020】
【表1】
【0021】表中aはSiO2成膜後の測定値、b,
c,dは本装置を用いて13.56〔MHz〕の高周波
を0;100,300〔W〕印加して洗浄した後の測定
値、e,fは400〔KHz〕の高周波を100,30
0〔W〕印加して洗浄した後の測定値、g,hは図1に
示した装置を用い400〔KHz〕の高周波を100,
300〔W〕印加して洗浄した後の測定値をそれぞれ示
す。尚、エッチング速度は、印加電力のほぼ一次関数と
なり、すなわち、図8において、300〔W〕の高周波
を印加した時には印加しない時に比して100〔W〕の
高周波を印加した時のエッチング速度の向上分の3倍分
が向上する。従って表1のdにおいては、真空容器壁部
のSUS製電極が、f,hにおいては基板ホルダ外周部
あるいは真空容器内壁部に設置したSUS製電極が洗浄
プラズマに露出していることになる。
【0022】表1から、13.56〔MHz〕の高周波
を印加している時には、電極部がプラズマに露出する前
には洗浄効果があるものの、電極がプラズマに露出する
ようになると(d)、異物数及びFe数が増加している
こと、すなわち、電極のスパッタによる容器内汚染が進
んでいることがわかる。一方400〔KHz〕の高周波
を印加した場合には、たとえ電極が露出したとしても
(f,h)、先に示したように汚染が大きくなることは
ない。ただしホルダ周囲の電極に高周波を印加した場合
(g,h)には、Feが決められない、すなわちスパッ
タによる汚染が見られないが、容器内壁の電極に高周波
を印加した場合(e,f)にはFeが検出されている。
このことから、この場合(e,f)、電極のスパッタに
よる汚染が発生していることがわかる。両者において
(fとh)、電極スパッタ量に大きな差異は考えられな
いので、汚染発生の有無は電極位置に依存しているもの
を考えられる。すなわち、基板ホルダ外周に電極がある
場合、その電極表面から基板を見る場合基板位置はほぼ
死角となるため、電極からの飛散が少なくなっているも
のと結論される。以上のことから、洗浄に高周波を利用
する場合、イオンが追随できる周波数を用いること、及
び印加電極位置は、基板ホルダ方向に向かって電界を印
加するよりも、基板ホルダ位置から発散させるような電
界を印加する方が、より効果的であることがわかる。
【0023】実施例4 図9は本発明の第4の実施例の主要断面図(ガス導入
管、排気口、磁界コイルは省略)を示す。本装置は図1
に示した装置の基板ホルダ及びホルダに設置した高周波
印加電極の形状及び高周波を印加する場所の数を変えた
ものである。本実施例においては、基板ホルダ2の側面
を、真空容器5の底面に垂直な面と基板装着面に平行な
面の間を滑らかな曲面で結んだ面で構成し、高周波印加
電極13’を基板ホルダ2の側面に平行な面を持つ形の
形成してある。
【0024】電極形状を変えたことにより電極面からの
法線16が交差する真空容器内壁面の範囲(広さ)が広
くなり、基板装着面及びホルダ外周部(側面)に設けら
れた高周波印加電極13′面に立てた法線は、ほぼ真空
容器内面全部に交差するようになっている。この装置を
用い洗浄実験を行なった。その結果を図10に示す。高
周波を印加しない時でもホルダ形状が変化したため、測
定位置におけるエッチング量は実施例1の場合とは異
なっている。図10中、A′は高周波を印加しない時
の、Eは電極13′にのみ400〔KHz〕、100
〔W〕の高周波を印加した時の洗浄結果をそれぞれ示
す。電極面の単位面積ごとに同一本数の法線を立てたと
き、この法線が被洗浄面の単位面積と交差する数が被洗
浄面の異なる場所で平均化され、それに伴って洗浄も均
一になっていることがわかる。
【0025】図中E′は印加される電力を300〔W〕
とした時の結果を示す。電力が大きくなると洗浄効果が
向上していることがわかる。しかし、基板装着面に対向
する面でエッチング量/付着量が幾分少なく、均一に洗
浄がなされてはいない。均一化を図るため、基板ホルダ
にも高周波電源12を接続して、400〔KHz〕、5
0〔W〕の高周波を印加して洗浄した。測定結果を図1
0の破線Fに示す。破線Fの場合、測定点の箇所
で洗浄効果がさらに上がり、ほぼ均一な洗浄ができたこ
とがわかる。これらのことより、真空容器の洗浄におい
ては、高周波を印加する電極の形状を考慮して、容器内
面の高周波印加電極からの見こみ領域(電極面の法線が
到達する真空容器内面領域)を多くすること、また、複
数の高周波印加箇所(電極)を設け、それらを独立に制
御すると、さらに均一な洗浄が行えることがわかる。
【0026】実施例5 図11に示す第5の実施例は、これまでに述べたマイク
ロ波プラズマ処理装置と原理は同じであるが、μ波の導
入方向が基板面に対し平行となる点が異なるマイクロ波
プラズマ装置である。磁界方向はこれまでに述べた実施
例と同じく紙面の上から下方向であるが、μ波電界は紙
面に垂直方向である。図中6′,7′,8′,11′は
それぞれ、図7の6,7,8,11と同じ働きをなすも
のである。本実施例においては、基板ホルダ2の周囲に
配置される絶縁用石英カバー11が円錐台状をなし、高
周波印加電極13’は絶縁用石英カバー11の斜面に平
行に配置されている。この装置においても洗浄の際に
は、基板ホルダも含め、高周波を印加する電極からの法
線が容器内壁面全体を見通せる形状となっている時には
均一な洗浄がなされ、印加箇所、印加電力を独立に制御
すると、さらに洗浄の均一化が図れることがわかった。
【0027】実施例6 本発明の第6の実施例は、図9に示した装置において、
高周波印加電極13′をさらに細かく分割し、かつそれ
らの間を電気的に絶縁したものである。高周波印加電極
13′に印加する高周波をそれぞれ独立に制御すると、
さらに洗浄の均一化が図れた。
【0028】実施例7 図12に示した装置(図2に示した装置に吸引管19を
設けたものであるが、本実施例では吸引管は使用しない
ので実質的に図2の装置)を用い、第1の実施例と同じ
く400〔KHz〕の高周波を基板ホルダ2に印加しな
がらSiO2膜の洗浄を行なった。第1の実施例では成
膜時と洗浄時に印加磁界強度は変化させなかったが、本
実施例では、洗浄時に磁界強度を強め、電子サイクロト
ロン共鳴(ECR)部17を装置下方(図上下方)方向
に下げ、さらに同方向に走査させた。図中17は成膜時
のECR部、18は洗浄時のECR部の上方及び下方部
を示す。(洗浄時のエッチング量)/(成膜後のSiO
2付着量)の各測定点での測定結果を図13に示す。図
中にはイオンが追随できる高周波印加の有無時の結果も
それぞれAとCに示した。GはECR位置を走査した時
の結果を示す。ECR位置では高励起のフッ素イオンが
生成されるため、ECR位置が触れる真空容器内壁及び
ホルダ測面部の洗浄が特に進んでいることがわかる。こ
のことより、洗浄時にはECR位置を成膜時と異なら
せ、洗浄し難い部分にECR部を位置させる、あるいは
近づけるとさらに洗浄の効果があがることがわかる。
【0029】実施例8 図12に本発明の第8の実施例の主要部の断面模式図を
示す。本実施例は図2に示した装置の真空容器5に吸引
管19を追加したものであり、他の構成部分は図2に示
した装置と同一である。本実施例では図12に示した装
置を用い、第7の実施例と全く同じ実験を行ない、洗浄
中の真空容器内の粒子を吸引管19、及び吸引管19に
接続された差動排気機構(図示せず)を介して質量分析
をした。各種粒子のm/e(m:質量 e:電子の電
荷)が測定されたが、洗浄時間に対しO2の信号が最も
変化した。この結果を、横軸に洗浄開始からの経過時
間、縦軸にm/eの値を示す信号強度をとって図14に
示す。図中A,CはECR位置が図12の17の位置に
あり、高周波を印加しない時と高周波を印加した時のm
/eの値の変化、Gは高周波を印加しながらECR位置
を位置18に示したように動かした時のm/eの値の変
化を示す。図中Ea,Ec,Egはそれぞれ洗浄が終わ
ったと思われるA,C,Gの終点を示す。
【0030】図13のグラフと併せて、この結果を見る
と、最もエッチングが均一で速いGの場合が最も速く洗
浄が終わり、かつ、その終点も明確であることがわか
る。終点Egにおいて洗浄を打切り、容器内を観察した
ところ、未洗浄分は見られなかった。A及びCにおいて
は、その終点Ea,Ecはやや不明確である。この終点
Ea,Ecにおいて洗浄を打切り、真空容器内を観察し
たところ、大部分では洗浄が終了していたがホルダ側面
等にはわずかながら未洗浄部が残っていた。逆に言え
ば、洗浄中の粒子を観測し、粒子状態の洗浄時間変化を
見ることにより洗浄状態がわかること、また、その変化
が急峻になるように洗浄時のパラメータを制御すると均
一な洗浄ができることがわかる。
【0031】粒子の観察にプラズマ中の発光スペクトル
の観測を用いても先の質量分析と同じ効果が見られた。
【0032】実施例9 上記第8の実施例において、発光スペクトルの最大強
度、かつ洗浄時間に対する変化が最も急峻となる高周波
印加条件、位置走査条件を選び、これを装置制御プログ
ラムに入れて成膜及び洗浄を行なったところ、装置真空
容器内面の腐食等が見られず良好な半導体装置の量産が
できた。
【0033】以上、上記各実施例では電子サイクロトロ
ン共鳴を利用する有磁場のマイクロ波プラズマCVDに
よるSiO2膜形成時における真空容器内の洗浄につい
て述べたが、本発明は、SiN膜等、他の薄膜形成にお
ける洗浄や、エッチング装置における洗浄に適用しても
効果がある。また、本発明は無磁場のマイクロ波プラズ
マ処理装置においても効果がある。
【0034】
【発明の効果】以上述べたように、本発明によれば、プ
ラズマ処理後の容器内洗浄を高速化できるので、装置の
大気開放を必要とした従来の方法での洗浄の頻度が少な
くてすみ、成膜時の異物低減による製品の歩留り、信頼
性向上の効果がある。また、スループットが向上する効
果がある。また真空容器内の異なる位置の被洗浄面での
洗浄速度の均一化が可能となるので、洗浄による処理装
置内部品の消耗が避けられる。
【図面の簡単な説明】
【図1】本発明の第2の実施例の主要部の断面を示す模
式図である。
【図2】本発明の第1の実施例の主要部の断面を示す模
式図である。
【図3】本発明の第1の実施例によって得られた装置各
箇所におけるSiO2膜形成時の付着量を示すグラフで
ある。
【図4】本発明の第1の実施例によって得られた装置各
箇所における洗浄によるエッチング量を示すグラフであ
る。
【図5】本発明の第1の実施例によって得られた装置各
箇所におけるエッチング量とSiO2膜形成時の付着量
の比の測定値を示すグラフである。
【図6】本発明の第2の実施例によって得られた装置各
箇所におけるエッチング量とSiO2膜形成時の付着量
の比の測定値を示すグラフである。
【図7】従来装置構造の一例の主要部の断面を示す模式
図である。
【図8】図7に示された装置によって得られたエッチン
グ量と付着量の比の、各位置における測定値を示すグラ
フである。
【図9】本発明の第4の実施例の主要部の断面を示す模
式図である。
【図10】本発明の第4の実施例によって得られた装置
各箇所におけるエッチング量とSiO2膜形成時の付着
量の比の測定値を示すグラフである。
【図11】本発明の第5の実施例の主要部の断面を示す
模式図である。
【図12】本発明の第8の実施例の主要部の断面を示す
模式図である。
【図13】本発明の第7の実施例によって得られた装置
各箇所におけるエッチング量とSiO2膜形成時の付着
量の比の測定値を示すグラフである。
【図14】本発明の第8の実施例によって得られたO2
粒子のm/e値の洗浄経過時間に伴う変化を示すグラフ
である。
【符号の説明】
1 基板 2 基板ホルダ 3 μ波 4 μ波導入窓 5 真空容器 6,6’,7,7’ 反応ガス導入管 8,8’ 洗浄用ガス導入管 9 排気口 10 磁界コイル 11 絶縁用石英カバー 12,12′ 高周波電源 13,13′,14,15 高周波印加電極 16 法線 17,18 ECR位置 19 吸引管
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−287774(JP,A) 特開 昭63−221620(JP,A) 特開 昭61−145825(JP,A) 特開 昭63−244739(JP,A) 実開 平2−4238(JP,U) (58)調査した分野(Int.Cl.7,DB名) C23C 16/00 - 16/56 H01L 21/203 - 21/205 H01L 21/31 H01L 21/3065

Claims (11)

    (57)【特許請求の範囲】
  1. 【請求項1】 処理対象の基板が装着される基板ホルダ
    を内装した真空容器と、該真空容器内に基板を処理する
    反応ガス及び該真空容器を洗浄する気体を導入する気体
    導入手段と、前記真空容器内の気体をプラズマ化する手
    段と、前記真空容器に高周波電界を印加する高周波印加
    機構とを含んでなるマイクロ波プラズマ処理装置におい
    て、前記高周波印加機構は真空容器の洗浄に少なくとも
    使用し、かつ、プラズマ化された前記気体のイオンが追
    随できる周波数の高周波電界を印加可能なものであっ
    て、高周波が印加される電極として、基板ホルダの基板
    が装着される面である第1の電極と、該基板ホルダの基
    板が装着される面以外の面を覆うような形状の第2の電
    極とを有することを特徴とするマイクロ波プラズマ処理
    装置。
  2. 【請求項2】 第2の電極は、第1の電極の表面と第2
    の電極の表面を合わせた面の法線が、ほぼ真空容器内面
    全体の該電極部分を除く部分に交差するような形に形成
    されていることを特徴とする請求項1に記載のマイクロ
    波プラズマ処理装置。
  3. 【請求項3】 高周波印加機構は、真空容器に高周波を
    印加するための電極を第1の電極と第2の電極のいずれ
    かに切り替える手段を含んでなることを特徴とする請求
    1または2のいずれかに記載のマイクロ波プラズマ処
    理装置。
  4. 【請求項4】 第1及び第2の電極に加え、真空容器内
    壁面に沿って配置された付加電極を有し、高周波印加機
    構は該付加電極にも接続されていることを特徴とする請
    求項1乃至3のいずれかに記載のマイクロ波プラズマ処
    理装置。
  5. 【請求項5】 マイクロ波プラズマ処理装置は電子サイ
    クロトロン共鳴を利用した薄膜形成装置であることを特
    徴とする請求項1乃至4のいずれかに記載のマイクロ波
    プラズマ処理装置。
  6. 【請求項6】 真空容器内に存在する粒子を吸引する手
    段と、吸引した該粒子の質量m/(電子の電荷e)を計
    測表示する手段とを含んでなることを特徴とする請求項
    1乃至5のいずれかに記載のマイクロ波プラズマ処理装
    置。
  7. 【請求項7】 処理対象の基板が装着される基板ホルダ
    を内装した真空容器と、該真空容器内に気体を導入する
    気体導入手段と、前記真空容器内の気体をプラズマ化す
    る手段と、前記真空容器にプラズマ化された前記気体の
    イオンが追随できる周波数の高周波電界を印加可能な高
    周波印加機構と、基板ホルダの基板が装着される面であ
    る第1の電極と、該基板ホルダの基板が装着される面以
    外の面を覆うような形状の第2の電極とを含んでなるマ
    イクロ波プラズマ処理装置を用い、真空容器内で反応ガ
    スをプラズマ化し、そのプラズマを用いて前記真空容器
    内の第1の電極に配置された基板面を処理し、この処理
    によって真空容器内面に付着した物質を洗浄する手順と
    を含むマイクロ波プラズマ処理方法において、真空容器
    内面を洗浄する時には上記第2の電極にプラズマ化され
    た前記気体のイオンが追随できる周波数の高周波電界を
    印加することを特徴としたマイクロ波プラズマ処理方
    法。
  8. 【請求項8】 真空容器内を洗浄する時に、上記第1と
    第2の電極にそれぞれ独立にプラズマ化された前記気体
    のイオンが追随できる周波数の高周波電界を印加するこ
    とを特徴とした請求項7に記載のマイクロ波プラズマ処
    理方法。
  9. 【請求項9】 高周波印加機構は、基板を処理するとき
    は第1の電極に接続され、真空容器の洗浄を行うときは
    第1の電極から第2の電極に接続が切り替えられること
    を特徴とする請求項7または8のいずれかに記載のマイ
    クロ波プラズマ処理方法。
  10. 【請求項10】 処理対象の基板が装着される基板ホル
    ダを内装した真空容器と、該真空容器内に気体を導入す
    る気体導入手段と、前記真空容器内の気体をプラズマ化
    する手段と、前記真空容器にプラズマ化された前記気体
    のイオンが追随できる周波数の高周波電界を印加可能な
    高周波印加機構と、基板ホルダの基板が装着される面で
    ある第1の電極と、該基板ホルダの基板が装着される面
    以外の面を覆うような形状の第2の電極と、真空容器内
    壁面に沿って配置された第3の電極とを含んでなるマイ
    クロ波プラズマ処理装置を用い、真空容器内で反応ガス
    をプラズマ化し、そのプラズマを用いて前記真空容器内
    の第1の電極に配置された基板面を処理し、この処理に
    よって真空容器内面に付着した物質を洗浄する手順とを
    含むマイクロ波プラズマ処理方法において、高周波印加
    機構は、基板を処理するときは第1の電極に接続され、
    真空容器の洗浄を行うときは第2の電極及び第3の電極
    に接続されることを特徴とするマイクロ波プラズマ処理
    方法。
  11. 【請求項11】 処理対象の基板が装着される基板ホル
    ダを内装した真空容器と、該真空容器内に気体を導入す
    る気体導入手段と、前記真空容器内の気体をプラズマ化
    する手段と、前記真空容器にプラズマ化された前記気体
    のイオンが追随できる周波数の高周波電界を印加可能な
    高周波印加機構と、基板ホルダの基板が装着される面で
    ある第1の電極と、該基板ホルダの基板が装着される面
    以外の面を覆うような形状の第2の電極と、真空容器内
    壁面に沿って配置された第3の電極とを含んでなるマイ
    クロ波プラズマ処理装置を用い、真空容器内で反応ガス
    をプラズマ化し、そのプラズマを用いて前記真空容器内
    の第1の電極に配置された基板面を処理し、この処理に
    よって真空容器内面に付着した物質を洗浄する手順とを
    含むマイクロ波プラズマ処理方法において、高周波印加
    機構は、基板を処理するときは第1の電極に接続され、
    真空容器の洗浄を行うときは第1の電極、第2の電極及
    び第3の電極に接続されることを特徴とするマイクロ波
    プラズマ処理方法。
JP28168092A 1992-10-20 1992-10-20 マイクロ波プラズマ処理方法及び装置 Expired - Fee Related JP3227522B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28168092A JP3227522B2 (ja) 1992-10-20 1992-10-20 マイクロ波プラズマ処理方法及び装置
KR1019930021517A KR940010866A (ko) 1992-10-20 1993-10-16 마이크로파 플라즈마 처리장치 및 처리방법
US08/137,974 US5449411A (en) 1992-10-20 1993-10-19 Microwave plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28168092A JP3227522B2 (ja) 1992-10-20 1992-10-20 マイクロ波プラズマ処理方法及び装置

Publications (2)

Publication Number Publication Date
JPH06128749A JPH06128749A (ja) 1994-05-10
JP3227522B2 true JP3227522B2 (ja) 2001-11-12

Family

ID=17642491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28168092A Expired - Fee Related JP3227522B2 (ja) 1992-10-20 1992-10-20 マイクロ波プラズマ処理方法及び装置

Country Status (3)

Country Link
US (1) US5449411A (ja)
JP (1) JP3227522B2 (ja)
KR (1) KR940010866A (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786997B1 (en) 1984-11-26 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus
US6113701A (en) 1985-02-14 2000-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method, and system
US6673722B1 (en) 1985-10-14 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
US6230650B1 (en) 1985-10-14 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
JP3171222B2 (ja) * 1994-06-14 2001-05-28 日本電気株式会社 マイクロ波プラズマ処理装置
JPH08153682A (ja) * 1994-11-29 1996-06-11 Nec Corp プラズマcvd装置
TW297135B (ja) * 1995-03-20 1997-02-01 Hitachi Ltd
US5711812A (en) * 1995-06-06 1998-01-27 Varian Associates, Inc. Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes
JPH09167755A (ja) * 1995-12-15 1997-06-24 Nec Corp プラズマ酸化膜処理装置
US5988187A (en) * 1996-07-09 1999-11-23 Lam Research Corporation Chemical vapor deposition system with a plasma chamber having separate process gas and cleaning gas injection ports
US5885358A (en) * 1996-07-09 1999-03-23 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
US5812403A (en) * 1996-11-13 1998-09-22 Applied Materials, Inc. Methods and apparatus for cleaning surfaces in a substrate processing system
US20010049196A1 (en) * 1997-09-09 2001-12-06 Roger Patrick Apparatus for improving etch uniformity and methods therefor
US6379575B1 (en) 1997-10-21 2002-04-30 Applied Materials, Inc. Treatment of etching chambers using activated cleaning gas
US6872322B1 (en) 1997-11-12 2005-03-29 Applied Materials, Inc. Multiple stage process for cleaning process chambers
US6136211A (en) * 1997-11-12 2000-10-24 Applied Materials, Inc. Self-cleaning etch process
US6797188B1 (en) 1997-11-12 2004-09-28 Meihua Shen Self-cleaning process for etching silicon-containing material
US6322714B1 (en) 1997-11-12 2001-11-27 Applied Materials Inc. Process for etching silicon-containing material on substrates
JP3381774B2 (ja) * 1997-12-24 2003-03-04 東京エレクトロン株式会社 CVD−Ti膜の成膜方法
US6714300B1 (en) * 1998-09-28 2004-03-30 Therma-Wave, Inc. Optical inspection equipment for semiconductor wafers with precleaning
US6242364B1 (en) 1999-03-23 2001-06-05 Silicon Valley Group, Inc. Plasma deposition of spin chucks to reduce contamination of silicon wafers
US6620289B1 (en) * 1999-04-27 2003-09-16 Applied Materials, Inc Method and apparatus for asymmetric gas distribution in a semiconductor wafer processing system
US6261853B1 (en) 2000-02-07 2001-07-17 Therma-Wave, Inc. Method and apparatus for preparing semiconductor wafers for measurement
US6861619B1 (en) 2000-02-07 2005-03-01 Therma-Wave, Inc. Method and apparatus for preparing semiconductor wafers for measurement
US6500356B2 (en) * 2000-03-27 2002-12-31 Applied Materials, Inc. Selectively etching silicon using fluorine without plasma
US20030010354A1 (en) * 2000-03-27 2003-01-16 Applied Materials, Inc. Fluorine process for cleaning semiconductor process chamber
US6527968B1 (en) 2000-03-27 2003-03-04 Applied Materials Inc. Two-stage self-cleaning silicon etch process
US6440864B1 (en) 2000-06-30 2002-08-27 Applied Materials Inc. Substrate cleaning process
US6450117B1 (en) 2000-08-07 2002-09-17 Applied Materials, Inc. Directing a flow of gas in a substrate processing chamber
US6905800B1 (en) 2000-11-21 2005-06-14 Stephen Yuen Etching a substrate in a process zone
US6692903B2 (en) 2000-12-13 2004-02-17 Applied Materials, Inc Substrate cleaning apparatus and method
US6843258B2 (en) * 2000-12-19 2005-01-18 Applied Materials, Inc. On-site cleaning gas generation for process chamber cleaning
US6852242B2 (en) 2001-02-23 2005-02-08 Zhi-Wen Sun Cleaning of multicompositional etchant residues
US20040221800A1 (en) * 2001-02-27 2004-11-11 Tokyo Electron Limited Method and apparatus for plasma processing
US6676760B2 (en) 2001-08-16 2004-01-13 Appiled Materials, Inc. Process chamber having multiple gas distributors and method
US20030098038A1 (en) * 2001-11-26 2003-05-29 Siegele Stephen H. System and method for on-site generation and distribution of fluorine for fabrication processes
US20040037768A1 (en) * 2001-11-26 2004-02-26 Robert Jackson Method and system for on-site generation and distribution of a process gas
US20030121796A1 (en) * 2001-11-26 2003-07-03 Siegele Stephen H Generation and distribution of molecular fluorine within a fabrication facility
US20090001524A1 (en) * 2001-11-26 2009-01-01 Siegele Stephen H Generation and distribution of a fluorine gas
US6902629B2 (en) * 2002-04-12 2005-06-07 Applied Materials, Inc. Method for cleaning a process chamber
US20060010598A1 (en) * 2002-06-07 2006-01-19 Tina-Marie Rusinak-Connors Pocketed beach towel with pillow and straps
US7588036B2 (en) * 2002-07-01 2009-09-15 Applied Materials, Inc. Chamber clean method using remote and in situ plasma cleaning systems
US20040025903A1 (en) * 2002-08-09 2004-02-12 Howard Bradley J. Method of in-situ chamber cleaning
US20070051471A1 (en) * 2002-10-04 2007-03-08 Applied Materials, Inc. Methods and apparatus for stripping
KR100559933B1 (ko) * 2002-11-29 2006-03-13 엘에스전선 주식회사 저조도 동박의 전해연마방법 및 전해연마장치와 동박
JP4294976B2 (ja) * 2003-02-27 2009-07-15 東京エレクトロン株式会社 基板処理装置
KR20050004995A (ko) * 2003-07-01 2005-01-13 삼성전자주식회사 플라즈마를 이용하는 기판 가공 장치
JP4272486B2 (ja) * 2003-08-29 2009-06-03 東京エレクトロン株式会社 薄膜形成装置及び薄膜形成装置の洗浄方法
WO2005038877A2 (en) * 2003-10-14 2005-04-28 Rudolph Technologies, Inc. MOLECULAR AIRBORNE CONTAMINANTS (MACs) REMOVAL AND WAFER SURFACE SUSTAINING SYSTEM AND METHOD
US20050241670A1 (en) * 2004-04-29 2005-11-03 Dong Chun C Method for cleaning a reactor using electron attachment
KR100733080B1 (ko) * 2006-01-03 2007-06-29 삼성전자주식회사 식각장치
WO2007142850A2 (en) * 2006-06-02 2007-12-13 Applied Materials Gas flow control by differential pressure measurements
US8118946B2 (en) 2007-11-30 2012-02-21 Wesley George Lau Cleaning process residues from substrate processing chamber components
JP5857344B2 (ja) * 2010-07-27 2016-02-10 株式会社ユーテック プラズマポーリング装置及び圧電体の製造方法
TWI522490B (zh) 2012-05-10 2016-02-21 應用材料股份有限公司 利用微波電漿化學氣相沈積在基板上沈積膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210275A (ja) * 1987-02-24 1988-08-31 Semiconductor Energy Lab Co Ltd プラズマ反応装置内を清浄にする方法
DE3876205T2 (de) * 1987-09-30 1993-05-27 Sumitomo Metal Ind Vorrichtung zur bildung duenner filme.
JP2696891B2 (ja) * 1988-03-11 1998-01-14 住友金属工業株式会社 プラズマプロセス装置
JP2797307B2 (ja) * 1988-03-11 1998-09-17 住友金属工業株式会社 プラズマプロセス装置
JP2696892B2 (ja) * 1988-03-11 1998-01-14 住友金属工業株式会社 プラズマプロセス装置
JPH01231323A (ja) * 1988-03-11 1989-09-14 Sumitomo Metal Ind Ltd プラズマエッチング装置
JPH029115A (ja) * 1988-06-28 1990-01-12 Mitsubishi Electric Corp 半導体製造装置

Also Published As

Publication number Publication date
KR940010866A (ko) 1994-05-26
JPH06128749A (ja) 1994-05-10
US5449411A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP3227522B2 (ja) マイクロ波プラズマ処理方法及び装置
TWI436407B (zh) Sputtering chamber, pre-cleaning chamber and plasma processing equipment
JP2002503289A (ja) 低圧スパッタリングの方法および装置
JPH111770A (ja) スパッタリング装置及びスパッタリング方法
JPH10506154A (ja) プラズマ反応チャンバーをその場でマグネトロンクリーニングするための装置と方法
KR19990077237A (ko) 플라즈마 처리장치의 세정방법 및 플라즈마 처리방법
JPH10275694A (ja) プラズマ処理装置及び処理方法
JPH05106020A (ja) 物理的蒸着室の微粒子を減少するためのシールド準備法
KR100900967B1 (ko) 플라즈마처리장치 및 플라즈마처리방법
JPH07273092A (ja) プラズマ処理装置及びそのクリーニング方法
JP4224374B2 (ja) プラズマ処理装置の処理方法およびプラズマ処理方法
JPH07211489A (ja) マイクロ波プラズマ処理装置及び該装置のクリーニング方法
JP2002115051A (ja) バイアススパッタリング装置
JP4902054B2 (ja) スパッタリング装置
JPH10335097A (ja) プラズマ処理装置およびプラズマ処理方法
JP2002043094A (ja) プラズマ処理装置及びそのクリーニング方法
JP2669249B2 (ja) プラズマ処理装置及び該装置のクリーニング方法
JP2001230240A (ja) プラズマ処理装置ならびに処理方法
JPH0987835A (ja) スパッタリング装置、及びスパッタリング方法
JPH07258844A (ja) 磁気中性線放電プラズマを利用した成膜装置
JPS62139884A (ja) プラズマクリ−ニング装置
JPH10204634A (ja) マグネトロンカソードおよびこれを備えたメタル配線スパッタ装置
JP3820333B2 (ja) 放電プラズマ処理装置
JPH02197567A (ja) プラズマスパッタ装置
JP3082702B2 (ja) プラズマ処理装置及び金属配線のエッチング方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees