JP2005262108A - 成膜装置及び圧電材料の製造方法 - Google Patents

成膜装置及び圧電材料の製造方法 Download PDF

Info

Publication number
JP2005262108A
JP2005262108A JP2004079444A JP2004079444A JP2005262108A JP 2005262108 A JP2005262108 A JP 2005262108A JP 2004079444 A JP2004079444 A JP 2004079444A JP 2004079444 A JP2004079444 A JP 2004079444A JP 2005262108 A JP2005262108 A JP 2005262108A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric material
film forming
aerosol
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004079444A
Other languages
English (en)
Inventor
Takamitsu Fujii
隆満 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004079444A priority Critical patent/JP2005262108A/ja
Publication of JP2005262108A publication Critical patent/JP2005262108A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Abstract

【課題】 均一且つ安定した分極処理を施された圧電材料を、短縮されたプロセスで容易に製造できる成膜装置等を提供する。
【解決手段】 この成膜装置は、構造物が形成される基板が配置される成膜室4と、容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成するガスボンベ1及びエアロゾル生成室3と、エアロゾル生成室において生成されたエアロゾルを基板100に向けて噴射するノズル6と、基板の主面の法線方向に電位勾配を有する電場を成膜室内に形成する基板ホルダ7、高周波電源8、ブロッキングコンデンサを含むマッチングボックス9とを含む。
【選択図】 図1

Description

本発明は、圧電アクチュエータや超音波トランスデューサ等に用いられる圧電材料を製造するための成膜装置、及び、圧電材料の製造方法に関する。
従来より、PZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)等の圧電材料は、圧電アクチュエータ、圧電ポンプ、インクジェットプリンタのプリンタヘッド、超音波を送信及び受信するトランスデューサ等の材料として、幅広い分野において利用されている。
このような圧電材料は、一般的には、次のように作製される。まず、PZTの粉体をPVA(ポリビニルアルコール)と混合し、乾燥させた後で篩に通して造粒する。それによって得られた造粒粉を、金型を用いて圧粉することにより成形体を作製し、それを焼成することによって焼結体を形成する。図6の(a)に示すように、この焼結体200は多結晶の強誘電体であるが、結晶内部の各分域201において、電気双極子202が任意の方向を向いているため、圧電性を示さない。そのため、この焼結体200に圧電性を付与するために、分極処理(ポーリング)を施す。
図7は、一般的な分極処理装置を示す模式図である。分極処理を行う際には、焼結体200の両端に電極211及び212を配置し、これを容器213に配置されたシリコンオイル214中に浸す。次に、ヒータ215を用いて、シリコンオイル214を所定の温度(例えば、100℃〜200℃)まで加熱する。この状態で、電源装置216及びトランス217によって電極211と電極212との間に電圧をかけることにより、所定時間(例えば、30分間)、焼結体200に、所定の強さの電場(例えば、40kV/cm)を印加する。その後、電極211及び212間に電圧をかけたまま、シリコンオイル214及び焼結体200を徐冷する。これにより、図6の(b)に示すように、電気双極子202の向きを揃えられた圧電材料が作製される。ここで、シリコンオイル中において焼結体に電場を印加するのは、焼結体200の温度を高くして分極し易くすると共に、焼結体200の端部における絶縁破壊を生じさせないためである。また、電極間に電圧をかけながら焼結体200を徐冷するのは、高温の状態で電圧を下げると、一旦揃えられた電気双極子の向きが、再び元に戻ってしまうからである。
その後で、分極処理された圧電体をシリコンオイルから取り出して洗浄する。このように、従来の圧電材料の製造方法は、プロセスが煩雑であり、多くの手間と時間を要していた。
なお、従来の圧電材料の製造方法については、特許文献1及び特許文献2に詳しく記載されている。特許文献1には、分極後の圧電素子の反りを無くすために、所定の分極処理を施す圧電素子の製造方法が開示されている。また、特許文献2には、1000℃以下の低温焼成が可能で、かつ焼成時の焼結体変形が少ない圧電磁器組成物が開示されている。
ところで、近年、圧電材料を作製する際に、成膜技術として知られるエアロゾルデポジション(aerosol deposition:AD)法を用いることが提案されている。エアロゾルデポジション法(以下、AD法ともいう)とは、原料の粉体を含むエアロゾルを生成して基板に向けて噴射し、その際の衝突エネルギーにより粉体を堆積させる成膜方法であり、噴射堆積法、又は、ガスデポジション法とも呼ばれている。ここで、エアロゾルとは、気体中に浮遊している固体や液体の微粒子のことをいう。AD法を用いることにより、微小電気機械システム(MEMS:micro electrical mechanical system)等において必要とされる微小な圧電材料を容易に作製できる可能性があることから、AD法についてさまざまな研究や開発が進められている。
関連する技術として、特許文献3には、Si基体の上に鉛原子に対する反応阻止機能を有する中間層と、該中間層の上に鉛を含む圧電セラミックスとからなる積層構造体で、該圧電セラミックスの膜は、超微粒子材料をノズルを通してSi基体上に噴射、堆積させて微細形状物を形成する、エアロゾルガスジェットデポジション法により形成されている積層構造体が開示されている。この積層構造体は、所望する膜厚を堆積した後、大気中において850℃で熱処理を60分間行い、さらに、室温にて強度30kV/cmの電場による分極処理を60分間行うことによって作製されている。このように、AD法を用いる場合においても、別途分極処理を行う必要があるので、やはり手間がかかっている。
特許文献4には、基板上にガスデポジション法を用いてセラミックス誘電体膜を形成する方法において、膜形成を行うセラミックス誘電体として、比表面積が1.0〜10m/g、または光散乱法より求められる平均粒径が0.1〜2μm、または走査型電子顕微鏡観察により求められる平均粒径が0.08〜1.2μmの値を有するセラミックス粉体を用いることを特徴とするセラミックス誘電体膜の形成方法が開示されている。このセラミックス誘電体膜の形成方法においては、優れた圧電特性を出現させることができる分極条件として、40〜100kV/cmの直流電界にて分極処理が行うことが開示されている。しかしながら、このようなセラミックス誘電体膜の形成においても、依然としてプロセス数が多いことには変わりない。また、成膜した圧電セラミック膜上に電極膜を配置し、上記のような高電圧で分極処理を行うことにより、異常放電が生じて膜を破壊してしまう可能性がある。
特許文献5には、下部電極と針状電極間のコロナ放電を利用し、下部電極上の被分極材料の表面を帯電させつつ、同時に被分極材料の温度を上昇させて被分極材料内に含まれる双極子を配向させるコロナ分極処理方法において、複数の針状電極よりコロナ放電を行うことが開示されている。しかしながら、この場合においても、圧電材料の形成とは別に分極処理を行うので、依然として手間がかかっている。また、複数の針状電極を設けることにより、周囲に配置された金属の影響によって電場が不均一になり、分極ムラが生じる可能性があると共に、針の先端等に電荷が蓄積され、異常放電により素子が破壊される可能性もある。
特許文献6には、減圧チャンバー内において超微粒子材料を加速し基板に衝突させて堆積するようにした超微粒子の成膜法であって、少なくとも上記超微粒子の流れが上記基板に衝突する以前においてこれら超微粒子や基板にイオン、原子、分子ビームや低温プラズマなどの高エネルギー原子、分子である高速の高エネルギービームを照射することにより超微粒子や基板表面を溶融することなく活性化し、上記超微粒子と基板若しくは超微粒子相互の結合を促進させ、超微粒子の結晶性を保持したまま緻密で良好な膜物性と基板への良好な密着性を有する堆積物を形成するようにした超微粒子成膜法が開示されている。この超微粒子成膜法によれば、結晶性を保持しつつ、強固な密着性を有する膜を形成することができる。しかしながら、この超微粒子成膜法によって作製された圧電材料に圧電性を付与するためには、やはり別途分極処理を行う必要がある。
特開平5−167126号公報(第1頁、図1) 特開2003−165770号公報(第1頁、図1) 特開2000−328223号公報(第10頁) 特開2001−152360号公報(第7頁) 特開平8−180959号公報(第1頁、図1) 特開2000−212766号公報(第1頁、図1)
そこで、上記の点に鑑み、本発明は、分極処理を含む圧電材料の製造プロセスを短縮し、且つ、容易にすることを第1の目的とする。また、本発明は、そのような製造プロセスにおいて、圧電材料に均一且つ安定した分極処理を施すことを第2の目的とする。
上記課題を解決するため、本発明に係る成膜装置は、構造物が形成される基板が配置される成膜室と、容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成するエアロゾル生成手段と、該エアロゾル生成手段によって生成されたエアロゾルを基板に向けて噴射するノズルと、基板の主面の法線方向に電位勾配を有する電場を成膜室内に形成する電場形成手段とを具備する。
また、本発明の1つの観点に係る圧電材料の製造方法は、構造物が形成される基板を成膜室に配置する工程(a)と、容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成する工程(b)と、基板の主面の法線方向に電位勾配を有する電場を成膜室内に形成すると共に、工程(b)において生成されたエアロゾルをノズルから基板に向けて噴射することにより、圧電材料を基板上に堆積させながら分極する工程(c)とを具備する。
さらに、本発明の別の観点に係る圧電材料の製造方法は、構造物が形成される基板を成膜室に配置する工程(a)と、容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成する工程(b)と、工程(b)において生成されたエアロゾルをノズルから基板に向けて噴射することにより、基板上に圧電材料を堆積させる工程(c)と、基板の主面の法線方向に電位勾配を有する電場を成膜室内に形成することにより、成膜室内において圧電材料を分極する工程(d)とを具備する。
本発明によれば、圧電材料の成膜が行われる成膜室内に電場を形成することにより、成膜中又は成膜後の圧電材料に分極処理を施すので、製造プロセスを短縮し、且つ、容易にすることができる。また、所定の電場を形成することにより、圧電材料に均一な分極処理を安定して施すことができる。
以下、本発明を実施するための最良の形態について、図面を参照しながら詳しく説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の第1の実施形態に係る成膜装置を示す模式図である。この成膜装置は、原料の粉体を含むエアロゾルを基板に吹き付けることによって原料を堆積させるエアロゾルデポジション(aerosol deposition:AD)法を用いた成膜装置であり、成膜室内に電場を形成することにより、成膜中又は成膜後の圧電体膜に分極処理を施すことを特徴としている。
図1に示す成膜装置は、ガスボンベ1と、搬送管2a及び2bと、エアロゾル生成室3と、成膜室4と、排気ポンプ5と、ノズル6と、基板ホルダ7と、高周波電源(RF)8と、マッチングボックス(MB)9とを含んでいる。
ガスボンベ1〜ノズル6は、AD法によって基板100上に圧電材料を形成する。
ガスボンベ1には、キャリアガスとして使用される窒素(N)、酸素(O)、ヘリウム(He)、アルゴン(Ar)、又は、乾燥空気等が充填されている。また、ガスボンベ1には、キャリアガスの供給量を調節する圧力調整部1aが設けられている。
エアロゾル生成室3は、成膜材料である原料の微小な粉体が配置される容器である。ガスボンベ1から搬送管2aを介して、エアロゾル生成室3にキャリアガスを導入することにより、そこに配置された原料の粉体が噴き上げられてエアロゾルが生成される。生成されたエアロゾルは、搬送管2bを介してノズル6に供給される。
成膜室4においては、圧電材料の成膜と分極処理とが行われる。成膜室4の内部は、排気ポンプ5によって排気されており、それにより、所定の真空度に保たれている。また、成膜室4は接地配線と接続されている。
ノズル6は、例えば、長さ5mm、幅0.5mm程度の開口を有しており、エアロゾル生成室3から供給されたエアロゾルを基板100に向けて高速で噴射する。
基板ホルダ7〜マッチングボックス9は、成膜室4内に、基板100の主面の法線方向に電位勾配を有する電場を形成する。
基板ホルダ7は、基板100を保持するホルダであると共に、成膜室4内に高周波放電を発生させるための電極としても用いられる。基板ホルダ7の面積は、基板100の周囲に形成される電場を均一にするために、基板100の面積と同じか、それより大きいことが好ましい。また、基板ホルダ7には、基板ホルダ7を3次元的に移動させる基板ホルダ駆動部7aが設けられている。これにより、ノズル6と基板100との相対位置及び相対速度が制御される。さらに、基板ホルダ7は、成膜室4から絶縁されていると共に、マッチングボックス9を介して、高周波電源8に電気的に接続されている。
高周波電源8は、例えば、周波数13.56MHzの交流電圧を発生するプラズマ発生用高周波電源装置である。また、マッチングボックス9は、負荷の持つリアクタンス成分をキャンセルすることにより、負荷と高周波電源8との間でインピーダンスを整合する。マッチングボックス9としては、例えば、ブロッキングコンデンサを用いたマッチングボックスを用いることができる。ブロッキングコンデンサは、直流成分をカットし、交流成分のみを通過させる。
次に、成膜室4内に電場を形成する原理について説明する。
圧電材料を分極する際には、基板100の周囲の空間に放電を生じさせることが好ましい。それにより、基板100の底部である基板ホルダ7と放電空間との間に明確な電位差が現れるからである。放電の種類は特に限定されないが、放電部分が1000℃以上の高温となるアーク放電よりも、低温においても生じるグロー放電やコロナ放電を用いることが望ましい。そのため、本実施形態においては、グロー放電を生じさせている。なお、コロナ放電については、特開平6−174547号公報、又は、特開平8−180959号公報を参照されたい。
また、放電は、大気中よりも減圧中で生じさせることが好ましい。大気圧付近においては、放電が局部的に生じたり、アーク放電が発生し易いからである。一方、安定して放電を生じさせるためには、圧力を1×10−1Pa程度以上、1×10Pa程度以下とすることが好ましい。この範囲以外の圧力になると、放電の安定性が悪くなるので好ましくない。そのため、本実施形態においては、排気ポンプ5によって成膜室4内の気圧を調節している。
図2は、図1に示す成膜室4、基板ホルダ7、高周波電源8、及び、マッチングボックス9によって構成される回路を表している。
図2に示すように、成膜室4及び基板ホルダ7は、平行平板型高周波放電におけるアノード及びカソードとしてそれぞれ作用する。また、マッチングボックス9のブロッキングコンデンサは、アノード−カソード間のプラズマ負荷に直列に接続されており、カソードは、直流的には浮遊状態にある。高周波電源8により図2に示す回路に電力を供給すると、グロー放電が生じて容量結合型のプラズマが生成される。その際に、プラズマ空間中には、接地電位に対してプラズマ電位VPLが発生し、カソードには、自己バイアス作用により接地電位に対して負の電位VBIが発生する。これにより、アノード−カソード間に、図3に示すような電位分布が生じる。なお、自己バイアスが発生する原理の詳細については、小沼光晴著、「プラズマと成膜の基礎」、日刊工業新聞社、p.63−66を参照されたい。
グロー放電及びプラズマを生成する方法については、この他にも、スパッタリングやエッチング等において用いられている公知の方法を用いることができる。例えば、ブライアン・エヌ・チャップマン(Brain N. Chapman)著、岡本幸雄訳、「プラズマプロセシングの基礎」、電気書院にも詳しく記載されている。
次に、本実施形態に係る成膜装置の動作について説明する。
まず、成膜室4の基板ホルダ7に、シリコン(Si)、ガラス、金属、セラミックス等の基板100を配置し、所定の温度に保つ。また、成膜室4の内部を、排気ポンプ5を用いて所定の真空度まで排気する。次に、エアロゾル生成室3に、圧電材料の原料となる粉体を配置し、ガスボンベ1からのキャリアガスを所定の流量となるように供給する。それにより、エアロゾル生成室3において原料の粉体が噴き上げられ、エアロゾル101が生成される。エアロゾル101はノズル6に供給され、ノズル6から基板100に向けて噴射される。それにより、原料の粉体が基板や基板上の堆積物に付着し、圧電材料が形成される。
また、成膜の開始と同時に、高周波電源8から電力を供給し、基板ホルダ7からグロー放電を生じさせることにより、成膜室4内にプラズマ102を生成する。これにより、基板100を含む放電空間に電位勾配が発生し、噴射されたエアロゾルに含まれる原料の粉体や、基板に堆積した圧電材料が順次分極される。
さらに、成膜後、プラズマ102を生成しつつ基板を徐冷することにより、分極処理を施された圧電材料が作製される。
図1に示す成膜装置を用いて、次のような条件の下で、圧電材料を作製した。
基板としてシリコンを用い、圧電材料の原料として平均粒径が約0.3μmの酸化ニオブ(Nb)添加PZT(52/48)を用いた。また、窒素又は酸素のキャリアガスを、5SLM(L/min,at 0℃ 101.3kPa)の流量で供給した。さらに、成膜時における成膜室4内の圧力が50Paとなるように排気ポンプ5を制御すると共に、基板の温度をキュリー点以下である200℃に保った。
また、グロー放電によりプラズマを生成した際に、基板100の底面(即ち、基板ホルダ7)の電位は約−340Vであり、基板100上の放電空間の電位(プラズマ電位)は約+13Vであり、それらの間の電位差は約343Vであった。また、成膜室4の壁面は0Vであった。なお、放電は安定して生成されており、基板面に対してアーク放電や不均一な放電は生じていなかった。
このように作製された圧電材料の圧電性能を測定したところ、圧電定数d33は約120pm/Vであった。また、比較例として、プラズマを生成することなく、通常のAD法のみで作製された圧電材料の圧電定数d33は、約5pm/Vであった。これにより、本実施形態において作製された圧電材料の圧電定数は高く、成膜と同時に分極処理が施されていたことがわかる。
ここで、本実施形態に係る成膜装置における圧電材料の別の製造方法として、成膜が終了した後で分極処理を行っても良い。即ち、AD法によって圧電材料を形成した後、減圧したままの成膜室4内に放電を生じさせることにより、その圧電材料に分極処理を施す。この方法によっても、均一且つ安定した分極処理を行うことができる。
以上説明したように、本発明の第1の実施形態によれば、AD法が行われる成膜室内に電場を形成することにより、1つの装置において圧電材料の成膜及び分極処理の両方を行うことができる。従って、複数の装置を使い分けたり、分極後に圧電材料を洗浄するといった手間が不要になり、製造プロセスを短縮して、製造コストを低減することが可能になる。また、電場を形成する際に、グロー放電を用いることにより、成膜中又は成膜後の圧電材料に均一な分極処理を安定して施すことができる。従って、良質な圧電材料を製造できると共に、製造歩留まりを向上させることが可能になる。さらに、成膜と同時に分極処理を行う場合には、圧電材料の膜厚が小さい状態で順次分極されるので、形成すべき電場の電位勾配が小さく済むという利点がある。
次に、本発明の第2の実施形態に係る成膜装置について説明する。図4は、本実施形態に係る成膜装置の構成を示す模式図である。
本実施形態に示す成膜装置は、図1に示す成膜装置に対して、対向電極10をさらに設けたものである。その他の構成については、図1に示す成膜装置と同様である。
対向電極10は、基板ホルダ7に対向するように配置されていると共に、接地配線と接続されている。このような対向電極10は、図2に示す回路におけるアノードとして作用する。また、対向電極10には、ノズル6から噴射されたエアロゾル101が通過するための開口10aが形成されている。
高周波電源8から電力を供給することにより、基板ホルダ7と対向電極10との間にグロー放電が生じ、プラズマ103が生成される。このプラズマ103は、基板ホルダ7と対向電極10との間に閉じ込められるので、対向電極10を設けない場合と比較して、それらの間の放電空間に、より均一な電場を形成することができる。従って、基板100上に形成される圧電材料に、より均一且つ安定した分極処理を施すことが可能になる。
次に、本発明の第3の実施形態に係る成膜装置について説明する。図5は、本実施形態に係る成膜装置の構成を示す模式図である。
本実施形態に係る成膜装置は、図1に示す成膜装置に、図5の(a)に示す直流電源(DC)20と、LC(コイルとコンデンサ)を用いたトラップ回路21とをさらに設けたものである。その他の構成については、図1に示す成膜装置と同様である。
図5の(b)は、成膜室4、基板ホルダ7、高周波電源8、マッチングボックス9、直流電源20、及び、トラップ回路21によって構成される回路を示している。本実施形態においては、高周波電源8からマッチングボックス9を介して、基板ホルダ7に高周波電力を供給する際に、直流電源20から直流電力を重畳して供給する。トラップ回路21は、高周波電力の周波数において大きなインピーダンスを有し、高周波電源8と直流電源20との間の干渉を防いでいる。このような方法によって電力を供給することにより、圧電材料に印加される負の電圧VBI(図3)の大きさを制御できるので、膜厚等の様々な条件に応じて適切な分極処理を施すことが可能になる。なお、高周波電力に直流電力を重畳することについては、特開平5−9724号公報、又は、再公表WO00/44033号公報にも開示されている。また、本実施形態においても、図4に示すものと同様に、対向電極10を配置しても良い。
以上説明した本発明の第1〜第3の実施形態においては、高周波電源を用いて成膜室内に電場を形成しているが、安定して均一な電場を形成できれば、それ以外の電源装置を用いても良い。例えば、マイクロ波電源を用いることにより、アーク放電のように望ましくない放電を生じることなく、安定したプラズマを生成することができる。
本発明は、圧電アクチュエータや超音波トランスデューサ等に用いられる圧電材料を形成するための成膜装置において利用可能である。
本発明の第1の実施形態に係る成膜装置の構成を示す模式図である。 図1に示す成膜装置における高周波放電の原理を説明するための回路図である。 図2に示すアノード−カソード間に生じる電位分布を示す図である。 本発明の第2の実施形態に係る成膜装置の構成を示す模式図である。 本発明の第3の実施形態に係る成膜装置の構成を示す模式図である。 圧電材料の分極について説明するための模式図である。 従来の分極処理装置を示す模式図である。
符号の説明
1 ガスボンベ
1a 圧力調整部
2a、2b 搬送管
3 エアロゾル生成室
3a 容器駆動部
4 成膜室
5 排気ポンプ
6 ノズル
7 基板ホルダ
7a 基板ホルダ駆動部
8 高周波電源
9 マッチングボックス
10 対向電極
20 直流電源
100 基板
101 エアロゾル
102 プラズマ
200 焼結体
201 分域
211、212 電極
213 容器
214 シリコンオイル
215 ヒータ
216 電源装置
217 トランス

Claims (8)

  1. 構造物が形成される基板が配置される成膜室と、
    容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成するエアロゾル生成手段と、
    前記エアロゾル生成手段によって生成されたエアロゾルを前記基板に向けて噴射するノズルと、
    前記基板の主面の法線方向に電位勾配を有する電場を前記成膜室内に形成する電場形成手段と、
    を具備する成膜装置。
  2. 前記電場形成手段が、高周波電源、マイクロ波電源、又は、直流電源を含む、請求項1記載の成膜装置。
  3. 前記電場形成手段が、前記基板に負電圧を印加することによって電場を形成する、請求項1又は2記載の成膜装置。
  4. 前記電場形成手段が、高周波電源と、ブロッキングコンデンサと、前記基板を保持すると共に前記ブロッキングコンデンサを介して前記高周波電源と電気的に接続されている電極とを含み、前記成膜室内にグロー放電を生じさせる、請求項3記載の成膜装置。
  5. 前記電極に対向して配置され、接地配線と接続されている第2の電極をさらに具備する請求項4記載の成膜装置。
  6. 前記電場形成手段が、前記高周波電源から出力される高周波電力に直流電力を重畳するために用いられる直流電源をさらに具備する、請求項4又は5記載の成膜装置。
  7. 構造物が形成される基板を成膜室に配置する工程(a)と、
    容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成する工程(b)と、
    前記基板の主面の法線方向に電位勾配を有する電場を前記成膜室内に形成すると共に、工程(a)において生成されたエアロゾルをノズルから前記基板に向けて噴射することにより、圧電材料を前記基板上に堆積させながら分極する工程(c)と、
    を具備する圧電材料の製造方法。
  8. 構造物が形成される基板を成膜室に配置する工程(a)と、
    容器に配置された圧電材料の粉体をガスによって吹き上げることによりエアロゾルを生成する工程(b)と、
    工程(a)において生成されたエアロゾルをノズルから前記基板に向けて噴射することにより、前記基板上に圧電材料を堆積させる工程(c)と、
    前記基板の主面の法線方向に電位勾配を有する電場を前記成膜室内に形成することにより、前記成膜室内において前記圧電材料を分極する工程(d)と、
    を具備する圧電材料の製造方法。
JP2004079444A 2004-03-19 2004-03-19 成膜装置及び圧電材料の製造方法 Withdrawn JP2005262108A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079444A JP2005262108A (ja) 2004-03-19 2004-03-19 成膜装置及び圧電材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079444A JP2005262108A (ja) 2004-03-19 2004-03-19 成膜装置及び圧電材料の製造方法

Publications (1)

Publication Number Publication Date
JP2005262108A true JP2005262108A (ja) 2005-09-29

Family

ID=35087200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079444A Withdrawn JP2005262108A (ja) 2004-03-19 2004-03-19 成膜装置及び圧電材料の製造方法

Country Status (1)

Country Link
JP (1) JP2005262108A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772747B2 (en) 2008-03-21 2010-08-10 Fujifilm Corporation Process for producing a piezoelectric film, film forming apparatus, and piezoelectric film
EP2282621A1 (en) * 2009-08-04 2011-02-09 The Boeing Company In-process orientation of particles in a direct-write ink to control electrical characteristics of an electrical component being fabricated
WO2012014278A1 (ja) * 2010-07-27 2012-02-02 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法
JP2012195608A (ja) * 2012-06-18 2012-10-11 Tokyo Electron Ltd 基板吸着離脱方法及び基板処理方法
WO2012169006A1 (ja) * 2011-06-07 2012-12-13 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
JP2015012001A (ja) * 2013-06-26 2015-01-19 株式会社リコー 電気機械変換素子の製造方法、電気機械変換素子、液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP2015053484A (ja) * 2014-09-08 2015-03-19 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
JP2015159192A (ja) * 2014-02-24 2015-09-03 株式会社リコー 電気機械変換部材及びその製造方法、並びに、その電気機械変換部材を備える液滴吐出ヘッド及び画像形成装置
JP2015164149A (ja) * 2014-02-28 2015-09-10 株式会社リコー 分極処理前基板、アクチュエータ基板、アクチュエータ基板の製造方法、液滴吐出ヘッド及び画像形成装置
KR20160080556A (ko) * 2014-12-30 2016-07-08 한국기계연구원 압전소자 폴링장치
WO2017141712A1 (ja) * 2016-02-16 2017-08-24 株式会社Ihi 翼構造体の製造方法
WO2017164565A1 (ko) * 2016-03-24 2017-09-28 주식회사 프로텍 점성 용액 도포 장치 및 점성 용액 도포 방법

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772747B2 (en) 2008-03-21 2010-08-10 Fujifilm Corporation Process for producing a piezoelectric film, film forming apparatus, and piezoelectric film
EP2282621A1 (en) * 2009-08-04 2011-02-09 The Boeing Company In-process orientation of particles in a direct-write ink to control electrical characteristics of an electrical component being fabricated
JP5857344B2 (ja) * 2010-07-27 2016-02-10 株式会社ユーテック プラズマポーリング装置及び圧電体の製造方法
WO2012014278A1 (ja) * 2010-07-27 2012-02-02 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法
US20130153813A1 (en) * 2010-07-27 2013-06-20 Youtec Co. Ltd. Poling treatment method, plasma poling device, piezoelectric substance, and manfacturing method therefor
WO2012169006A1 (ja) * 2011-06-07 2012-12-13 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
JPWO2012169006A1 (ja) * 2011-06-07 2015-02-23 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
JP2012195608A (ja) * 2012-06-18 2012-10-11 Tokyo Electron Ltd 基板吸着離脱方法及び基板処理方法
JP2015012001A (ja) * 2013-06-26 2015-01-19 株式会社リコー 電気機械変換素子の製造方法、電気機械変換素子、液滴吐出ヘッド、液滴吐出装置及び画像形成装置
JP2015159192A (ja) * 2014-02-24 2015-09-03 株式会社リコー 電気機械変換部材及びその製造方法、並びに、その電気機械変換部材を備える液滴吐出ヘッド及び画像形成装置
JP2015164149A (ja) * 2014-02-28 2015-09-10 株式会社リコー 分極処理前基板、アクチュエータ基板、アクチュエータ基板の製造方法、液滴吐出ヘッド及び画像形成装置
JP2015053484A (ja) * 2014-09-08 2015-03-19 株式会社ユーテック ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
KR20160080556A (ko) * 2014-12-30 2016-07-08 한국기계연구원 압전소자 폴링장치
KR101658987B1 (ko) * 2014-12-30 2016-09-23 한국기계연구원 압전소자 폴링장치
WO2017141712A1 (ja) * 2016-02-16 2017-08-24 株式会社Ihi 翼構造体の製造方法
JPWO2017141712A1 (ja) * 2016-02-16 2018-12-06 株式会社Ihi 翼構造体の製造方法
US11078794B2 (en) 2016-02-16 2021-08-03 Ihi Corporation Airfoil structure manufacturing method
WO2017164565A1 (ko) * 2016-03-24 2017-09-28 주식회사 프로텍 점성 용액 도포 장치 및 점성 용액 도포 방법

Similar Documents

Publication Publication Date Title
JP5410686B2 (ja) 圧電体膜の製造方法、成膜装置および圧電体膜
JP4949668B2 (ja) セラミックス膜の製造方法及びセラミックス膜を含む構造物
JP2005262108A (ja) 成膜装置及び圧電材料の製造方法
JP5156552B2 (ja) ガスバリアフィルムの製造方法
US20180240649A1 (en) Surface coating for plasma processing chamber components
KR101971771B1 (ko) 다층막 및 다층막의 제조 방법
WO2015137198A1 (ja) 多層膜の製造方法および多層膜
JP2010043330A (ja) 成膜装置、成膜方法、圧電膜、および、液体吐出装置
JP2004300572A (ja) 複合構造物形成装置および形成方法
JP5486383B2 (ja) ドライエッチング方法及び装置
JP2007162077A (ja) 成膜装置、成膜方法、セラミック膜、無機構造体、及び、デバイス
JP2012033385A (ja) プラズマ処理装置及びプラズマ処理方法
Akedo et al. Aerosol deposition method for preparation of lead zirconate titanate thick layer at low temperature–improvement of electrical properties by irradiation of fast atom beam and plasma–
JP2005279953A (ja) セラミックス構造物及びセラミックス構造物の製造方法
US20100090154A1 (en) Film depositing apparatus, a film depositing method, a piezoelectric film, and a liquid ejecting apparatus
JP2005319380A (ja) 成膜方法及び成膜装置
JP2006297270A (ja) 構造物の製造方法及び製造装置、構造物
JP4676222B2 (ja) プラズマ処理装置
US7179718B2 (en) Structure and method of manufacturing the same
JP2012114156A (ja) 圧電素子の製造方法
KR101281429B1 (ko) 압전 소자의 제조 방법
JP2008100887A (ja) 成膜用原料粉、膜構造体及びそれらの製造方法、並びに、圧電素子
JP2004119934A (ja) 積層構造体の製造方法及び製造装置
JP2007165372A (ja) 積層構造体及びその製造方法
JP2004200476A (ja) 圧電素子の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605