WO2012169006A1 - ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置 - Google Patents

ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置 Download PDF

Info

Publication number
WO2012169006A1
WO2012169006A1 PCT/JP2011/063022 JP2011063022W WO2012169006A1 WO 2012169006 A1 WO2012169006 A1 WO 2012169006A1 JP 2011063022 W JP2011063022 W JP 2011063022W WO 2012169006 A1 WO2012169006 A1 WO 2012169006A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
substrate
poled
poling
base material
Prior art date
Application number
PCT/JP2011/063022
Other languages
English (en)
French (fr)
Inventor
健 木島
本多 祐二
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to PCT/JP2011/063022 priority Critical patent/WO2012169006A1/ja
Priority to JP2013519257A priority patent/JP5764780B2/ja
Priority to US14/123,138 priority patent/US20140191618A1/en
Publication of WO2012169006A1 publication Critical patent/WO2012169006A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/003Scarfing, desurfacing or deburring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a polling process method for performing a polling process using plasma, a plasma polling apparatus, a piezoelectric body and a manufacturing method thereof, a film forming apparatus and an etching apparatus, and a lamp annealing apparatus.
  • FIG. 19 is a schematic diagram showing a conventional polling apparatus.
  • the crystal 33 is sandwiched between the center of a pair of electrodes 35 made of two parallel plates of 10 ⁇ 10 mm 2 so that an electric field is applied in a direction where no mechanical poling is applied. Then, the crystal 33 together with the electrode 35 is immersed in the oil 36 in the oil bath 37, and the oil 36 in which the crystal 33 is immersed is heated to 125 ° C. by the heater 38. After reaching a predetermined temperature, a DC electric field of 1 kV / cm is applied between the electrodes 35 from the high voltage power supply 39 via the lead wire 40 for 10 hours. Thereby, the polling process is performed on the crystal 33 (see, for example, Patent Document 1).
  • the conventional polling method described above is a wet method in which an object to be poled is immersed in oil while being sandwiched between the centers of a pair of electrodes, so that the polling process becomes complicated.
  • JP-A-10-177194 (paragraph 0018, FIG. 4)
  • One embodiment of the present invention provides any one of a polling processing method, a plasma poling apparatus, a piezoelectric body and a manufacturing method thereof, a film forming apparatus and an etching apparatus, and a lamp annealing apparatus that can easily perform a poling process by a dry method. Let it be an issue.
  • Another object of one embodiment of the present invention is to improve the characteristics of a poled piezoelectric body or the like in either a dry method or a wet method.
  • One aspect of the present invention is a polling processing method for performing a polling process on a substrate to be polled at a first temperature,
  • the first temperature is equal to or higher than a temperature at which a residual polarization value of a hysteresis curve of the base material to be polled becomes 0%.
  • the polling base material may be the polling process while being lowered from the first temperature to the second temperature or while being raised from the second temperature to the first temperature.
  • the second temperature may be a temperature that is equal to or higher than a temperature indicating a remanent polarization value that is 50% with respect to a remanent polarization value of a hysteresis curve at room temperature of the base material to be polled and lower than the first temperature.
  • One aspect of the present invention is a polling processing method for performing a polling process on a substrate to be polled at a first temperature
  • the polling processing method is characterized in that the first temperature is equal to or higher than the Curie temperature (preferably higher than the Curie temperature by 50 ° C.).
  • the polling base material may be the polling process while being lowered from the first temperature to the second temperature or while being raised from the second temperature to the first temperature. Is done,
  • the second temperature may be 50 ° C. or higher and lower than the first temperature.
  • One aspect of the present invention is a polling processing method for performing a polling process on a substrate to be polled at a first temperature,
  • the polling processing method is characterized in that the first temperature is 100 ° C. or higher.
  • the polling base material may be the polling process while being lowered from the first temperature to the second temperature or while being raised from the second temperature to the first temperature. Is done,
  • the second temperature may be 100 ° C. or higher and lower than the first temperature.
  • the base material to be poled may be a material in which a piezoelectric material film is formed on a silicon wafer having a thickness smaller than the SEMI standard or a silicon wafer having a thickness of 400 ⁇ m or less.
  • the base material to be poled is a metal base material, a metal base material having oxidation resistance, a Curie temperature of the base material to be poled, or a temperature at which a residual polarization value of a hysteresis curve becomes 0%.
  • a metal base material having heat resistance against iron an iron base material (preferably a base material such as an iron alloy, stainless steel, SUS, etc.) and a Ni base material (eg, a base material such as Ni alloy)
  • a piezoelectric material film may be formed on the substrate.
  • the base material to be poled is a glass base material, a glass base material having oxidation resistance, and a Curie temperature or a residual polarization value of a hysteresis curve of the base material to be poled is 0%. It is preferable that a piezoelectric material film is formed on any one of glass substrates having heat resistance to a certain temperature.
  • the poling substrate is a poling processing method characterized in that a piezoelectric material film is formed on a silicon wafer having a thickness smaller than the SEMI standard or a silicon wafer having a thickness of 400 ⁇ m or less.
  • the base material to be poled may be a base material having a dielectric or an insulator. In one embodiment of the present invention, the base material to be poled may be a base material having a piezoelectric body. In one embodiment of the present invention, the base material to be poled may be a base material having a pyroelectric material. In one embodiment of the present invention, the base material to be poled may be a base material having a ferroelectric.
  • plasma when performing the poling process on the substrate to be poled, plasma may be formed at a position facing the substrate to be polled.
  • a direct current voltage when a direct current plasma is formed at a position facing the substrate to be polled or a direct current voltage component when a high frequency plasma is formed at a position facing the substrate to be polled is provided. It may be ⁇ 50 V to ⁇ 2 kV.
  • the pressure at which the plasma is formed is preferably 0.01 Pa to atmospheric pressure.
  • the plasma forming gas for forming the plasma may be inert gas, H 2 , N 2 , O 2 , F 2 , C x H y , C x F y, and air. It may be one or more gases selected from the group.
  • One embodiment of the present invention is a piezoelectric body characterized in that a polling process is performed on the substrate to be polled by the above-described polling method, and piezoelectric activity is imparted to the substrate to be polled.
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A power source electrically connected to one of the holding electrode and the counter electrode; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A control unit for controlling the power source, the gas supply mechanism, and the temperature control mechanism; Comprising The control unit sets the base material to be poled to a first temperature equal to or higher than a temperature at which a residual polarization value of a hysteresis curve of the base material to be poled becomes 0%, and generates plasma at a position facing the base material to be poled.
  • the plasma poling apparatus is characterized in that the power source, the gas supply mechanism, and the temperature control mechanism are controlled so that the pol
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A first power source and a ground potential connected to the holding electrode via a first changeover switch; A second power source connected to the counter electrode via a second changeover switch and the ground potential; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A controller that controls the first power source, the second power source, the gas supply mechanism, and the temperature control mechanism; Comprising The first changeover switch is a switch for switching from a first state in which the holding electrode and the first power supply are electrically connected to a second state in which the holding electrode and the ground potential are electrically connected.
  • the second changeover switch is a switch for switching from a third state in which the counter electrode and the ground potential are electrically connected to a fourth state in which the counter electrode and the second power source are electrically connected.
  • the control unit In the first state and the third state, or in the second state and the fourth state, the control unit has a residual polarization value of 0 in a hysteresis curve of the base material to be poled.
  • the first power source and the second power source are set to a first temperature that is equal to or higher than a temperature of%, and a plasma is formed at a position facing the base material to be poled to perform a poling process on the base material to be poled.
  • a plasma poling apparatus that controls a power source, the gas supply mechanism, and the temperature control mechanism.
  • control unit may cause the base material to be polled to be lowered from the first temperature to the second temperature, or from the second temperature to the first temperature.
  • the second temperature may be a temperature that is equal to or higher than a temperature indicating a remanent polarization value that is 50% with respect to a remanent polarization value of a hysteresis curve at room temperature of the base material to be polled and lower than the first temperature.
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A power source electrically connected to one of the holding electrode and the counter electrode; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A control unit for controlling the power source, the gas supply mechanism, and the temperature control mechanism; Comprising The controller sets the substrate to be poled to a first temperature equal to or higher than a Curie temperature (preferably a temperature higher than the Curie temperature by 50 ° C.) and forms plasma at a position facing the substrate to be poled to form the target substrate.
  • the plasma poling apparatus is characterized in that the power source, the gas supply mechanism, and the temperature control mechanism are controlled so as to perform a poling process on a poling
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A first power source and a ground potential connected to the holding electrode via a first changeover switch; A second power source connected to the counter electrode via a second changeover switch and the ground potential; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A controller that controls the first power source, the second power source, the gas supply mechanism, and the temperature control mechanism; Comprising The first changeover switch is a switch for switching from a first state in which the holding electrode and the first power supply are electrically connected to a second state in which the holding electrode and the ground potential are electrically connected.
  • the second changeover switch is a switch for switching from a third state in which the counter electrode and the ground potential are electrically connected to a fourth state in which the counter electrode and the second power source are electrically connected.
  • the control unit causes the substrate to be poled to have a Curie temperature or higher (preferably a temperature higher by 50 ° C. than the Curie temperature).
  • the first power source, the second power source, and the gas supply so as to form a plasma at a position facing the substrate to be poled and perform a polling process on the substrate to be polled. It is a plasma poling apparatus characterized by controlling the mechanism and the temperature control mechanism.
  • control unit may cause the base material to be polled to be lowered from the first temperature to the second temperature, or from the second temperature to the first temperature. , Controlled to perform the polling process,
  • the second temperature may be 50 ° C. or higher and lower than the first temperature.
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A power source electrically connected to one of the holding electrode and the counter electrode; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A control unit for controlling the power source, the gas supply mechanism, and the temperature control mechanism; Comprising The control unit is configured to perform the poling process on the base material to be poled by setting the base material to be poled to a first temperature of 100 ° C. or more and forming plasma at a position facing the base material to be poled.
  • a plasma poling apparatus that controls a power source, the gas supply mechanism, and the temperature control mechanism.
  • One aspect of the present invention is a polling chamber; A holding electrode disposed in the poling chamber and holding a substrate to be poled; and A counter electrode disposed in the poling chamber and opposed to the substrate to be poled held by the holding electrode; A first power source and a ground potential connected to the holding electrode via a first changeover switch; A second power source connected to the counter electrode via a second changeover switch and the ground potential; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the polled substrate held by the holding electrode; A controller that controls the first power source, the second power source, the gas supply mechanism, and the temperature control mechanism; Comprising The first changeover switch is a switch for switching from a first state in which the holding electrode and the first power supply are electrically connected to a second state in which the holding electrode and the ground potential are electrically connected.
  • the second changeover switch is a switch for switching from a third state in which the counter electrode and the ground potential are electrically connected to a fourth state in which the counter electrode and the second power source are electrically connected.
  • the control unit sets the substrate to be poled to a first temperature of 100 ° C. or more, and the substrate to be polled.
  • the first power source, the second power source, the gas supply mechanism, and the temperature control mechanism are controlled so as to form a plasma at a position facing the substrate and perform a poling process on the substrate to be poled. Is a plasma poling apparatus.
  • control unit may cause the base material to be polled to be lowered from the first temperature to the second temperature, or from the second temperature to the first temperature. , Controlled to perform the polling process,
  • the second temperature may be 100 ° C. or higher and lower than the first temperature.
  • the base material to be poled may be a material in which a piezoelectric material film is formed on a silicon wafer having a thickness smaller than the SEMI standard or a silicon wafer having a thickness of 400 ⁇ m or less.
  • the base material to be poled is a metal base material, a metal base material having oxidation resistance, a Curie temperature of the base material to be poled, or a temperature at which a residual polarization value of a hysteresis curve becomes 0%.
  • a metal base material having heat resistance against iron an iron base material (preferably a base material such as an iron alloy, stainless steel, SUS, etc.) and a Ni base material (eg, a base material such as Ni alloy)
  • a piezoelectric material film may be formed on the substrate.
  • the base material to be poled is a glass base material, a glass base material having oxidation resistance, and a Curie temperature or a residual polarization value of a hysteresis curve of the base material to be poled is 0%. It is preferable that a piezoelectric material film is formed on any one of glass substrates having heat resistance to a certain temperature.
  • the base material to be poled may be a base material having a dielectric or an insulator. In one embodiment of the present invention, the base material to be poled may be a base material having a piezoelectric body.
  • the base material to be poled may be a base material having a pyroelectric material. In one embodiment of the present invention, the base material to be poled may be a base material having a ferroelectric.
  • a direct current voltage or a high frequency plasma when a DC voltage is formed by supplying power to one electrode of the holding electrode and the counter electrode may be ⁇ 50 V or more. It is good that it is ⁇ 2 kV.
  • a pressure control mechanism for controlling a pressure in the poling chamber at the time of performing the poling process to be 0.01 Pa to atmospheric pressure.
  • the plasma forming gas is selected from the group consisting of an inert gas, H 2 , N 2 , O 2 , F 2 , C x H y , C x F y, and air. It is good that it is more than seed gas.
  • One embodiment of the present invention is a piezoelectric body characterized in that a polling process is performed on the substrate to be poled by the plasma polling apparatus described above, and piezoelectric activity is imparted to the substrate to be poled.
  • One embodiment of the present invention is a film formation apparatus including the above-described plasma poling apparatus.
  • the film formation apparatus may be any one of a spin coating apparatus, a lamp annealing apparatus, a sputtering apparatus, a CVD apparatus, and a vapor deposition apparatus.
  • One embodiment of the present invention is an etching apparatus including the plasma poling apparatus described above.
  • One embodiment of the present invention includes a chamber; Holding electrode disposed in the chamber and holding a substrate to be poled having any one of a dielectric material film, an insulator material film, a piezoelectric material film, a pyroelectric material film, and a ferroelectric material film
  • a counter electrode disposed in the chamber and opposed to the substrate to be poled held by the holding electrode
  • a lamp heater for irradiating the base material to be poled with lamp light
  • a power source electrically connected to one of the holding electrode and the counter electrode
  • a gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode
  • a control unit for controlling the lamp heater, the power source and the gas supply mechanism
  • a lamp annealing apparatus comprising:
  • the control unit irradiates lamp light with the lamp heater to heat the substrate to be poled to a crystallization temperature to crystallize any of the films.
  • Plasma is formed at a position facing the poling substrate, and a first lower temperature than the crystallization temperature and a residual polarization value of a hysteresis curve of the poling substrate is 0% or more on the poling substrate.
  • the lamp heater, the power source, and the gas supply mechanism may be controlled so that the polling process is performed at a temperature of ⁇ .
  • the control unit irradiates lamp light with the lamp heater to heat the substrate to be poled to a crystallization temperature to crystallize any of the films.
  • a plasma is formed at a position facing the polling substrate, and the polling treatment is performed on the substrate to be poled at a first temperature lower than the crystallization temperature and higher than the Curie temperature (preferably higher than the Curie temperature by 50 ° C.).
  • the lamp heater, the power source, and the gas supply mechanism may be controlled so as to perform the following.
  • control unit irradiates lamp light with the lamp heater to heat the substrate to be poled to a crystallization temperature to crystallize any of the films.
  • the gas supply mechanism may be controlled.
  • control unit emits plasma at a position facing the poled substrate while heating the poled substrate to a crystallization temperature by irradiating lamp light with the lamp heater. It is preferable to control the lamp heater, the power source, and the gas supply mechanism so that the poling treatment is performed on the substrate to be poled while forming one of the films by crystallization.
  • One embodiment of the present invention includes a chamber; Holding electrode disposed in the chamber and holding a substrate to be poled having any one of a dielectric material film, an insulator material film, a piezoelectric material film, a pyroelectric material film, and a ferroelectric material film
  • a counter electrode disposed in the chamber and opposed to the substrate to be poled held by the holding electrode
  • a lamp heater for irradiating the base material to be poled with lamp light
  • a first power source and a ground potential connected to the holding electrode via a first changeover switch
  • a second power source connected to the counter electrode via a second changeover switch and the ground potential
  • a gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode
  • a control unit for controlling the lamp heater, the first power source, the second power source, and the gas supply mechanism
  • Comprising The first changeover switch is a switch for switching from a first state in which the holding electrode and the first power supply are electrically connected to a second
  • the control unit heats the base material to be crystallized by irradiating lamp light with the lamp heater to crystallize any of the films.
  • plasma is formed at a position facing the substrate to be poled, and the substrate to be poled is subjected to the crystallization temperature.
  • the lamp heater, the first power source, the second power source so as to perform the polling process at a first temperature that is low and has a remanent polarization value of the hysteresis curve of the substrate to be polled of 0% or more.
  • the gas supply mechanism may be controlled.
  • the control unit heats the base material to be crystallized by irradiating lamp light with the lamp heater to crystallize any of the films.
  • plasma is formed at a position facing the substrate to be poled, and the substrate to be poled has a temperature lower than the crystallization temperature.
  • the lamp heater, the first power source, the second power source, and the gas supply mechanism are configured to perform the polling process at a first temperature that is equal to or higher than the Curie temperature (preferably higher than the Curie temperature by 50 ° C.). It is good to control.
  • the control unit heats the base material to be crystallized by irradiating lamp light with the lamp heater to crystallize any of the films.
  • plasma is formed at a position facing the substrate to be poled, and the substrate to be poled has a temperature lower than the crystallization temperature.
  • the lamp heater, the first power source, the second power source, and the gas supply mechanism may be controlled so that the polling process is performed at a first temperature of 100 ° C. or higher.
  • control unit may heat the poled base material to a crystallization temperature by irradiating lamp light with the lamp heater, while the first state and the third state.
  • a plasma is formed at a position facing the base material to be poled, so that the poling processing is performed on the base material while crystallizing any of the films.
  • the lamp heater, the first power source, the second power source, and the gas supply mechanism may be controlled.
  • the control unit is controlled to perform the polling process while lowering the base material to be polled from the first temperature to the second temperature
  • the second temperature may be a temperature that is equal to or higher than a temperature indicating a remanent polarization value that is 50% with respect to a remanent polarization value of a hysteresis curve at room temperature of the base material to be polled and lower than the first temperature.
  • control unit is controlled to perform the polling process while lowering the base material to be polled from the first temperature to the second temperature,
  • the second temperature may be 50 ° C. or higher and lower than the first temperature.
  • control unit is controlled to perform the polling process while lowering the base material to be polled from the first temperature to the second temperature,
  • the second temperature may be 100 ° C. or higher and lower than the first temperature.
  • the base material to be poled may be one in which any of the above films is formed on a silicon wafer having a thickness smaller than that of the SEMI standard or a silicon wafer having a thickness of 400 ⁇ m or less.
  • the base material to be poled is a metal base material, a metal base material having oxidation resistance, a Curie temperature of the base material to be poled, or a temperature at which a residual polarization value of a hysteresis curve becomes 0%.
  • a metal base material having heat resistance against iron an iron base material (preferably a base material such as an iron alloy, stainless steel, SUS, etc.) and a Ni base material (eg, a base material such as Ni alloy) Any one of the above films may be formed on the substrate.
  • the base material to be poled is a glass base material, a glass base material having oxidation resistance, and a Curie temperature or a residual polarization value of a hysteresis curve of the base material to be poled is 0%. Any one of the above-mentioned films may be formed on any one of the glass substrates having heat resistance with respect to the temperature.
  • a direct current voltage or a high frequency plasma when a DC voltage is formed by supplying power to one electrode of the holding electrode and the counter electrode may be ⁇ 50 V or more. It is good that it is ⁇ 2 kV.
  • a pressure control mechanism for controlling the pressure in the chamber at the time of performing the polling process to 0.01 Pa to atmospheric pressure is provided.
  • the plasma forming gas is selected from the group consisting of an inert gas, H 2 , N 2 , O 2 , F 2 , C x H y , C x F y, and air. It is good that it is more than seed gas.
  • the pressurization mechanism may include a gas introduction mechanism that introduces a pressurized gas into the chamber and a gas exhaust mechanism that exhausts the gas in the chamber.
  • One aspect of the present invention is a method of manufacturing a piezoelectric body by performing poling treatment on a piezoelectric material material at a first temperature, The method for manufacturing a piezoelectric body, wherein the first temperature is equal to or higher than a temperature at which a residual polarization value of a hysteresis curve of the substrate to be poled becomes 0%.
  • the poling treatment may be performed on the piezoelectric material while lowering the first temperature to the second temperature or raising the second temperature to the first temperature.
  • the second temperature may be a temperature that is equal to or higher than a temperature indicating a remanent polarization value that is 50% with respect to a remanent polarization value of a hysteresis curve at room temperature of the base material to be polled and lower than the first temperature.
  • One aspect of the present invention is a method of manufacturing a piezoelectric body by performing poling treatment on a piezoelectric material material at a first temperature, The method of manufacturing a piezoelectric body, wherein the first temperature is equal to or higher than a Curie temperature (preferably a temperature higher than the Curie temperature by 50 ° C.).
  • the poling treatment may be performed on the piezoelectric material while lowering the first temperature to the second temperature or raising the second temperature to the first temperature.
  • the second temperature may be 50 ° C. or higher and lower than the first temperature.
  • One aspect of the present invention is a method of manufacturing a piezoelectric body by performing poling treatment on a piezoelectric material material at a first temperature, The method of manufacturing a piezoelectric body, wherein the first temperature is 100 ° C. or higher.
  • the poling treatment may be performed on the piezoelectric material while lowering the first temperature to the second temperature or raising the second temperature to the first temperature.
  • the second temperature may be 100 ° C. or higher and lower than the first temperature.
  • the piezoelectric material material is obtained by forming a piezoelectric material film on a substrate.
  • the poling process may be performed by forming plasma at a position facing the piezoelectric material film.
  • the thickness of the substrate may be reduced by grinding the back surface of the substrate before forming the piezoelectric material film on the substrate.
  • One embodiment of the present invention is to reduce the thickness of the substrate by grinding the back surface of the substrate, Forming a piezoelectric material film on the substrate;
  • a method of manufacturing a piezoelectric body comprising: performing poling treatment on the piezoelectric material film by forming plasma at a position facing the piezoelectric material film.
  • the thickness of the substrate when the thickness of the substrate is reduced may be 400 ⁇ m or less.
  • the poling process is a method for manufacturing a piezoelectric body using a plasma poling apparatus
  • the plasma poling device is: A polling chamber; A holding electrode disposed in the poling chamber and holding the substrate; A counter electrode disposed in the poling chamber and facing the substrate held by the holding electrode; A power source electrically connected to one of the holding electrode and the counter electrode; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the substrate held by the holding electrode; It is good to comprise.
  • the poling process is a method for manufacturing a piezoelectric body using a plasma poling apparatus
  • the plasma poling device is: A polling chamber; A holding electrode disposed in the poling chamber and holding the substrate; A counter electrode disposed in the poling chamber and facing the substrate held by the holding electrode; A first power source and a ground potential connected to the holding electrode via a first changeover switch; A second power source connected to the counter electrode via a second changeover switch and the ground potential; A gas supply mechanism for supplying a plasma forming gas to a space between the counter electrode and the holding electrode; A temperature control mechanism for controlling the temperature of the substrate held by the holding electrode; It is good to comprise.
  • a piezoelectric material film is formed over a substrate,
  • the piezoelectric material film is crystallized by heating the piezoelectric material film to a crystallization temperature by irradiating the piezoelectric material film with lamp light by a lamp heater,
  • a method of manufacturing a piezoelectric body that forms a plasma at a position facing the piezoelectric material film and performs poling treatment on the piezoelectric material film at a first temperature
  • the first temperature is a temperature lower than the crystallization temperature and a temperature equal to or higher than a temperature at which a residual polarization value of a hysteresis curve of the piezoelectric material film becomes 0%.
  • the poling treatment is performed on the piezoelectric material film while the piezoelectric material film is lowered from the first temperature to the second temperature.
  • the second temperature may be equal to or higher than a temperature indicating a residual polarization value of 50% with respect to a residual polarization value of a hysteresis curve at room temperature of the piezoelectric material film and lower than the first temperature.
  • a piezoelectric material film is formed over a substrate,
  • the piezoelectric material film is crystallized by heating the piezoelectric material film to a crystallization temperature by irradiating the piezoelectric material film with lamp light by a lamp heater,
  • a method of manufacturing a piezoelectric body that forms a plasma at a position facing the piezoelectric material film and performs poling treatment on the piezoelectric material film at a first temperature is a method of manufacturing a piezoelectric body, characterized in that the first temperature is lower than the crystallization temperature and higher than the Curie temperature (preferably higher than the temperature of 50 ° C. higher than the Curie temperature).
  • the poling treatment is performed on the piezoelectric material film while the piezoelectric material film is lowered from the first temperature to the second temperature.
  • the second temperature may be 50 ° C. or higher and lower than the first temperature.
  • a piezoelectric material film is formed over a substrate,
  • the piezoelectric material film is crystallized by heating the piezoelectric material film to a crystallization temperature by irradiating the piezoelectric material film with lamp light by a lamp heater,
  • a method of manufacturing a piezoelectric body that forms a plasma at a position facing the piezoelectric material film and performs poling treatment on the piezoelectric material film at a first temperature The first temperature is a temperature lower than the crystallization temperature and a temperature of 100 ° C. or higher.
  • the poling treatment is performed on the piezoelectric material film while the piezoelectric material film is lowered from the first temperature to the second temperature.
  • the second temperature may be 100 ° C. or higher and lower than the first temperature.
  • a piezoelectric material film is formed over a substrate, By irradiating the piezoelectric material film with lamp light by a lamp heater, the piezoelectric material film is heated to a crystallization temperature, and plasma is formed at a position facing the piezoelectric material film, thereby the piezoelectric body.
  • a method for manufacturing a piezoelectric body comprising performing a poling process on the piezoelectric material film while crystallizing the material film.
  • the poling treatment is performed on the piezoelectric material film while the piezoelectric material film is lowered from the first temperature to the second temperature.
  • the second temperature is equal to or higher than a temperature at which the residual polarization value of 50% of the residual polarization value of the hysteresis curve at room temperature of the piezoelectric material film is equal to or higher than 50 ° C. and lower than the crystallization temperature.
  • characteristics of a poled piezoelectric body or the like can be improved by either a dry method or a wet method.
  • FIG. 5 is a cross-sectional view illustrating a state in which sputtering film formation is performed by a sputtering apparatus according to one embodiment of the present invention. It is sectional drawing which shows a mode that the polling process is performed with the sputtering device shown in FIG. FIG.
  • FIG. 6 is a cross-sectional view illustrating a state in which sputtering film formation and poling processing are simultaneously performed by the sputtering apparatus according to one embodiment of the present invention. It is sectional drawing which shows a mode that CVD film-forming is performed with the plasma CVD apparatus which concerns on 1 aspect of this invention. It is sectional drawing which shows a mode that the polling process is performed by the plasma CVD apparatus shown in FIG. It is sectional drawing which shows a mode that CVD film-forming and poling processing are performed simultaneously by the plasma CVD apparatus which concerns on 1 aspect of this invention. It is sectional drawing which shows a mode that vapor deposition film-forming is performed with the vapor deposition apparatus which concerns on 1 aspect of this invention.
  • This vapor deposition apparatus has a plasma poling apparatus. It is sectional drawing which shows a mode that the polling process is performed with the vapor deposition apparatus shown in FIG. It is sectional drawing which shows a mode that vapor deposition film-forming and poling processing are performed simultaneously by the vapor deposition apparatus which concerns on 1 aspect of this invention. It is sectional drawing which shows typically the pressurization type lamp annealing apparatus which concerns on 1 aspect of this invention. It is a schematic diagram which shows the conventional polling apparatus.
  • FIG. 1 is a cross-sectional view schematically illustrating a plasma poling apparatus according to an aspect of the present invention.
  • This plasma polling apparatus is an apparatus for performing a polling process.
  • the plasma polling apparatus has a polling chamber 1, and a holding electrode 4 that holds a substrate to be poled 2 is disposed below the polling chamber 1.
  • the details of the base material to be poled 2 will be described later.
  • the base material to be poled 2 is, for example, a base material having a ferroelectric material or a base material in which a ferroelectric material is formed on a substrate. Materials can be used.
  • the holding electrode 4 is electrically connected to the high frequency power source 6, and the holding electrode 4 also functions as an RF application electrode.
  • the periphery and the lower part of the holding electrode 4 are shielded by an earth shield 5.
  • the high frequency power source 6 is used, but another power source, for example, a DC power source or a microwave power source may be used.
  • a gas shower electrode (counter electrode) 7 is disposed above the inside of the polling chamber 1 at a position parallel to the holding electrode 4. These are a pair of parallel plate electrodes.
  • the gas shower electrode is connected to the ground potential.
  • a power source is connected to the holding electrode 4 and a ground potential is connected to the gas shower electrode.
  • a ground potential may be connected to the holding electrode 4 and a power source may be connected to the gas shower electrode. .
  • the plasma forming gas may be, for example, Ar, He, N 2, O 2, F 2, C x F y, air and the like.
  • a gas introduction path (not shown) is provided inside the gas shower electrode 7.
  • One side of the gas introduction path is connected to the supply port, and the other side of the gas introduction path is connected to the plasma forming gas supply mechanism 3.
  • the polling chamber 1 is provided with an exhaust port for evacuating the inside of the polling chamber 1. This exhaust port is connected to an exhaust pump (not shown).
  • the plasma polling apparatus has a control unit (not shown) for controlling the high-frequency power source 6, the plasma forming gas supply mechanism 3, the exhaust pump, and the like. It controls the plasma poling device.
  • the plasma poling apparatus has a temperature control mechanism that controls the poling substrate 2 at various temperatures when performing the poling process.
  • the polling method according to one embodiment of the present invention is a so-called strong electric field polling process (that is, a polarization process is a method in which a DC high electric field is applied to a ceramic piece provided with electrodes to impart piezoelectric activity to a ferroelectric. Not only the process) but also the thermal polling.
  • the thermal poling can give the dielectric anisotropy in advance by applying a DC voltage or a high frequency while heating the dielectric, and cutting the voltage or the high frequency.
  • thermal energy By applying thermal energy, ions in the dielectric body are easily moved, and when voltage is applied thereto, ion movement and polarization are induced, and as a result, the entire substrate is polled quickly.
  • a heating mechanism it is necessary to add a heating mechanism to said plasma polling apparatus, and to heat a to-be-polled base material with this heating mechanism.
  • the substrate to be poled 2 is a substrate to which a polling process is performed, for example, a substrate having at least one of a dielectric, an insulator, a piezoelectric, a pyroelectric, and a ferroelectric. Since it is effective for all inorganic materials and organic materials having conductivity, dielectric properties, piezoelectric properties, pyroelectric properties, ferroelectric properties, and nonlinear optical properties, it is also possible to use various substrates to be poled.
  • the substrate to be poled 2 is on a silicon wafer having a thickness smaller than that of the SEMI standard, preferably a silicon wafer having a thickness of 500 ⁇ m or less (more preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 250 ⁇ m or less).
  • the SEMI standard refers to the standard shown in Table 1.
  • the material etc. which can become said to-be-polled base material 2 etc. can be used for a piezoelectric material film.
  • the substrate to be poled 2 is heat resistant to a metal substrate, a metal substrate having oxidation resistance, a temperature at which the Curie temperature of the substrate to be poled 2 or the residual polarization value Pr of the hysteresis curve becomes 0%.
  • a metal substrate preferably an iron-based substrate (preferably a substrate such as an iron-based alloy, stainless steel, and SUS) and a Ni-based substrate (for example, a substrate such as a Ni alloy) What formed the piezoelectric material film may be used.
  • the residual polarization value Pr of the hysteresis curve will be described later.
  • the substrate to be poled 2 is heat resistant to a glass substrate, a glass substrate having oxidation resistance, and a temperature at which the Curie temperature of the substrate to be poled 2 or the residual polarization value Pr of the hysteresis curve becomes 0%.
  • a piezoelectric material film may be formed on any one of the glass substrates having the property.
  • the piezoelectric material film is easy to move when the electric field is applied to the piezoelectric material film to perform poling treatment, and the piezoelectric material film is easily given piezoelectric activity. There are advantages.
  • the metal base material or glass base material which has oxidation resistance has the advantage that it can endure an oxygen atmosphere, when performing a crystallization process to the piezoelectric material film in an oxygen atmosphere.
  • the metal base material or glass base material which has heat resistance heats and performs a poling process, there exists an advantage that it can endure the temperature heated.
  • the polling substrate 2 is subjected to a polling process.
  • the inside of the polling chamber 1 is evacuated by an exhaust pump.
  • a plasma forming gas such as shower-like Ar is introduced into the poling chamber 1 from the supply port of the gas shower electrode 7 and supplied to the surface of the substrate to be poled 2.
  • the supplied plasma forming gas passes between the holding electrode 4 and the earth shield 5 and is exhausted to the outside of the poling chamber 1 by an exhaust pump.
  • the poling chamber 1 is controlled to have a plasma forming gas atmosphere by controlling the supply pressure of the plasma forming gas and the exhaust gas to a predetermined pressure and a plasma forming gas flow rate.
  • the substrate to be polled 2 is subjected to a poling process.
  • the pressure is 0.01 Pa to atmospheric pressure
  • the power source is a DC power source, a high frequency power source, or a microwave power source
  • the processing temperature is equal to or higher than the Curie temperature of the substrate to be polled 2 (preferably a temperature higher by 50 ° C. than the Curie temperature).
  • a temperature at which the residual polarization value Pr ( ⁇ C / cm 2 ) of the hysteresis curve of the substrate to be poled is 0% or higher, or 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C.
  • the direct current voltage component when forming the plasma is ⁇ 50 V to ⁇ 2 kV.
  • FIG. 2 is a process in which the base material to be heated is cooled after being heated, such as room temperature, heating 1, heating 2, cooling 1, and cooling 2, and an electric field is applied in the direction of the arrow to the base material to be poled.
  • crystallization (polarization axis) at the time of performing is shown typically.
  • the piezoelectric body of the substrate to be poled has a random orientation, and the direction of the crystal (polarization axis indicated by the arrow) is also random.
  • the state of heating 1 is still in the middle of heating the substrate to be poled at a temperature below the Curie temperature Tc (for example, 300 ° C. in the case of PZT).
  • Tc Curie temperature
  • the crystal (polarization axis) approaches a tetragonal crystal and the spontaneous polarization is weaker than in the room temperature state.
  • the intensity of spontaneous polarization is indicated by the length of the arrow.
  • the heating 1 state is easier to perform the polling process than the room temperature state.
  • the state of heating 2 is a state in which the substrate to be poled is heated to a temperature 50 ° C. higher than the Curie temperature Tc (for example, about 430 ° C. in the case of PZT).
  • the crystal (polarization axis) itself becomes a tetragonal crystal while changing its direction, and the spontaneous polarization is completely lost.
  • This state occurs when the Curie temperature Tc is reached, but it is preferable that the temperature be 50 ° C. higher than the Curie temperature Tc in order to reliably lose the spontaneous polarization. In this way, by making the spontaneous polarization completely lost, the polling process becomes extremely easy. For this reason, the direction of most crystals (polarization axes) is aligned with the direction in which the electric field is applied by the poling process.
  • the state of cooling 1 is a stage where the substrate to be poled is being cooled at a temperature equal to or lower than the Curie temperature Tc (for example, 300 ° C. in the case of PZT).
  • Tc Curie temperature
  • the state of cooling 2 is a state in which the substrate to be poled is cooled to room temperature.
  • the direction of most crystals (polarization axes) remains aligned with the direction in which the electric field is applied, and the intensity of spontaneous polarization is It becomes stronger than the state. Therefore, a piezoelectric body having strong spontaneous polarization can be obtained. Note that the poling process may be stopped at the temperature of the cooling 2 state, and in this case, a piezoelectric body having strong spontaneous polarization is obtained.
  • the polling process is performed by heating to the Curing temperature of the substrate to be poled (preferably a temperature higher by 50 ° C. than the Curie temperature), the characteristics of the piezoelectric body and the like are improved compared to the case where the polling process is performed at room temperature Can be made.
  • spontaneous polarization starts to be lost at a temperature of 250 to 270 ° C., and reaches the Curie temperature around 380.
  • the Curie temperature is approached, the PZT crystal lattice changes to tetragonal, and Ti and Zr in the lattice are settled at a stable point, so that the spontaneous polarization is lost.
  • the crystal lattice is stabilized to tetragonal crystals, so that the crystal lattice defects can be removed and the poling treatment can be facilitated.
  • FIG. 3 schematically shows a hysteresis curve 51 in which the residual polarization value Pr of the hysteresis of the substrate to be poled 2 is 100% and a hysteresis curve 52 in which the residual polarization value Pr of the hysteresis of the substrate to be poled 2 is 50%.
  • the x-axis indicates the voltage (V) applied to the substrate to be poled
  • the y-axis indicates the remanent polarization ( ⁇ C / cm 2 ).
  • the hysteresis curve 51 is a result of the hysteresis evaluation of the substrate to be poled 2 at room temperature, and the residual polarization value Pr (100) of the hysteresis curve 51 is defined as 100%.
  • the hysteresis curve 52 is a result of the hysteresis evaluation of the substrate to be poled 2 at a certain temperature, and the residual polarization value Pr (50) of the hysteresis curve 52 is 1 ⁇ 2 of the residual polarization value Pr (100). 50%. That is, the hysteresis curve 52 is a result of the hysteresis evaluation of the substrate to be poled 2 at a temperature at which the remanent polarization value Pr (50) is 50% of the remanent polarization value Pr (100).
  • the residual polarization value Pr of the hysteresis curve becomes 0%. That is, the temperature at which the residual polarization value Pr of the hysteresis curve becomes 0% is the Curie temperature.
  • the poling treatment When the poling treatment is performed while the substrate to be poled is cooled to a temperature at which the residual polarization value Pr (50) of the hysteresis curve becomes 50% (for example, 50 ° C.), an electric field is applied to the direction of most crystals (polarization axis). The strength of the spontaneous polarization becomes stronger while keeping the same direction. Further, when the poling process is performed while cooling the substrate to be poled to room temperature, the direction of most crystals (polarization axis) remains aligned with the direction in which the electric field is applied, and the intensity of spontaneous polarization is further increased. Therefore, a piezoelectric body having strong spontaneous polarization can be obtained. Note that the poling process may be stopped at a temperature at which the remanent polarization value Pr (50) becomes 50%, and in this case, a piezoelectric body having strong spontaneous polarization is obtained.
  • the reason why the polling process is performed at a processing temperature of 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C. or higher) will be described below.
  • a processing temperature of 100 ° C. or higher preferably 150 ° C. or higher, more preferably 250 ° C. or higher
  • the direction of the crystal can be changed, and the application in the direction of the changed crystal (polarization axis) This is because the characteristics of the piezoelectric body and the like can be improved by the amount of the vector component in the direction of the electric field.
  • the above-mentioned poling treatment can be used to impart piezoelectric activity to the ferroelectric material, thereby producing a piezoelectric material.
  • the polling treatment can be performed on the substrate to be polled 2 by forming plasma at a position facing the substrate to be polled 2. That is, the polling process can be easily performed by a dry method.
  • the conventional polling apparatus shown in FIG. 19 is an apparatus that performs a polling process on a bulk material, and it is difficult to perform a polling process on a substrate made of a thin film such as a ferroelectric film.
  • the plasma poling apparatus according to the embodiment can easily perform a poling process on a substrate made of a thin film such as a ferroelectric film.
  • the poling process can be performed without performing the chip separation when performing the poling process on the ferroelectric film formed on the wafer.
  • the plasma polling apparatus can perform the polling process with a lower power supply voltage than the conventional polling apparatus. It does not require a larger power supply facility than the polling device.
  • the polling process is performed using plasma, so that the polling process time can be shortened compared to the conventional polling apparatus, and the productivity of the piezoelectric body can be improved.
  • oil is not used unlike the conventional poling apparatus, so that the oil is not vaporized and the working environment of the worker is not deteriorated.
  • plasma is formed at a position facing the substrate to be poled, and a temperature that is 50 ° C. higher than the Curie temperature, or a temperature that is 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C. or higher).
  • the plasma poling process is performed at a temperature of 50 ° C. higher than the Curie temperature or 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C. or higher) without using plasma.
  • the characteristics of the poled piezoelectric body can be improved.
  • a polling process that does not use plasma for example, there is a polling process shown in FIG.
  • a substrate is prepared. Specifically, for example, a substrate such as a silicon wafer is prepared, and the thickness of the silicon wafer is made thinner than the SEMI standard by grinding the back surface of the substrate, or the thickness of the substrate is 500 ⁇ m or less (preferably 400 ⁇ m). Hereinafter, it is more preferably 300 ⁇ m or less, and further preferably 250 ⁇ m or less), and an electrode film is formed on this substrate. In this embodiment, an electrode film is formed on a silicon wafer having a thickness smaller than that of the SEMI standard or a substrate having a thickness of 500 ⁇ m or less. However, other films other than the electrode film are formed on the substrate. It may be formed.
  • a piezoelectric material film is formed on the electrode film of the substrate.
  • the material etc. which can become the to-be-polled base material 2 demonstrated in 1st Embodiment can be used for a piezoelectric material film.
  • a poling process is performed on the piezoelectric material film on the substrate using the plasma poling apparatus shown in FIG. 1 by the same method as in the first embodiment.
  • piezoelectric activity can be imparted to the piezoelectric material film, and a piezoelectric body can be formed on the substrate.
  • FIG. 4 is a schematic diagram showing a unimorph vibrator.
  • the piezoelectric body of this embodiment corresponds to the PZT shown in FIG. 4, and the substrate of this embodiment corresponds to the diaphragm.
  • the displacement volume V of the piezoelectric body (PZT) is represented by the following formula (1)
  • the generated pressure P of the piezoelectric body is represented by the following formula (2).
  • V V h d 31 (W 3 L / t 2) ⁇ f (w, t, s) ⁇ (1)
  • P V h (d 31 t / sW 2 ) g (w, t, s) (2)
  • V h Drive voltage of PZT s: Elastic modulus of PZT d 31 : Piezoelectric constant
  • W Width t: Thickness of diaphragm
  • L Length of diaphragm
  • the displacement volume V of the piezoelectric body is inversely proportional to the square of the thickness t of the vibration plate (Si substrate). Therefore, if the thickness of the substrate is large, the piezoelectric body cannot move. Even if an electric field is applied to the piezoelectric material film during the poling process, the piezoelectric material film is difficult to be poled unless the piezoelectric material film moves, and piezoelectric activity cannot be imparted to the piezoelectric material film.
  • the piezoelectric material film can be moved easily. Piezoelectric activity can be imparted to the body material film.
  • the plasma poling process is used.
  • the present embodiment may be implemented without using plasma.
  • the characteristics of the poled piezoelectric body can be improved.
  • a polling process that does not use plasma for example, there is a polling process shown in FIG.
  • the thickness of the substrate is reduced to facilitate poling
  • the temperature of the piezoelectric material film is set to a temperature equal to or higher than the Curie temperature (preferably 50 ° C. higher than the Curie temperature). ), Heated to a temperature at which the residual polarization value of the hysteresis curve becomes 0% or higher, or 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C. or higher) to facilitate polling.
  • a substrate is prepared. Specifically, for example, a substrate such as a silicon wafer is prepared, and an electrode film is formed on the substrate.
  • the thickness of the substrate may be 500 ⁇ m or more, or may be a thickness according to SEMI standards.
  • a substrate in which an electrode film is formed on the substrate is used.
  • a substrate in which a film other than the electrode film is formed may be used.
  • a piezoelectric material film is formed on the electrode film of the substrate.
  • the material etc. which can become the to-be-polled base material 2 demonstrated in 1st Embodiment can be used for a piezoelectric material film.
  • a poling process is performed by applying an electric field to the piezoelectric material film on the substrate using the plasma poling apparatus shown in FIG. Specifically, the piezoelectric material film is heated to a first temperature that is equal to or higher than the Curie temperature (preferably higher than 50 ° C. above the Curie temperature), or higher than 100 ° C. (preferably higher than 150 ° C., more preferably higher than 250 ° C.). Heating and in this state, a poling process is performed on the piezoelectric material film.
  • the first temperature is set to 500 ° C. After performing the polling process at the first temperature, the piezoelectric material film is lowered from the first temperature to the second temperature while continuing the polling process.
  • the second temperature is 50 ° C. or higher and lower than the first temperature, or a temperature at which the residual polarization value is 50% of the residual polarization value of the hysteresis curve at room temperature of the piezoelectric material film, or 100 It is a temperature that is not lower than the first temperature and lower than the first temperature. In the present embodiment, the second temperature is 250 ° C. Next, the piezoelectric material film is lowered from the second temperature to room temperature. Note that the same method as in the first embodiment is used except for the polling processing temperature.
  • the piezoelectric material film can be sufficiently imparted with piezoelectric activity without reducing the thickness of the substrate.
  • the poling process is continued while the temperature of the piezoelectric material film is lowered from the first temperature to the second temperature (eg, a temperature of 50 ° C. or higher and lower than the first temperature). Even if the thickness is not reduced, the piezoelectric material film can be sufficiently provided with piezoelectric activity.
  • the piezoelectric material film is lowered to the second temperature while continuing the polling process on the piezoelectric material film.
  • the piezoelectric material film is lowered.
  • the poling process may be performed while raising the temperature of the piezoelectric material film from the second temperature to the first temperature.
  • FIG. 5 is a diagram for explaining the reason why poling is easily performed on the piezoelectric material film at the temperature of the present embodiment even if the substrate is thick.
  • the hysteresis of the piezoelectric body decreases with increasing temperature, and the piezoelectricity decreases with decreasing hysteresis.
  • the low piezoelectricity means that even if the thickness of the substrate is large and the piezoelectric material film on the substrate is difficult to move, it is easily polled because it is polled only by the small movement of the piezoelectric material film. I mean.
  • the piezoelectric body reaches the Curie temperature Tc, the hysteresis disappears.
  • the piezoelectric material film before the poling treatment is in a state of no polarization at room temperature.
  • a poling process is performed by applying an electric field while the piezoelectric material film is heated to 500 ° C., and then the temperature of the piezoelectric material film is lowered to 250 ° C. while continuing the poling process.
  • the piezoelectric material film is in a non-polarized state when the temperature is equal to or higher than the Curie temperature Tc, and is in a polarized state when the temperature is lower than the Curie temperature Tc.
  • the poling process is stopped, and the temperature of the piezoelectric material film is lowered to room temperature. Even at room temperature, the piezoelectric material film is in a polarized state.
  • the plasma poling process is used.
  • the present embodiment may be implemented without using plasma.
  • the characteristics of the poled piezoelectric body can be improved.
  • a polling process that does not use plasma for example, there is a polling process shown in FIG.
  • ⁇ Plasma poling device> 6 is a cross-sectional view schematically showing a plasma poling apparatus according to an aspect of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and only different parts will be described.
  • the holding electrode 4 is electrically connected to the high frequency power source 6a and the ground potential via the changeover switch 8a, and the high frequency power or the ground potential is applied to the holding electrode 4 by the changeover switch 8a.
  • the gas shower electrode 7 is electrically connected to the high frequency power source 6b and the ground potential via the changeover switch 8b, and the high frequency power or the ground potential is applied to the gas shower electrode 7 by the changeover switch 8b. ing.
  • the high frequency power supplies 6a and 6b are used. However, other power supplies such as a DC power supply or a microwave power supply may be used.
  • the plasma polling apparatus has a control unit (not shown) for controlling the changeover switches 8a and 8b, the high frequency power supplies 6a and 6b, the plasma forming gas supply mechanism 3, the exhaust pump, and the like. Controls the plasma polling apparatus so as to perform the polling process described later.
  • the base material 2 to be polled is prepared.
  • the substrate to be poled 2 can be the same substrate as in the first embodiment.
  • the first connection state is the same as the high frequency power source 6a by the changeover switch 8a.
  • the holding electrode 4 is connected, and the ground potential and the gas shower electrode 7 are connected by the changeover switch 8b.
  • a specific method for performing the polling process on the substrate to be polled 2 in this state is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the inside of the polling chamber 1 is evacuated by an exhaust pump.
  • a plasma forming gas such as shower-like Ar is introduced into the poling chamber 1 from the supply port of the gas shower electrode 7 and supplied to the surface of the substrate to be poled 2.
  • the supplied plasma forming gas passes between the holding electrode 4 and the earth shield 5 and is exhausted to the outside of the poling chamber 1 by an exhaust pump.
  • the poling chamber 1 is controlled to a predetermined pressure and plasma forming gas flow rate according to the balance between the supply amount of the plasma forming gas and the exhaust gas, thereby making the inside of the poling chamber 1 a plasma forming gas atmosphere, and for example 380 kHz, 13.
  • a polling process is performed on the substrate to be poled 2 by applying a high frequency (RF) of 56 MHz to the gas shower electrode 7 to generate plasma.
  • the pressure is 0.01 Pa to atmospheric pressure
  • the power source is a DC power source, a high frequency power source, or a microwave power source
  • the processing temperature is equal to or higher than the Curie temperature of the substrate to be polled 2 (preferably a temperature higher by 50 ° C. than the Curie temperature).
  • direct current when plasma is formed at a temperature equal to or higher than the temperature at which the residual polarization value of the hysteresis curve of the substrate to be poled 2 becomes 0%, or 100 ° C. or higher (preferably 150 ° C.
  • the voltage component is ⁇ 50 V to ⁇ 2 kV.
  • the above-mentioned poling treatment can be used to impart piezoelectric activity to the ferroelectric material, thereby producing a piezoelectric material.
  • the first to fourth embodiments may be implemented in combination with each other.
  • the second embodiment may be combined with the third embodiment, or the second embodiment and the fourth embodiment may be combined.
  • a form may be combined and a 3rd embodiment and a 4th embodiment may be combined.
  • FIG. 7 is a plan view schematically showing a film forming apparatus according to one embodiment of the present invention.
  • This film forming apparatus has a transfer chamber 9 having a transfer mechanism, an LL chamber 10, a polling chamber 11 having a plasma poling device, and a CVD chamber 12 having a CVD device.
  • Each of the transfer chamber 9, the LL chamber 10, the polling chamber 11 and the CVD 12 chamber has an exhaust mechanism for evacuating.
  • the CVD apparatus for example, an MOCVD apparatus or a plasma CVD apparatus can be used.
  • a substrate (not shown) is introduced into the LL chamber 10, and the substrate is transferred to the CVD chamber 12 via the transfer chamber 9 by a transfer mechanism.
  • a CVD film is formed on the substrate in the CVD chamber 12.
  • the substrate is transferred from the CVD chamber 12 to the polling chamber 11 by the transfer mechanism, and the polling process is performed on the substrate in the polling chamber 11.
  • the polling processing method any one of the first to fourth embodiments is used.
  • the substrate is transferred from the polling chamber 11 to the LL chamber 10 by the transfer mechanism, and the substrate is taken out from the LL chamber 10.
  • the CVD chamber 12 having a CVD apparatus is used.
  • the CVD chamber 12 may be changed to a sputtering chamber having a sputtering apparatus or a vapor deposition chamber having a vapor deposition apparatus.
  • FIG. 8 is a plan view schematically showing a film forming apparatus according to one embodiment of the present invention.
  • This film forming apparatus includes a transfer chamber 9 having an LL unit and a transfer mechanism, a polling chamber 11 having a plasma poling device, a spin coater chamber 13 having a spin coater, and an RTA chamber 14 having a lamp thermal (RTA) device. have.
  • Each of the transfer chamber 9, the polling chamber 11, the spin coater chamber 13, and the RTA chamber 14 has an exhaust mechanism for evacuating.
  • a substrate (not shown) is introduced into the LL unit of the transfer chamber 9 and the substrate is transferred to the spin coater chamber 13 by a transfer mechanism.
  • a film to be poled such as a piezoelectric material film is formed on the substrate by the spin coater in the spin coater chamber 13.
  • the substrate is transferred from the spin coater chamber 13 to the RTA chamber 14 by a transfer mechanism, and the piezoelectric material film on the substrate is subjected to heat treatment and crystallized by the lamp annealing apparatus in the RTA chamber 14.
  • the substrate is transported from the RTA chamber 14 to the polling chamber 11 by the transport mechanism, and the polling process is performed on the piezoelectric material film on the substrate in the polling chamber 11.
  • the polling processing method any one of the first to fourth embodiments is used.
  • the substrate is transported from the polling chamber 11 to the LL unit by the transport mechanism, and the substrate is taken out from the LL unit.
  • the film quality can be improved.
  • a lamp annealing apparatus is used, but a pressure type lamp annealing apparatus may be used.
  • FIG. 9 is a cross-sectional view illustrating a state in which sputtering film formation is performed by the sputtering apparatus according to one embodiment of the present invention.
  • This sputtering apparatus has a plasma poling apparatus.
  • FIG. 10 is a cross-sectional view illustrating a state where the poling process is performed by the sputtering apparatus illustrated in FIG. 9.
  • the substrate 2 is held on the holding electrode 17.
  • the valve 23 is closed, the valves 24 and 25 are opened, the inside of the chamber 15 is evacuated by the evacuation mechanism 26, and the sputtering gas is supplied into the chamber 15 by the sputtering gas supply source 22, so that the desired pressure is obtained. Control.
  • the holding electrode 17 is connected to the ground potential by the changeover switch 27a, and the counter electrode 19 having the sputtering target (not shown) disposed to face the substrate 2 is connected to the high-frequency power source 20 by the changeover switch 27b.
  • a ground potential is applied to the substrate 2
  • high frequency power is applied to the sputtering target
  • a film to be poled such as a piezoelectric material film is formed on the substrate 2 by the sputtered particles 16a.
  • the valve 24 is closed, the valves 23 and 25 are opened, the inside of the chamber 15 is evacuated by the evacuation mechanism 26, and the poling gas is supplied into the chamber 15 by the poling gas supply source 21. , And control to achieve a desired pressure.
  • the holding electrode 17 is connected to the high-frequency power source 18 by the changeover switch 27a, and the counter electrode 19 is connected to the ground potential by the changeover switch 27b.
  • a high frequency power is applied to the substrate 2
  • a ground potential is applied to the counter electrode 19, and a polling process is performed on the film to be polled on the substrate 2.
  • the polling processing method any one of the first to fourth embodiments is used.
  • the film formation can be improved because the sputter film formation and the polling process can be continuously performed without opening to the atmosphere.
  • FIG. 11 is a cross-sectional view illustrating a state in which the sputtering film formation and the poling treatment are simultaneously performed by the sputtering apparatus according to one embodiment of the present invention.
  • This sputtering apparatus has a plasma poling apparatus.
  • the substrate 2 is held on the holding electrode 17.
  • the valves 23 to 25 are opened, the inside of the chamber 15 is evacuated by the evacuation mechanism 26, the poling gas and the sputtering gas are supplied into the chamber 15 by the poling gas supply source 21 and the sputtering gas supply source 22, and the desired pressure is supplied. Control to be
  • the holding electrode 17 is connected to the high frequency power source 18, and the counter electrode 19 having a sputtering target (not shown) disposed to face the substrate 2 is connected to the high frequency power source 20.
  • high frequency power is applied to the substrate 2
  • high frequency power is applied to the sputtering target
  • the sputtered film is formed on the substrate 2 by the sputtered particles 16a and the poling gas 16b, and the sputtered film is subjected to the poling process.
  • FIG. 12 is a cross-sectional view illustrating a state where CVD film formation is performed by the plasma CVD apparatus according to one embodiment of the present invention.
  • This plasma CVD apparatus has a plasma poling apparatus.
  • FIG. 13 is a cross-sectional view showing a state where the polling process is performed by the plasma CVD apparatus shown in FIG.
  • the substrate 2 is held on the holding electrode 29.
  • the valve 23 is closed, the valves 24 and 25 are opened, the inside of the chamber 28 is evacuated by the evacuation mechanism 26, and the CVD gas is supplied into the chamber 28 by the CVD gas supply source 32 so that the desired pressure is obtained. Control.
  • the holding electrode 29 is connected to the high frequency power source 31 for CVD by the changeover switch 27c.
  • the counter electrode 30 disposed facing the substrate 2 is connected to the ground potential.
  • high-frequency power for CVD is applied to the substrate 2
  • a ground potential is applied to the counter electrode 30, and a poled film such as a piezoelectric material film is formed on the substrate 2 by the CVD gas 16c.
  • the valve 24 is closed, the valves 23 and 25 are opened, the inside of the chamber 28 is evacuated by the evacuation mechanism 26, and the poling gas is supplied into the chamber 28 by the poling gas supply source 21. , And control to achieve a desired pressure.
  • the holding electrode 29 is connected to the polling high frequency power supply 18 by the changeover switch 27c.
  • the counter electrode 30 is connected to the ground potential.
  • high frequency power is applied to the substrate 2
  • a ground potential is applied to the counter electrode 30, and a polling process is performed on the polled film on the substrate 2.
  • the polling processing method any one of the first to fourth embodiments is used.
  • the CVD film formation and the poling process can be continuously performed without opening to the atmosphere, so that the film quality can be improved.
  • FIG. 14 is a cross-sectional view illustrating a state in which the CVD film formation and the polling process are simultaneously performed by the plasma CVD apparatus according to one embodiment of the present invention.
  • This plasma CVD apparatus has a plasma poling apparatus.
  • the substrate 2 is held on the holding electrode 29.
  • the valves 23 to 25 are opened, the inside of the chamber 28 is evacuated by the evacuation mechanism 26, and the poling gas 16b and the CVD gas 16c are supplied into the chamber 28 by the poling gas supply source 21 and the CVD gas supply source 32.
  • the pressure is controlled to be
  • high frequency power for CVD and high frequency power for poling are applied to the holding electrode 29 by the high frequency power source 31 for CVD and the high frequency power source 18 for polling.
  • the CVD film is formed on the substrate 2 by the CVD gas 16c and the poling gas 16b, and the poling process is performed on the CVD film.
  • FIG. 15 is a cross-sectional view illustrating a state where vapor deposition is performed by the vapor deposition apparatus according to one embodiment of the present invention.
  • This vapor deposition apparatus has a plasma poling apparatus.
  • FIG. 16 is a cross-sectional view showing a state in which the polling process is performed by the vapor deposition apparatus shown in FIG.
  • the substrate 2 is held on the holding electrode 42.
  • the valve 23 is closed, the valve 25 is opened, and the inside of the chamber 41 is evacuated by the evacuation mechanism 26 so that a desired pressure is obtained.
  • the vapor deposition material 16 d is supplied to the surface of the substrate 2 by the vapor deposition source 43. As a result, a film to be poled such as a piezoelectric material film is formed on the substrate 2.
  • the valves 23 and 25 are opened, the inside of the chamber 41 is evacuated by the evacuation mechanism 26, the poling gas 16 b is supplied into the chamber 41 by the poling gas supply source 21, and a desired pressure is obtained. Control to be
  • the holding electrode 42 is connected to the high frequency power source 18 by the changeover switch 27d.
  • high frequency power is applied to the substrate 2, and a polling process is performed on the film to be poled on the substrate 2.
  • the polling processing method any one of the first to fourth embodiments is used.
  • the film formation can be improved because the vapor deposition film formation and the poling process can be continuously performed without opening to the atmosphere.
  • FIG. 17 is a cross-sectional view illustrating a state where vapor deposition film formation and poling processing are simultaneously performed by the vapor deposition apparatus according to one embodiment of the present invention.
  • This vapor deposition apparatus has a plasma poling apparatus.
  • the substrate 2 is held on the holding electrode 42.
  • the valves 23 and 25 are opened, and the inside of the chamber 41 is evacuated by the evacuation mechanism 26, and the poling gas 16b is supplied into the chamber 41 by the poling gas supply source 21 and controlled so as to have a desired pressure.
  • a high frequency power for poling is applied to the holding electrode 42 by the high frequency power source 18, and a vapor deposition material 16 d is supplied to the surface of the substrate 2 by the vapor deposition source 43.
  • the piezoelectric material film is deposited on the substrate 2, the poling process is performed on the piezoelectric material film.
  • An etching apparatus includes any of the plasma poling apparatuses described in the first to fourth embodiments.
  • a plasma etching apparatus can be used as the etching apparatus.
  • a film to be poled such as a piezoelectric material film is formed on a substrate by a film forming apparatus, and after the film to be poled is processed by an etching apparatus, the film to be poled is subjected to a poling process by a plasma poling apparatus. It can be carried out. For example, after the capacitor is formed by plasma etching on the film to be poled, a process of performing a polling process on the capacitor may be performed.
  • FIG. 18 is a cross-sectional view schematically showing a pressure-type lamp annealing apparatus according to one aspect of the present invention.
  • This pressure-type lamp annealing apparatus includes a plasma poling apparatus.
  • the pressure-type lamp annealing apparatus is an apparatus for performing a pole annealing process by performing a lamp annealing process (RTA: Rapid Thermal Anneal) in a pressurized state.
  • RTA Rapid Thermal Anneal
  • the RTA apparatus has a pressurizing chamber 101, and the chamber 101 is configured to be water-cooled by a cooling mechanism (not shown).
  • a holding electrode 104 that holds the substrate to be poled 102 is disposed below the chamber 101.
  • the details of the substrate to be poled 102 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the holding electrode 104 is electrically connected to the high frequency power source 6, and the holding electrode 104 also functions as an RF application electrode.
  • the periphery and the lower part of the holding electrode 104 are shielded by an earth shield 105.
  • the high frequency power source 6 is used, but another power source, for example, a DC power source or a microwave power source may be used.
  • a gas shower electrode (counter electrode) 107 is disposed in a parallel position facing the holding electrode 104. These are a pair of parallel plate electrodes.
  • the gas shower electrode is connected to the ground potential.
  • a power source is connected to the holding electrode 104 and a ground potential is connected to the gas shower electrode.
  • a ground potential may be connected to the holding electrode 104 and a power source may be connected to the gas shower electrode. .
  • a plurality of supply ports for supplying a shower-like plasma forming gas to the surface side of the substrate to be poled 102 (the space between the gas shower electrode 107 and the holding electrode 104). ) Is formed.
  • the plasma forming gas may be, for example, Ar, He, N 2, O 2, F 2, C x F y, air and the like.
  • a gas introduction path (not shown) is provided inside the gas shower electrode 107.
  • One side of the gas introduction path is connected to the supply port, and the other side of the gas introduction path is connected to a plasma forming gas supply mechanism 103.
  • the chamber 101 is provided with an exhaust port for evacuating the inside of the chamber 101. This exhaust port is connected to an exhaust pump (not shown).
  • a lamp heater 108 is disposed above the chamber 101 so as to face the holding electrode 104.
  • This apparatus has an exhaust duct (not shown) for exhausting heat from the lamp heater 108.
  • the chamber 101 is connected to a pressurization line (pressurization mechanism) 112.
  • the pressurization line 112 has a pressurization line using argon gas, a pressurization line using oxygen gas, and a pressurization line using nitrogen gas.
  • the argon gas pressurization line includes an argon gas supply source 113, and this argon gas supply source 113 is connected to a check valve 114 via a first pipe, and the check valve 114 is connected via a second pipe. It is connected to a filter 117 for removing impurities.
  • the filter 117 is connected to the valve 123 via a third pipe, and the third pipe is connected to the pressure gauge 120.
  • the valve 123 is connected to a regulator 126 via a fourth pipe, and this regulator 126 is connected to the mass flow controller 131 via a fifth pipe.
  • the regulator 126 sets the differential pressure between the upstream side and the downstream side of the mass flow controller 131 to a predetermined pressure by gradually increasing the gas pressure.
  • the mass flow controller 131 is connected to a valve 134 via a sixth pipe, and this valve 134 is connected to the heating unit 137 via a seventh pipe.
  • the heating unit 137 makes the gas temperature constant (for example, about 40 to 50 ° C.) in order to stabilize the process.
  • the heating unit 137 is connected to the chamber 101 via the eighth pipe 151.
  • the pressurization line using oxygen gas is configured in the same manner as the pressurization line using argon gas.
  • the pressurization line by oxygen gas is provided with the oxygen gas supply source 129, and this oxygen gas supply source 129 is connected to the check valve 115 through the first pipe, and this check valve 115 is the second check valve 115. It is connected to a filter 118 for removing impurities through a pipe.
  • the filter 118 is connected to the valve 124 via a third pipe, and the third pipe is connected to the pressure gauge 121.
  • the valve 124 is connected to a regulator 127 via a fourth pipe, and this regulator 127 is connected to the mass flow controller 132 via a fifth pipe.
  • the mass flow controller 132 is connected to a valve 135 via a sixth pipe, and this valve 135 is connected to the heating unit 137 via a seventh pipe.
  • the heating unit 137 is connected to the chamber 101 via the eighth pipe 151.
  • the pressurization line with nitrogen gas has the same configuration as the pressurization line with argon gas. More specifically, the nitrogen gas pressurization line includes a nitrogen gas supply source 138, which is connected to the check valve 116 via the first pipe, and the check valve 116 is a second check valve 116. It is connected to a filter 119 for removing impurities through a pipe. The filter 119 is connected to the valve 125 via a third pipe, and the third pipe is connected to the pressure gauge 122. The valve 125 is connected to a regulator 128 via a fourth pipe, and this regulator 128 is connected to the mass flow controller 133 via a fifth pipe. The mass flow controller 133 is connected to the valve 136 via a sixth pipe, and this valve 136 is connected to the heating unit 137 via a seventh pipe. The heating unit 137 is connected to the chamber 101 via the eighth pipe 151.
  • the chamber 101 is connected to a pressure adjustment line.
  • the inside of the chamber 101 can be pressurized to a predetermined pressure (for example, less than 1 MPa) by the pressure adjusting line and the pressurizing line 112.
  • the pressure adjustment line includes a variable valve 139, and one side of the variable valve 139 is connected to the chamber via a ninth pipe 152.
  • the ninth pipe 152 is connected to a pressure gauge 140, and the pressure in the chamber 101 can be measured by the pressure gauge 140.
  • the other side of the variable valve 139 is connected to the tenth pipe.
  • the chamber 101 is connected to a safety line.
  • This safety line is for reducing the pressure in the chamber to atmospheric pressure when the pressure inside the chamber 101 is excessively increased and becomes a certain pressure or higher.
  • the safety line is provided with an open valve 141.
  • One side of the release valve 141 is connected to the chamber 101 via a ninth pipe 152, and the other side of the release valve 141 is connected to the tenth pipe.
  • the release valve 141 is configured to flow gas when a certain pressure is applied.
  • the chamber 101 is connected to the open air line.
  • This atmosphere release line returns the inside of the normally pressurized chamber 101 to atmospheric pressure.
  • the atmosphere opening line is provided with an opening valve 142.
  • One side of the release valve 142 is connected to the chamber 101 via a ninth pipe 152, and the other side of the release valve 142 is connected to the tenth pipe.
  • the opening valve 142 gradually flows the gas in the chamber 101 in order to return the inside of the chamber 101 to atmospheric pressure.
  • the chamber 101 is connected to a line for returning the pressure from the reduced pressure state to the atmospheric pressure.
  • This line returns the pressure from the reduced pressure state to the atmospheric pressure when the inside of the chamber 101 is in a reduced pressure state (vacuum state).
  • the line includes a leak valve 143.
  • One side of the leak valve 143 is connected to the inside of the chamber 101 via the ninth pipe 152, and the other side of the leak valve 143 is connected to the check valve 144 via the eleventh pipe.
  • This check valve 144 is connected to a nitrogen gas supply source 145 through a twelfth pipe. That is, in the line, the inside of the chamber 101 is returned to atmospheric pressure by gradually introducing nitrogen gas into the chamber 101 from the nitrogen gas supply source 145 through the check valve 144 and the leak valve 143.
  • the chamber 101 is connected to a vacuum exhaust line for reducing the pressure in the chamber.
  • the evacuation line has a valve 169, and one end of the valve 169 is connected to the chamber 101 via a pipe. The other end of the valve 169 is connected to the vacuum pump 170 via a pipe.
  • This evacuation line is used, for example, when evacuating once before performing pressurized RTA.
  • the pressurization-type lamp annealing apparatus has a control unit (not shown) for controlling the high-frequency power supply 6, the plasma forming gas supply mechanism 103, the lamp heater 108, the pressurization line 112, the exhaust pump, and the like.
  • This control unit controls the pressure-type lamp annealing apparatus so as to perform an RTA process described later and a polling process similar to that in the first embodiment.
  • the pressure-type lamp annealing apparatus may have a temperature control mechanism that controls the poling substrate 102 at the time of performing the poling process to various temperatures.
  • a silicon oxide film (SiO 2 film) is formed on a 6-inch silicon wafer by thermal oxidation, and a lower electrode is formed on the silicon oxide film.
  • a PZT film is applied on the lower electrode by a sol-gel method. In this way, the substrate to be poled 102 is prepared.
  • RTA treatment is performed at 600 ° C. for 1 minute in an oxygen atmosphere using the above-described pressure-type lamp annealing apparatus. This will be described in detail below.
  • the substrate to be poled 102 is introduced into the chamber 101, and the substrate to be poled 102 is held on the holding electrode 104.
  • the oxygen gas supply source 129 of the pressurization line 112 the first piping, the check valve 115, the second piping, the filter 118, the third piping, the valve 124, the fourth piping, the regulator 127, the fifth piping, and the mass flow controller 132.
  • the oxygen gas is introduced into the chamber 101 through the sixth pipe, the valve 135, the seventh pipe, the heating unit 137, and the eighth pipe 151.
  • the variable valve 139 of the pressure adjustment line the chamber 101 is gradually pressurized while maintaining an oxygen atmosphere. And the inside of the chamber 101 is pressurized to a predetermined pressure of less than 1 MPa and maintained at that pressure.
  • the PZT film of the substrate to be poled 102 is irradiated with lamp light from the lamp heater 108.
  • the PZT film is rapidly heated to the crystallization temperature (for example, 600 ° C.) and held at the crystallization temperature for 1 minute.
  • the crystallization temperature for example, 600 ° C.
  • oxygen are reacted rapidly, and the PZT film is crystallized.
  • a polling process is performed on the crystallized PZT film by the same method as in any of the first to fourth embodiments.
  • the supply of oxygen from the oxygen supply source of the pressurization line 112 is stopped, and the inside of the chamber 101 is evacuated by an exhaust pump.
  • a plasma-forming gas such as shower-like Ar is introduced into the chamber 101 from the supply port of the gas shower electrode 107 and supplied to the surface of the PZT film.
  • the supplied plasma forming gas passes between the holding electrode 4 and the earth shield 5 and is exhausted to the outside of the chamber 101 by an exhaust pump.
  • the inside of the chamber 1 is changed to a plasma forming gas atmosphere, and the high frequency power source 6 is set to, for example, 380 kHz, 13.56 MHz.
  • the PZT film is polled by applying a high frequency (RF) and generating plasma.
  • RF high frequency
  • the pressure is 0.01 Pa to atmospheric pressure
  • the power source is a DC power source, a high frequency power source or a microwave power source
  • the processing temperature is equal to or higher than the Curie temperature of the PZT film (preferably higher than 50 ° C. higher than the Curie temperature).
  • the temperature is equal to or higher than the temperature at which the residual polarization value Pr ( ⁇ C / cm 2 ) of the hysteresis curve of the PZT film becomes 0%, or 100 ° C. or higher (preferably 150 ° C. or higher, more preferably 250 ° C. or higher). It is preferable to carry out under the condition that the DC voltage component at the time of forming the plasma is ⁇ 50 V to ⁇ 2 kV. Next, after performing the polling process for a predetermined time, the supply of the plasma forming gas from the supply port of the gas shower electrode 107 is stopped, and the polling process is ended.
  • the temperature of the PZT film is continuously reduced without lowering to room temperature.
  • Plasma is formed at a position facing the PZT film of the poling substrate 102, and the PZT film is subjected to a poling process at a temperature lower than the crystallization temperature and higher than the Curie temperature. Therefore, the crystallization process and the polling process can be performed efficiently.
  • the present embodiment may be modified as follows.
  • the temperature is equal to or higher than the Curie temperature of the PZT film (preferably higher than 50 ° C. higher than the Curie temperature), or the temperature at which the residual polarization value Pr ( ⁇ C / cm 2 ) of the hysteresis curve of the PZT film becomes 0%, or 100 ° C.
  • the polling process may be performed while the temperature is lowered from the first temperature (preferably 150 ° C. or higher, more preferably 250 ° C. or higher) to the second temperature.
  • the second temperature may be a temperature that is equal to or higher than the temperature at which the residual polarization value is 50% of the residual polarization value of the hysteresis curve at room temperature of the PZT film and lower than the first temperature, or 50 ° C.
  • the temperature may be lower than the first temperature as described above, or may be 100 ° C. or higher and lower than the first temperature.
  • drying moisture removal
  • the coating was held for 30 seconds on a hot plate heated to 250 ° C. to remove the moisture.
  • vacuuming was performed with a rotary pump as a pre-baking process, and the ultimate vacuum was 10 ⁇ 1 Pa.
  • N 2 was filled to atmospheric pressure, and heated at 450 ° C. for 90 seconds to decompose and remove organic components.
  • the PZT thick film prepared by the sol-gel method was subjected to polarization using the plasma poling apparatus shown in FIG.
  • the RF power supply of 380kHz and 13.56MHz was used for the power supply.
  • the processing conditions vary depending on the PZT film thickness, but the processing is performed under the conditions of pressure 1 to 30 Pa, RF output 70 to 700 w, Ar gas 15 to 30 sccm, temperature 25 ° C., and processing time 1 to 5 minutes.
  • Poling gas supply source 22 ... Sputtering gas supply sources 23-25 ... Valve 26 ... Vacuum evacuation mechanism 27a to 27d ... changeover switch 28 ... chamber 31 ... high frequency power source 32 for CVD ... CVD gas supply source 33 ... crystal 35 ... pair of electrodes 36 ... oil 37 ... oil bath 38 ... heater 39 ... high voltage power source 40 ... Lead wire 43 ... deposition source 51 ... hysteresis curve with residual polarization value Pr of 100% 52 ... Hysteresis curve 101 in which remanent polarization value Pr is 50% ... Chamber 102 ... Polled substrate, substrate 103 ... Plasma supply gas supply mechanism 104 ... Holding electrode 105 ... Earth shield 107 ...
  • Gas shower electrode (counter electrode) 108 ... Lamp heater 112 ... Pressurization line 113 ... Argon gas supply sources 114-116, 144 ... Check valves 117-119 ... Filters 120-122 ... Pressure gauges 123-125 ... Valves 126-128 ... Regulators 129 ... Oxygen gas supply Sources 131 to 133 ... Mass flow controllers 134 to 136 ... Valve 137 ... Heating unit 138 ... Nitrogen gas supply source 139 ... Variable valve 140 ... Pressure gauge 141, 142 ... Release valve 143 ... Leak valve 145 ... Nitrogen gas supply source 151 ... Eighth Pipe 152 ... Ninth pipe 169 ... Valve 170 ... Vacuum pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 乾式法によって簡易的にポーリング処理を行えるプラズマポーリング装置を提供する。プラズマポーリング装置は、ポーリングチャンバー1内に配置され、被ポーリング基材2が保持される保持電極4と、前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極7と、前記保持電極および前記対向電極の一方の電極に電気的に接続される電源6と、前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、前記電源及び前記ガス供給機構を制御する制御部と、を具備し、前記制御部は、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源及び前記ガス供給機構を制御することを特徴とする。

Description

ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
 本発明は、プラズマによってポーリング処理を行うポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置に関する。
 図19は、従来のポーリング装置を示す模式図である。
 結晶33を10×10mmの2枚の平行平板からなる1対の電極35の中心に、機械的ポーリングが施されていない方向に電場が印加されるように挟持する。そして、電極35ごと結晶33をオイルバス37内のオイル36中に浸漬し、結晶33を浸漬したオイル36をヒーター38によって125℃まで加熱する。所定の温度に達した後、高圧電源39からリード線40を介して電極35間に1kV/cmの直流電場を10時間印加する。これにより、結晶33にポーリング処理が施される(例えば特許文献1参照)。
 前述した従来のポーリング処理方法では、被ポーリング物を、1対の電極の中心に挟持した状態でオイルに浸漬するという湿式的方法であるため、ポーリング処理が煩雑になる。
特開平10-177194(段落0018、図4)
 本発明の一態様は、乾式法によって簡易的にポーリング処理を行えるポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置のいずれかを提供することを課題とする。
 また、本発明の一態様は、乾式法又は湿式法のいずれであってもポーリング処理された圧電体等の特性を向上させることを課題とする。
 本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
 前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とするポーリング処理方法である。
 また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
 前記第1の温度がキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)であることを特徴とするポーリング処理方法である。
 また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
 前記第1の温度が100℃以上であることを特徴とするポーリング処理方法である。
 また、本発明の一態様において、前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
 本発明の一態様は、被ポーリング基材にポーリング処理を行うポーリング処理方法であって、
 前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法である。
 また、本発明の一態様において、前記被ポーリング基材は誘電体又は絶縁体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は圧電体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は焦電体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材にポーリング処理を行う際は、前記被ポーリング基材に対向する位置にプラズマを形成するとよい。
 また、本発明の一態様において、前記被ポーリング基材に対向する位置に直流プラズマを形成した際の直流電圧または前記被ポーリング基材に対向する位置に高周波プラズマを形成した際の直流電圧成分が±50V~±2kVであるとよい。
 また、本発明の一態様において、前記プラズマを形成する際の圧力が0.01Pa~大気圧であるとよい。
 また、本発明の一態様において、前記プラズマを形成する際のプラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであるとよい。
 本発明の一態様は、上述したポーリング処理方法によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体である。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記制御部は、前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
 前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
 前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
 前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記制御部は、前記被ポーリング基材をキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
 前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
 前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
 前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材をキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記制御部は、前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 本発明の一態様は、ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
 前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
 前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
を具備し、
 前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
 前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
 前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置である。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は誘電体又は絶縁体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は圧電体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は焦電体を有する基材であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は強誘電体を有する基材であるとよい。
 また、本発明の一態様において、前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V~±2kVであるとよい。
 また、本発明の一態様において、前記ポーリング処理を行う際の前記ポーリングチャンバー内の圧力を0.01Pa~大気圧に制御する圧力制御機構を具備するとよい。
 また、本発明の一態様において、前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであるとよい。
 本発明の一態様は、上述したプラズマポーリング装置によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体である。
 本発明の一態様は、上述したプラズマポーリング装置を有することを特徴とする成膜装置である。また、本発明の一態様において、前記成膜装置は、スピンコート装置、ランプアニール装置、スパッタリング装置、CVD装置及び蒸着装置のいずれかであるとよい。
 本発明の一態様は、上述したプラズマポーリング装置を有することを特徴とするエッチング装置である。
 本発明の一態様は、チャンバーと、
 前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
 前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記被ポーリング基材にランプ光を照射するランプヒータと、
 前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記ランプヒータ、前記電源及び前記ガス供給機構を制御する制御部と、
を具備することを特徴とするランプアニール装置である。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御するとよい。
 本発明の一態様は、チャンバーと、
 前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
 前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
 前記被ポーリング基材にランプ光を照射するランプヒータと、
 前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
 前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記ランプヒータ、前記第1の電源、前記第2の電源及び前記ガス供給機構を制御する制御部と、
を具備し、
 前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
 前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであることを特徴とするランプアニール装置である。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御するとよい。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
 前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に前記いずれかの膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に前記いずれかの膜を形成したものであるとよい。
 また、本発明の一態様において、前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に前記いずれかの膜を形成したものであるとよい。
 また、本発明の一態様において、前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V~±2kVであるとよい。
 また、本発明の一態様において、前記ポーリング処理を行う際の前記チャンバー内の圧力を0.01Pa~大気圧に制御する圧力制御機構を具備するとよい。
 また、本発明の一態様において、前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであるとよい。
 また、本発明の一態様において、前記チャンバー内を加圧する加圧機構をさらに具備するとよい。
 また、本発明の一態様において、前記加圧機構は、前記チャンバー内に加圧されたガスを導入するガス導入機構と、前記チャンバー内のガスを排気するガス排気機構とを有するとよい。
 本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
 前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
 前記第1の温度がキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
 前記第1の温度が100℃以上であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
 前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
 また、本発明の一態様において、前記圧電体材料物は、基板上に圧電体材料膜を形成したものであり、
 前記ポーリング処理は、前記圧電体材料膜に対向する位置にプラズマを形成することにより行われるとよい。
 また、本発明の一態様において、前記基板上に圧電体材料膜を形成する前に、前記基板の裏面を研削して前記基板の厚さを薄くするとよい。
 本発明の一態様は、基板の裏面を研削して前記基板の厚さを薄くし、
 前記基板上に圧電体材料膜を形成し、
 前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記基板の厚さを薄くした際の当該基板の厚さは400μm以下であるとよい。
 また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
 前記プラズマポーリング装置は、
 ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
 前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
を具備するとよい。
 また、本発明の一態様において、前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
 前記プラズマポーリング装置は、
 ポーリングチャンバーと、
 前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
 前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
 前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
 前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
 前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
 前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
を具備するとよい。
 本発明の一態様は、基板上に圧電体材料膜を形成し、
 前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
 前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
 前記第1の温度は、前記結晶化温度より低く且つ前記圧電体材料膜のヒステリシス曲線の残留分極値が0%となる温度以上の温度であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
 前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、基板上に圧電体材料膜を形成し、
 前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
 前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
 前記第1の温度は、前記結晶化温度より低く且つキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)の温度であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
 前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、基板上に圧電体材料膜を形成し、
 前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
 前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
 前記第1の温度は、前記結晶化温度より低く且つ100℃以上の温度であることを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
 前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であるとよい。
 本発明の一態様は、基板上に圧電体材料膜を形成し、
 前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱しながら、前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜を結晶化させながら前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法である。
 また、本発明の一態様において、前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
 前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上又は50℃以上で且つ前記結晶化温度より低い温度であるとよい。
 本発明の一態様によれば、乾式法によって簡易的にポーリング処理を行えるポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置のいずれかを提供することができる。
 また、本発明の一態様によれば、乾式法又は湿式法のいずれであってもポーリング処理された圧電体等の特性を向上させることができる。
本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。 キュリー温度より50℃高い温度に加熱してポーリング処理する理由を説明するための模式図である。 ヒステリシス曲線の残留分極値Prが0%となる温度以上に加熱してポーリング処理する理由について説明するための図である。 ユニモルフ振動子を示す模式図である。 250℃以上の温度で圧電体材料膜にポーリング処理を施すと基板の厚さが厚くてもポーリングされやすくなる理由を説明するための図である。 本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。 本発明の一態様に係る成膜装置を模式的に示す平面図である。 本発明の一態様に係る成膜装置を模式的に示す平面図である。 本発明の一態様に係るスパッタリング装置によってスパッタ成膜を行っている様子を示す断面図である。 図9に示すスパッタリング装置によってポーリング処理を行っている様子を示す断面図である。 本発明の一態様に係るスパッタリング装置によってスパッタ成膜及びポーリング処理を同時に行っている様子を示す断面図である。 本発明の一態様に係るプラズマCVD装置によってCVD成膜を行っている様子を示す断面図である。 図12に示すプラズマCVD装置によってポーリング処理を行っている様子を示す断面図である。 本発明の一態様に係るプラズマCVD装置によってCVD成膜及びポーリング処理を同時に行っている様子を示す断面図である。 本発明の一態様に係る蒸着装置によって蒸着成膜を行っている様子を示す断面図である。この蒸着装置はプラズマポーリング装置を有している。 図15に示す蒸着装置によってポーリング処理を行っている様子を示す断面図である。 本発明の一態様に係る蒸着装置によって蒸着成膜及びポーリング処理を同時に行っている様子を示す断面図である。 本発明の一態様に係る加圧式ランプアニール装置を模式的に示す断面図である。 従来のポーリング装置を示す模式図である。
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(第1の実施形態)
<プラズマポーリング装置>
 図1は、本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図である。このプラズマポーリング装置はポーリング処理を行うための装置である。
 プラズマポーリング装置はポーリングチャンバー1を有しており、ポーリングチャンバー1内の下方には被ポーリング基材2を保持する保持電極4が配置されている。被ポーリング基材2の詳細は後述するが、被ポーリング基材2は、例えば強誘電体を有する基材、又は基板上に強誘電体が形成された基材等であり、種々の形状の基材を用いることができる。
 保持電極4は高周波電源6に電気的に接続されており、保持電極4はRF印加電極としても作用する。保持電極4の周囲及び下部はアースシールド5によってシールドされている。なお、本実施形態では、高周波電源6を用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
 ポーリングチャンバー1内の上方には、保持電極4に対向して平行の位置にガスシャワー電極(対向電極)7が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極は接地電位に接続されている。なお、本実施形態では、保持電極4に電源を接続し、ガスシャワー電極に接地電位を接続しているが、保持電極4に接地電位を接続し、ガスシャワー電極に電源を接続しても良い。
 ガスシャワー電極7の下面には、被ポーリング基材2の表面側(ガスシャワー電極7と保持電極4との間の空間)にシャワー状のプラズマ形成用ガスを供給する複数の供給口(図示せず)が形成されている。プラズマ形成用ガスとしては、例えばAr、He、N、O、F、C、エアーなどを用いることができる。
 ガスシャワー電極7の内部にはガス導入経路(図示せず)が設けられている。このガス導入経路の一方側は上記供給口に繋げられており、ガス導入経路の他方側はプラズマ形成用ガスの供給機構3に接続されている。また、ポーリングチャンバー1には、ポーリングチャンバー1の内部を真空排気する排気口が設けられている。この排気口は排気ポンプ(図示せず)に接続されている。
 また、プラズマポーリング装置は、高周波電源6、プラズマ形成用ガスの供給機構3、排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述するポーリング処理を行うようにプラズマポーリング装置を制御するものである。
 また、プラズマポーリング装置は、ポーリング処理を行う際のポーリング基材2を様々な温度に制御する温度制御機構を有することが好ましい。
<ポーリング処理方法>
 次に、上記プラズマポーリング装置を用いて被ポーリング基材にポーリング処理を行う方法について説明する。ここで、本発明の一態様によるポーリング処理方法とは、いわゆる強電界によるポーリング処理(即ち分極処理とは、電極を設けたセラミック片に直流高電界を印加し、強誘電体に圧電活性を与えるプロセス)の事を指すだけではなく、熱ポーリングまでを含めるものとする。この熱ポーリングは、中でも特に、誘電体を加熱しながら、直流電圧又は高周波を印加し、電圧又は高周波をきることで、予め誘電体に異方性を持たせることができる。熱エネルギーを与えることで誘電体内のイオンが運動しやすい状態となり、そこに電圧が印加されることでイオンの移動及び分極が誘起される結果、基材の全体が早くポーリングされる。
 なお、熱ポーリング処理を行う場合は、上記のプラズマポーリング装置に加熱機構を付加し、この加熱機構によって被ポーリング基材を加熱する必要がある。
[1]被ポーリング基材
 まず、被ポーリング基材2を用意する。被ポーリング基材2はポーリング処理が施される基材、例えば誘電体、絶縁体、圧電体、焦電体及び強誘電体の少なくとも一つを有する基材であるが、このポーリング処理は、超伝導性、誘電性、圧電性、焦電性、強誘電性、非線形光学特性を有する、全ての無機物、有機物に有効であるので、種々の被ポーリング基材を用いることも可能である。
 被ポーリング基材2となり得る材料の具体例は、以下のとおりである。
 TiO、MgTiO-CaTiO系、BaTiO系、CaSnO、SrTiO、PbTiO、CaTiO、MgTiO、SrTiO、CaTiO系:BaTiO系、BaO-R2O3-nTiO2系(R=Nd、Sm・・・、n=4、5・・・)、Al、ダイヤモンド系(ダイヤモンドライクカン等)、BN、SiC、BeO、AlN、BaTi5O11、Ba2Ti9O20、タングステンブロンズABO:Ba2NaNb5O15(BNN)、Ba2NaTa5O15 (BNT)、Sr2NaNb5O15 (SNN)、K3Li2Nb5O15 (KLN)、K2BiNb5O15 (KBN)、ペロブスカイト系、(K,Na,Li)(Nb,Ta,Sb)O、BixNa1-xTiO(BNT)、BixK1-xTiO(BKT)、BiFeO、SrBi2Ta29(SBT)、Bi4Ti312、Bi4―xLaTi12(BLT)、SrBiNb(SBN)、BiWO(BWO)、SiO2、LiNbO3、LiTaO3、Sr0.5Ba0.5Nb、KDP(KH2PO4)、C4H4O6NaK・4H2O、NaNO2、(NH2)2CS、K2SeO4、PbZrO3、(NH2)2CS、(NH4)SO4、NaNbO3、BaTiO、PbTiO、SrTiO、KNbO、NaNbO、BiFeO、(Na、La)(Mg、W)O、La1/3NbO、La1/3TaO、BaMgTa、SrNaSb12、ABRO(A:アルカリ土類、B:Fe,Ln、R:Mo,Mn,W,Ru,でBとRの原子価差2以上)、Bi2NiMnO6、Sr2FeMoO6、BaLnMn、NaxWO、Ln1/3NbO、Ba2In25、Sr2Fe25、SrNd、SrTa、LaTi、MgSiO、CaIrO、CuNMn、GaNMn、ZnNMn、CuNMn、CaMnO、FeTiO、LiNbO3、LiTaO3、Gd(MoO、SrTiO、KTaO、RFe2O4、La2-x SrCuO4 、、Me13X(Meはイオン半径0.97Å(Cd2+)~0.66Å(Mg2+)、X:ハロゲン)、Ni13I、BiFeO3、BiMnO3、Pb(Co1/21/2)O、Pb(Fe1/2Nb1/2)O、ABRO(A:アルカリ土類、B:Fe、Ln、R:Mo、Mn、W、Ru、BとRの原子価2以上)、Bi2NiMnO6 、YMnO、YbMnO、HoMnO、BaMnF、BaFeF、BaNiF、BaCoF、YFe、LuFe、TbMnO、DyMnO、Ba2Mg2Fe12O22、CuFeO、Ni、LiCu、LiV、LiCr、NaV、NaCr、CoCr、LiFeSi、NaCrSi、LiFeSi、NaCrSi、MnWO、TbMn、DyMn、HoMn、YMn  R=Tb、Dy、Ho、Y、RbFe(MoO、PrGaSiO14、NdGaSiO14、Nd3Ga5SiO14、ABFeSi14 A=Ba、Sr、Ca B=Nb、T各種パイロクロア酸化物、水晶(SiO2)、LiNbO3、BaTiO3、PbTiO3(PT)、Pb(Zr,Ti)O3( PZT )、Pb(Zr,Ti,Nb)O3(PZTN)、PbNb2O6、PVF2、PMN-PZT, マグネシウムニオブ酸鉛-PZT系 >Pb(Mg1/3Nb2/3)O3 (PMN)-PZT、Pb(Ni1/3Nb2/3)O3 (PNN)-PZT、Pb(Mg1/3Nb2/3)O3 (PMN)-PT、Pb(Ni1/3Nb2/3)O3 (PNN)-PT、Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)、BaTiO3、(Sr1-x, Bax)TiO3、(Pb1-y, Bay)(Zr1-x, Tix)O3 (ただしx=0~1、y=0~1)、CdTiO3、HgTiO3、CaTiO3、GdFeO3、SrTiO3、PbTiO3、BaTiO3、PbTiO3、PbZrO3、Bi0.5Na0.5TiO3、Bi0.5K0.5TiO3、KNbO3、LaAlO3、FeTiO3,MgTiO3,CoTiO3,NiTiO3, CdTiO3、(K1-xNax)NbO3、K(Nb1-xTax)O3、(K1-xNax)(Nb1-yTay)O3、KNbO3、RbNbO3、TlNbO3、CsNbO3、AgNbO3、Pb(Ni1/3Nb2/3)O3, Ba(Ni1/3Nb2/3)O3、Pb(Sc1/2Nb1/2)O3、(Na1/2Bi1/2)TiO3, (K1/2Bi1/2)TiO3, (Li1/2Bi1/2)TiO3、Bi(Mg1/2Ti1/2)O3, Bi(Zn1/2Ti1/2)O3, Bi(Ni1/2Ti1/2)O3, (Bi,La)(Mg1/2Ti1/2)O3、 (A1+ 1/2A3+ 1/2)(B2+ 1/3B5+ 2/3)O(ここでA及びBには、A1+ = Li, Na, K, Ag、A2+=Pb, Ba, Sr, Ca、A3+= Bi, La, Ce, Nd、B1+= Li, Cu、B2+=Mg, Ni, Zn, Co, Sn, Fe, Cd, Cu, Cr、B3+= Mn, Sb, Al, Yb, In, Fe, Co, Sc, Y, Sn、B4+= Ti, Zr、B5+= Nb, Sb, Ta, Bi、B6+= W, Te, Re といった元素が入る。)、Pb(Mg1/3Nb2/3)O3 (PMN)、Pb(Mg1/3Ta2/3)O3 (PMTa)、Pb(Mg1/2W1/2)O3 (PMW)、Pb(Ni1/3Nb2/3)O3 (PNN)、Pb(Ni1/3Ta2/3)O3 (PNTa)、Pb(Ni1/2W1/2)O3 (PNW)、Pb(Zn1/3Nb2/3)O3 (PZN)、Pb(Zn1/3Ta2/3)O3 (PZTa)、Pb(Zn1/2W1/2)O3 (PZW)、Pb(Sc1/2Nb1/2)O3 (PScN)、Pb(Sc1/2Ta1/2)O3 (PScTa)、Pb(Cd1/3Nb2/3)O3 (PCdN)、Pb(Cd1/3Ta2/3)O3 (PCdT)、Pb(Cd1/2W1/2)O3 (PCdW)、Pb(Mn1/3Nb2/3)O3 (PMnN)、Pb(Mn1/3Ta2/3)O3 (PMnTa)、Pb(Mn1/2W1/2)O3 (PMnW)、Pb(Co1/3Nb2/3)O3 (PCoN)、Pb(Co1/3Ta2/3)O3 (PCoTa)、Pb(Co1/2W1/2)O3 (PCoW)、Pb(Fe1/2Nb1/2)O3 (PFN)、Pb(Fe1/2Ta1/2)O3 (PFTa)、Pb(Fe2/3W1/3)O3 (PFW)、Pb(Cu1/3Nb2/3)O3(PCuN)、Pb(Yb1/2Nb1/2)O3 (PYbN)、Pb(Yb1/2Ta1/2)O3 (PYbTa)、Pb(Yb1/2W1/2)O3 (PYbW)、Pb(Ho1/2Nb1/2)O3 (PHoN)、Pb(Ho1/2Ta1/2)O3 (PHoTa)、Pb(Ho1/2W1/2)O3? (PHoW)、Pb(In1/2Nb1/2)O3 (PInN)、Pb(In1/2Ta1/2)O3 (PInTa)、Pb(In1/2W1/2)O3 (PInW)、Pb(Lu1/2Nb1/2)O3 (PLuN)、Pb(Lu1/2Ta1/2)O3 (PLuTa)、Pb(Lu1/2W1/2)O3 (PLuW)、Pb(Er1/2Nb1/2)O3 (PErN)、Pb(Er1/2Ta1/2)O3 (PErT)、Pb(Sb1/2Nb1/2)O3 (PSbN)、Pb(Sb1/2Ta1/2)O3 (PSbT)、BaZrO3-BaTiO3、BaTiO3-SrTiO3、Pb(Mg1/3Nb2/3)O3、Pb(Sc1/2Nb1/2)O3、Pb(Mg1/3Nb2/3)O3(PMN)、PMN-PbTiO3、PMN-PZT、非線形光学材料(無機物質)例えば、ガーネット結晶( Y A G , Y A O , Y S O , G SG G , G G G ) でもよいし、フッ化物結晶( Y L F 、L i S A F 、L i C A F ) でも、タングステート結晶( K G W 、K Y W ) 、バナデート結晶( Y V O 4 、G d V O 4 など) でも良い。他にB B O 、C B O 、C L B O 、YC O B 、G d C O B 、G d Y C O B 、K T P 、K T A 、K D P 、L i N b O 3 でもよい。
 また、有機非線形光学材料として、(R)-(+)-2-(α-メチルベンジルアミノ)-5-ニトロピリジン(分子式/分子量:C13H13N3O2=243.26)、(S)-(-)-2-(α-メチルベンジルアミノ)-5-ニトロピリジン(分子式/分子量:C13H13N3O2=243.26)、(S)-(-)-N-(5-ニトロ-2-ピリジル)アラニノール(分子式/分子量:C8H11N3O3=197.19)、(S)-(-)-N-(5-ニトロ-2-ピリジル)プロリノール(分子式/分子量:C10H13N3O3=223.23)、(S)-N-(5-ニトロ-2-ピリジル)フェニルアラニノール(分子式/分子量:C14H15N3O3=273.29)、1,3-ジメチル尿素(分子式/分子量:C3H8N2O=88.11)、2-(N,N-ジメチルアミノ)-5-ニトロアセトアニリド(分子式/分子量:C10H13N3O3=223.23)、2-アミノ-3-ニトロピリジン(分子式/分子量:C5H5N3O2=139.11)、2-アミノ-5-ニトロピリジン(分子式/分子量:C5H5N3O2=139.11)、2-アミノフルオレン(分子式/分子量:C13H11N=181.23)、2-クロロ-3,5-ジニトロピリジン(分子式/分子量:C5H2ClN3O4=203.54)、2-クロロ-4-ニトロ-N-メチルアニリン(分子式/分子量:C7H7ClN2O2=186.60)、2-クロロ-4-ニトロアニリン(分子式/分子量:C6H5ClN2O2=172.57)、2-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)、2-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、3-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)、3-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、4-アミノ-4'-ニトロビフェニル(分子式/分子量:C12H10N2O2=214.22)、4-ジメチルアミノ-4'-ニトロビフェニル(分子式/分子量:C14H14N2O2=242.27)、4-ジメチルアミノ-4'-ニトロスチルベン(分子式/分子量:C16H16N2O2=268.31)、4-ヒドロキシ-4'-ニトロビフェニル(分子式/分子量:C12H9NO3=215.20)、4-メトキシ-4'-ニトロビフェニル(分子式/分子量:C13H11NO3=229.23)、4-メトキシ-4'-ニトロスチルベン(分子式/分子量:C15H13NO3=255.27)、4-ニトロ-3-ピコリンN-オキシド(分子式/分子量:C6H6N2O3=154.12)、4-ニトロアニリン(分子式/分子量:C6H6N2O2=138.12)、5-ニトロインドール(分子式/分子量:C8H6N2O2=162.15)、5-ニトロウラシル(分子式/分子量:C4H3N3O4=157.08)、N-(2,4-ジニトロフェニル)-L-アラニンメチル(分子式/分子量:C10H11N3O6=269.21)、N-シアノメチル-N-メチル-4-ニトロアニリン(分子式/分子量:C9H9N3O2=191.19)、N-メチル-4-ニトロ-o-トルイジン(分子式/分子量:C8H10N2O2=166.18)、N-メチル-4-ニトロアニリン(分子式/分子量:C7H8N2O2=152.15)などがあり、これらを被ポーリング基材2として用いても良いが、これらに限定されるものではない。
 また、被ポーリング基材2は、SEMI規格より厚さが薄いシリコンウエハ、好ましくは厚さ500μm以下(より好ましくは400μm以下、更に好ましくは300μm以下、より更に好ましくは250μm以下)のシリコンウエハ上に圧電体材料膜を形成したものでもよい。なお、SEMI規格は、表1に示す規格をいう。また、圧電体材料膜には、上記の被ポーリング基材2となり得る材料などを用いることができる。
Figure JPOXMLDOC01-appb-T000001
 また、被ポーリング基材2は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材2のキュリー温度又はヒステリシス曲線の残留分極値Prが0%となる温度に対して耐熱性を有する金属基材、鉄系基材(好ましくは鉄系合金、ステンレス系、SUS等の基材)、及び、Ni系基材(例えばNi合金等の基材)のいずれかの基材上に圧電体材料膜を形成したものでもよい。なお、ヒステリシス曲線の残留分極値Prについては後述する。
 また、被ポーリング基材2は、ガラス基材、耐酸化性を有するガラス基材、及び、被ポーリング基材2のキュリー温度又はヒステリシス曲線の残留分極値Prが0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものでもよい。
 金属基材は、熱膨張係数及びヤング率が大きいため、圧電体材料膜に電界を加えてポーリング処理を行う際に、圧電体材料膜が動きやすく、圧電体材料膜に圧電活性を与えやすいという利点がある。
 また、耐酸化性を有する金属基材又はガラス基材は、圧電体材料膜に酸素雰囲気で結晶化処理を行う際に、酸素雰囲気に耐え得るという利点がある。
 また、耐熱性を有する金属基材又はガラス基材は、加熱してポーリング処理を行う際に、加熱される温度に耐え得るという利点がある。
[2]ポーリング処理
 次に、被ポーリング基材2をポーリングチャンバー1内に挿入し、このポーリングチャンバー1内の保持電極4上に被ポーリング基材2を保持する。
 次いで、被ポーリング基材2にポーリング処理を施す。
 詳細には、排気ポンプによってポーリングチャンバー1内を真空排気する。次いで、ガスシャワー電極7の供給口からシャワー状のArなどのプラズマ形成用ガスを、ポーリングチャンバー1内に導入して被ポーリング基材2の表面に供給する。この供給されたプラズマ形成用ガスは、保持電極4とアースシールド5との間を通ってポーリングチャンバー1の外側へ排気ポンプによって排気される。そして、プラズマ形成用ガスの供給量と排気のバランスにより、所定の圧力、プラズマ形成用ガス流量に制御することによりポーリングチャンバー1内をプラズマ形成用ガス雰囲気とし、高周波電源6により例えば380kHz、13.56MHzの高周波(RF)を印加し、プラズマを発生させることにより被ポーリング基材2にポーリング処理を行う。このポーリング処理は、圧力が0.01Pa~大気圧で、電源が直流電源、高周波電源又はマイクロ波電源で、処理温度が被ポーリング基材2のキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)、または、被ポーリング基材のヒステリシス曲線の残留分極値Pr(μC/cm)が0%となる温度以上、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)で、プラズマを形成する際の直流電圧成分が±50V~±2kVである条件で行うことが好ましい。次いで、ポーリング処理を所定時間行った後に、ガスシャワー電極7の供給口からのプラズマ形成用ガスの供給を停止し、ポーリング処理を終了する。
 キュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)に加熱してポーリング処理する理由について、図2を参照しつつ説明する。
 図2は、室温、加熱1、加熱2、冷却1、冷却2のように被ポーリング基材を加熱した後に冷却する過程で、被ポーリング基材に矢印の方向に電界を印加してポーリング処理を行った際の結晶(分極軸)の方向の変化を模式的に示している。
 図2に示すように、室温の状態では、被ポーリング基材の圧電体等がランダムな配向を有しており、結晶(矢印で示す分極軸)の方向もランダムである。
 加熱1の状態は、未だキュリー温度Tc以下(例えばPZTの場合は300℃)で被ポーリング基材の加熱途中段階である。この加熱1の状態では、室温の状態に比べて結晶(分極軸)が正方晶に近づき、自発分極が弱い状態である。なお、自発分極の強弱は矢印の長さで示している。また、加熱1の状態は、室温の状態に比べるとポーリング処理が行い易い。
 加熱2の状態は、キュリー温度Tcより50℃高い温度(例えばPZTの場合は430℃程度)に被ポーリング基材が加熱された状態である。この加熱2の状態では、結晶(分極軸)自身の向きを変えながら正方晶になり、自発分極が完全に失われた状態になる。この状態は、キュリー温度Tcになると生じるが、確実に自発分極を失わせるために、キュリー温度Tcより50℃高い温度とすることが好ましい。このように自発分極が完全に失われた状態にすることで、ポーリング処理が極めて行い易くなる。このため、ポーリング処理によって、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃う。
 冷却1の状態は、キュリー温度Tc以下(例えばPZTの場合は300℃)で被ポーリング基材の冷却途中段階である。加熱2の状態から冷却1の状態に冷却しながらポーリング処理を行うと、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃ったままで、自発分極の強さが強くなってくる。
 冷却2の状態は、室温まで被ポーリング基材を冷却した状態である。冷却1の状態から冷却2の状態に冷却しながらポーリング処理を行うと、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃ったままで、自発分極の強さが冷却1の状態より更に強くなる。従って、強い自発分極を有する圧電体等が得られる。なお、冷却2の状態の温度でポーリング処理を停止してもよく、その場合も強い自発分極を有する圧電体等が得られる。
 つまり、被ポーリング基材のキュリー温度(好ましくはキュリー温度より50℃高い温度)まで加熱してポーリング処理を行った場合は、室温でポーリング処理を行った場合に比べて圧電体等の特性を向上させることができる。
 例えばPZTの場合は、250~270℃の温度で自発分極が失われ始め、380付近でキュリー温度に到達する。キュリー温度に近づくとPZT結晶格子が正方晶へと変化していき、格子内のTi,Zrが安定点に収まってしまうために自発分極を失う。キュリー温度より高い温度まで加熱することによって、結晶格子が正方晶に安定化し、結晶格子の癖を取り除くことができ、ポーリング処理を行い易くすることができる。
 次に、ヒステリシス曲線の残留分極値Prが0%となる温度以上に加熱してポーリング処理する理由について、図3を参照しつつ説明する。
 図3は、被ポーリング基材2のヒステリシスの残留分極値Prが100%となるヒステリシス曲線51と、被ポーリング基材2のヒステリシスの残留分極値Prが50%となるヒステリシス曲線52を模式的に示す図である。なお、図3において、x軸は被ポーリング基材への印加電圧(V)を示し、y軸は残留分極(μC/cm)を示す。
 ヒステリシス曲線51は、室温で被ポーリング基材2のヒステリシス評価を行った結果であり、このヒステリシス曲線51の残留分極値Pr(100)を100%と定義する。
 ヒステリシス曲線52は、ある温度で被ポーリング基材2のヒステリシス評価を行った結果であり、このヒステリシス曲線52の残留分極値Pr(50)は、残留分極値Pr(100)の1/2である50%である。つまり、ヒステリシス曲線52は、残留分極値Pr(50)が残留分極値Pr(100)に対して50%となる温度で被ポーリング基材2のヒステリシス評価を行った結果である。
 キュリー温度で被ポーリング基材2のヒステリシス評価を行うと、ヒステリシス曲線の残留分極値Prは0%となる。つまり、ヒステリシス曲線の残留分極値Prが0%となる温度は、キュリー温度である。
 ヒステリシス曲線の残留分極値Prが0%となる温度に被ポーリング基材を加熱した状態にすると、結晶(分極軸)自身の向きを変えながら正方晶になり、自発分極が完全に失われるため、ポーリング処理が極めて行い易くなる。このため、この状態でポーリング処理を行うことによって、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃う。
 ヒステリシス曲線の残留分極値Pr(50)が50%となる温度(例えば50℃)まで被ポーリング基材を冷却しながらポーリング処理を行うと、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃ったままで、自発分極の強さが強くなってくる。さらに室温まで被ポーリング基材を冷却しながらポーリング処理を行うと、ほとんどの結晶(分極軸)の方向が電界を印加している方向に揃ったままで、自発分極の強さが更に強くなる。従って、強い自発分極を有する圧電体等が得られる。なお、残留分極値Pr(50)が50%となる温度でポーリング処理を停止してもよく、その場合も強い自発分極を有する圧電体等が得られる。
 次に、100℃以上(好ましくは150℃以上、より好ましくは250℃以上)の処理温度でポーリング処理する理由について以下に説明する。
 被ポーリング基材の圧電体等を100℃以上に加熱しながらポーリング処理の電界を印加すると、結晶(分極軸)の方向を変えることができ、その変えられた結晶(分極軸)の方向における印加された電界の方向のベクトル成分分だけ、圧電体等の特性を向上させることができるからである。
 例えば被ポーリング基材2として強誘電体を有する基材を用いた場合、上記のようなポーリング処理を行うことで、強誘電体に圧電活性を与えることができ、圧電体を製造することができる。
 本実施形態によれば、被ポーリング基材2に対向する位置にプラズマを形成することにより、被ポーリング基材2にポーリング処理を行うことができる。つまり、乾式法によって簡易的にポーリング処理を行うことが可能となる。
 また、図19に示す従来のポーリング装置は、バルク材にポーリング処理を行う装置であり、強誘電体膜のような薄膜からなる基材にポーリング処理を行うことは困難であるのに対し、本実施形態によるプラズマポーリング装置は、強誘電体膜のような薄膜からなる基材にポーリング処理を行うことが容易である。
 また、本実施形態によるプラズマポーリング装置では、ウエハ上に形成した強誘電体膜にポーリング処理を行う際にチップ状に個片化しなくてもポーリング処理を行うことができる。
 また、被ポーリング基材の厚さに応じて電源に必要な電圧は異なるが、本実施形態によるプラズマポーリング装置では、従来のポーリング装置に比べて低い電源電圧でポーリング処理が可能であるため、従来のポーリング装置より大きな電源設備を必要としない。
 また、本実施形態によるプラズマポーリング装置では、プラズマを用いてポーリング処理を行うため、従来のポーリング装置に比べてポーリング処理時間を短くすることができ、圧電体の生産性を向上させることができる。
 また、本実施形態によるプラズマポーリング装置では、従来のポーリング装置のようにオイルを使用しないため、オイルが気化して作業者の作業環境を悪化させることがない。
 なお、本実施形態では、被ポーリング基材に対向する位置にプラズマを形成して、キュリー温度より50℃高い温度、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)の温度でプラズマポーリング処理を行っているが、プラズマを用いることなく、キュリー温度より50℃高い温度、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)の温度でポーリング処理を行ってもよく、この場合は、ポーリング処理された圧電体等の特性を向上させることができる。なお、プラズマを用いないポーリング処理としては、例えば図19に示すポーリング処理がある。
(第2の実施形態)
 本発明の一態様による圧電体の製造方法について説明する。この圧電体の製造方法  では、図1に示すプラズマポーリング装置を用いる。
 まず、基板を準備する。詳細には、例えばシリコンウエハのような基板を用意し、この基板の裏面を研削することにより、シリコンウエハの厚さをSEMI規格より薄くするか、又は基板の厚さを500μm以下(好ましくは400μm以下、より好ましくは300μm以下、更に好ましくは250μm以下)とし、この基板上に電極膜を形成する。
 なお、本実施形態では、SEMI規格より厚さを薄くしたシリコンウエハ又は500μm以下の厚さの基板の上に電極膜を形成しているが、基板の上に電極膜以外の他の膜等を形成してもよい。
 次に、基板の電極膜上に圧電体材料膜を形成する。なお、圧電体材料膜には、第1の実施形態で説明した被ポーリング基材2となり得る材料などを用いることができる。
 次に、図1に示すプラズマポーリング装置を用いて第1の実施形態と同様の方法により基板上の圧電体材料膜にポーリング処理を施す。これにより、圧電体材料膜に圧電活性を与えることができ、基板上に圧電体を形成することができる。
 本実施形態において、シリコンウエハの厚さをSEMI規格より薄くする理由及び基板の厚さを500μm以下とする理由は、基板の厚さが厚いと十分にポーリングすることができないからである。
 以下に図4を用いて詳細に説明する。図4はユニモルフ振動子を示す模式図である。
 本実施形態の圧電体が図4に示すPZTに対応し、本実施形態の基板が振動板に対応する。圧電体(PZT)の変位体積Vは下記式(1)で示され、圧電体の発生圧力Pは下記式(2)で示される。
 V=V31(WL/t)×f(w,t,s) ・・・(1)
 P=V(d31t/sW)g(w,t,s) ・・・(2)
  V:PZTの駆動電圧
  s:PZTの弾性率
  d31:圧電定数
  W:幅
  t:振動板の厚さ
  L:振動板の長さ
 上記式(1)に示すように圧電体の変位体積Vは振動板(Si基板)の厚さtの二乗に反比例するため、基板の厚さが厚いと圧電体が動くことができない。ポーリング処理の際に圧電体材料膜に電界を加えても、圧電体材料膜が動けないとポーリングされにくく、圧電体材料膜に圧電活性を与えることができない。
 そこで、基板に裏面研削を施し、基板の厚さを500μm以下(好ましくは400μm以下、より好ましくは300μm以下、更に好ましくは250μm以下)まで薄くすることにより、圧電体材料膜が動きやすくなり、圧電体材料膜に圧電活性を与えることができるようになる。
 なお、本実施形態では、プラズマポーリング処理を用いているが、プラズマを用いることなく、本実施形態を実施してもよい。この場合もポーリング処理された圧電体等の特性を向上させることができる。なお、プラズマを用いないポーリング処理としては、例えば図19に示すポーリング処理がある。
(第3の実施形態)
 本発明の一態様による圧電体の製造方法について説明する。この圧電体の製造方法  では、図1に示すプラズマポーリング装置を用いる。
 第2の実施形態では、基板の厚さを薄くしてポーリングされやすくしているのに対し、本実施形態では、圧電体材料膜の温度をキュリー温度以上(好ましくはキュリー温度より50℃高い温度)、ヒステリシス曲線の残留分極値が0%となる温度以上、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)に加熱してポーリングされやすくするものである。
 以下に詳細に説明する。
 まず、基板を準備する。詳細には、例えばシリコンウエハのような基板を用意し、この基板上に電極膜を形成する。なお、基板の厚さは、500μm以上であってもよいし、SEMI規格の厚さでもよい。また、本実施形態では、基板上に電極膜を形成した基板を用いているが、電極膜以外の他の膜等が形成された基板を用いてもよい。
 次に、基板の電極膜上に圧電体材料膜を形成する。なお、圧電体材料膜には、第1の実施形態で説明した被ポーリング基材2となり得る材料などを用いることができる。
 次に、図1に示すプラズマポーリング装置を用いて基板上の圧電体材料膜に電界をかけてポーリング処理を行う。詳細には、圧電体材料膜をキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)である第1の温度に加熱し、その状態で、圧電体材料膜にポーリング処理を行う。本実施形態では第1の温度を500℃とする。第1の温度でポーリング処理を行った後に、圧電体材料膜にポーリング処理を続けながら第1の温度から第2の温度に下げる。第2の温度は、50℃以上で且つ第1の温度より低い温度、圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上、もしくは100℃以上で且つ第1の温度より低い温度である。本実施形態では第2の温度を250℃とする。次いで、圧電体材料膜を第2の温度から室温に下げる。なお、ポーリング処理温度以外は第1の実施形態と同様の方法を用いる。
 本実施形態によれば、第1の温度で圧電体材料膜にポーリング処理を行うため、基板の厚さを薄くしなくても、圧電体材料膜に圧電活性を十分に与えることができる。
 また、本実施形態では、第1の温度から第2の温度(50℃以上で且つ第1の温度より低い温度等)まで圧電体材料膜の温度を下げながらポーリング処理を続けるため、基板の厚さを薄くしなくても、圧電体材料膜に圧電活性を十分に与えることができる。
 なお、本実施形態では、圧電体材料膜にポーリング処理を続けながら圧電体材料膜を第2の温度まで下げているが、第1の温度でポーリング処理を行った後にポーリング処理を停止してもよいし、圧電体材料膜の温度を第2の温度から第1の温度に上げながらポーリング処理を行ってもよい。
 図5は、本実施形態の温度で圧電体材料膜にポーリング処理を施すと基板の厚さが厚くてもポーリングされやすくなる理由を説明するための図である。
 圧電体は、温度を上げていくに従ってヒステリシスが小さくなり、ヒステリシスが小さいと圧電性も小さくなる。圧電性が小さいということは、基板の厚さが厚くて基板上の圧電体材料膜が動きにくい状態であっても、圧電体材料膜が小さく動くだけでポーリングされるため、ポーリングされやすいことを意味している。なお、圧電体がキュリー温度Tcになるとヒステリシスが無くなる。
 つまり、図5に示すように、ポーリング処理前の圧電体材料膜は、室温で分極無しの状態である。次に、圧電体材料膜を500℃まで加熱した状態で電界をかけてポーリング処理を行い、その後、ポーリング処理を続けながら250℃まで圧電体材料膜の温度を下げる。なお、圧電体材料膜は、キュリー温度Tc以上の時は分極無しの状態であり、キュリー温度Tc未満の時は分極有りの状態である。次に、ポーリング処理を停止し、圧電体材料膜の温度を室温まで下げる。室温においても圧電体材料膜は分極状態となる。
 なお、本実施形態では、プラズマポーリング処理を用いているが、プラズマを用いることなく、本実施形態を実施してもよい。この場合もポーリング処理された圧電体等の特性を向上させることができる。なお、プラズマを用いないポーリング処理としては、例えば図19に示すポーリング処理がある。
(第4の実施形態)
<プラズマポーリング装置>
 図6は、本発明の一態様に係るプラズマポーリング装置を模式的に示す断面図であり、図1と同一部分には同一符号を付し、異なる部分についてのみ説明する。
 保持電極4は切り替えスイッチ8aを介して高周波電源6a及び接地電位に電気的に接続されており、切り替えスイッチ8aによって保持電極4には高周波電力又は接地電位が印加されるようになっている。また、ガスシャワー電極7は切り替えスイッチ8bを介して高周波電源6b及び接地電位に電気的に接続されており、切り替えスイッチ8bによってガスシャワー電極7には高周波電力又は接地電位が印加されるようになっている。なお、本実施形態では、高周波電源6a,6bを用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
 また、プラズマポーリング装置は、切り替えスイッチ8a,8b、高周波電源6a,6b、プラズマ形成用ガスの供給機構3、排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述するポーリング処理を行うようにプラズマポーリング装置を制御するものである。
<ポーリング処理方法>
 次に、上記プラズマポーリング装置を用いて被ポーリング基材にポーリング処理を行う方法について説明する。
[1]被ポーリング基材
 まず、被ポーリング基材2を用意する。被ポーリング基材2は第1の実施形態と同様の基材を用いることができる。
[2]ポーリング処理
 次に、第1の実施形態と同様に、ポーリングチャンバー1内の保持電極4上に被ポーリング基材2を保持する。
 (1)第1の接続状態によって高周波電源6a,6b及び接地電位を保持電極4及びガスシャワー電極7に接続してポーリング処理を施す場合
 第1の接続状態は、切り替えスイッチ8aによって高周波電源6aと保持電極4を接続し、切り替えスイッチ8bによって接地電位とガスシャワー電極7を接続した状態である。この状態によって被ポーリング基材2にポーリング処理を施す具体的な方法は、第1の実施形態と同様であるので説明を省略する。
 (2)第2の接続状態によって高周波電源6a,6b及び接地電位を保持電極4及びガスシャワー電極7に接続してポーリング処理を施す場合
 第2の接続状態は、切り替えスイッチ8aによって接地電位と保持電極4を接続し、切り替えスイッチ8bによって高周波電源6bとガスシャワー電極7を接続した状態である。この状態によって被ポーリング基材2にポーリング処理を施す具体的な方法は以下のとおりである。
 排気ポンプによってポーリングチャンバー1内を真空排気する。次いで、ガスシャワー電極7の供給口からシャワー状のArなどのプラズマ形成用ガスを、ポーリングチャンバー1内に導入して被ポーリング基材2の表面に供給する。この供給されたプラズマ形成用ガスは、保持電極4とアースシールド5との間を通ってポーリングチャンバー1の外側へ排気ポンプによって排気される。そして、プラズマ形成用ガスの供給量と排気のバランスにより、所定の圧力、プラズマ形成用ガス流量に制御することによりポーリングチャンバー1内をプラズマ形成用ガス雰囲気とし、高周波電源6bにより例えば380kHz、13.56MHzの高周波(RF)をガスシャワー電極7に印加し、プラズマを発生させることにより被ポーリング基材2にポーリング処理を行う。このポーリング処理は、圧力が0.01Pa~大気圧で、電源が直流電源、高周波電源又はマイクロ波電源で、処理温度が被ポーリング基材2のキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)、被ポーリング基材2のヒステリシス曲線の残留分極値が0%となる温度以上、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)で、プラズマを形成する際の直流電圧成分が±50V~±2kVである条件で行うことが好ましい。次いで、ポーリング処理を所定時間行った後に、ガスシャワー電極7の供給口からのプラズマ形成用ガスの供給を停止し、ポーリング処理を終了する。
 例えば被ポーリング基材2として強誘電体を有する基材を用いた場合、上記のようなポーリング処理を行うことで、強誘電体に圧電活性を与えることができ、圧電体を製造することができる。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 なお、第1乃至第4の実施形態は、互いに組み合わせて実施してもよく、例えば第2の実施形態と第3の実施形態を組み合わせてもよいし、第2の実施形態と第4の実施形態を組み合わせてもよいし、第3の実施形態と第4の実施形態を組み合わせてもよい。
(第5の実施形態)
 図7は、本発明の一態様に係る成膜装置を模式的に示す平面図である。この成膜装置は、搬送機構を有する搬送室9、LL室10、プラズマポーリング装置を有するポーリング室11、CVD装置を有するCVD室12を有している。搬送室9、LL室10、ポーリング室11及びCVD12室それぞれは真空排気するための排気機構を有している。CVD装置は、例えばMOCVD装置、プラズマCVD装置を用いることができる。
 LL室10に基板(図示せず)を導入し、その基板を搬送機構によって搬送室9を介してCVD室12に搬送する。次いで、CVD室12で基板上にCVD膜を成膜する。次いで、基板を搬送機構によってCVD室12からポーリング室11に搬送し、ポーリング室11で基板にポーリング処理を行う。ポーリング処理の方法は、第1乃至第4の実施形態のいずれかの方法を用いる。次いで、基板を搬送機構によってポーリング室11からLL室10に搬送し、LL室10から基板を取り出す。
 なお、本実施形態では、CVD装置を有するCVD室12を用いているが、CVD室12を、スパッタリング装置を有するスパッタリング室、蒸着装置を有する蒸着室に変更して実施してもよい。
(第6の実施の形態)
 図8は、本発明の一態様に係る成膜装置を模式的に示す平面図である。この成膜装置は、LLユニット及び搬送機構を有する搬送室9、プラズマポーリング装置を有するポーリング室11、スピンコート装置を有するスピンコータ室13、ランプアニール(RTA:Rapid Thermal Anneal)装置を有するRTA室14を有している。搬送室9、ポーリング室11、スピンコータ室13及びRTA室14それぞれは真空排気するための排気機構を有している。
 搬送室9のLLユニットに基板(図示せず)を導入し、その基板を搬送機構によってスピンコータ室13に搬送する。次に、このスピンコータ室13のスピンコート装置によって基板上に圧電体材料膜のような被ポーリング膜を成膜する。次いで、基板を搬送機構によってスピンコータ室13からRTA室14に搬送し、RTA室14のランプアニール装置によって基板上の圧電体材料膜に熱処理を施して結晶化する。次に、基板を搬送機構によってRTA室14からポーリング室11に搬送し、ポーリング室11で基板上の圧電体材料膜にポーリング処理を行う。ポーリング処理の方法は、第1乃至第4の実施形態のいずれかの方法を用いる。次いで、基板を搬送機構によってポーリング室11からLLユニットに搬送し、LLユニットから基板を取り出す。
 本実施の形態によれば、大気開放せずに連続してスピンコート、ランプアニール、ポーリングの処理を行うことができるため、膜質を向上させることができる。
 なお、本実施形態では、ランプアニール装置を用いているが、加圧式のランプアニール装置を用いてもよい。
(第7の実施の形態)
 図9は、本発明の一態様に係るスパッタリング装置によってスパッタ成膜を行っている様子を示す断面図である。このスパッタリング装置はプラズマポーリング装置を有している。
 図10は、図9に示すスパッタリング装置によってポーリング処理を行っている様子を示す断面図である。
 まず、図9に示すように、保持電極17上に基板2を保持する。次いで、バルブ23を閉じ、バルブ24,25を開き、真空排気機構26によってチャンバー15内を真空排気し、スパッタガス供給源22によってチャンバー15内にスパッタガスを供給し、所望の圧力となるように制御する。
 次に、切り替えスイッチ27aによって保持電極17を接地電位に接続し、基板2に対向して配置されたスパッタリングターゲット(図示せず)を有する対向電極19を切り替えスイッチ27bによって高周波電源20に接続する。これにより、基板2に接地電位が印加され、スパッタリングターゲットに高周波電力が印加され、スパッタ粒子16aによって基板2上に圧電体材料膜のような被ポーリング膜が成膜される。
 次に、図10に示すように、バルブ24を閉じ、バルブ23,25を開き、真空排気機構26によってチャンバー15内を真空排気し、ポーリングガス供給源21によってチャンバー15内にポーリングガスを供給し、所望の圧力となるように制御する。
 次に、切り替えスイッチ27aによって保持電極17を高周波電源18に接続し、対向電極19を切り替えスイッチ27bによって接地電位に接続する。これにより、基板2に高周波電力が印加され、対向電極19に接地電位が印加され、基板2上の被ポーリング膜にポーリング処理が行われる。ポーリング処理の方法は、第1乃至第4の実施形態のいずれかの方法を用いる。
 本実施の形態によれば、スパッタ成膜、ポーリング処理を大気開放せずに連続して行うことができるため、膜質を向上させることができる。
(第8の実施の形態)
 図11は、本発明の一態様に係るスパッタリング装置によってスパッタ成膜及びポーリング処理を同時に行っている様子を示す断面図である。このスパッタリング装置はプラズマポーリング装置を有している。
 図11に示すように、保持電極17上に基板2を保持する。次いで、バルブ23~25を開き、真空排気機構26によってチャンバー15内を真空排気し、ポーリングガス供給源21及びスパッタガス供給源22によってチャンバー15内にポーリングガス及びスパッタガスを供給し、所望の圧力となるように制御する。
 次に、保持電極17を高周波電源18に接続し、基板2に対向して配置されたスパッタリングターゲット(図示せず)を有する対向電極19を高周波電源20に接続する。これにより、基板2に高周波電力が印加され、スパッタリングターゲットに高周波電力が印加され、スパッタ粒子16a及びポーリングガス16bによって基板2上にスパッタ膜が成膜されながら、そのスパッタ膜にポーリング処理が行われる。
(第9の実施の形態)
 図12は、本発明の一態様に係るプラズマCVD装置によってCVD成膜を行っている様子を示す断面図である。このプラズマCVD装置はプラズマポーリング装置を有している。
 図13は、図12に示すプラズマCVD装置によってポーリング処理を行っている様子を示す断面図である。
 まず、図12に示すように、保持電極29上に基板2を保持する。次いで、バルブ23を閉じ、バルブ24,25を開き、真空排気機構26によってチャンバー28内を真空排気し、CVDガス供給源32によってチャンバー28内にCVDガスを供給し、所望の圧力となるように制御する。
 次に、切り替えスイッチ27cによって保持電極29をCVD用の高周波電源31に接続する。基板2に対向して配置された対向電極30は接地電位に接続されている。これにより、基板2にCVD用の高周波電力が印加され、対向電極30に接地電位が印加され、CVDガス16cによって基板2上に圧電体材料膜のような被ポーリング膜が成膜される。
 次に、図13に示すように、バルブ24を閉じ、バルブ23,25を開き、真空排気機構26によってチャンバー28内を真空排気し、ポーリングガス供給源21によってチャンバー28内にポーリングガスを供給し、所望の圧力となるように制御する。
 次に、切り替えスイッチ27cによって保持電極29をポーリング用の高周波電源18に接続する。対向電極30は接地電位に接続されている。これにより、基板2に高周波電力が印加され、対向電極30に接地電位が印加され、基板2上の被ポーリング膜にポーリング処理が行われる。ポーリング処理の方法は、第1乃至第4の実施形態のいずれかの方法を用いる。
 本実施の形態によれば、CVD成膜、ポーリング処理を大気開放せずに連続して行うことができるため、膜質を向上させることができる。
(第10の実施の形態)
 図14は、本発明の一態様に係るプラズマCVD装置によってCVD成膜及びポーリング処理を同時に行っている様子を示す断面図である。このプラズマCVD装置はプラズマポーリング装置を有している。
 図14に示すように、保持電極29上に基板2を保持する。次いで、バルブ23~25を開き、真空排気機構26によってチャンバー28内を真空排気し、ポーリングガス供給源21及びCVDガス供給源32によってチャンバー28内にポーリングガス16b及びCVDガス16cを供給し、所望の圧力となるように制御する。
 次に、CVD用の高周波電源31及びポーリング用の高周波電源18によって保持電極29にCVD用の高周波電力及びポーリング用の高周波電力を印加する。これにより、CVDガス16c及びポーリングガス16bによって基板2上にCVD膜が成膜されながら、そのCVD膜にポーリング処理が行われる。
(第11の実施の形態)
 図15は、本発明の一態様に係る蒸着装置によって蒸着成膜を行っている様子を示す断面図である。この蒸着装置はプラズマポーリング装置を有している。
 図16は、図15に示す蒸着装置によってポーリング処理を行っている様子を示す断面図である。
 まず、図15に示すように、保持電極42上に基板2を保持する。次いで、バルブ23を閉じ、バルブ25を開き、真空排気機構26によってチャンバー41内を真空排気し、所望の圧力となるように制御する。
 次に、蒸着源43によって基板2の表面に蒸着材料16dを供給する。これにより、基板2上に圧電体材料膜のような被ポーリング膜が成膜される。
 次に、図16に示すように、バルブ23,25を開き、真空排気機構26によってチャンバー41内を真空排気し、ポーリングガス供給源21によってチャンバー41内にポーリングガス16bを供給し、所望の圧力となるように制御する。
 次に、切り替えスイッチ27dによって保持電極42を高周波電源18に接続する。これにより、基板2に高周波電力が印加され、基板2上の被ポーリング膜にポーリング処理が行われる。ポーリング処理の方法は、第1乃至第4の実施形態のいずれかの方法を用いる。
 本実施の形態によれば、蒸着成膜、ポーリング処理を大気開放せずに連続して行うことができるため、膜質を向上させることができる。
(第12の実施の形態)
 図17は、本発明の一態様に係る蒸着装置によって蒸着成膜及びポーリング処理を同時に行っている様子を示す断面図である。この蒸着装置はプラズマポーリング装置を有している。
 図17に示すように、保持電極42上に基板2を保持する。次いで、バルブ23,25を開き、真空排気機構26によってチャンバー41内を真空排気し、ポーリングガス供給源21によってチャンバー41内にポーリングガス16bを供給し、所望の圧力となるように制御する。
 次に、高周波電源18によって保持電極42にポーリング用の高周波電力を印加するとともに、蒸着源43によって基板2の表面に蒸着材料16dを供給する。これにより、基板2上に圧電体材料膜が蒸着成膜されながら、その圧電体材料膜にポーリング処理が行われる。
(第13の実施の形態)
 本発明の一態様によるエッチング装置は、第1乃至4の実施形態で説明したいずれかのプラズマポーリング装置を有している。エッチング装置は例えばプラズマエッチング装置を用いることができる。
 例えば成膜装置によって基板上に圧電体材料膜のような被ポーリング膜を成膜し、その被ポーリング膜をエッチング装置によって加工した後に、その加工後の被ポーリング膜にプラズマポーリング装置によってポーリング処理を行うことができる。例えば、被ポーリング膜にプラズマエッチングすることでキャパシタを形成した後に、キャパシタにポーリング処理を行うという工程を実施しても良い。
(第14の実施の形態)
<プラズマポーリング装置>
 図18は、本発明の一態様に係る加圧式ランプアニール装置を模式的に示す断面図である。この加圧式ランプアニール装置はプラズマポーリング装置を備えている。加圧式ランプアニール装置は、加圧した状態でランプアニール処理(RTA:Rapid Thermal Anneal)を行い、ポーリング処理を行うための装置である。
 RTA装置は加圧用のチャンバー101を有しており、チャンバー101は図示せぬ冷却機構によって水冷されるように構成されている。チャンバー101内の下方には被ポーリング基材102を保持する保持電極104が配置されている。被ポーリング基材102の詳細は第1の実施形態と同様であるので、説明を省略する。
 保持電極104は高周波電源6に電気的に接続されており、保持電極104はRF印加電極としても作用する。保持電極104の周囲及び下部はアースシールド105によってシールドされている。なお、本実施形態では、高周波電源6を用いているが、他の電源、例えば直流電源又はマイクロ波電源を用いても良い。
 チャンバー101内の上方には、保持電極104に対向して平行の位置にガスシャワー電極(対向電極)107が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極は接地電位に接続されている。なお、本実施形態では、保持電極104に電源を接続し、ガスシャワー電極に接地電位を接続しているが、保持電極104に接地電位を接続し、ガスシャワー電極に電源を接続しても良い。
 ガスシャワー電極107の下面には、被ポーリング基材102の表面側(ガスシャワー電極107と保持電極104との間の空間)にシャワー状のプラズマ形成用ガスを供給する複数の供給口(図示せず)が形成されている。プラズマ形成用ガスとしては、例えばAr、He、N、O、F、C、エアーなどを用いることができる。
 ガスシャワー電極107の内部にはガス導入経路(図示せず)が設けられている。このガス導入経路の一方側は上記供給口に繋げられており、ガス導入経路の他方側はプラズマ形成用ガスの供給機構103に接続されている。また、チャンバー101には、チャンバー101の内部を真空排気する排気口が設けられている。この排気口は排気ポンプ(図示せず)に接続されている。
 チャンバー101内の上方には、保持電極104に対向してランプヒータ108が配置されている。本装置は、ランプヒータ108の熱を排気する排気ダクト(図示せず)を有している。
 チャンバー101は加圧ライン(加圧機構)112に接続されている。加圧ライン112は、アルゴンガスによる加圧ライン、酸素ガスによる加圧ライン及び窒素ガスによる加圧ラインを有している。
 アルゴンガスによる加圧ラインはアルゴンガス供給源113を備え、このアルゴンガス供給源113は第1配管を介して逆止弁114に接続されており、この逆止弁114は第2配管を介して不純物を除去するためのフィルタ117に接続されている。このフィルタ117は第3配管を介してバルブ123に接続されており、第3配管は圧力計120に接続されている。バルブ123は第4配管を介してレギュレータ126に接続されており、このレギュレータ126は第5配管を介してマスフローコントローラ131に接続されている。レギュレータ126は、ガスの圧力を徐々に上げることによりマスフローコントローラ131の上流側と下流側の差圧を所定圧に設定するものである。マスフローコントローラ131は第6配管を介してバルブ134に接続されており、このバルブ134は第7配管を介して加熱ユニット137に接続されている。加熱ユニット137は、プロセスを安定させるためにガス温度を一定(例えば40~50℃程度)にするものである。加熱ユニット137は第8配管151を介してチャンバー101に接続されている。
 酸素ガスによる加圧ラインは、アルゴンガスによる加圧ラインと同様に構成されている。詳細には、酸素ガスによる加圧ラインは酸素ガス供給源129を備え、この酸素ガス供給源129は第1配管を介して逆止弁115に接続されており、この逆止弁115は第2配管を介して不純物を除去するためのフィルタ118に接続されている。このフィルタ118は第3配管を介してバルブ124に接続されており、第3配管は圧力計121に接続されている。バルブ124は第4配管を介してレギュレータ127に接続されており、このレギュレータ127は第5配管を介してマスフローコントローラ132に接続されている。マスフローコントローラ132は第6配管を介してバルブ135に接続されており、このバルブ135は第7配管を介して加熱ユニット137に接続されている。加熱ユニット137は第8配管151を介してチャンバー101に接続されている。
 窒素ガスによる加圧ラインは、アルゴンガスによる加圧ラインと同様に構成されている。詳細には、窒素ガスによる加圧ラインは窒素ガス供給源138を備え、この窒素ガス供給源138は第1配管を介して逆止弁116に接続されており、この逆止弁116は第2配管を介して不純物を除去するためのフィルタ119に接続されている。このフィルタ119は第3配管を介してバルブ125に接続されており、第3配管は圧力計122に接続されている。バルブ125は第4配管を介してレギュレータ128に接続されており、このレギュレータ128は第5配管を介してマスフローコントローラ133に接続されている。マスフローコントローラ133は第6配管を介してバルブ136に接続されており、このバルブ136は第7配管を介して加熱ユニット137に接続されている。加熱ユニット137は第8配管151を介してチャンバー101に接続されている。
 また、チャンバー101は圧力調整ラインに接続されている。この圧力調整ライン及び前記加圧ライン112によってチャンバー101内を所定の圧力(例えば1MPa未満)に加圧できるようになっている。前記圧力調整ラインは可変バルブ139を備えており、この可変バルブ139の一方側は第9配管152を介してチャンバーに接続されている。第9配管152は圧力計140に接続されており、この圧力計140によってチャンバー101内の圧力を測定できるようになっている。可変バルブ139の他方側は第10配管に接続されている。
 また、チャンバー101は安全ラインに接続されている。この安全ラインは、チャンバー101内が異常に加圧され過ぎてある一定の圧力以上になった時にチャンバー内を大気圧まで下げるためのものである。安全ラインは開放バルブ141を備えている。この開放バルブ141の一方側は第9配管152を介してチャンバー101に接続されており、開放バルブ141の他方側は第10配管に接続されている。開放バルブ141はある一定の圧力がかかるとガス流れるようになっている。
 また、チャンバー101は大気開放ラインに接続されている。この大気開放ラインは、正常に加圧されたチャンバー101内を大気圧に戻すものである。大気開放ラインは開放バルブ142を備えている。この開放バルブ142の一方側は第9配管152を介してチャンバー101に接続されており、開放バルブ142の他方側は第10配管に接続されている。開放バルブ142は、チャンバー101内を大気圧に戻すために該チャンバー101内のガスを徐々に流すようになっている。
 また、チャンバー101は減圧状態から大気圧に戻すラインに接続されている。このラインは、チャンバー101内が減圧状態(真空状態)となっている場合に、減圧状態から大気圧に戻すものである。前記ラインはリークバルブ143を備えている。このリークバルブ143の一方側は第9配管152を介してチャンバー101内に接続されており、リークバルブ143の他方側は第11配管を介して逆止弁144に接続されている。この逆止弁144は第12配管を介して窒素ガス供給源145に接続されている。つまり、前記ラインは、窒素ガス供給源145から逆止弁144、リークバルブ143を介してチャンバー101内に窒素ガスを徐々に導入することによりチャンバー101内を大気圧に戻すようになっている。
 また、チャンバー101は、そのチャンバー内を減圧状態にするための真空排気ラインに接続されている。この真空排気ラインはバルブ169を有しており、このバルブ169の一端は配管を介してチャンバー101内に接続されている。バルブ169の他端は配管を介して真空ポンプ170に接続されている。この真空排気ラインは、例えば加圧RTAを行う前に一度真空排気を行う場合などに使用される。
 また、加圧式ランプアニール装置は、高周波電源6、プラズマ形成用ガスの供給機構103、ランプヒータ108、加圧ライン112、排気ポンプなどを制御する制御部(図示せず)を有しており、この制御部は後述するRTA処理及び第1の実施形態と同様のポーリング処理を行うように加圧式ランプアニール装置を制御するものである。
 また、加圧式ランプアニール装置は、ポーリング処理を行う際のポーリング基材102を様々な温度に制御する温度制御機構を有していてもよい。
 次に、上記の加圧式ランプアニール装置の動作について説明する。この動作の一例として、上記加圧式ランプアニール装置を用いて有機金属材料の一例であるPZT(チタン酸ジルコン酸鉛)強誘電体キャパシタを作製する方法について説明する。
 まず、6インチのシリコンウエハ上に熱酸化法によりシリコン酸化膜(SiO膜)を形成し、このシリコン酸化膜上に下部電極を形成する。次いで、この下部電極上にゾルゲル法によりPZT膜を塗布する。このようにして被ポーリング基材102を準備する。
 この後、上記加圧式ランプアニール装置を用いて酸素雰囲気中で600℃、1分間のRTA処理を行う。以下、詳細に説明する。
 被ポーリング基材102をチャンバー101内に導入し、この被ポーリング基材102を保持電極104上に保持する。次いで、加圧ライン112の酸素ガス供給源129から第1配管、逆止弁115、第2配管、フィルタ118、第3配管、バルブ124、第4配管、レギュレータ127、第5配管、マスフローコントローラ132、第6配管、バルブ135、第7配管、加熱ユニット137、第8配管151を通して酸素ガスをチャンバー101内に導入する。これと共に、圧力調整ラインの可変バルブ139を徐々に閉じていくことにより、チャンバー101内を酸素雰囲気としながら徐々に加圧する。そして、チャンバー101内は1MPa未満の所定の圧力まで加圧され、その圧力で維持される。
 次に、ランプヒータ108からランプ光を被ポーリング基材102のPZT膜に照射する。これにより、PZT膜が結晶化温度(例えば600℃)まで急速に加熱され、結晶化温度で1分間保持される。その結果、PZTと酸素が素早く反応され、PZT膜が結晶化される。
 次いで、結晶化されたPZT膜に第1~第4の実施形態のいずれかと同様の方法でポーリング処理を施す。
 例えば、加圧ライン112の酸素供給源からの酸素の供給を停止し、排気ポンプによってチャンバー101内を真空排気する。次いで、ガスシャワー電極107の供給口からシャワー状のArなどのプラズマ形成用ガスを、チャンバー101内に導入してPZT膜の表面に供給する。この供給されたプラズマ形成用ガスは、保持電極4とアースシールド5との間を通ってチャンバー101の外側へ排気ポンプによって排気される。そして、プラズマ形成用ガスの供給量と排気のバランスにより、所定の圧力、プラズマ形成用ガス流量に制御することによりチャンバー1内をプラズマ形成用ガス雰囲気とし、高周波電源6により例えば380kHz、13.56MHzの高周波(RF)を印加し、プラズマを発生させることによりPZT膜にポーリング処理を行う。このポーリング処理は、圧力が0.01Pa~大気圧で、電源が直流電源、高周波電源又はマイクロ波電源で、処理温度がPZT膜のキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)、または、PZT膜のヒステリシス曲線の残留分極値Pr(μC/cm)が0%となる温度以上、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)で、
プラズマを形成する際の直流電圧成分が±50V~±2kVである条件で行うことが好ましい。次いで、ポーリング処理を所定時間行った後に、ガスシャワー電極107の供給口からのプラズマ形成用ガスの供給を停止し、ポーリング処理を終了する。
 本実施形態によれば、ランプヒータ108によってランプ光を照射することでPZT膜を結晶化温度に加熱して結晶化させた後に、PZT膜の温度を室温まで下げることなく、連続して、被ポーリング基材102のPZT膜に対向する位置にプラズマを形成してPZT膜に結晶化温度より低く且つキュリー温度以上の温度等でポーリング処理を行う。従って、結晶化処理とポーリング処理を効率良く実施できる。
 なお、本実施形態を以下のように変更して実施してもよい。
 ランプヒータによってランプ光を照射することでPZT膜を結晶化温度に加熱しながらPZT膜に対向する位置にプラズマを形成することにより、PZT膜を結晶化させながらPZT膜にポーリング処理を行ってもよい。
 また、本実施形態は、第1乃至第6の実施形態と組み合わせて実施してもよい。例えば、PZT膜のキュリー温度以上(好ましくはキュリー温度より50℃高い温度以上)、または、PZT膜のヒステリシス曲線の残留分極値Pr(μC/cm)が0%となる温度以上、または100℃以上(好ましくは150℃以上、より好ましくは250℃以上)の第1の温度から第2の温度に下げながらポーリング処理を行ってもよい。第2の温度は、PZT膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ第1の温度より低い温度であってもよいし、50℃以上で且つ第1の温度より低い温度であってもよいし、100℃以上で且つ第1の温度より低い温度であってもよい。
 25重量%Pb15%過剰ゾルゲルPZT溶液(Pb/Zr/Ti=115/52/48)を用いてスピンコートを行った。これにより、ウエハ上にPZT溶液を塗布した。一回当たり塗布量は500μLとし、スピン条件は以下の条件を用いてPZT厚膜塗布を行った。
(スピン条件)
 0~300rpmまで3秒で上昇、3秒保持
 300~500rpmまで5秒で上昇、5秒保持
 500~1500rpmまで5秒で上昇、90秒保持
 塗布毎に、乾燥(水分除去)工程として250℃に加熱したホットプレート上で30秒保持し、水分除去を行った。次に、仮焼成工程としてロータリポンプで真空引きを行い、到達真空度は10‐1 Pa とした。次にN2を大気圧まで満たし、450℃、90秒間加熱して有機分の分解除去を行った。
 上記の塗布、乾燥、仮焼成を3、6、9、12、15回繰り返し、焼結炉で酸素雰囲気下で、700℃、5分間の結晶化処理を行い、それぞれ全膜厚1、2、3、4、5umのPZT厚膜を作製した。
 上記のゾルゲル法で作成したPZT厚膜に対して、図1に示すプラズマポーリング装置を用い、分極処理を行った。
 電源は、380kHzおよび13.56MHzのRF電源を使用した。PZTの膜厚で処理条件は変化するが、圧力1~30Pa、RF出力70~700w、Arガス15~30sccm、温度は25℃、処理時間1~5分の条件で処理を行う。基本的にはRF電源のVdcモニターを参考に、膜厚1μmに対しVdc=50vの条件で処理を行った。つまり、膜厚1、2、3、4、5μmの場合で、それぞれ、Vdc=50、100、150、200、250Vであった。時間は全て1分間行った。
 その結果、分極処理前の圧電特性d33は、それぞれ市販のd33メーターで測定したところ、d33=14、23、14、8、13pm/Vであった数値が、分極処理後は、d33=450、420、350、440、400pm/Vと格段に向上した。従って、PZT厚膜に対向する位置にプラズマを形成することにより、PZT厚膜にポーリング処理を行うことで、圧電特性が格段に向上することを確認した。
 1…ポーリングチャンバー
 2…被ポーリング基材,基板
 3…プラズマ形成用ガスの供給機構
 4…保持電極
 5…アースシールド
 6,6a,6b…高周波電源
 7…ガスシャワー電極(対向電極)
 8a,8b…切り替えスイッチ
 9…搬送室
10…LL室
11…ポーリング室
12…CVD室
13…スピンコータ室
14…RTA室
15,28,41…チャンバー
16a…スパッタガス
16b…ポーリングガス
16c…CVDガス
16d…蒸着材料
17,29,42…保持電極
18…ポーリング用の高周波電源
19,30…対向電極
20…スパッタ用の高周波電源
21…ポーリングガス供給源
22…スパッタガス供給源
23~25…バルブ
26…真空排気機構
27a~27d…切り替えスイッチ
28…チャンバー
31…CVD用の高周波電源
32…CVDガス供給源
33…結晶
35…1対の電極
36…オイル
37…オイルバス
38…ヒーター
39…高圧電源
40…リード線
43…蒸着源
51…残留分極値Prが100%となるヒステリシス曲線
52…残留分極値Prが50%となるヒステリシス曲線
101…チャンバー
102…被ポーリング基材,基板
103…プラズマ形成用ガスの供給機構
104…保持電極
105…アースシールド
107…ガスシャワー電極(対向電極)
108…ランプヒータ
112…加圧ライン
113…アルゴンガス供給源
114~116,144…逆止弁
117~119…フィルタ
120~122…圧力計
123~125…バルブ
126~128…レギュレータ
129…酸素ガス供給源
131~133…マスフローコントローラ
134~136…バルブ
137…加熱ユニット
138…窒素ガス供給源
139…可変バルブ
140…圧力計
141,142…開放バルブ
143…リークバルブ
145…窒素ガス供給源
151…第8配管
152…第9配管
169…バルブ
170…真空ポンプ

Claims (83)

  1.  被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
     前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とするポーリング処理方法。
  2.  請求項1において、
     前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であることを特徴とするポーリング処理方法。
  3.  被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
     前記第1の温度がキュリー温度以上であることを特徴とするポーリング処理方法。
  4.  請求項3において、
     前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であることを特徴とするポーリング処理方法。
  5.  被ポーリング基材に第1の温度でポーリング処理を行うポーリング処理方法であって、
     前記第1の温度が100℃以上であることを特徴とするポーリング処理方法。
  6.  請求項5において、
     前記被ポーリング基材には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であることを特徴とするポーリング処理方法。
  7.  請求項1乃至6のいずれか一項において、
     前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  8.  請求項1乃至6のいずれか一項において、
     前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材、及び、Ni系基材のいずれかの基材上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  9.  請求項1乃至6のいずれか一項において、
     前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  10.  被ポーリング基材にポーリング処理を行うポーリング処理方法であって、
     前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  11.  請求項1乃至10のいずれか一項において、
     前記被ポーリング基材は誘電体又は絶縁体を有する基材であることを特徴とするポーリング処理方法。
  12.  請求項1乃至11のいずれか一項において、
     前記被ポーリング基材は圧電体を有する基材であることを特徴とするポーリング処理方法。
  13.  請求項1乃至12のいずれか一項において、
     前記被ポーリング基材は焦電体を有する基材であることを特徴とするポーリング処理方法。
  14.  請求項1乃至13のいずれか一項において、
     前記被ポーリング基材は強誘電体を有する基材であることを特徴とするポーリング処理方法。
  15.  請求項1乃至14のいずれか一項において、
     前記被ポーリング基材にポーリング処理を行う際は、前記被ポーリング基材に対向する位置にプラズマを形成することを特徴とするポーリング処理方法。
  16.  請求項15において、
     前記被ポーリング基材に対向する位置に直流プラズマを形成した際の直流電圧または前記被ポーリング基材に対向する位置に高周波プラズマを形成した際の直流電圧成分が±50V~±2kVであることを特徴とするポーリング処理方法。
  17.  請求項15又は16において、
     前記プラズマを形成する際の圧力が0.01Pa~大気圧であることを特徴とするポーリング処理方法。
  18.  請求項15乃至17のいずれか一項において、
     前記プラズマを形成する際のプラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることを特徴とするポーリング処理方法。
  19.  請求項1乃至18のいずれか一項に記載のポーリング処理方法によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体。
  20.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記制御部は、前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  21.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
     前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
     前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
     前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を、前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  22.  請求項20又は21において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であることを特徴とするプラズマポーリング装置。
  23.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記制御部は、前記被ポーリング基材をキュリー温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  24.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
     前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
     前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
     前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材をキュリー温度以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  25.  請求項23又は24において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であることを特徴とするプラズマポーリング装置。
  26.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記制御部は、前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  27.  ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、被ポーリング基材が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
     前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記被ポーリング基材の温度を制御する温度制御機構と、
     前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御する制御部と、
    を具備し、
     前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
     前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであり、
     前記制御部は、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材を100℃以上の第1の温度にし、前記被ポーリング基材に対向する位置にプラズマを形成して前記被ポーリング基材にポーリング処理を行うように、前記第1の電源、前記第2の電源、前記ガス供給機構及び前記温度制御機構を制御することを特徴とするプラズマポーリング装置。
  28.  請求項26又は27において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であることを特徴とするプラズマポーリング装置。
  29.  請求項20乃至28のいずれか一項において、
     前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に圧電体材料膜を形成したものであることを特徴とするプラズマポーリング装置。
  30.  請求項20乃至28のいずれか一項において、
     前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材、及び、Ni系基材のいずれかの基材上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  31.  請求項20乃至28のいずれか一項において、
     前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に圧電体材料膜を形成したものであることを特徴とするポーリング処理方法。
  32.  請求項20乃至31のいずれか一項において、
     前記被ポーリング基材は誘電体又は絶縁体を有する基材であることを特徴とするプラズマポーリング装置。
  33.  請求項20乃至32のいずれか一項において、
     前記被ポーリング基材は圧電体を有する基材であることを特徴とするプラズマポーリング装置。
  34.  請求項20乃至33のいずれか一項において、
     前記被ポーリング基材は焦電体を有する基材であることを特徴とするプラズマポーリング装置。
  35.  請求項20乃至34のいずれか一項において、
     前記被ポーリング基材は強誘電体を有する基材であることを特徴とするプラズマポーリング装置。
  36.  請求項20乃至35のいずれか一項において、
     前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V~±2kVであることを特徴とするプラズマポーリング装置。
  37.  請求項20乃至36のいずれか一項において、
     前記ポーリング処理を行う際の前記ポーリングチャンバー内の圧力を0.01Pa~大気圧に制御する圧力制御機構を具備することを特徴とするプラズマポーリング装置。
  38.  請求項20乃至37のいずれか一項において、
     前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることを特徴とするプラズマポーリング装置。
  39.  請求項20乃至38のいずれか一項に記載のプラズマポーリング装置によって前記被ポーリング基材にポーリング処理が行われ、前記被ポーリング基材に圧電活性が与えられたことを特徴とする圧電体。
  40.  請求項20乃至38のいずれか一項に記載のプラズマポーリング装置を有することを特徴とする成膜装置。
  41.  請求項40において、
     前記成膜装置は、スピンコート装置、ランプアニール装置、スパッタリング装置、CVD装置及び蒸着装置のいずれかであることを特徴とする成膜装置。
  42.  請求項20乃至38のいずれか一項に記載のプラズマポーリング装置を有することを特徴とするエッチング装置。
  43.  チャンバーと、
     前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
     前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記被ポーリング基材にランプ光を照射するランプヒータと、
     前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記ランプヒータ、前記電源及び前記ガス供給機構を制御する制御部と、
    を具備することを特徴とするランプアニール装置。
  44.  請求項43において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  45.  請求項43において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  46.  請求項43において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  47.  請求項43において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記電源及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  48.  チャンバーと、
     前記チャンバー内に配置され、誘電体材料膜、絶縁体材料膜、圧電体材料膜、焦電体材料膜及び強誘電体材料膜のいずれかの膜を有する被ポーリング基材が保持される保持電極と、
     前記チャンバー内に配置され、前記保持電極に保持された前記被ポーリング基材に対向して配置された対向電極と、
     前記被ポーリング基材にランプ光を照射するランプヒータと、
     前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
     前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記ランプヒータ、前記第1の電源、前記第2の電源及び前記ガス供給機構を制御する制御部と、
    を具備し、
     前記第1の切り替えスイッチは、前記保持電極と前記第1の電源を電気的に接続する第1の状態から前記保持電極と前記接地電位を電気的に接続する第2の状態に切り替えるスイッチであり、
     前記第2の切り替えスイッチは、前記対向電極と前記接地電位を電気的に接続する第3の状態から前記対向電極と前記第2の電源を電気的に接続する第4の状態に切り替えるスイッチであることを特徴とするランプアニール装置。
  49.  請求項48において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に、前記結晶化温度より低く且つ前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  50.  請求項48において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つキュリー温度以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  51.  請求項48において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱して前記いずれかの膜を結晶化させ、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成して、前記被ポーリング基材に前記結晶化温度より低く且つ100℃以上の第1の温度でポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  52.  請求項48において、
     前記制御部は、前記ランプヒータによってランプ光を照射することで前記被ポーリング基材を結晶化温度に加熱しながら、前記第1の状態及び前記第3の状態または前記第2の状態及び前記第4の状態において前記被ポーリング基材に対向する位置にプラズマを形成することにより、前記いずれかの膜を結晶化させながら前記被ポーリング基材にポーリング処理を行うように、前記ランプヒータ、前記第1の電源、前記第2の電源、及び前記ガス供給機構を制御することを特徴とするランプアニール装置。
  53.  請求項44、47、49及び52のいずれか一項において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であることを特徴とするランプアニール装置。
  54.  請求項45、47、50及び52のいずれか一項において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であることを特徴とするランプアニール装置。
  55.  請求項46、47、51及び52のいずれか一項において、
     前記制御部は、前記被ポーリング基材に、前記第1の温度から第2の温度に下げながら前記ポーリング処理を行うように制御されるものであり、
     前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であることを特徴とするランプアニール装置。
  56.  請求項43乃至55のいずれか一項において、
     前記被ポーリング基材は、SEMI規格より厚さが薄いシリコンウエハまたは厚さ400μm以下のシリコンウエハ上に前記いずれかの膜を形成したものであることを特徴とするランプアニール装置。
  57.  請求項43乃至55のいずれか一項において、
     前記被ポーリング基材は、金属基材、耐酸化性を有する金属基材、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有する金属基材、鉄系基材、及び、Ni系基材のいずれかの基材上に前記いずれかの膜を形成したものであることを特徴とするランプアニール装置。
  58.  請求項43乃至55のいずれか一項において、
     前記被ポーリング基材は、ガラス基材、耐酸化性を有するガラス基材、及び、前記被ポーリング基材のキュリー温度又はヒステリシス曲線の残留分極値が0%となる温度に対して耐熱性を有するガラス基材のいずれかの基材上に前記いずれかの膜を形成したものであることを特徴とするランプアニール装置。
  59.  請求項43乃至58のいずれか一項において、
     前記保持電極および前記対向電極の一方の電極に電力を供給して直流プラズマを形成する際の直流電圧または高周波プラズマを形成する際の直流電圧成分が±50V~±2kVであることを特徴とするランプアニール装置。
  60.  請求項43乃至59のいずれか一項において、
     前記ポーリング処理を行う際の前記チャンバー内の圧力を0.01Pa~大気圧に制御する圧力制御機構を具備することを特徴とするランプアニール装置。
  61.  請求項43乃至60のいずれか一項において、
     前記プラズマ形成用ガスは、不活性ガス、H、N、O、F、C、C及びエアーの群から選ばれた1種以上のガスであることを特徴とするランプアニール装置。
  62.  請求項43乃至61のいずれか一項において、
     前記チャンバー内を加圧する加圧機構をさらに具備することを特徴とするランプアニール装置。
  63.  請求項62において、
     前記加圧機構は、前記チャンバー内に加圧されたガスを導入するガス導入機構と、前記チャンバー内のガスを排気するガス排気機構とを有することを特徴とするランプアニール装置。
  64.  圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
     前記第1の温度が前記被ポーリング基材のヒステリシス曲線の残留分極値が0%となる温度以上であることを特徴とする圧電体の製造方法。
  65.  請求項64において、
     前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、前記被ポーリング基材の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  66.  圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
     前記第1の温度がキュリー温度以上であることを特徴とする圧電体の製造方法。
  67.  請求項66において、
     前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  68.  圧電体材料物に第1の温度でポーリング処理を行うことにより圧電体を製造する方法であって、
     前記第1の温度が100℃以上であることを特徴とする圧電体の製造方法。
  69.  請求項68において、
     前記圧電体材料物には、前記第1の温度から第2の温度に下げながら、または前記第2の温度から前記第1の温度に上げながら、前記ポーリング処理が行われ、
     前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  70.  請求項64乃至69のいずれか一項において、
     前記圧電体材料物は、基板上に圧電体材料膜を形成したものであり、
     前記ポーリング処理は、前記圧電体材料膜に対向する位置にプラズマを形成することにより行われることを特徴とする圧電体の製造方法。
  71.  請求項70において、
     前記基板上に圧電体材料膜を形成する前に、前記基板の裏面を研削して前記基板の厚さを薄くすることを特徴とする圧電体の製造方法。
  72.  基板の裏面を研削して前記基板の厚さを薄くし、
     前記基板上に圧電体材料膜を形成し、
     前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法。
  73.  請求項71又は72において、
     前記基板の厚さを薄くした際の当該基板の厚さは400μm以下であることを特徴とする圧電体の製造方法。
  74.  請求項70乃至73のいずれか一項において、
     前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
     前記プラズマポーリング装置は、
     ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
     前記保持電極および前記対向電極の一方の電極に電気的に接続される電源と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
    を具備することを特徴とする圧電体の製造方法。
  75.  請求項70乃至73のいずれか一項において、
     前記ポーリング処理を、プラズマポーリング装置を用いて行う圧電体の製造方法であって、
     前記プラズマポーリング装置は、
     ポーリングチャンバーと、
     前記ポーリングチャンバー内に配置され、前記基板が保持される保持電極と、
     前記ポーリングチャンバー内に配置され、前記保持電極に保持された前記基板に対向して配置された対向電極と、
     前記保持電極に第1の切り替えスイッチを介して接続された第1の電源及び接地電位と、
     前記対向電極に第2の切り替えスイッチを介して接続された第2の電源及び前記接地電位と、
     前記対向電極と前記保持電極との間の空間にプラズマ形成用ガスを供給するガス供給機構と、
     前記保持電極に保持された前記基板の温度を制御する温度制御機構と、
    を具備することを特徴とする圧電体の製造方法。
  76.  基板上に圧電体材料膜を形成し、
     前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
     前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
     前記第1の温度は、前記結晶化温度より低く且つ前記圧電体材料膜のヒステリシス曲線の残留分極値が0%となる温度以上の温度であることを特徴とする圧電体の製造方法。
  77.  請求項76において、
     前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
     前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  78.  基板上に圧電体材料膜を形成し、
     前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
     前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
     前記第1の温度は、前記結晶化温度より低く且つキュリー温度以上の温度であることを特徴とする圧電体の製造方法。
  79.  請求項78において、
     前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
     前記第2の温度は、50℃以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  80.  基板上に圧電体材料膜を形成し、
     前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱して結晶化させ、
     前記圧電体材料膜に対向する位置にプラズマを形成して前記圧電体材料膜に第1の温度でポーリング処理を行う圧電体の製造方法であって、
     前記第1の温度は、前記結晶化温度より低く且つ100℃以上の温度であることを特徴とする圧電体の製造方法。
  81.  請求項80において、
     前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
     前記第2の温度は、100℃以上で且つ前記第1の温度より低い温度であることを特徴とする圧電体の製造方法。
  82.  基板上に圧電体材料膜を形成し、
     前記圧電体材料膜にランプヒータによってランプ光を照射することで前記圧電体材料膜を結晶化温度に加熱しながら、前記圧電体材料膜に対向する位置にプラズマを形成することにより、前記圧電体材料膜を結晶化させながら前記圧電体材料膜にポーリング処理を行うことを特徴とする圧電体の製造方法。
  83.  請求項82において、
     前記圧電体材料膜には、前記第1の温度から第2の温度に下げながら前記ポーリング処理が行われ、
     前記第2の温度は、前記圧電体材料膜の室温でのヒステリシス曲線の残留分極値に対して50%となる残留分極値を示す温度以上又は50℃以上で且つ前記結晶化温度より低い温度であることを特徴とする圧電体の製造方法。
PCT/JP2011/063022 2011-06-07 2011-06-07 ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置 WO2012169006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/063022 WO2012169006A1 (ja) 2011-06-07 2011-06-07 ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
JP2013519257A JP5764780B2 (ja) 2011-06-07 2011-06-07 ポーリング処理方法及び圧電体の製造方法
US14/123,138 US20140191618A1 (en) 2011-06-07 2011-06-07 Poling treatment method, plasma poling device, piezoelectric body and manufacturing method thereof, film forming device and etching device, and lamp annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063022 WO2012169006A1 (ja) 2011-06-07 2011-06-07 ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置

Publications (1)

Publication Number Publication Date
WO2012169006A1 true WO2012169006A1 (ja) 2012-12-13

Family

ID=47295613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063022 WO2012169006A1 (ja) 2011-06-07 2011-06-07 ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置

Country Status (3)

Country Link
US (1) US20140191618A1 (ja)
JP (1) JP5764780B2 (ja)
WO (1) WO2012169006A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128090A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 熱ポーリング方法、圧電体膜及びその製造方法、熱ポーリング装置、圧電特性の検査方法
CN110112053A (zh) * 2013-03-15 2019-08-09 应用材料公司 组合处理腔室和处置腔室
KR102055672B1 (ko) * 2013-02-05 2019-12-16 주식회사 주원하이텍 압전필터 분극장치 및 이를 이용하는 분극방법
US20200152856A1 (en) * 2018-11-09 2020-05-14 Mems Drive, Inc. Piezo Actuator Fabrication Method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172131A2 (en) * 2013-04-18 2014-10-23 Drexel University Methods of forming perovskite films
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
GB2564634B (en) * 2017-05-12 2021-08-25 Xaar Technology Ltd A piezoelectric solid solution ceramic material
KR102071145B1 (ko) * 2017-09-18 2020-01-29 고려대학교 세종산학협력단 스트레쳐블 다중모드 센서 및 그 제조 방법
US11155428B2 (en) 2018-02-23 2021-10-26 International Test Solutions, Llc Material and hardware to automatically clean flexible electronic web rolls
US20200098595A1 (en) * 2018-09-20 2020-03-26 Nanya Technology Corporation Semiconductor manufacturing apparatus and method for operating the same
US11756811B2 (en) 2019-07-02 2023-09-12 International Test Solutions, Llc Pick and place machine cleaning system and method
US11318550B2 (en) 2019-11-14 2022-05-03 International Test Solutions, Llc System and method for cleaning wire bonding machines using functionalized surface microfeatures
US11211242B2 (en) 2019-11-14 2021-12-28 International Test Solutions, Llc System and method for cleaning contact elements and support hardware using functionalized surface microfeatures
TWI751524B (zh) * 2020-04-10 2022-01-01 馗鼎奈米科技股份有限公司 壓電薄膜之電極化方法
US11035898B1 (en) * 2020-05-11 2021-06-15 International Test Solutions, Inc. Device and method for thermal stabilization of probe elements using a heat conducting wafer
TWI742850B (zh) * 2020-09-14 2021-10-11 馗鼎奈米科技股份有限公司 壓電薄膜之極化方法
US11502217B1 (en) * 2021-05-24 2022-11-15 Gautam Ganguly Methods and apparatus for reducing as-deposited and metastable defects in Amorphousilicon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075588A (ja) * 1983-09-30 1985-04-27 Hitachi Ltd 加熱機構付のスパツタエツチング装置
JPH03150880A (ja) * 1989-11-08 1991-06-27 Toyota Motor Corp 圧電セラミックスの製造方法
JPH10200369A (ja) * 1997-01-13 1998-07-31 Mitsubishi Materials Corp 圧電薄膜共振子
JP2000507392A (ja) * 1996-03-21 2000-06-13 アライドシグナル・インコーポレーテッド 改良された圧電セラミック―ポリマー複合材料
JP2001110741A (ja) * 1992-12-04 2001-04-20 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体処理装置
JP2004158717A (ja) * 2002-11-07 2004-06-03 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いた電子装置及びアクチュエータ、並びにアクチュエータの製造方法
JP2005262108A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 成膜装置及び圧電材料の製造方法
WO2009114262A2 (en) * 2008-03-13 2009-09-17 Applied Materials, Inc. Electrical control of plasma uniformity using external circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419356B2 (ja) * 1999-08-13 2003-06-23 株式会社村田製作所 圧電体の分極処理方法
US6558585B1 (en) * 2000-11-02 2003-05-06 Pacific Wave Industries, Inc. Techniques for electrode poling of electro-optic polymers to eliminate poling induced optical loss and poling induced damage to electro-optic chromophores
JP2004320127A (ja) * 2003-04-11 2004-11-11 Tdk Corp 薄膜圧電共振子の製造方法、薄膜圧電共振子の製造装置、薄膜圧電共振子および電子部品
JP5410686B2 (ja) * 2008-03-21 2014-02-05 富士フイルム株式会社 圧電体膜の製造方法、成膜装置および圧電体膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075588A (ja) * 1983-09-30 1985-04-27 Hitachi Ltd 加熱機構付のスパツタエツチング装置
JPH03150880A (ja) * 1989-11-08 1991-06-27 Toyota Motor Corp 圧電セラミックスの製造方法
JP2001110741A (ja) * 1992-12-04 2001-04-20 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体処理装置
JP2000507392A (ja) * 1996-03-21 2000-06-13 アライドシグナル・インコーポレーテッド 改良された圧電セラミック―ポリマー複合材料
JPH10200369A (ja) * 1997-01-13 1998-07-31 Mitsubishi Materials Corp 圧電薄膜共振子
JP2004158717A (ja) * 2002-11-07 2004-06-03 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いた電子装置及びアクチュエータ、並びにアクチュエータの製造方法
JP2005262108A (ja) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 成膜装置及び圧電材料の製造方法
WO2009114262A2 (en) * 2008-03-13 2009-09-17 Applied Materials, Inc. Electrical control of plasma uniformity using external circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.E.MCKINNEY ET AL.: "Plasma poling of poly (vinylidene fluoride):Piezo- and pyroelectric response", J.APPL.PHYS., vol. 51, no. 3, March 1980 (1980-03-01), pages 1676 - 1681 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055672B1 (ko) * 2013-02-05 2019-12-16 주식회사 주원하이텍 압전필터 분극장치 및 이를 이용하는 분극방법
CN110112053A (zh) * 2013-03-15 2019-08-09 应用材料公司 组合处理腔室和处置腔室
JP2015128090A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 熱ポーリング方法、圧電体膜及びその製造方法、熱ポーリング装置、圧電特性の検査方法
US9903898B2 (en) 2013-12-27 2018-02-27 Youtec Co., Ltd. Thermal poling method, piezoelectric film and manufacturing method of same, thermal poling apparatus, and inspection method of piezoelectric property
US20200152856A1 (en) * 2018-11-09 2020-05-14 Mems Drive, Inc. Piezo Actuator Fabrication Method
US11825749B2 (en) * 2018-11-09 2023-11-21 MEMS Drive (Nanjing) Co., Ltd. Piezo actuator fabrication method

Also Published As

Publication number Publication date
US20140191618A1 (en) 2014-07-10
JP5764780B2 (ja) 2015-08-19
JPWO2012169006A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5764780B2 (ja) ポーリング処理方法及び圧電体の製造方法
JP5857344B2 (ja) プラズマポーリング装置及び圧電体の製造方法
JP5313792B2 (ja) ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置
JP5507097B2 (ja) ペロブスカイト型酸化物とその製造方法、圧電体、圧電素子、液体吐出装置
JP5290551B2 (ja) ペロブスカイト型酸化物とその製造方法、圧電体、圧電素子、液体吐出装置
JP5253894B2 (ja) 強誘電体膜、圧電素子、及び液体吐出装置
JP5927475B2 (ja) ポーリング処理方法、プラズマポーリング装置、圧電体及びその製造方法、成膜装置及びエッチング装置、ランプアニール装置
US10854808B2 (en) Ferroelectric ceramics, electronic component and manufacturing method of ferroelectric ceramics
Benabdallah et al. Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering
EP3409651A1 (en) A high temperature and power piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as part of an ultrasound generation device or ultrasonic actuation device
EP3159949A1 (en) Multilayer film and method for producing same
JP5838417B2 (ja) ポーリング処理方法、磁場ポーリング装置及び圧電体膜
JP2011079733A (ja) 製造装置および製造方法
TWI817054B (zh) 壓電膜的物理氣相沉積
JP6149208B2 (ja) ポーリング処理方法、磁場ポーリング装置及び圧電体膜
JP2003086586A (ja) 配向性強誘電体薄膜素子及びその製造方法
Park et al. Relaxor-based ferroelectric single crystals for electromechanical actuators
Augustine et al. Realization of 1 μm thick, crack-free and smooth PMN-PT film in the MPB through PLD: A comprehensive study
Li et al. 0.67 Pb (Mg1/3Nb2/3) O3–0.33 PbTiO3 thin films derived from RF magnetron sputtering
Deng et al. Property improvement of 0.3 Pb (Zn1/3Nb2/3) O3-0.7 Pb0. 96La0. 04 (ZrxTi1− x) 0.99 O3 ceramics by hot-pressing
JP6823230B2 (ja) スパッタリング装置、膜の製造方法、SrRuO3−δ膜、強誘電体セラミックス及びその製造方法
Kwak et al. Influence of cation substitution on the phase formation kinetics of Sr0. 7Bi2. 3Ta2O9 thin films
Maiwa et al. 2P3-8 Self-poling and DC poling of Mn doped Pb (Mg1/3Nb2/3) O3-Pb (ZrTi) O3 single crystals grown by solid state crystal growth process
Tungalaltamir et al. Electrical properties of PZN-PZT thick films formed by aerosol deposition process
JP2002324925A (ja) 圧電素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123138

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11867554

Country of ref document: EP

Kind code of ref document: A1