JP5850150B2 - 歪補償装置及び歪補償方法 - Google Patents

歪補償装置及び歪補償方法 Download PDF

Info

Publication number
JP5850150B2
JP5850150B2 JP2014518134A JP2014518134A JP5850150B2 JP 5850150 B2 JP5850150 B2 JP 5850150B2 JP 2014518134 A JP2014518134 A JP 2014518134A JP 2014518134 A JP2014518134 A JP 2014518134A JP 5850150 B2 JP5850150 B2 JP 5850150B2
Authority
JP
Japan
Prior art keywords
distortion compensation
power
value
address
compensation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014518134A
Other languages
English (en)
Other versions
JPWO2013179399A1 (ja
Inventor
聡之 松原
聡之 松原
充晴 ▲濱▼野
充晴 ▲濱▼野
車古 英治
英治 車古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2013179399A1 publication Critical patent/JPWO2013179399A1/ja
Application granted granted Critical
Publication of JP5850150B2 publication Critical patent/JP5850150B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/465Power sensing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3215To increase the output power or efficiency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3227Adaptive predistortion based on amplitude, envelope or power level feedback from the output of the main amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

本発明は、歪補償装置及び歪補償方法に関する。
近年、無線通信において、デジタル化による高能率伝送が多く採用されてきている。高能率伝送の実現方法として無線通信に多値位相変調方式を適用する場合、送信側で特に電力増幅器の入出力特性を直線化して非線形歪を抑え、隣接チャネル漏洩電力を低減する技術が重要となる。また、線形成に劣る増幅器を使用し、電力効率の向上を図る場合は、増幅器によって生じる非線形歪を補償することが望ましい。
W−CDMA(Wideband Code Division Multiple Access)などの移動通信においては、送信装置の送信電力は10mW〜数10Wであり、電力増幅器の入出力特性は非直線性を有する。この場合の電力増幅器の入出力特性は、歪関数f(p)で表される。この非直線特性により非線形性歪が発生し、送信周波数f(0)周辺の周波数スペクトラムは、サイドローブが持ち上がることで隣接チャネルに漏洩してしまい隣接妨害が生じる。すなわち、非線形性歪により、隣接周波数チャネルに漏洩する送信波の電力が大きくなってしまう。このような漏洩電力の大きさは、f(0)を中心とする自装置のチャネルにおける電力と、隣接チャネルに漏れる隣接漏洩電力との比であるACPR(Adjacent Channel Power Ratio)で表される。すなわち、隣接漏洩電力が自装置のチャネルにおける電力に対して大きくなると、漏洩電力が大きくなったといえる。このような漏洩電力は、他チャネルに対して雑音となり、漏洩電力の影響を受けた他チャネルの通信品質を劣化させてしまう。
漏洩電力は、例えば電力増幅器の入出力特性における線形領域で小さく、非線形領域で大きくなる。そこで、電力増幅器の出力を高めるためには、電力増幅器の入出力特性における線形領域を広くすることが考えられる。しかし、線形領域を広くするには、能力の高い増幅器を用いることが考えられるが、コストがかかり及び装置サイズが大きくなってしまう。
そこで、増幅器を通過した送信信号の歪みを抑制するため、デジタル線形性歪補償方式の歪補償装置を無線通信装置に設けることがある。デジタル線形性歪補償方式は、変調信号により直交変調して得られる搬送波を帰還検波し、変調信号(送信ベースバンド信号)と帰還信号(帰還ベースバンド信号)との振幅をデジタル変換して比較し、比較結果に基づいて歪補償係数を逐次更新していく方式である。例えば、デジタル線形性歪補償方式の歪補償装置は、歪補償係数を用いて増幅特性の逆特性を求める。そして、デジタル線形性歪補償方式の歪補償装置は、増幅器に入力する前の送信信号に、増幅特性の逆特性の歪みを付与する。逆特性の歪みの付加によって、増幅器を通過した送信信号の歪みが抑制され、増幅器の非線形性が補償される。
このような歪補償装置には、例えば、歪補償に用いられる複数の歪補償係数をルックアップテーブル(LUT:Lookup Table)に格納し、送信信号の電力レベルに応じたアドレスを指定してLUTから補償係数を読み出すものがある。このような歪補償装置においては、例えば、電力、振幅又は電力をlog変換した値を用いて電力に応じたアンプの非線形性を補償するLUTアドレスを生成していた。
また、入力変調信号の振幅値が所定の範囲にある場合にのみ歪補償を行う技術が知られている。また、LUTの各アドレスが指定される頻度を監視し、指定頻度が均等化されるように、電力レベルに比例したアドレスをLUTの実際のアドレスに変換する技術が知られている。なお、受信信号の2乗信号から生成した符号化信号に対して乗算器及びルックアップ要素を用いて信号の電力レベルを検出し、検出した電力レベルを用いて閉ループ・ゲイン制御を行う技術が知られている。
特開2007−208684号公報 特開2007−49251号公報 特開2005−184847号公報
しかしながら、従来の電力、振幅又は電力をlog変換した値を用いたLUTの生成方法では、アドレスの割り当て方が単純なため、入力信号の頻度分布に応じた最適なLUTアドレスを生成することができない。このため、従来の方法では、電力に応じたアンプの非線形性を再現することが困難であり、歪補償性能が低下してしまうおそれがある。
入力変調信号の振幅値が所定の範囲にある場合にのみ歪補償を行う技術を用いても、電力に応じたアンプの非線形性を再現することは困難であり、歪補償性能が低下してしまうおそれがある。また、指定頻度が均等化されるように、電力レベルに比例したアドレスをLUTの実際のアドレスに変換する技術でも、回路規模を小さくすると、電力に応じたアンプの非線形性を再現することは困難となり、歪補償性能が低下してしまうおそれがある。さらに、受信信号の2乗信号を用いて検出した電力レベルを利用して閉ループ・ゲイン制御を行う技術を、LUTの生成に利用しても、やはり、電力に応じたアンプの非線形性を再現することは困難である。
開示の技術は、上記に鑑みてなされたものであって、歪補償性能を向上させた歪補償装置及び歪補償方法を提供することを目的とする。
本願の開示する歪補償装置及び歪補償方法は、一つの態様において、記憶部は、歪補償係数を記憶する。歪補償係数選択部は、入力された信号の電力を対数化し、対数化した値に基づく値をべき乗し、べき乗した値に応じて前記記憶部に記憶されている歪補償係数を選択する。歪補償処理部と、前記選択された歪補償係数を前記記憶部から取得し、取得した歪補償係数を用いて前記入力された信号に歪補償処理を施す。増幅部は、前記歪補償処理が施された信号を増幅する。歪補償係数更新部は、前記増幅された信号及び前記入力された信号に基づいて前記記憶部に記憶されている前記歪補償係数を更新する。
本願の開示する歪補償装置及び歪補償方法の一つの態様によれば、歪補償性能を向上させることができるという効果を奏する。
図1は、実施例1に係る歪補償装置を有する送信装置のブロック図である。 図2は、歪補償部の詳細を表すブロック図である。 図3は、アドレス生成部の詳細を表すブロック図である。 図4は、実施例1に係るLUTにおけるアドレスの割り付けを表す図である。 図5は、電力の対数をとり正規化し、さらにべき乗した値と割り付けられたアドレスとの対応を表した図である。 図6は、増幅器の入出力特性を表す図である。 図7は、実施例1に係る歪補償装置のハードウェアの詳細を表す構成図である。 図8は、実施例1に係る歪補償装置による歪補償処理のフローチャートである。 図9は、送信電力に応じたアドレス割り付けを表す図である。 図10は、送信電力とアドレスとの対応関係を示す図である。 図11は、振幅に応じたアドレス割り付けを表す図である。 図12は、振幅とアドレスとの対応関係を示す図である。 図13は、送信電力の対数をとった値に応じたアドレス割り付けを表す図である。 図14は、送信電力の対数をとった値とアドレスとの対応関係を表す図である。 図15は、送信電力の対数をとった値を正規化した値に応じたアドレス割り付けを表す図である。 図16は、送信電力の対数をとった値を正規化した値とアドレスとの対応関係を表す図である。 図17は、平均電力以下では送信電力の対数をとった値を正規化した値に応じ、平均電力以上では振幅に応じたアドレス割り付けを表す図である。 図18は、送信電力の対数をとった値を正規化した値及び振幅とアドレスとの対応関係を表す図である。 図19は、実施例1の変形例に係るLUTにおけるアドレスの割り付けを表す図である。 図20は、実施例2に係る歪補償装置におけるアドレス生成部の詳細を示すブロック図である。 図21は、実施例3に係る歪補償装置のアドレス生成部の詳細を表すブロック図である。 図22は、実施例3の変形例に係る歪補償装置のアドレス生成部の詳細を表すブロック図である。 図23は、実施例4に係る歪補償装置のブロック図である。
以下に、本願の開示する歪補償装置及び歪補償方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する歪補償装置及び歪補償方法が限定されるものではない。
図1は、実施例1に係る歪補償装置を有する送信装置のブロック図である。本実施例に係る送信装置は、送信信号発生部1、S/P(Serial to Parallel)変換器2、歪補償部3、D/A(Digital to Analog)変換器4及びA/D(Analog to Digital)変換器5を有している。さらに、本実施例に係る送信装置は、直交変調器6、直交検波器7、周波数変換部8、搬送波生成部9、周波数変換部10、増幅器11、方向性結合器12及びアンテナ13を有している。
送信信号発生部1は、シリアルのデジタルデータ列を生成する。そして、送信信号発生部1は、生成したデータ列をS/P変換器2へ入力する。
S/P変換器2は、シリアルのデジタルデータ列の入力を送信信号発生部1から受ける。そして、S/P変換器2は、受信したデジタルデータ列を1ビットずつ交互に振り分けて歪補償部3へ出力することで、同相成分信号(I信号:In-Phase component)と直交成分信号(Q信号:Quadrature component)の2系列に変換する。
歪補償部3は、I信号及びQ信号に分けられた送信信号の入力をS/P変換器2から受ける。さらに、歪補償部3は、帰還復調信号(フィードバック信号)の入力を後述するA/D変換器5から受ける。そして、歪補償部3は、送信信号と帰還復調信号との差から歪補償係数を算出する。そして、歪補償部3は、算出した歪補償係数を、送信信号の離散的な各パワーに対応するアドレスに格納し、LUTを更新する。
また、歪補償部3は、受信した送信信号の電力に対応するLUTにおけるアドレスを生成する。そして、歪補償部3は、生成したアドレスに格納されている歪補償係数を取得する。この取得した歪補償係数は、送信信号のパワーレベルに応じた歪補償係数である。歪補償部3は、取得した歪補償係数を用いて歪補償処理を行う。その後、歪補償部3は、歪補償処理を施した送信信号をD/A変換器4へ出力する。この歪補償部3によるアドレスの生成及び歪補償については後で詳細に説明する。
D/A変換器4は、I信号及びQ信号を有する送信信号の入力を歪補償部3から受ける。そして、D/A変換器4は、受信したI信号及びQ信号のそれぞれをアナログのベースバンド信号に変換する。その後、D/A変換器4は、ベースバンド信号を直交変調器6へ出力する。
搬送波生成部9は、基準搬送波を生成する。そして、搬送波生成部9は、生成した搬送波を直交変調器6及び直交検波器7へ出力する。
直交変調器6は、D/A変換器4からベースバンド信号の入力を受ける。さらに、直交変調器6は、搬送波生成部9から基準搬送波の入力を受ける。そして、直交変調器6は、受信したベースバンド信号のうちのI信号に基準搬送波を乗算する。また、直交変調器6は、受信したベースバンド信号のうちのQ信号に、基準搬送波を90度移相した搬送波を乗算する。そして、直交変調器6は、それぞれの乗算結果を加算することで、直交変換を行う。その後、直交変調器6は、直交変換を行ったベースバンド信号である直交変調信号を周波数変換部8へ出力する。
周波数変換部8は、直交変調器6から直交変調信号の入力を受ける。そして、周波数変換部8は、受信した直交変調信号と局部発信信号とをミキシングして無線周波数に変換する。そして、周波数変換部8は、無線周波数を有する信号を増幅器11へ出力する。
増幅器11は、無線周波数を有する信号の入力を周波数変換部8から受ける。そして、増幅器11は、受信した信号の電力を増幅する。その後、増幅器11は、増幅した信号を方向性結合器12へ出力する。
方向性結合器12は、増幅器11から受信した信号の一部をアンテナ13を介して送信する。また、方向性結合器12は、増幅器11から受信した信号の一部を周波数変換部10へ出力する。
周波数変換部10は、アンテナ13を介して送信された信号と同じ信号の入力を方向性結合器12から受ける。そして、周波数変換部10は、局部発振信号を用いて受信した信号を周波数変換する。周波数変換部10は、周波数変換した直交変調信号を直交検波器7へ出力する。
直交検波器7は、周波数変換部10により周波数変換された直交変調信号の入力を受ける。そして、直交検波器7は、受信した直交変調信号に、互いに位相が90°異なる各基準搬送波を乗算して直交検波を行う。直交検波器7は、直交検波により得られたI信号及びQ信号をA/D変換器5へ出力する。
A/D変換器5は、I信号及びQ信号の入力を直交検波器7から受ける。そして、A/D変換器5は、受信したI信号及びQ信号をデジタル信号に変換する。その後、A/D変換器5は、デジタル信号に変換したI信号及びQ信号を歪補償部3へ出力する。
次に、図2及び図3を参照して、歪補償部3の詳細を説明する。図2は、歪補償部の詳細を表すブロック図である。また、図3は、アドレス生成部の詳細を表すブロック図である。
歪補償部3は、図2に示すように、アドレス生成部31、プリディストーション部32、歪補償係数記憶部33及び歪補償係数演算部34を有している。
アドレス生成部31は、図3に示すように、電力算出部301、電力log変換部302、電力log正規化部303、べき乗計算部304及びアドレス算出部305を有している。
電力算出部301は、S/P変換器2から入力された送信信号の送信電力を算出する。例えば、時刻tにおける送信信号をx(t)とすると、電力算出部301は、送信電力p=|x(t)|として算出する。そして、電力算出部301は、算出した送信電力の値を電力log変換部302へ出力する。
電力log変換部302は、送信電力の値の入力を電力算出部301から受ける。そして、電力log変換部302は、受信した送信電力の値の対数をとる。送信電力の対数をとった値を、以下では「電力log値」という。電力log変換部302は、求めた電力log値を電力log正規化部303へ出力する。
電力log正規化部303は、電力log値の入力を電力log変換部302から受ける。そして、電力log正規化部303は、受信した電力log値を正規化する。以下では、電力log値を正規化した値を「電力log正規化値」という。電力log正規化部303は、求めた電力log正規化値をべき乗計算部304へ出力する。
べき乗計算部304は、電力log正規化値の入力を電力log正規化部303から受ける。そして、べき乗計算部304は、受信した電力log正規化値の予め決められた数のべき乗を計算する。例えば、本実施例では、べき乗計算部304は、電力log正規化値の2乗を求める。べき乗計算部304は、電力log正規化値をべき乗した値をアドレス算出部305へ出力する。
アドレス算出部305は、送信信号の送信電力の値の対数をとり正規化し、さらにべき乗した値の入力をべき乗計算部304から受ける。また、アドレス算出部305は、例えば、受信した値に対応する1次元方向のアドレスを生成する。そして、アドレス算出部305は、生成したアドレスをアドレスの指定情報として歪補償係数記憶部33へ出力する。
歪補償係数記憶部33は、1次元の各アドレスに歪補償係数が格納されているルックアップテーブル(LUT)を有している。そして、本実施例における歪補償係数記憶部33が有するLUTでは、送信電力の値の対数をとり正規化した上で、さらに2乗した値に応じてアドレスが割り付けられている。ここで、LUTのアドレスは、アドレスを割り付ける対象とする値に対して均等に割り付けられる。そのため、アドレスの割り当てを変更するには、割り付ける対象とする値を算出するための基となる情報を変更する、又はその基となる情報を関数などを用いて変換するなどの処理を行うことになる。割り付ける対象とする値を算出するための基となる情報とは、例えば、送信信号の電力や振幅などである。また、基となる情報の変換とは、送信信号の電力の対数をとるなどの処理である。本実施例では、アドレスを割り付ける対象とする値として、送信電力の値の対数をとった値を正規化し、さらに2乗した値とすることで、各電力領域に対するアドレスの割り付けを適切に行っている。
図4は、実施例1に係るLUTにおけるアドレスの割り付けを表す図である。また、図5は、電力の対数をとり正規化し、さらにべき乗した値と割り付けられたアドレスとの対応を表した図である。図5のグラフ202の上部の線は送信電力の対数をとり正規化し、さらにべき乗した値を表しており、下部の線はアドレスを表している。ここでは、10dBが最大電力であり、0dBが平均電力であり、−40dBが最小補償電力である。また、LUT内のアドレスは100個ある。図4の表201に示すように、本実施例に係るLUTでは、10dB〜0dBの電力に対して36個のアドレスが割り付けられている。これは、図5の範囲221にあたる。また、0〜−10dBの電力に対して28個のアドレスが割り付けられている。これは、図5の範囲222にあたる。また、−10dB〜−20dBの電力に対して18個のアドレスが割り付けられている。これは、図5の範囲223にあたる。また、−20dB〜−30dBの電力に対して8個のアドレスが割り付けられている。これは、図5の範囲224にあたる。また、−30dB〜−40dBの電力に対して2個のアドレスが割り付けられている。これは、図5の範囲225にあたる。そして、本実施例のLUTでは、図5に示すように、電力が高い領域に多くのアドレスを割り付け、電力が低くなるにしたがって割り付けるアドレスが少なくなっている。
図6は、増幅器の入出力特性を表す図である。図6の縦軸は出力電力を表し、横軸は入力電力を表している。増幅器11の入出力特性は、点線100で示すように非直線、すなわち非線形となっている。特に、入力電力が最大電力から0dBから少し下の値までの間で非線形歪が大きくなっている。そこで、この非線形歪が大きくなっている部分、具体的には図6の非線形領域S2で細かく歪補償を行うことが望ましい。これに対して、図6の線形領域S1では、歪補償は非線形領域S2ほどの細かくなくてもよい。この点、本実施例に係るLUTでは、最大電力10dBから平均電力0dBまでの高電力領域及び0dBから−10dBまでの中電力領域において多くのアドレスが割り付けられている。このため、高電力領域と中電力領域において細かい歪補償を行うことができる。また、ある程度線形性が保たれている−10dBから−20dBまで及び20dBから−30dBまでの電力領域に対しても、適当な数のアドレスが割りつけられている。さらに、−30dBから−40dBまでの低電力領域に対しても歪補償を施すことができる。このように、本実施例に係るLUTでは、送信電力に応じてLUTアドレスを精度良く割り付けることができており、歪補償性能が向上する。
歪補償係数記憶部33は、アドレスの指定情報の入力をアドレス生成部31から受ける。そして、歪補償係数記憶部33は、プリディストーション部32からの指示を受けて、アドレスの指定情報で指定されているアドレスに格納されている歪補償係数を読出す。その後、歪補償係数記憶部33は、読出した歪補償係数をプリディストーション部32へ出力する。
プリディストーション部32は、送信信号の入力をS/P変換器2から受ける。そして、プリディストーション部32は、受信した送信信号に対する歪補償係数の取得を歪補償係数記憶部33に要求する。その後、プリディストーション部32は、受信した送信信号に対する歪補償係数の入力を歪補償係数記憶部33から受ける。プリディストーション部32は、受信した送信信号に歪補償係数記憶部33から取得した歪補償係数を乗算するなどして送信信号に歪補償処理を施す。そして、プリディストーション部32は、歪補償処理を施した送信信号をD/A変換器4へ出力する。
歪補償係数演算部34は、送信信号の入力をS/P変換器2から受ける。さらに、歪補償係数演算部34は、帰還復調信号の入力をA/D変換器5から受ける。そして、歪補償係数演算部34は、LMS(Least Mean Square)アルゴリズムを用いた適応信号処理により歪補償前の送信信号と帰還復調信号とを比較し、その差が0になるように歪補償係数を演算する。そして、歪補償係数演算部34は、演算した歪補償係数を用いて歪補償係数記憶部33が保持しているLUTに格納された係数を更新する。
次に図7を参照して、本実施例に係る歪補償装置の動作をより具体的に説明する。図7は、実施例1に係る歪補償装置のハードウェアの詳細を表す構成図である。
LUT113は、図2に示す歪補償係数記憶部33が有するルックアップテーブルの機能を実現する。また、乗算器101は、図2に示すプリディストーション部32の機能を実現する。また、共役複素信号出力部104、乗算器105、減算器106、乗算器107、乗算器108及び加算器109は、図2に示す歪補償係数演算部34の機能を実現する。ここで、図7では、便宜上、共役複素信号出力部104を「Conj」と表記している。
S/P変換器2から送られてきた信号は、乗算器101、アドレス生成部31、遅延回路111へ入力される。
アドレス生成部31は、受信した送信信号の電力値の対数ととった値をべき乗した値からアドレスを生成する。そして、アドレス生成部31は、生成したアドレスをアドレス指定情報としてLUT113へ出力する。さらに、アドレス生成部31は、生成したアドレスを遅延回路110へ出力する。
乗算器101は、アドレス生成部31により指定されたLUT113のアドレスから歪補償係数を取得する。また、アドレス生成部31により指定されたLUT113のアドレスに格納されている歪補償係数は、遅延回路112へ送られる。そして、乗算器101は、送信信号と取得した歪補償係数とを乗算し、乗算結果を送信系回路102へ出力する。ここで、本実施例では、LUT113のアドレスは、送信信号の電力に対して図4に示すように割り付けられている。そのため、乗算器101による歪補償処理はどのような電力領域に対しても適切に行われる。
送信系回路102は、図1に示すD/A変換器4、直交変調器6及び周波数変換部8などを有している。送信系回路102は、乗算器101により歪補償処理が施された送信信号に対してD/A変換や直交変調や周波数変換などの各種処理を施し、増幅器11へ出力する。
増幅器11は、歪補償処理が施された送信信号を増幅する。そして、増幅器11は、増幅した送信信号をアンテナを介して送信するとともに、帰還系回路103へ出力する。
帰還系回路103は、図1に示すA/D変換器5、直交検波器7及び周波数変換部8などを有している。帰還系回路103は、増幅器11から受信した増幅後の送信信号に対して周波数変換や直交検波やA/D変換などの各種処理を施した帰還復調信号を共役複素信号出力部104及び減算器106へ出力する。
遅延回路110〜112は、送信信号が増幅器11に入力されてから帰還復調信号が減算器106に入力されるまでの遅延時間を、入力された各信号に付加する。例えば、増幅器11における遅延時間をD0とし、帰還系回路103における知念時間をD1とすると、遅延回路110〜112は、D0+D1を満足するような遅延を各信号に付加する。
共役複素信号出力部104は、受信した帰還復調信号の共役複素信号を算出する。そして、共役複素信号出力部104は、共役複素信号を乗算器105へ出力する。
減算器106は、遅延回路111から受信した送信信号から帰還系回路103から受信した帰還復調信号を減算して、遅延回路111から受信した送信信号と帰還復調信号の差を求める。そして、減算器106は、求めた差を乗算器107へ出力する。
乗算器105は、共役複素信号出力部104から入力された共役複素信号と遅延回路112から入力された歪補償係数を乗算する。そして、乗算器105は、乗算結果を乗算器107へ出力する。
乗算器107は、減算器106から入力された帰還復調信号と送信信号の差と、乗算器105から入力された共役複素信号と歪補償係数との乗算結果とを乗算する。そして、乗算器107は、乗算結果を乗算器108へ出力する。
乗算器108は、乗算器107から入力された値にステップサイズパラメータμを乗算する。そして、乗算器108は、乗算結果を加算器109へ出力する。
加算器109は、乗算器108から入力された値と遅延回路112から入力された歪補償係数とを加算する。そして、加算器109は、加算結果をLUT113に送る。
LUT113は、遅延回路110から入力されたアドレスに格納されている値を加算器109から入力された値に更新する。これにより、送信信号に対応するLUT113のアドレスに格納されている値が更新されていき、最終的に最適の歪補償係数の値に収束し、増幅器11の歪が補償される。
次に、図8を参照して、本実施例に係る歪補償装置による歪補償処理の流れについて説明する。図8は、実施例1に係る歪補償装置による歪補償処理のフローチャートである。
歪補償部3の電力算出部301は、入力された送信信号の送信電力を算出する(ステップS1)。
電力log変換部302は、送信電力の値を電力算出部301から受ける。そして、電力log変換部302は、送信電力の値の対数をとり送信電力を対数化して電力log値を求める(ステップS2)。
電力log正規化部303は、電力log値の入力を電力log変換部302から受ける。そして、電力log正規化部303は、電力log値を正規化して電力log正規化値を求める(ステップS3)。
べき乗算出部304は、電力log正規化値の入力を電力log正規化部303から受ける。そして、べき乗算出部304は、電力log正規化値をべき乗する(ステップS4)。
アドレス算出部305は、電力log正規化値をべき乗した値の入力をべき乗算出部304から受ける。そして、アドレス算出部305は、送信信号の送信電力の対数を取った値を正規化した上で、べき乗した値からアドレスを生成する(ステップS5)。アドレス算出部305は、生成したアドレスをアドレスの指定情報として歪補償係数記憶部33へ出力する。
プリディストーション部32は、歪補償係数記憶部33が有しているLUTの中のアドレス算出部305が指定したアドレスに格納されている歪補償係数を取得する。そして、プリディストーション部32は、取得した歪補償係数を用いて送信信号に対して歪補償処理を行う(ステップS6)。プリディストーション部32は、歪補償処理を施した送信信号を増幅部11へ出力する。
増幅器11は、プリディストーション部32により歪補償処理が施された送信信号を増幅する(ステップS7)。そして、増幅器11は、増幅した送信信号をアンテナを介して送信するとともに、周波数変換部10へ出力する。
周波数変換部10、直交検波器7及びA/D変換器5は、増幅器11から受信した増幅後の送信信号から帰還復調信号を生成する(ステップS8)。
歪補償係数演算部34は、歪補償前の送信信号及び帰還復調信号を用いて歪補償係数を算出する(ステップS9)。
そして、歪舗装係数演算部34は、算出した歪補償係数を用いて歪補償係数記憶部33の歪補償係数を更新する(ステップS10)。
以上に説明したように、本実施例に係る歪補償装置は、送信信号の電力の値の対数をとった値を正規化し、さらにべき乗した値に対して、アドレスの割り付を行っている。これにより、高電力領域及び中電力領域において歪補償係数の選択精度を向上させることができ、また、低電力領域においても歪補償を行うことができる。したがって、歪補償効果の向上を図ることができる。
また、本実施例に係る歪補償装置は、アドレスの割り付けの対象とする値を変更しただけなので、従来の歪補償装置に対して非常に少ない規模の回路を追加するだけで、本実施例の機能を実現することができる。
ここで、他のアドレスの割り付け方法を用いた場合のアドレスの割り付けと本実施例との比較について説明する。図9は、送信電力に応じたアドレス割り付けを表す図である。図10は、送信電力とアドレスとの対応関係を示す図である。図11は、振幅に応じたアドレス割り付けを表す図である。図12は、振幅とアドレスとの対応関係を示す図である。図13は、送信電力の対数をとった値に応じたアドレス割り付けを表す図である。図14は、送信電力の対数をとった値とアドレスとの対応関係を表す図である。図15は、送信電力の対数をとった値を正規化した値に応じたアドレス割り付けを表す図である。図16は、送信電力の対数をとった値を正規化した値とアドレスとの対応関係を表す図である。図17は、平均電力以下では送信電力の対数をとった値を正規化した値に応じ、平均電力以上では振幅に応じたアドレス割り付けを表す図である。図18は、送信電力の対数をとった値を正規化した値及び振幅とアドレスとの対応関係を表す図である。
図9の表401に示すように、アドレスを割り付ける対象とする値として送信電力を用いて、送信電力に応じてアドレス割り付けを行っている。この場合、最大電力10dBから平均電力0dBの間ではアドレス精度は良いが、低電力領域でのアドレス精度が非常に悪くなってしまっている。図10のグラフ402の上部は送信電力を表しており、下部はアドレスを表している。そして、電力421が平均電力である。図10に示すように、平均電力は送信電力の全体の中間値よりも低い値となっているので、平均電力と最大電力との間にほとんどのアドレスが割り付けられていることが分かる。この場合、本実施例と比べて、低電力領域での歪補償を適切に行うことが困難である。
図11の表403では、アドレスを割り付ける対象とする値として振幅を用いて、送信電力に応じてアドレス割り付けを行っている。この場合、最大電力10dBから平均電力0dBの間ではアドレス精度は良いが、低電力領域でのアドレス精度が非常に悪くなってしまっている。図12のグラフ404の上部は振幅を表しており、下部はアドレスを表している。そして、振幅441が平均振幅である。図12に示すように、平均振幅が振幅全体からみて中間値より低い値となっているので、平均振幅と最大振幅との間にほとんどのアドレスが割り付けられていることが分かる。この場合も、本実施例と比べて、低電力領域での歪補償を適切に行うことが困難である。
図13の表405では、アドレスを割り付ける対象とする値として送信電力の対数をとった値を用いてアドレス割り付けを行っている。この場合、図9や図11の場合に比べて、平均電力0dBから最小補償電力−40dBの間ではアドレス精度は良いが、精度がより求められる高電力領域でのアドレス精度が悪くなってしまっている。図14のグラフ406の上部は送信電力の対数をとった値を表しており、下部はアドレスを表している。そして、値461が送信電力の対数をとった値の最小補償値であり、値462が送信電力の対数をとった値の平均値である。図14に示すように、平均値が送信電力の対数をとった値の全体からみて中間値よりかなり高い値となっているので、平均値と最小補償値との間にほとんどのアドレスが割り付けられていることが分かる。また、最小補償値以下となるアドレスが存在するため、全てのアドレスを使用することができていない。この場合、本実施例と比べて、高電力領域及び中電力領域での歪補償を適切に行うことが困難である。
図15の表407では、アドレスを割り付ける対象とする値として送信電力の対数をとった値を正規化した値を用いてアドレス割り付けを行っている。この場合、図13の場合と異なり全てのアドレスを使用することができている。しかし、この場合も、平均電力0dBから最小補償電力−40dBの間ではアドレス精度は良いが、精度がより求められる高電力領域でのアドレス精度が悪くなってしまっている。図16のグラフ408の上部は送信電力の対数をとった値を正規化した値を表しており、下部はアドレスを表している。そして、値481が送信電力の対数をとった値を正規化した値の平均値である。図16に示すように、平均値が送信電力の対数をとった値の全体からみて中間値よりかなり高い値となっているので、平均値と最小補償値との間にほとんどのアドレスが割り付けられていることが分かる。この場合も、本実施例と比べて、高電力領域及び中電力領域での歪補償を適切に行うことが困難である。
図17の表409では、アドレスを割り付ける対象とする値として、平均電力以下では送信電力の対数をとった値を正規化した値を用いてアドレス割り付けを行っている。また、平均電力を超える値では、振幅を用いて送信電力に応じてアドレス割り付けを行っている。この場合、最大電力10dBから平均電力0dBの間ではアドレス精度は良い。しかし、0dB〜−10dBの中電力領域と−20dB〜−30dBの低電力領域とのアドレス精度が同じになってしまっており、より精度が求められる中電力領域のアドレスの割り付けが少ない。図18のグラフ410の上部の左側は送信電力の対数をとった値を正規化した値を表しており、上部の右側は振幅を表している。また、グラフ410の下部はアドレスを表している。そして、値411が送信電力の対数をとった値を正規化した値の平均値である。また、値412が平均振幅である。図18に示すように、平均振幅と最大振幅との間に多くのアドレスが割り付けられているので、平均振幅と最大振幅との間のアドレス精度は高くなる。しかし、この場合、本実施例と比べて、0dB〜−10dBの中電力領域での歪補償を適切に行うことが困難である。
(変形例)
実施例1に係る歪補償装置の変形例について説明する。本変形例にかかる歪補償装置は、アドレスを割り付ける対象とする値として、送信信号の電力の値の対数をとった値を正規化し、さらに2.5乗した値を用いることが実施例1と異なるものである。
図19は、実施例1の変形例に係るLUTにおけるアドレスの割り付けを表す図である。図19の表203は、アドレスを割り付ける対象とする値として、送信信号の電力の値の対数をとった値を正規化し、さらに2.5乗した値を用いた場合のアドレスの割り付けを表している。
表203に示すように、本変形例に係るLUTでは、10dB〜0dBの電力に対して43個のアドレスが割り付けられている。また、0〜−10dBの電力に対して29個のアドレスが割り付けられている。また、−10dB〜−20dBの電力に対して18個のアドレスが割り付けられている。また、−20dB〜−30dBの電力に対して8個のアドレスが割り付けられている。また、−30dB〜−40dBの電力に対して2個のアドレスが割り付けられている。
このように、送信信号の電力の値の対数をとった値を正規化し、さらに2.5乗した値をアドレスを割り付ける対象とした場合にも、最大電力10dBから平均電力0dBまでの高電力領域と、0dBから−10dBまでの中電力領域において多くのアドレスが割り付けられている。このため、高電力領域と中電力領域において細かい歪補償を行うことができる。また、ある程度線形性が保たれている−10dBから−20dBまで及び20dBから−30dBまでの電力領域に対しても、適当な数のアドレスが割りつけられている。さらに、−30dBから−40dBまでの低電力領域に対しても歪補償を施すことができる。このように、本実施例に係るLUTでは、送信電力に応じてLUTアドレスを精度良く割り付けることができており、歪補償性能が向上する。
このように、べき乗の数を2.5乗とした場合でも、高電力領域及び中電力領域において歪補償係数の選択精度を向上させることができ、また、低電力領域においても歪補償を行うことができる。したがって、歪補償効果の向上を図ることができる。
また、実施例1及び変形例ではべき乗の値を2及び2.5の場合で説明したが、これに限らず、LUTのアドレスをどのように割り付けるかに応じて適当な値のべき乗を取ることが可能である。
図20は、実施例2に係る歪補償装置におけるアドレス生成部の詳細を示すブロック図である。本実施例に係る歪補償装置は、アドレスを割り付ける対象とする値として、送信信号の電力の値の対数をとった値を、さらにべき乗した値を用いることが実施例1と異なるものである。以下の説明では、実施例1と同様の各部の動作については説明を省略する。
本実施例に係る歪補償係数記憶部33が有するLUTでは、送信電力の値の対数をとった上で、さらに2乗した値に応じてアドレスが割り付けられている。
本実施例に係るアドレス生成部31は、電力算出部301、電力log変換部302、べき乗計算部304及びアドレス算出部305を有している。
電力算出部301は、S/P変換器2から入力された送信信号の送信電力を算出する。そして、電力算出部301は、算出した送信電力の値を電力log変換部302へ出力する。
電力log変換部302は、送信電力の値の入力を電力算出部301から受ける。そして、電力log変換部302は、受信した送信電力の値の対数をとり電力log値を求める。電力log変換部302は、求めた電力log値をべき乗計算部304へ出力する。
べき乗計算部304は、電力log値の入力を電力log変換部302から受ける。そして、べき乗計算部304は、受信した電力log値の予め決められた数のべき乗を計算する。例えば、本実施例では、べき乗計算部304は、電力log値の2乗を求める。べき乗計算部304は、電力log値をべき乗した値をアドレス算出部305へ出力する。
アドレス算出部305は、送信信号の送信電力の値の対数をとり、さらにべき乗した値の入力をべき乗計算部304から受ける。そして、アドレス算出部305は、例えば、受信した値に対応する1次元方向のアドレスを生成する。そして、アドレス算出部305は、生成したアドレスをアドレスの指定情報として歪補償係数記憶部33へ出力する。
プリディストーション部32は、アドレス算出部305により指定された、送信電力の値の対数をとった値をべき乗した値に応じたアドレスに格納されている歪補償係数を歪補償係数記憶部33のLUTから取得する。そして、プリディストーション部32は、取得した歪補償係数を送信信号に乗算することで送信信号の歪補償を行う。
また、本実施例に係る歪補償装置による歪補償処理のフローは、図8のフローにおいて、ステップS3を行わずに処理をするフローとして表される。
以上に説明したように、本実施例に係る歪補償装置は、送信信号の電力の値の対数をとり、さらにべき乗した値を、アドレスを割り付ける対象とする値として用いている。このように、送信信号の電力の値の対数をとった値を正規化せずにべき乗した場合でも、電力に応じてLUTのアドレスを精度良く割り付けることができる。
図21は、実施例3に係る歪補償装置のアドレス生成部の詳細を表すブロック図である。本実施例に係る歪補償装置は、アドレスを割り付ける対象を選択できることが実施例1及び2と異なるものである。以下の説明では、実施例1又は2と同様の各部の動作については説明を省略する。
本実施例に係る歪補償係数記憶部33は、送信電力に応じてアドレスが割り付けられたLUT、送信電力の値の対数をとった値に応じてアドレスが割り付けられたLUT及び振幅に応じてアドレスが割り付けられたLUTを有している。さらに、本実施例に係る歪補償係数記憶部33は、送信電力の値の対数をとった上で、さらに2乗した値に応じてアドレスが割り付けられたLUTを有している。
本実施例に係るアドレス生成部31は、電力算出部301、電力log変換部302、べき乗計算部304、振幅算出部310、アドレス算出部311〜314、遅延回路315〜318及び生成元選択部319を有している。
電力算出部301は、S/P変換器2から入力された送信信号の送信電力を算出する。そして、電力算出部301は、算出した送信電力の値をアドレス算出部311へ出力する。また、電力算出部301は、算出した送信電力の値を電力log変換部302へ出力する。
電力log変換部302は、送信電力の値の入力を電力算出部301から受ける。そして、電力log変換部302は、受信した送信電力の値の対数をとり電力log値を求める。電力log変換部302は、求めた電力log値をアドレス算出部312へ出力する。また、電力log変換部302は、求めた電力log値を2つに分岐して、べき乗計算部304へ出力する。
べき乗計算部304は、電力log値の入力を電力log変換部302から受ける。そして、べき乗計算部304は、受信した2つの電力log値を乗算して電力logの2乗を計算する。べき乗計算部304は、電力log値をべき乗した値をアドレス算出部313へ出力する。
振幅算出部310は、S/P変換器2から入力された送信信号の振幅を算出する。そして、振幅算出部310は、算出した送信電力の値をアドレス算出部314へ出力する。
アドレス算出部311は、送信信号の送信電力の値の入力を電力算出部301から受ける。そして、アドレス算出部311は、受信した値に対応するアドレスを生成する。そして、アドレス算出部311は、生成したアドレスを遅延回路315へ出力する。
アドレス算出部312は、送信信号の送信電力の値の対数をとった値の入力を電力log変換部302から受ける。そして、アドレス算出部312は、受信した値に対応するアドレスを生成する。そして、アドレス算出部312は、生成したアドレスを遅延回路316へ出力する。
アドレス算出部313は、送信信号の送信電力の値の対数をとり、さらにべき乗した値の入力をべき乗計算部304から受ける。そして、アドレス算出部313は、受信した値に対応するアドレスを生成する。そして、アドレス算出部313は、生成したアドレスを遅延回路317へ出力する。
アドレス算出部314は、送信信号の振幅の値の入力を振幅算出部310から受ける。そして、アドレス算出部314は、受信した値に対応するアドレスを生成する。そして、アドレス算出部314は、生成したアドレスを遅延回路318へ出力する。
遅延回路315〜318は、それぞれ入力された各信号に対して遅延を付加し、生成元選択部319に同時に信号が入力されるようにタイミングを調整する。
生成元選択部319は、送信電力に応じたアドレス、送信電力の対数をとった値に応じたアドレス、送信電力の対数をとった値をさらに2乗した値に応じたアドレス及び振幅に応じたアドレスの入力を遅延回路315〜318から受ける。生成元選択部319は、受信したアドレスの中からアドレスを割り付ける対象として指定されたアドレスを選択する。そして、生成元選択部319は、アドレスを割り付ける対象の情報とともに選択したアドレスを歪補償係数記憶部33へ出力する。ここで、アドレスを割り付ける対象は1つでも良いし、送信電力の範囲に応じて異なる対象を指定しても良い。
プリディストーション部32は、生成元選択部319により指定されたアドレスを割り付ける対象に対応するLUTを歪補償係数記憶部33から抽出する。さらに、プリディストーション部32は、抽出したLUTの中の生成元選択部319により指定されたアドレスに格納されている歪補償係数を歪補償係数記憶部33が保持しているLUTから取得する。そして、プリディストーション部32は、取得した歪補償係数を送信信号に乗算することで送信信号の歪補償を行う。
以上に説明したように、本実施例に係る歪補償装置は、歪補償処理を行う際にアドレスを生成するための情報を選択することができる。これにより、歪補償におけるアドレスの割り付けを運用に応じて適切に変更することができる。すなわち、操作者の要求に適合したアドレスの割り付けを提供することができる。
(変形例)
図22は、実施例3の変形例に係る歪補償装置のアドレス生成部の詳細を表すブロック図である。本実施例に係る歪補償装置は、べき乗を行うタイミングが実施例3と異なるものである。
図22に示すように、本変形例に係る歪補償装置のアドレス生成部31では、べき乗計算部304は、送信電力の対数をとった値に対応するアドレスをアドレス算出部312から受ける。そして、べき乗計算部304は、受信したアドレスを2乗する。その後、べき乗計算部304は、送信電力の対数をとった値に対応するアドレスを2乗した値をアドレス算出部313へ出力する。
アドレス算出部313は、送信電力の対数をとった値に対応するアドレスを2乗した値の入力をべき乗計算部304から受ける。そして、アドレス算出部313は、受信した値に対応するアドレスを生成する。そして、アドレス算出部313は、生成したアドレスを遅延回路317へ出力する。
以上に説明したように、送信電力の対数を取った値に対応するアドレスを算出した後、そのアドレスを2乗してアドレスを求めても、実施例3と同様の効果を得ることができる。
さらに、実施例3及びその変形例では、送信電力の対数をとった値を2乗した値をアドレスの割り付けの対象の値の1つとして用いているが、送信電力の対数をとった値を正規化した上で2乗した値をアドレスの割り付けの対象の値として用いても良い。
また、実施例3及びその変形例では、送信電力の対数をとった値を2乗しているがべき乗する値はこれに限らず、LUTのアドレスをどのように割り付けるかに応じて適当な値のべき乗を取ることが可能である。
図23は、実施例4に係る歪補償装置のブロック図である。本実施例に係る歪補償装置は、歪補償多項式を用いて歪補償を行うことが上記各実施例と異なるものである。以下の説明では、上記した各実施例と同様の各部の動作については説明を省略する。
本実施例に係る歪補償装置は、歪補償回路501、増幅器502、帰還系回路503及び制御部504を有している。
歪補償回路501は、送信信号の入力を受ける。そして、歪補償回路501は、制御部504からの制御を受けて、送信信号に対して歪補償処理を施す。その後、歪補償回路501は、歪補償処理を施した送信信号を増幅器502へ出力する。
増幅器502は、歪補償回路501により歪補償処理が施された送信信号の入力を受ける。そして、増幅器502は、受信した信号の電力を増幅する。その後、増幅器502は、増幅した信号をアンテナを介して送信するとともに、帰還系回路503へ出力する。
帰還系回路503は、増幅器502から受信した増幅後の送信信号に対して周波数変換や直交検波やA/D変換などの各種処理を施した帰還復調信号を制御部504へ出力する。
制御部504は、歪補償多項式を記憶している。本実施例では、歪補償多項式としてVolterra級数を用いる。Volterra級数は、次の数式(1)で表される級数である。
Figure 0005850150
・・・(1)
制御部504は、歪補償が行われる前の送信信号の入力を受ける。また、制御部504は、帰還復調信号の入力を帰還系回路503から受ける。次に、制御部504は、送信信号の電力を算出し、さらに算出した電力の対数を取った上でべき乗する。また、制御部504は、帰還復調信号の電力を算出し、さらに算出した電力の対数を取った上でべき乗する。そして、制御部504は、数式(1)で表されるVolterra級数のx(t)に送信信号の電力の対数をとった値をべき乗した値を代入した信号と、y(t)に帰還復調信号の電力の対数をとった値をべき乗した値を代入した信号との差分を求める。そして、制御部504は、求めた差分から歪補償多項式の係数値を推定して更新する。制御部504は、更新した係数値を用いて歪補償を行うように歪補償回路を制御する。
以上に説明したように、本実施例に係る歪補償装置は、歪補償多項式に電力の対数をとった値をべき乗した値を用いることで、全ての電力領域で、精度良く歪補償係数を生成することができる。したがって、歪補償効果の向上を図ることができる。
1 送信信号発生部
2 S/P変換器
3 歪補償部
4 D/A変換器
5 A/D変換器
6 直交変調器
7 直交検波器
8 周波数変換部
9 搬送波生成部
10 周波数変換部
11 増幅器
12 方向性結合器
13 アンテナ
31 アドレス生成部
32 プリディストーション部
33 歪補償係数記憶部
34 歪補償係数演算部
301 電力算出部
302 電力log変換部
303 電力log正規化部
304 べき乗計算部
305 アドレス算出部

Claims (6)

  1. 歪補償係数を記憶する記憶部と、
    入力された信号の電力を対数化し、対数化した値に基づく値をべき乗し、べき乗した値に応じて前記記憶部に記憶されている歪補償係数を選択する歪補償係数選択部と、
    前記選択された歪補償係数を前記記憶部から取得し、取得した歪補償係数を用いて前記入力された信号に歪補償処理を施す歪補償処理部と、
    前記歪補償処理が施された信号を増幅する増幅部と、
    前記増幅された信号及び前記入力された信号に基づいて前記記憶部に記憶されている前記歪補償係数を更新する歪補償係数更新部と
    を備えたことを特徴とする歪補償装置。
  2. 前記歪補償係数選択部は、対数化した値を正規化し、正規化した値をべき乗することを特徴とする請求項1に記載の歪補償装置。
  3. 前記歪補償係数選択部は、前記入力された信号の電力、振幅、位相、電力を対数化した値又は電力を対数化した値をべき乗した値のいずれかを選択し、選択した値に応じて歪補償係数を選択することを特徴とする請求項1に記載の歪補償装置。
  4. 前記記憶部は、前記入力された信号の電力を対数化した上でべき乗した値に対応するように割り付けられたアドレスのそれぞれに歪補償係数を格納し、
    前記歪補償係数選択部は、前記入力された信号の電力を対数化した上でべき乗した値に対応する前記記憶部に格納されている歪補償係数を選択することを特徴とする請求項1に記載の歪補償装置。
  5. 前記歪補償係数更新部は、歪補償係数多項式を記憶しており、前記入力された信号の電力を対数化し、対数化した値をべき乗して算出した値を前記歪補償係数多項式に用いて前記更新に用いる歪補償係数を算出することを特徴とする請求項1に記載の歪補償装置。
  6. 入力された信号の電力を対数化し、対数化した値に基づく値をべき乗し、べき乗した値に応じて記憶部に記憶されている歪補償係数を選択し、
    選択した前記歪補償係数を前記記憶部から取得し、取得した歪補償係数を用いて前記入力された信号に歪補償処理を施し、
    前記歪補償処理が施された信号を増幅器で増幅し、
    前記増幅器により増幅された信号及び前記入力された信号に基づいて前記記憶部に記憶されている前記歪補償係数を更新する
    ことを特徴とする歪補償方法。
JP2014518134A 2012-05-29 2012-05-29 歪補償装置及び歪補償方法 Expired - Fee Related JP5850150B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063812 WO2013179399A1 (ja) 2012-05-29 2012-05-29 歪補償装置及び歪補償方法

Publications (2)

Publication Number Publication Date
JPWO2013179399A1 JPWO2013179399A1 (ja) 2016-01-14
JP5850150B2 true JP5850150B2 (ja) 2016-02-03

Family

ID=49672653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518134A Expired - Fee Related JP5850150B2 (ja) 2012-05-29 2012-05-29 歪補償装置及び歪補償方法

Country Status (4)

Country Link
US (1) US9337783B2 (ja)
EP (1) EP2858251B1 (ja)
JP (1) JP5850150B2 (ja)
WO (1) WO2013179399A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024960B (zh) * 2015-06-23 2018-11-09 大唐移动通信设备有限公司 一种dpd系统
JP6720697B2 (ja) * 2016-05-27 2020-07-08 日本電気株式会社 歪補償回路、歪補償方法及び送信装置
EP3410605A1 (en) 2017-06-02 2018-12-05 Intel IP Corporation Communication device and method for radio communication
US10985951B2 (en) 2019-03-15 2021-04-20 The Research Foundation for the State University Integrating Volterra series model and deep neural networks to equalize nonlinear power amplifiers
US11070240B1 (en) * 2020-10-13 2021-07-20 Bae Systems Information And Electronic Systems Integration Inc. Digital amplitude control for transmission of radio frequency signals

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0935203A3 (en) 1998-02-04 2000-05-24 Matsushita Electric Industrial Co., Ltd. Exponential calculation device
JPH11330972A (ja) 1998-05-14 1999-11-30 Matsushita Electric Ind Co Ltd 復号装置
JP3994308B2 (ja) * 2000-10-26 2007-10-17 株式会社ケンウッド プリディストーション型歪補償回路
JP2002223171A (ja) * 2001-01-29 2002-08-09 Fujitsu Ltd 歪補償係数を補正及び補間する非線形歪補償送信装置
US20030058959A1 (en) * 2001-09-25 2003-03-27 Caly Networks. Combined digital adaptive pre-distorter and pre-equalizer system for modems in link hopping radio networks
US7333567B2 (en) 2003-12-23 2008-02-19 Lucent Technologies Inc. Digital detector utilizable in providing closed-loop gain control in a transmitter
EP1858158B1 (en) * 2005-03-09 2013-03-27 Fujitsu Limited Strain compensation device
US7288988B2 (en) * 2005-04-13 2007-10-30 Powerwave Technologies, Inc. Adaptive predistortion linearized amplifier system employing selective sampling
JP4701024B2 (ja) * 2005-07-07 2011-06-15 株式会社日立国際電気 プリディストーション歪補償付き増幅器
JP4323470B2 (ja) 2005-08-08 2009-09-02 富士通株式会社 アドレス生成装置およびその方法
JP2007208684A (ja) 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd 歪補償機能付き送信装置
JP2007214947A (ja) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd デジタル前置歪補償回路
JP5336134B2 (ja) * 2008-09-22 2013-11-06 日本無線株式会社 プリディストータ
JP5505002B2 (ja) * 2010-03-17 2014-05-28 富士通株式会社 歪補償装置、増幅装置、送信装置および歪補償方法

Also Published As

Publication number Publication date
EP2858251A1 (en) 2015-04-08
JPWO2013179399A1 (ja) 2016-01-14
EP2858251A4 (en) 2015-05-27
US9337783B2 (en) 2016-05-10
EP2858251B1 (en) 2016-07-13
WO2013179399A1 (ja) 2013-12-05
US20150077180A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP4308163B2 (ja) 歪補償装置
JP4786644B2 (ja) 歪補償装置
US8831136B2 (en) Wireless apparatus and distortion compensating method
JP4619827B2 (ja) 歪補償装置
JP5861521B2 (ja) 送信装置及びルックアップテーブルの更新方法
JP5505001B2 (ja) 歪補償装置、増幅装置、送信装置および歪補償方法
JP5850150B2 (ja) 歪補償装置及び歪補償方法
JP5505002B2 (ja) 歪補償装置、増幅装置、送信装置および歪補償方法
JP2016115952A (ja) 歪補償装置及び歪補償方法
KR101197394B1 (ko) 무선 장치, 왜곡 보상 장치 및 왜곡 보상 방법
US8798197B2 (en) Distortion compensation amplifier device and distortion compensation method
JP5170259B2 (ja) 歪補償回路、送信装置、および歪補償方法
JP6015386B2 (ja) 歪補償装置及び歪補償方法
JP5672728B2 (ja) 無線装置、歪補償装置及び歪補償方法
US8897391B2 (en) Distortion compensator and distortion compensation method
WO2007036990A1 (ja) 歪補償装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5850150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees