CN103532499B - 失真补偿装置和失真补偿方法 - Google Patents

失真补偿装置和失真补偿方法 Download PDF

Info

Publication number
CN103532499B
CN103532499B CN201310205761.6A CN201310205761A CN103532499B CN 103532499 B CN103532499 B CN 103532499B CN 201310205761 A CN201310205761 A CN 201310205761A CN 103532499 B CN103532499 B CN 103532499B
Authority
CN
China
Prior art keywords
distortion
unit
address
value
distortion compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310205761.6A
Other languages
English (en)
Other versions
CN103532499A (zh
Inventor
松原聪之
车古英治
滨野充晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN103532499A publication Critical patent/CN103532499A/zh
Application granted granted Critical
Publication of CN103532499B publication Critical patent/CN103532499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

失真补偿装置和失真补偿方法。在失真补偿单元中,阈值计算单元基于地址生成电路所生成的地址值计算要设定在调节单元中的限幅阈值。例如,所述阈值计算单元通过识别在各个调节单位时段中由所述地址生成电路生成的地址值的最大值并用所识别出的最大值减去特定值来计算所述限幅阈值。所述调节单元基于从所述地址生成电路接收到的地址值以及与所述设定的限幅阈值的大小关系来调节失真补偿系数。

Description

失真补偿装置和失真补偿方法
技术领域
本文讨论的实施方式涉及失真补偿装置和失真补偿方法。
背景技术
近年来,随着数字通信的发展,诸如蜂窝电话和智能电话的无线通信装置高效地执行数据传输。当数据发送方无线通信装置应用多相调制方法作为数据发送方法时,重要的是使发送功率放大器的放大特性线性化,以减小非线性失真,从而减少泄漏到相邻信道的功率。
另外,为了提高使用线性度差的放大器的功率效率,期望有一种对由差的线性度引起的非线性失真进行补偿的技术。因此,在无线通信装置中设置了对功率放大器的非线性失真进行补偿的失真补偿单元。
例如,失真补偿单元将发送信号(由S/P转换器转换为I和Q信号)与反馈信号(反馈了放大I和Q信号的一部分)进行比较,并计算使发送信号与反馈信号之差减小为零的失真补偿系数。然后,失真补偿单元将转换为I和Q信号的发送信号乘以失真补偿系数,从而补偿失真。失真补偿单元将失真补偿之前的发送信号与反馈信号(反馈了失真补偿之后放大的信号的一部分)进行比较,并根据需要更新失真补偿系数以使得这些信号之差变为零。
通常,功率放大器的非线性特性产生在饱和区中。即,当输入给功率放大器的信号的功率,即,发送信号的振幅较高时,可能产生失真。因此,重要的是优化与高功率对应的失真补偿系数。然而,高功率信号的出现频率较低,因此优化失真补偿系数花费时间。并且,在正优化失真补偿系数的同时,在与相邻信道对应的频带中产生伪信号(spurious)。
例如,如图1所示,提供了将多个地址与地址所对应的失真补偿系数关联的表(以下,通常也称为“查找表(LUT)”)。在图1中,水平轴表示地址,垂直轴表示失真补偿系数的值。这里,地址对应于输入信号的功率。如图1所示,在优化的过程中,在高地址值中生成理想失真补偿系数与实际失真补偿系数之间的差异。由于该差异,产生伪信号。
为了解决该问题,传统上提出了将高于特定阈值的地址所对应的失真补偿系数固定的技术(以下,通常也称为“地址限幅”)。在此传统地址限幅中,高于特定阈值(以下,通常也称为“限幅阈值”或“地址限幅值”)的地址所对应的失真补偿系数被设定为等于或小于该限幅阈值的地址中的最近地址所对应的失真补偿系数(以下,通常也称为“限幅系数”)。
例如,在日本特开2011-199428号公报和日本特开2001-284976号公报中描述了现有技术的示例。
然而,当限幅阈值被固定为过低的值时,地址限幅也被应用于高于限幅阈值的地址,其对应的失真补偿系数被优化。另外,当限幅阈值被固定为过高的值时,实际上未优化的地址的失真补偿系数被用作限幅系数。结果,产生伪信号。
因此,本发明的实施方式的一个方面的目的在于提供一种能够减少伪信号的产生的失真补偿装置和失真补偿方法。
发明内容
根据实施方式的一方面,一种补偿放大器的失真的失真补偿装置包括:乘法单元,其将输入的发送信号乘以输入的失真补偿系数;生成单元,其生成与所述发送信号的功率对应的地址值;调节单元,当所生成的地址值高于设定的阈值时,该调节单元从存储单元检索与所述设定的阈值对应的失真补偿系数并将所检索到的失真补偿系数输入给所述乘法单元,当所生成的地址值等于或低于所述设定的阈值时,该调节单元从所述存储单元检索与所生成的地址值对应的失真补偿系数并将所检索到的失真补偿系数输入给所述乘法单元;以及阈值计算单元,其基于所生成的地址值计算阈值并利用所计算出的阈值更新所述设定的阈值。
附图说明
图1是示出理想失真补偿系数与实际失真补偿系数之间的差异的示图;
图2是示出根据第一实施方式的无线通信装置的构造的示图;
图3是示出发送功率放大器的输入-输出特性的示图;
图4是用于说明由非线性特性引起的非线性失真的示图;
图5是示出根据第一实施方式的失真补偿单元的构造示例的示图;
图6是示出根据第一实施方式的系数计算单元的构造示例的示图;
图7是示出根据第一实施方式的失真补偿单元的处理操作的示例的流程图;
图8是用于说明在多个调节单元时段中根据第一实施方式的失真补偿单元的处理操作的示图;
图9是用于说明由根据第一实施方式的失真补偿单元执行的LUT更新处理的示图;
图10是示出根据第二实施方式的失真补偿单元的处理操作的示例的流程图;
图11是用于说明根据第二实施方式的失真补偿单元的处理操作的示图;
图12是示出根据第三实施方式的失真补偿单元的处理操作的示例的流程图;
图13是用于说明根据第三实施方式的失真补偿单元的处理操作的示图;
图14是示出根据第四实施方式的失真补偿单元的构造示例的示图;
图15是示出根据第四实施方式的失真补偿单元的处理操作的示例的流程图;
图16是示出根据第五实施方式的失真补偿单元的构造示例的示图;
图17是示出根据第五实施方式的失真补偿单元的处理操作的示例的流程图;
图18是示出根据第六实施方式的失真补偿单元的构造示例的示图;
图19是示出根据第六实施方式的失真补偿单元的处理操作的示例的流程图;以及
图20是示出无线通信装置(基站)的硬件构造的示例的示图。
具体实施方式
将参照附图说明本发明的优选实施方式。顺便提一句,根据本发明的失真补偿装置和失真补偿方法不限于这些实施方式。另外,在所述实施方式中,具有相同功能的单元用相同的标号指代,以避免所述单元的重复描述。
[a]第一实施方式
无线通信装置的构造
图2是示出根据第一实施方式的无线通信装置的构造的示图。在图2中,无线通信装置100包括发送信号发生单元102、串行/并行(S/P)转换器104、失真补偿单元110和数字/模拟(D/A)转换器122。无线通信装置100还包括正交调制器124、频率转换器126、放大器128、定向耦合器130、天线132和基准载波生成单元134。无线通信装置100还包括A/D转换器136、正交解调器138和频率转换器140。失真补偿单元110包括预失真单元112、失真补偿系数存储单元114和失真补偿系数计算单元116。失真补偿单元110通过例如数字信号处理器(DSP)来实现。无线通信装置100是例如基站。
发送信号发生单元102生成要从无线通信装置100发送的串行数字数据串。S/P转换器104将发送信号发生单元102所生成的数字数据串的比特交替地转换为两个序列的同相成分信号(I信号)和正交成分信号(Q信号)。.
D/A转换器122将I和Q信号中的每一个转换为模拟基带信号。正交调制器124通过将从D/A转换器122输出的I和Q信号(发送基带信号)中的每一个乘以由基准载波生成单元134生成的基准载波和相位相对于基准载波偏移90度的载波,并将相乘的结果相加,来执行正交变换。
频率转换器126将从正交调制器124输出的正交信号与本振信号混频,从而将正交信号转换为射频信号。放大器128将从频率转换器126输出的射频信号放大,并经由定向耦合器130和天线132将放大的射频信号辐射到空中。
定向耦合器130反馈所发送的信号的一部分,并将反馈信号输入给频率转换器140。频率转换器140执行反馈信号的频率转换。正交解调器138通过将从频率转换器140输出的反馈信号乘以由基准载波生成单元134生成的基准载波和相位相对于基准载波偏移90度的信号来执行正交解调,以在发送方再现基带I和Q信号。A/D转换器136将从正交解调器138输出的反馈信号转换为数字信号,并将该数字信号输入给失真补偿单元110。
失真补偿系数存储单元114中存储有与发送信号x(t)的功率pi(i=0至1023)对应的失真补偿系数h(pi)。预失真单元112利用与发送信号的功率级对应的失真补偿系数h(pi)对发送信号执行失真补偿处理(预失真)。失真补偿系数计算单元116将发送信号x(t)与由正交解调器138解调的解调信号(反馈信号)y(t)进行比较,并计算使发送信号x(t)与解调信号y(t)之差减小为零的失真补偿系数h(pi),然后更新存储在失真补偿系数存储单元114中的失真补偿系数。
这样,失真补偿单元110自适应地更新失真补偿系数,使得反馈信号(由放大器128放大的信号的一部分)与失真补偿之前的发送信号之差变为零。
随后,说明放大器的输入-输出特性以及由非线性特性引起的非线性失真。图3是示出发送功率放大器的输入-输出特性的示图。图4是用于说明由非线性特性引起的非线性失真的示图。
在诸如W-CDMA的移动通信中,无线通信装置的发送功率高达10mW至几十W,放大器128(具有失真函数f(p))的输入-输出特性是图3中的虚线所指示的非线性特性。非线性特性引起非线性失真,在图4中,发送频率f0附近的频谱的旁瓣从虚线157所指示的特性升高至实线158所指示的特性。这样,发送信号泄漏到相邻信道中,导致相邻信道干扰。即,由于图3所示的非线性失真,泄漏到相邻频率信道的发送信号的功率如图4所示增加。
指示泄漏功率的大小的相邻信道功率比(ACPR)是目标信道的功率(即,图4中频带152与154之间的谱面积)与相邻信道功率(即,泄漏到频带150与156之间的相邻信道的谱面积)之比。这种泄漏功率对于另一信道而言是噪声,会使该信道的通信质量变差;因此,严格管理泄漏功率。
例如,泄漏功率在功率放大器的线性区域(图3的线性区域α)中较低,在非线性区域β中较高。因此,在高功率发送功率放大器中,可取的是线性区域α广大。然而,为此,可取的是提供性能高于实际需要的放大器,这导致成本和装置尺寸方面的不利。因此,在如上所述的无线通信装置100中包括补偿发送功率的失真的失真补偿单元110。
失真补偿单元的构造
图5是示出根据第一实施方式的失真补偿单元的构造示例的示图。在图5中,失真补偿单元110包括乘法单元212、失真函数计算单元214、地址生成电路216、阈值计算单元218、查找表(LUT)220、延迟单元228、230和234、反馈单元232以及系数计算单元236。LUT220包括调节单元222、表保存单元224和写入单元226。
图5中的乘法单元212对应于图2中的预失真单元112。乘法单元212将发送信号x(t)乘以失真补偿系数hn-1(p)。图5中的失真函数计算单元214对应于图2中的放大器128。
图5中的反馈单元232对应于图2中包括定向耦合器130、频率转换器140、正交解调器138和A/D转换器136的部分。图5中的LUT220对应于图2中的失真补偿系数存储单元114。图5中的系数计算单元236对应于图2中的失真补偿系数计算单元116。
当发送信号x(t)被输入给地址生成电路216时,地址生成电路216计算发送信号x(t)的功率p,并生成与所计算出的发送信号x(t)的功率p唯一对应的一维方向(例如,X轴方向)上的地址。同时,地址生成电路216求出与存储在地址生成电路216中的先前时间(t-1)的发送信号x(t-1)的功率p1的差ΔP,并生成与差ΔP唯一对应的另一维度方向(例如,Y轴方向)上的地址。所生成的地址值被输出给阈值计算单元218、调节单元222和延迟单元230。
按照用于阈值调节的单位时段(以下,通常也称为“调节单位时段”)的间隔,阈值计算单元218识别由地址生成电路216生成的地址值的最大值,并基于所识别出的最大值计算限幅阈值。优选地,调节单位时段在1毫秒至100毫秒内。
例如,阈值计算单元218通过从所识别出的最大值中减去特定偏移值来计算限幅阈值。即,限幅阈值是比最大值低N(特定偏移值)的地址值。偏移值N为正值,并且是(例如)1至3的任意自然数。所计算出的限幅阈值被输出给调节单元222。这样,按照调节单位时段的间隔更新调节单元222中设定的限幅阈值。
顺便提一句,这里,在调节单位时段中生成多个地址值。即,“调节单位时段”包含多个采样时刻。
调节单元222基于从地址生成电路216接收到的地址值以及与设定的限幅阈值的大小关系来调节失真补偿系数。
例如,当从地址生成电路216接收到的地址值等于或小于限幅阈值时,调节单元222从保存在表保存单元224中的LUT检索与从地址生成电路216接收到的地址值对应的失真补偿系数,并将所检索到的失真补偿系数输出给乘法单元212。另一方面,当从地址生成电路216接收到的地址值高于限幅阈值时,调节单元222从表保存单元224检索与限幅阈值对应的地址的失真补偿系数,并将所检索到的失真补偿系数输出给乘法单元212。
顺便提一句,从调节单元222输出的失真补偿系数还作为用于计算LUT更新值的系数参数经由延迟单元228输入给系数计算单元236。
表保存单元224保存有LUT。即,表保存单元224在与各个离散的发送信号x(t)的功率对应的二维地址位置中存储用于消除失真函数计算单元214(放大器)的失真的失真补偿系数。
写入单元226将由地址生成电路216生成的地址和由系数计算单元236计算出的失真补偿系数设定为输入信号。然后,写入单元226将由系数计算单元236计算出的失真补偿系数写入由地址生成电路216生成的地址中,从而更新LUT。顺便提一句,由地址生成电路216生成的读取地址(AR)和写入地址(AW)是相同的地址;然而,由于计算时间等而需要花费时间来获得更新值,所以由延迟单元230将读取地址延迟并用作写入地址。
系数计算单元236将发送信号x(t)、反馈解调信号y(t)(反馈信号)以及从调节单元222输出的失真补偿系数设定为输入信号。这里,提供延迟单元228和234以使得从相同的发送信号x(t)获得输入给系数计算单元236的信号。即,例如,确定延迟单元228和234中设定的延迟时间D,以满足D=D0+D1,其中失真函数计算单元214(放大器)中的延迟时间由D0表示,反馈单元232的延迟时间由D1表示。
例如,如图6所示,系数计算单元236包括乘法单元242、244和246、复共轭信号输出单元(Conj)248、减法单元250和加法单元252。
减法单元250输出由延迟单元230延迟的发送信号x(t)与反馈解调信号y(t)(反馈信号)之差e(t)。
乘法单元246将失真补偿系数hn-1(p)乘以y*(t),并获得输出u*(t)(=hn-1(p)y*(t))。乘法单元244将从减法单元250输出的差e(t)乘以u*(t)。乘法单元242将步长参数μ乘以乘法单元244的输出。
然后,加法单元252将失真补偿系数hn-1(p)和μe(t)u*(t)(乘法单元242的输出)相加,并将相加结果输出给写入单元226。
下面的计算通过这些机制执行:
hn(p)=hn-1(p)+μe(t)u*(t)
e(t)=x(t)-y(t)
y(t)=hn-1(p)x(t)f(p)
u*(t)=x(t)f(p)=hn-1(p)y*(t)
p=|x(t)|2
然而,假设x、y、f、h、u和e为复数,*是复共轭数。通过执行上述计算,更新失真补偿系数h(p)以使发送信号x(t)与反馈解调信号y(t)之间的差信号e(t)最小,最终收敛于最优失真补偿系数值,补偿放大器128的失真。
失真补偿单元的操作
说明具有上述构造的失真补偿单元110的操作。图7是示出根据第一实施方式的失真补偿单元110的处理操作的示例的流程图。图8是用于说明在多个调节单元时段中根据第一实施方式的失真补偿单元110的处理操作的示图。
当开始给定的调节单位时段时,图7中所示的流程开始。
阈值计算单元218接收由地址生成电路216生成的地址值的输入(步骤S11)。
阈值计算单元218确定刚才输入的第一地址值是否高于第二地址值,所述第二地址值是在当前调节单位时段中输入的先前地址值的最大值(步骤S12)。
当第一地址值高于第二地址值时(步骤S12为“是”),阈值计算单元218用第一地址值更新第二地址值(步骤S13)。另一方面,当第一地址值等于或低于第二地址值时(步骤S12为“否”),阈值计算单元218不更新地址值。
阈值计算单元218确定自调节单位时段开始起是否过去了指定的时间段,即,调节单位时段是否结束(步骤S14)。
当调节单位时段未结束时(步骤S14为“否”),处理返回至步骤S11。这样,通过重复步骤S11至S14的处理,识别出调节单位时段中的地址值的最大值。
当调节单位时段结束时(步骤S14为“是”),阈值计算单元218基于所识别出的最大值计算限幅阈值(步骤S15)。
这里,调节单位时段如图8所示重复。基于在调节单位时段A中识别出的最大值计算出的限幅阈值在与调节单位时段A之后的下一调节单位时段B重叠的时段中被设定在调节单元222中。
图9是用于说明由根据第一实施方式的失真补偿单元110执行的LUT更新处理的示图。
当由地址生成电路216生成的地址高于设定的限幅阈值时(步骤S21为“是”),系数计算单元236基于用设定的限幅阈值检索到的失真补偿系数和当前发送信号x(t)来生成LUT更新值(步骤S22)。
另一方面,当由地址生成电路216生成的地址等于或低于设定的限幅阈值时(步骤S21为“否”),系数计算单元236基于用地址生成电路216所生成的地址检索到的失真补偿系数和当前发送信号x(t)来生成LUT更新值(步骤S23)。
写入单元226将由系数计算单元236计算出的失真补偿系数写入由地址生成电路216生成的地址中,从而更新LUT(步骤S24)。
如上所述,根据本实施方式,在失真补偿单元110中,阈值计算单元218基于由地址生成电路216生成的地址值计算要设定在调节单元222中的限幅阈值。
这样,可基于由地址生成电路216生成的地址值将设定的限幅阈值顺序地更新为适当的值,因此,可减少伪信号的产生。
例如,按照调节单位时段的间隔,阈值计算单元218识别由地址生成电路216生成的地址值的最大值,并通过从所识别出的最大值中减去特定偏移值N来计算限幅阈值。
[b]第二实施方式
在第二实施方式中,当确定基于刚才生成的地址值计算出的限幅阈值高于当前设定的限幅阈值时,刚才计算的限幅阈值被设定为新设定的限幅阈值。另外,在各个“执行周期”中执行用设定的限幅阈值减去特定值的减法处理。顺便提一句,第二实施方式中的失真补偿单元的基本构造与第一实施方式中的失真补偿单元110相同,因此引用图5来说明本实施方式。
第二实施方式中的失真补偿单元110的阈值计算单元218每当从地址生成电路216输入地址值时基于输入地址值计算限幅阈值。然后,阈值计算单元218将刚才计算的限幅阈值与当前设定在调节单元222中并保存在阈值计算单元218中的设定的限幅阈值进行比较。作为比较结果,当刚才计算的限幅阈值高于当前设定的限幅阈值时,阈值计算单元218将刚才计算的限幅阈值设定为新设定的限幅阈值。
另外,在各个执行周期中,阈值计算单元218用设定的限幅阈值减去特定值,并将所获得的限幅阈值重新设定在调节单元222中。优选地,执行周期在1毫秒至100毫秒内。
图10是示出根据第二实施方式的失真补偿单元110的处理操作的示例的流程图。图11是用于说明根据第二实施方式的失真补偿单元110的处理操作的示图。
当地址值已输入给阈值计算单元218时(步骤S31为“是”),阈值计算单元218基于输入地址值计算限幅阈值(步骤S32)。
阈值计算单元218将刚才计算的限幅阈值与当前设定在调节单元222中并保存在阈值计算单元218中的设定的限幅阈值进行比较(步骤S33)。
当刚才计算的限幅阈值高于当前设定的限幅阈值时(步骤S33为“是”),阈值计算单元218用刚才计算的限幅阈值更新设定的限幅阈值(步骤S34)。顺便提一句,当刚才计算的限幅阈值不高于当前设定的限幅阈值时(步骤S33为“否”),阈值计算单元218不更新设定的限幅阈值。
阈值计算单元218确定减法处理的执行周期是否到期(步骤S35)。当执行周期到期时(步骤S35为“是”),阈值计算单元218用设定的限幅阈值减去特定值(步骤S36)。顺便提一句,当执行周期未到期时(步骤S35为“否”),阈值计算单元218不执行减法处理。
阈值计算单元218确定是否满足终止条件(步骤S37)。当不满足终止条件时(步骤S37为“否”),处理返回至步骤S31;当满足终止条件时(步骤S37为“是”),图10所示的处理终止。例如,终止条件是无线通信装置等100关闭。
这里,如图11所示重复执行周期。在图11中,在执行周期A和D中,设定的限幅阈值更新了三次。另一方面,在执行周期B和C中,设定的限幅阈值从未更新。这样,尽管在一些执行周期中未更新设定的限幅阈值,在两个相邻执行周期之间的边界处明确地执行减法处理。
如上所述,根据本实施方式,在失真补偿单元110中,每当基于刚才生成的地址值计算出高于当前设定的限幅阈值的限幅阈值时,阈值计算单元218用刚才计算的限幅阈值更新设定的限幅阈值。
这样,可改进与发送信号的功率改变的一致性。
另外,在各个执行周期中,阈值计算单元218用设定的限幅阈值减去特定值。
这样,即使设定的限幅阈值被设定为过度值,也可将设定的限幅阈值调节为适当值。
[c]第三实施方式
在第三实施方式中,按照与第二实施方式中相同的方式,当确定基于刚才生成的地址值计算出的限幅阈值高于当前设定的限幅阈值时,将刚才计算的限幅阈值设定为新设定的限幅阈值。此外,在第三实施方式中,与第二实施方式中不同,当在“执行确定时段”中未重新更新设定的限幅阈值时执行减法处理。顺便提一句,第三实施方式中的失真补偿单元的基本构造与第一实施方式中的失真补偿单元110相同,因此引用图5来说明本实施方式。
第三实施方式中的失真补偿单元110的阈值计算单元218每当从地址生成电路216输入地址值时基于输入地址值计算限幅阈值。然后,阈值计算单元218将刚才计算的限幅阈值与当前设定在调节单元222中并保存在阈值计算单元218中的设定的限幅阈值进行比较。作为比较结果,当刚才计算的限幅阈值高于当前设定的限幅阈值时,阈值计算单元218将刚才计算的限幅阈值设定为新设定的限幅阈值。
另外,当在“执行确定时段”中未重新更新设定的限幅阈值时,阈值计算单元218执行减法处理。“执行确定时段”是自设定的限幅阈值的任意更新时刻起的特定时间段。
图12是示出根据第三实施方式的失真补偿单元110的处理操作的示例的流程图.图13是用于说明根据第三实施方式的失真补偿单元110的处理操作的示图。
阈值计算单元218确定设定的限幅阈值在执行确定时段中是否重新更新,即,自设定的限幅阈值的最后更新时刻起是否过去了特定时间段(步骤S41)。
当确定过去了特定时间段时(步骤S41为“是”),阈值计算单元218用设定的限幅阈值减去特定值(步骤S36)。
这里,如图13所示,每次设定的限幅阈值更新时重新开始执行确定时段。在执行确定时段A和F中设定的限幅阈值未重新更新,因此在执行确定时段A和F结束时执行减法处理。顺便提一句,从执行确定时段B和C可以看出,执行确定时段从执行减法处理的时刻开始。
如上所述,根据本实施方式,当设定的限幅阈值在执行确定时段中未重新更新时,阈值计算单元218执行减法处理。执行确定时段是自设定的限幅阈值的任意更新时刻起的特定时间段。
这样,可防止过度调节设定的限幅阈值,并且当设定的限幅阈值在执行确定时段中未重新更新并且可能被设定为过度值时,可明确地将设定的限幅阈值调节为适当值。
[d]第四实施方式
在第四实施方式中,当满足下面的条件时,基于用设定的限幅阈值检索到的失真补偿系数和当前发送信号x(t)生成LUT更新值。所述条件是:由地址生成电路生成的地址高于设定的限幅阈值,并且由地址生成电路生成的地址所对应的失真补偿系数是表初始值。
图14是示出根据第四实施方式的失真补偿单元的构造示例的示图。在图14中,失真补偿单元110包括LUT310。LUT310包括调节单元311。
调节单元311执行与根据第一实施方式至第三实施方式中的任一个的调节单元222相同的处理,并将失真补偿系数输出给乘法单元212。
另外,仅当满足条件1时,调节单元311将用设定的限幅阈值检索到的失真补偿系数作为系数参数输出给系数计算单元236。条件1是:由地址生成电路216生成的地址高于设定的限幅阈值,并且由地址生成电路216生成的地址所对应的失真补偿系数是表初始值。
另一方面,当不满足条件1时,调节单元311将用地址生成电路216所生成的地址检索到的失真补偿系数作为系数参数输出给系数计算单元236。
图15是示出根据第四实施方式的失真补偿单元110的处理操作的示例的流程图。
调节单元311接收由地址生成电路216生成的地址值的输入(步骤S51)。
调节单元311将输入地址值与设定的限幅阈值进行比较(步骤S52)。
当输入地址值高于设定的限幅阈值时(步骤S52为“是”),调节单元311确定LUT中与输入地址值关联的失真补偿系数是否为表初始值(步骤S53)。
当失真补偿系数是表初始值时(步骤S53为“是”),调节单元311将用设定的限幅阈值检索到的失真补偿系数输出给系数计算单元236。系数计算单元236基于用设定的限幅阈值检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,LUT更新值(步骤S54)。
另一方面,当输入地址值等于或低于设定的限幅阈值时(步骤S52为“否”)或者当失真补偿系数不是表初始值时(步骤S53为“否”),调节单元311将用输入地址值检索到的失真补偿系数输出给系数计算单元236。系数计算单元236基于用输入地址值检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,LUT更新值(步骤S55)。
写入单元226将由系数计算单元236计算出的失真补偿系数写入由地址生成电路216生成的地址中,从而更新LUT(步骤S56)。
如上所述,根据本实施方式,在失真补偿单元110中,系数计算单元236基于由失真函数计算单元214(放大器)放大之前的发送信号、放大之后的发送信号以及系数参数计算存储在LUT中的失真补偿系数的更新值。当由地址生成电路216生成的地址高于设定的限幅阈值,并且由地址生成电路216生成的地址所对应的失真补偿系数是表初始值时,系数参数是与设定的限幅阈值对应的失真补偿系数。
这样,可利用与设定的限幅阈值对应并且比初始值更接近理想值的失真补偿系数来计算更新值,因此,更新值逼近理想值所需的时间可缩短。
[e]第五实施方式
在第五实施方式中,当由地址生成电路生成的地址高于设定的限幅阈值时,基于加权平均值和当前发送信号x(t)生成LUT更新值。所述加权平均值是用设定的限幅阈值检索到的失真补偿系数与用地址生成电路所生成的地址检索到的失真补偿系数的加权平均。
图16是示出根据第五实施方式的失真补偿单元的构造示例的示图。在图16中,失真补偿单元110包括LUT410。LUT410包括调节单元411。
调节单元411执行与根据第一实施方式至第三实施方式中的任一个的调节单元222相同的处理,并将失真补偿系数输出给乘法单元212。
另外,当由地址生成电路216生成的地址高于设定的限幅阈值时,调节单元411计算用设定的限幅阈值检索到的失真补偿系数与用地址生成电路216所生成的地址检索到的失真补偿系数的加权平均。然后,调节单元411将计算出的加权平均作为系数参数输出给系数计算单元236。
另一方面,当由地址生成电路216生成的地址等于或低于设定的限幅阈值时,调节单元411将用地址生成电路216所生成的地址检索到的失真补偿系数作为系数参数输出给系数计算单元236。
图17是示出根据第五实施方式的失真补偿单元110的处理操作的示例的流程图。
调节单元411执行与图15中所述相同的处理(步骤S51和S52)。
当输入地址值高于设定的限幅阈值时(步骤S52为“是”),调节单元411计算如上所述的加权平均值(步骤S61),并将计算出的加权平均值输出给系数计算单元236。系数计算单元236基于加权平均值和当前发送信号x(t)生成失真补偿系数,即,LUT更新值(步骤S62)。顺便提一句,步骤S55和S56的处理以与图15中所述相同的方式执行。
如上所述,根据本实施方式,在失真补偿单元110中,系数计算单元236基于由失真函数计算单元214(放大器)放大之前的发送信号、放大之后的发送信号以及系数参数计算存储在LUT中的失真补偿系数的更新值。当由地址生成电路216生成的地址高于设定的限幅阈值,系数参数是用设定的限幅阈值检索到的失真补偿系数与用地址生成电路216所生成的地址检索到的失真补偿系数的加权平均值。
这样,可利用与设定的限幅阈值对应并且更接近理想值的失真补偿系数来计算更新值,因此,更新值逼近理想值所需的时间可缩短。另外,可利用用地址生成电路216所生成的地址检索到的失真补偿系数来计算更新值,因此,可计算反应当前情况的更新值。
[f]第六实施方式
在第六实施方式中,在更新LUT时使用基于与设定的限幅阈值和地址生成电路所生成的地址当中使误差较小的那一个对应的失真补偿系数和当前发送信号x(t)计算的LUT更新值。
图18是示出根据第六实施方式的失真补偿单元的构造示例的示图。在图18中,失真补偿单元110包括LUT510和系数计算单元520。LUT510包括调节单元511。
调节单元511执行与根据第一实施方式至第三实施方式中的任一个的调节单元222相同的处理,并将失真补偿系数输出给乘法单元212。
另外,当由地址生成电路216生成的地址高于设定的限幅阈值时,调节单元511将用设定的限幅阈值检索到的失真补偿系数和用地址生成电路216所生成的地址检索到的失真补偿系数这二者作为系数参数输出给系数计算单元520。
另一方面,当由地址生成电路216生成的地址等于或低于设定的限幅阈值时,调节单元511将用地址生成电路216所生成的地址检索到的失真补偿系数作为系数参数输出给系数计算单元520。
系数计算单元520基于用设定的限幅阈值检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,第一LUT更新值。另外,系数计算单元520基于用地址生成电路216所生成的地址检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,第二LUT更新值。
这里,在计算第一LUT更新值和第二LUT更新值的同时,计算相应误差e(t)。
系数计算单元520选择第一LUT更新值和第二LUT更新值当中与较小误差对应的那一个,并将所选择的LUT更新值输出给写入单元226。
顺便提一句,当由地址生成电路216生成的地址等于或低于设定的限幅阈值时,系数计算单元520仅接收用地址生成电路216所生成的地址检索到的失真补偿系数。因此,在这种情况下,系数计算单元520将基于用地址生成电路216所生成的地址检索到的失真补偿系数和当前发送信号x(t)生成的LUT更新值输出给写入单元226。
图19是示出根据第六实施方式的失真补偿单元110的处理操作的示例的流程图。
调节单元511执行与图15中所述相同的处理(步骤S51和S52)。
当输入地址值高于设定的限幅阈值时(步骤S52为“是”),调节单元511将用设定的限幅阈值检索到的失真补偿系数和用地址生成电路所生成的地址检索到的失真补偿系数这二者输出给系数计算单元520。系数计算单元520基于用设定的限幅阈值检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,第一LUT更新值(步骤S71)。另外,系数计算单元520基于用地址生成电路216所生成的地址检索到的失真补偿系数和当前发送信号x(t)生成失真补偿系数,即,第二LUT更新值(步骤S71)。
系数计算单元520将第一LUT更新值所对应的误差e(t)与第二LUT更新值所对应的误差e(t)进行比较(步骤S72)。
当第一LUT更新值所对应的误差e(t)小于第二LUT更新值所对应的误差e(t)时(步骤S72为“否”),系数计算单元520选择第一LUT更新值并将其输出给写入单元226(步骤S73)。
当第二LUT更新值所对应的误差e(t)小于第一LUT更新值所对应的误差e(t)时(步骤S72为“是”),系数计算单元520选择第二LUT更新值并将其输出给写入单元226((步骤S74)。顺便提一句,步骤S76与图15中所述的步骤S55的处理相同。
写入单元226用步骤S73、S74和S76中的任一个处输出的LUT更新值来更新LUT(步骤S75)。
如上所述,根据本实施方式,在失真补偿单元110中,系数计算单元520基于由失真函数计算单元214(放大器)放大之前的发送信号、放大之后的发送信号以及系数参数计算存储在LUT中的失真补偿系数的更新值。当由地址生成电路216生成的地址高于设定的限幅阈值时,系数参数是用设定的限幅阈值检索到的失真补偿系数和用地址生成电路所生成的地址检索到的失真补偿系数这二者。然后,系数计算单元520将基于与设定的阈值对应的失真补偿系数和与地址生成电路216所生成的地址值对应的失真补偿系数当中使放大之前和之后的发送信号之间的误差较小的那一个计算出的更新值输出给LUT510。
这样,可利用更接近理想值并且能够减小误差的系数参数计算更新值,并且可用该更新值来更新LUT,因此,更新值逼近理想值所需的时间可缩短。
[g]其它实施方式
根据第一实施方式至第六实施方式中的任一个的无线通信装置(基站)可通过下面的硬件构造来实现。
图20是示出无线通信装置(基站)的硬件构造的示例的示图。如图20所示,无线通信装置100包括无线电设备控制器(REC)100a和无线电设备(RE)100b。RE100b包括现场可编程门阵列(FPGA)100c、微处理单元(MPU)100d、DAC100e、上变频器100f、功率放大器(PA)100g、下变频器100h、ADC100i、连接器100j和存储器100k。FPGA100c和MPU100d进行连接以输入/输出各种信号和数据。例如,存储器100k由诸如同步动态随机存取存储器(SDRAM)的RAM、只读存储器(ROM)和闪存构成。失真补偿单元110通过诸如FPGA100c和MPU100d的集成电路来实现。
另外,第一实施方式至第六实施方式中描述的各种处理可通过使计算机执行准备的程序来实现。即,与失真补偿单元110所执行的处理对应的相应程序被存储在存储器100k和FPGA100c中。存储在存储器100k中的程序可由MPU100d读出并用作进程。
根据本发明的一方面,可减少伪信号的产生。

Claims (8)

1.一种对放大器的失真进行补偿的失真补偿装置,该失真补偿装置包括:
乘法单元,其将输入的发送信号乘以输入的失真补偿系数;
生成单元,其生成与所述发送信号的功率对应的地址值;
调节单元,当所生成的地址值高于设定的阈值时,该调节单元从存储单元检索与所述设定的阈值对应的失真补偿系数并将所检索到的失真补偿系数输入给所述乘法单元,当所生成的地址值等于或低于所述设定的阈值时,该调节单元从所述存储单元检索与所生成的地址值对应的失真补偿系数并将所检索到的失真补偿系数输入给所述乘法单元;以及
阈值计算单元,其基于所生成的地址值计算阈值并用所计算出的阈值更新所述设定的阈值。
2.根据权利要求1所述的失真补偿装置,其中,
所述阈值计算单元通过识别在各个调节单位时段中生成的地址值的最大值并从所识别出的最大值减去特定值来计算所述阈值。
3.根据权利要求1或2所述的失真补偿装置,其中,
所述阈值计算单元按照特定周期从所述设定的阈值减去特定值。
4.根据权利要求1或2所述的失真补偿装置,其中,
当所述设定的阈值在执行确定时段中未被重新更新时,所述阈值计算单元从所述设定的阈值减去特定值,其中所述执行确定时段是从所述设定的阈值的更新时刻起的的特定时间段。
5.根据权利要求1或2所述的失真补偿装置,该失真补偿装置还包括系数计算单元,该系数计算单元基于由所述放大器放大之前的所述发送信号、放大之后的所述发送信号和系数参数计算存储在所述存储单元中的失真补偿系数的更新值,其中,
当所生成的地址值高于所述设定的阈值,并且与所生成的地址值对应并被存储在所述存储单元中的失真补偿系数是初始值时,所述系数参数是与所述设定的阈值对应的失真补偿系数。
6.根据权利要求1或2所述的失真补偿装置,该失真补偿装置还包括系数计算单元,该系数计算单元基于由所述放大器放大之前的所述发送信号、放大之后的所述发送信号和系数参数计算存储在所述存储单元中的失真补偿系数的更新值,其中,
当所生成的地址值高于所述设定的阈值时,所述系数参数是与所述设定的阈值对应的失真补偿系数和与所生成的地址值对应的失真补偿系数的加权平均值。
7.根据权利要求1或2所述的失真补偿装置,该失真补偿装置还包括系数计算单元,该系数计算单元基于由所述放大器放大之前的所述发送信号、放大之后的所述发送信号和系数参数计算存储在所述存储单元中的失真补偿系数的更新值,其中,
当所生成的地址值高于所述设定的阈值时,所述系数参数是与所述设定的阈值对应的失真补偿系数和与所生成的地址值对应的失真补偿系数这二者,并且
所述系数计算单元将基于与所述设定的阈值对应的失真补偿系数和与所生成的地址值对应的失真补偿系数当中使所述放大之前的发送信号和所述放大之后的发送信号之间的误差较小的那一个计算出的所述更新值输出给所述存储单元。
8.一种失真补偿方法,该失真补偿方法包括以下步骤:
生成与发送信号的功率对应的地址值;
当所生成的地址值高于设定的阈值时,从存储单元检索与所述设定的阈值对应的失真补偿系数,当所生成的地址值等于或低于所述设定的阈值时,从所述存储单元检索与所生成的地址值对应的失真补偿系数;
将所述发送信号乘以所检索到的失真补偿系数;以及
基于所生成的地址值计算阈值并用所计算出的阈值更新所述设定的阈值。
CN201310205761.6A 2012-07-02 2013-05-29 失真补偿装置和失真补偿方法 Expired - Fee Related CN103532499B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-148924 2012-07-02
JP2012148924A JP6094071B2 (ja) 2012-07-02 2012-07-02 歪補償装置及び歪補償方法

Publications (2)

Publication Number Publication Date
CN103532499A CN103532499A (zh) 2014-01-22
CN103532499B true CN103532499B (zh) 2016-08-17

Family

ID=49778169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310205761.6A Expired - Fee Related CN103532499B (zh) 2012-07-02 2013-05-29 失真补偿装置和失真补偿方法

Country Status (3)

Country Link
US (1) US9203447B2 (zh)
JP (1) JP6094071B2 (zh)
CN (1) CN103532499B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024960B (zh) * 2015-06-23 2018-11-09 大唐移动通信设备有限公司 一种dpd系统
JP6551115B2 (ja) * 2015-09-30 2019-07-31 富士通株式会社 無線装置
GB2543751B (en) * 2015-10-21 2019-04-24 Dyson Technology Ltd Motor mount

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023578A (zh) * 2004-09-21 2007-08-22 株式会社日立国际电气 失真补偿放大装置
CN101390285A (zh) * 2005-12-27 2009-03-18 松下电器产业株式会社 极坐标调制发射器、自适应失真补偿处理系统、极坐标调制传输方法以及自适应失真补偿处理方法
CN101765969A (zh) * 2007-07-31 2010-06-30 富士通株式会社 失真补偿装置和方法
CN101895260A (zh) * 2009-05-21 2010-11-24 株式会社Ntt都科摩 幂级数型数字预失真器及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284976A (ja) 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd アダプティブプリディストーション歪補償方法及び装置
JP3876408B2 (ja) * 2001-10-31 2007-01-31 富士通株式会社 歪補償装置及び歪補償方法
JP4619827B2 (ja) * 2005-03-07 2011-01-26 富士通株式会社 歪補償装置
JP4617265B2 (ja) * 2006-02-14 2011-01-19 富士通株式会社 歪補償装置及び歪補償方法
US8848828B2 (en) * 2008-12-22 2014-09-30 Nec Corporation Distortion compensation circuit, transmitting apparatus and distortion compensating method
JP5375683B2 (ja) * 2010-03-10 2013-12-25 富士通株式会社 通信装置および電力補正方法
JP5488073B2 (ja) * 2010-03-12 2014-05-14 富士通株式会社 無線装置、歪補償装置及び歪補償方法
JP5505001B2 (ja) 2010-03-17 2014-05-28 富士通株式会社 歪補償装置、増幅装置、送信装置および歪補償方法
JP5482561B2 (ja) * 2010-08-13 2014-05-07 富士通株式会社 歪補償増幅装置及び歪補償方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023578A (zh) * 2004-09-21 2007-08-22 株式会社日立国际电气 失真补偿放大装置
CN101390285A (zh) * 2005-12-27 2009-03-18 松下电器产业株式会社 极坐标调制发射器、自适应失真补偿处理系统、极坐标调制传输方法以及自适应失真补偿处理方法
CN101765969A (zh) * 2007-07-31 2010-06-30 富士通株式会社 失真补偿装置和方法
CN101895260A (zh) * 2009-05-21 2010-11-24 株式会社Ntt都科摩 幂级数型数字预失真器及其控制方法

Also Published As

Publication number Publication date
JP2014011748A (ja) 2014-01-20
US20140003554A1 (en) 2014-01-02
US9203447B2 (en) 2015-12-01
CN103532499A (zh) 2014-01-22
JP6094071B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
US10985965B2 (en) System and method for digital memorized predistortion for wireless communication
JP3857652B2 (ja) 歪補償装置
JP4786644B2 (ja) 歪補償装置
CN101908861B (zh) 传送器、输出信号失真降低方法及预失真参数产生方法
US8022763B2 (en) Amplifier failure detection apparatus
JP4652091B2 (ja) 歪補償装置
JP4308163B2 (ja) 歪補償装置
JP4619827B2 (ja) 歪補償装置
JP2002232325A (ja) プリディストーション歪み補償装置
US8855232B2 (en) Transmission apparatus and transmission method
CN102143108A (zh) 一种改进的自适应预失真技术
CN101741787B (zh) 一种预失真快速收敛的训练数据采集方法及系统
JP5505001B2 (ja) 歪補償装置、増幅装置、送信装置および歪補償方法
CN107359864B (zh) 频率捷变功率放大器的自适应捷变数字预失真方法
CN103532499B (zh) 失真补偿装置和失真补偿方法
CN111082756B (zh) 一种用于mimo发射机的数模混合预失真结构
CN101902418B (zh) 失真补偿装置和方法
US7816984B2 (en) Lookup table generation method and related device for a predistorter
JP2005079935A (ja) 適応プリディストーション型歪補償電力増幅器
CN100508369C (zh) 通过后检波实现非线性装置的预矫正装置和方法
WO2023230819A1 (en) Digital predistortion method and apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817