JP5771145B2 - 窒化物半導体レーザダイオード - Google Patents
窒化物半導体レーザダイオード Download PDFInfo
- Publication number
- JP5771145B2 JP5771145B2 JP2011524767A JP2011524767A JP5771145B2 JP 5771145 B2 JP5771145 B2 JP 5771145B2 JP 2011524767 A JP2011524767 A JP 2011524767A JP 2011524767 A JP2011524767 A JP 2011524767A JP 5771145 B2 JP5771145 B2 JP 5771145B2
- Authority
- JP
- Japan
- Prior art keywords
- nitride semiconductor
- layer
- laser diode
- type
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 365
- 150000004767 nitrides Chemical class 0.000 title claims description 339
- 239000012535 impurity Substances 0.000 claims description 147
- 230000010355 oscillation Effects 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 39
- 238000005253 cladding Methods 0.000 claims description 26
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 682
- 239000011777 magnesium Substances 0.000 description 43
- 230000004888 barrier function Effects 0.000 description 41
- 229910002601 GaN Inorganic materials 0.000 description 32
- 239000010408 film Substances 0.000 description 24
- 230000007423 decrease Effects 0.000 description 21
- 238000012360 testing method Methods 0.000 description 13
- 230000031700 light absorption Effects 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 150000002500 ions Chemical group 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910021478 group 5 element Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3068—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure deep levels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/3013—AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/0014—Measuring characteristics or properties thereof
- H01S5/0021—Degradation or life time measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
- H01S5/3063—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Description
前記窒化物半導体レーザダイオードの発振波長は500nm以上であり、
前記活性層を起点として発生した転位が前記p側窒化物半導体層を貫通して、前記p側窒化物半導体層の転位密度は1×106cm−2以上となっており、
前記p型不純物の深さ方向の濃度分布は、前記発光層から前記p側窒化物半導体層の表面に向かって、前記p側窒化物半導体層に最も近い前記発光層の上端から300nm以内の範囲にp型不純物濃度が5×1018cm−3以上となる極大を有し、前記極大を過ぎた後、前記300nm以内の範囲では6×1017cm−3を下回らないことを特徴とする。
第1のp型窒化物半導体層26内におけるp型不純物濃度の極大値は、5×1018cm−3以上であれば良いが、より好ましくは7×1018cm−3以上、さらに好ましくは1×1019cm−3以上とすることが望ましい。このp型不純物濃度が高い程、井戸層24a、24bへの正孔の注入が容易となる。一方、p型不純物濃度が高過ぎると、第1のp型窒化物半導体層26の結晶性が低下し、光吸収も増加するので、閾値電流が増大する原因となる。従って、第1のp型窒化物半導体層26におけるp型不純物濃度の極大値は、1×1020cm−3以下、より好ましくは5×1019cm−3以下とすることが望ましい。第1のp型窒化物半導体層26内におけるp型不純物濃度は、第1のp型窒化物半導体層26中で深さ方向に一定でも良いし、何らかの分布を持っていても良い。但し、第1のp型窒化物半導体層26においてp型不純物濃度を5×1018cm−3以上とする領域の厚さは、1nm以上、より好ましくは5nm以上であることが望ましく、20nm以下、より好ましくは50nm以下とすることが望ましい。この領域が、あまり厚すぎると結晶性の低下や光吸収が問題となり、あまり薄すぎると井戸層24a、bへの正孔の注入が不足するからである。
一方、第2のp型窒化物半導体層28a、b内におけるp型不純物濃度の極小値は、6×1017cm−3以上であれば良いが、より好ましくは8×1017cm−3以上、さらに好ましくは1×1018cm−3以上とすることが望ましい。このp型不純物濃度が高い程、井戸層24a、24bへの正孔の注入が容易となる。一方、p側窒化物半導体層8に近い井戸層24bの上端から300nm程度の範囲は発光が比較的強く分布するため、この範囲における第2のp型窒化物半導体層28a、b中のp型不純物濃度が高過ぎると、閾値電流が増大する原因となる。特に本実施の形態では、第2のp型窒化物半導体層28a、bが分離閉じ込め構造(SCH構造)の光ガイド層として機能するため、第2のp型窒化物半導体層28a、b内におけるp型不純物による光吸収の影響は特に大きくなる。従って、第2のp型窒化物半導体層28a、bにおけるp型不純物濃度の極小値は、第1のp型窒化物半導体層26内におけるp型不純物濃度の極大値に対して1/5以下、より好ましくは1/10以下とすることが望ましい。また、第2のp型窒化物半導体層28a、bにおけるp型不純物濃度の極小値は、1×1019cm−3を越えないことが望ましく、より好ましくは5×1018cm−3を越えないようにする。
基板2は、窒化物半導体から成ることが好ましく、より好ましくはGaNから成ることが望ましい。窒化物半導体から成る基板は、熱伝導率がサファイアに比べて高いため放熱効率の向上が可能であり、転位等の欠陥を低減して結晶性を良好にすることができる。
基板2における転位密度は低い方が、井戸層24a、bの面状態が改善され、ライフ特性も向上する。InGaN発光層を用いた半導体レーザダイオードは、他の材料系に比べると転位によるライフ特性の低下が比較的緩やかであるが、やはり転位に対する依存性がある。また、基板2の転位密度が少ない方がESD耐性も高くなる。基板2の転位密度は、1×107cm−2以下、より好ましくは5×106cm−2以下、さらに好ましくは5×105cm−2以下とすることが望ましい。なお、基板2の転位密度は、窒化物半導体層を成長すべき主面における転位密度で考える。
図12に、本実施の形態で用いるn側窒化物半導体層4の層構成を示す。尚、下記に説明する層のうち、n側クラッド層16以外の層は、素子構造によっては省略可能である。
活性層6としては、InxAlyGa1−x−yN(0<x<1、0≦y<1、0<x+y<1)を含む発光層を有するものであれば良く、図1に示した多重量子井戸構造の活性層の他に、単一量子井戸構造の活性層、薄膜の発光層単体から成る活性層などを用いることができる。量子井戸構造の場合は、井戸層24a、bが発光層となる。発光層は、InxAlyGa1−x−yN(0<x<1、0≦y<1、0<x+y<1)を含むものであれば良いが、より好ましくはInGaNとする。尚、本件明細書において「発光層」とは、電子と正孔が発光再結合する層を指す。
p側窒化物半導体層8としては、Alを含む窒化物半導体層26(第1のp型窒化物半導体層)、p側光ガイド層28a、b(第2のp型窒化物半導体層)、p側クラッド層32(第3のp型窒化物半導体層)、p側コンタクト層34(第4のp型窒化物半導体層)が積層されている。p側クラッド層32を除く他の層は、素子によっては省略することもできる。p側窒化物半導体層8は、少なくとも活性層6と接する部分において活性層6よりも広いバンドギャップを有することが必要であり、そのためにAlを含む組成であることが好ましい。また、各層は、p型不純物をドープしながら成長させてp型としても良いし、隣接する他の層からp型不純物を拡散させてp型としても良い。p型不純物としては、Mgの他に、Be、Zn、Cd等を用いることができる。
図1に示す構造の窒化物半導体レーザを以下のようにして製造する。
(n側窒化物半導体層4)
まず、C面を主面とし、転位密度が約5×105cm−2である窒化ガリウム基板2を準備する。MOCVD法によりこの窒化ガリウム基板2上に、水素をキャリアガスとして、1140℃でTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、SiH4(シラン)、アンモニアを用い、Siを3×1018/cm3ドープしたn型Al0.03Ga0.97N層12を膜厚2μmで成長させる(第1のn側窒化物半導体層)。続いて温度を930℃とし、TMI(トリメチルインジウム)を用いてSiを4×1018/cm3ドープしたn型In0.06Ga0.94N層14を膜厚0.15μmで成長させる(第2のn側窒化物半導体層)。次に温度を990℃としSiを2×1018/cm3ドープしたn型Al0.09Ga0.91N層16を膜厚1μmで成長させる(第3のn側窒化物半導体層16)。なおこの層は平均Al組成が9%となる任意の膜厚比のAlxGa1−xN/AlyGa1−yN(0≦x≦1、0≦y≦1)などの多層膜構造とすることも出来る。次にTMAを止め、990℃でSiを1×1018/cm3ドープしたn型GaN層18a、アンドープのn型GaN層18bをそれぞれ0.15μmの膜厚で成長させる(第4のn側窒化物半導体層18a、b)。なおこのアンドープGaN層18bにn型不純物をドープしてもよい。
次に活性層6を以下のようにして成長する。キャリアガスを窒素に切り替え、温度を925℃にしてSiを2×1018/cm3ドープしたIn0.04Ga0.96Nからなる障壁層22a、アンドープGaN層(図示せず)をそれぞれ210nm、1nmの膜厚で成長させる。続いて温度を780℃にしてアンドープIn0.23Ga0.77Nよりなる井戸層24aを3nmを成長した後、アンドープGaNよりなる井戸キャップ層(図示せず)を1nm成長し、温度を925℃に上げてアンドープGaNよりなる障壁層22bを14nm成長する。温度を780℃にして再度アンドープIn0.23Ga0.77Nよりなる井戸層24bを3nm成長させた後、アンドープGaNよりなる井戸キャップ層(図示せず)を1nm成長し、温度を925℃に上げてアンドープIn0.04Ga0.96Nよりなる障壁層22cを70nm成長させ、多重量子井戸構造(MQW)の活性層を形成する。
次に温度を990℃に上げ、キャリアガスを窒素から水素に切り替えながら、Cp2Mg(ビスシクロペンタジエニルマグネシウム)をMgドーパントに用い、Mgを1×1019/cm3ドープしたp型Al0.2Ga0.8 N層26(第1のp型窒化物半導体層)を10nmの膜厚で成長させる。なおこの層26は成長方向にAl組成分布が0〜20%の間である。続いて990℃でアンドープのp型Al0.03Ga0.97N層28a、Mgを3×1018/cm3ドープしたp型Al0.03Ga0.97N層28bをそれぞれ0.15μmの膜厚で成長させる(第2のp型窒化物半導体層)。なおアンドープ層28aではMgを意図的にはドーピングしていないが、直前に層26を成長した際のMgがMOCVD反応室内に残留しており、そのMgが層28aを成長する際に取り込まれることによって層28a中のMg濃度は1.2×1018cm−3以上となる。尚、層28aに意図的にMgをドーピングしてもよく、Al組成が0〜3%であってもよい。次に990℃でMgをドープしたAl0.06Ga0.94 Nよりなる2.5nmの層と、アンドープAl0.12Ga0.88 Nよりなる2.5nmの層とを交互に成長させ、総膜厚0.45μmよりなる層32を成長させる(第3のp型窒化物半導体層)。層32における平均のMg濃度は、約1×1019cm−3となる。最後に990℃で層26の上にMgを1×1020/cm3ドープしたp型GaN層32を15nmの膜厚で成長させる。
実施例1において、p型Al0.2Ga0.8 N層26(第1のp型窒化物半導体層)のMg濃度を4.3×1018cm−3とし、p型Al0.03Ga0.97N層28a、28b(第2p型窒化物半導体層)のMg濃度を各々5.6×1017cm−3、1.4×1018cm−3とする。その他は、実施例1と同様にして窒化物半導体レーザダイオードを作成する。活性層6から約2×106cm−2の転位が発生する。p側窒化物半導体層8内におけるMg濃度のプロファイルは、図8のようになり、Mg濃度の極大値は4.3×1018cm−3、極小値は5.6×1017cm−3となる。500nmでレーザ発振し、閾値電流は、30mA、出力は5mWである。60℃、APC、5mWでライフ試験をすると、図6のような結果を示し、60℃における寿命は約40時間となる。
実施例1において、井戸層の組成をIn0.25Ga0.75Nとし、膜厚を2.5nm、井戸層の数を3層とする。また、p型Al0.2Ga0.8N層26(第1のp型窒化物半導体層)のMg濃度を2×1019cm−3とし、p型Al0.03Ga0.97N層28a、28b(第2p型窒化物半導体層)のMg濃度を各々2×1018cm−3、4×1018cm−3とする。その他は、実施例1と同様にして窒化物半導体レーザダイオードを作成する。活性層6から約5×106cm−2の転位が発生する。517nmでレーザ発振し、閾値電流70mA、出力は5mWである。60℃、APC、5mWでライフ試験をすると、推定寿命は1万時間以上となる。
実施例1において、井戸層の組成をIn0.27Ga0.73Nし、膜厚を2.2nm、井戸層の数を4層とする。また、p型Al0.2Ga0.8N層26(第1のp型窒化物半導体層)のMg濃度を3×1019cm−3とし、p型Al0.03Ga0.97N層28a、28b(第2p型窒化物半導体層)のMg濃度を各々3×1018cm−3、6×1018cm−3とする。その他は、実施例1と同様にして窒化物半導体レーザダイオードを作成する。活性層6から約7.5×106cm−2の転位が発生する。540nmでレーザ発振し、60℃、APC、5mWでライフ試験をすると、比較例に対して、顕著に良好な寿命特性を示す。
実施例1において、井戸層の組成をIn0.3Ga0.7Nとし、膜厚を2nm、井戸層の数を4層とする。また、p型Al0.2Ga0.8N層26(第1のp型窒化物半導体層)のMg濃度を5×1019cm−3とし、p型Al0.03Ga0.97N層28a、28b(第2p型窒化物半導体層)のMg濃度を各々5×1018cm−3、1×1019cm−3とする。その他は、実施例1と同様にして窒化物半導体レーザダイオードを作成する。活性層6から約1×107cm−2の転位が発生する。560nmでレーザ発振し、60℃、APC、5mWでライフ試験をすると、比較例に対して、顕著に良好な寿命特性を示す。
実施例1において、p型Al0.03Ga0.97N層28a、b(第2のp型窒化物半導体層)の成長を省略し、p型Al0.2Ga0.8N層26(第1のp型窒化物半導体層)の上に、膜厚0.45μmよりなる層32を直接成長する。層32の最初の0.15μmはAl0.06Ga0.94N層とAl0.12Ga0.88N層を両方アンドープで成長し、残りの0.3μmはAl0.06Ga0.94N層に実施例1と同じ濃度のMgをドープして成長する。層32は、層28a、bよりバンドギャップが大きい(=屈折率が小さい)ため、これにより光閉じ込めが強化され、かつMgをドーピングした際の光吸収を低減できる。活性層6から約2×106cm−2の転位が発生する。p側窒化物半導体層8内におけるMg濃度のプロファイルは、実施例1と同様に、Mg濃度の極大値は1×1019/cm3、極小値は1.2×1018cm3となる。500nmでレーザ発振し、閾値電流は、実施例1よりもやや高くなるが、60℃、APC、5mWでライフ試験をすると、実施例1と同程度の寿命を示す。
実施例1において、p型Al0.03Ga0.97N層28a、b(第2のp型窒化物半導体層)中のMg濃度を次のようにして3×1018cm−3で一定にする。層26の成長後、成長温度を一定としてMg原料を成長初期10nmだけ供給し、一旦Mg原料の供給を停止する。そこから50nm程度成長後に再びMg原料の供給を開始し、徐々にMg原料ガスの流量を絞っていく。これによりp型Al0.03Ga0.97N層28a、bの全体に渡ってMg濃度が一定の層となる。実施例1と同様に、活性層6から約2×106cm−2の転位が発生する。p側窒化物半導体層8内におけるMg濃度のプロファイルは、Mg濃度の極大値は1×1019/cm3となるが、その後p型Al0.03Ga0.97N層28a、bの中は3×1018cm3と一定となる。500nmでレーザ発振し、閾値電流は、50mAになるが、60℃、APC、5mWでライフ試験をすると、実施例1と同程度の寿命を示す。
実施例1において、障壁層22cを連続的もしくは段階的にバンドギャップが大きくなるように成長する。実施例1と同様に、アンドープIn0.04Ga0.96Nよりなる障壁層22cを70nm成長させた後、それよりもバンドギャップが大きなアンドープAlInGaN層(例えばGaN、AlGaN)を20nmの膜厚で成長する。その後、実施例1と同様にしてp側窒化物半導体層8を成長する。これによりp側窒化物半導体層8の膜厚を増加させることなく光閉じ込めが強化されるので、動作電圧が低減する。また、60℃、APC、5mWでライフ試験をすると、実施例1と同程度の寿命を示す。
実施例1において、MgをドープしたAl0.06Ga0.94Nよりなる2.5nmの層と、アンドープAl0.12Ga0.88Nよりなる2.5nmの層とを交互に成長させた層32(第3のp型窒化物半導体層)の成長を省略する。また、p電極38としてNi/Au/Ptの代わりにITOを形成する。その他は実施例1と同様にして窒化物半導体レーザダイオードを作成する。ITOから成るp電極38が層32の代わりにクラッド層として機能する。p側窒化物半導体層8の厚みが減少するため、駆動電圧が低減する。その他は、実施例1と同様の特性が得られる。
実施例1において、第4のn側窒化物半導体層18a、bの組成をGaNから、第3のn側窒化物半導体層16よりもAlの少ないAlGaNに変える。その他は、実施例1と同様にして窒化物半導体レーザを作成する。実施例1と同様の特性が得られる。
実施例1において、第4のn側窒化物半導体層18a、bを全てアンドープとする。その他は、実施例1と同様にして窒化物半導体レーザを作成する。実施例1と同様の特性が得られる。
実施例1において、次に温度を990℃としSiを2×1018/cm3ドープしたn型Al0.09Ga0.91N層(第3のn側窒化物半導体層16)の膜厚を2μmにする。その他は、実施例1と同様にして窒化物半導体レーザを作成する。実施例1よりも基板側への光の漏れが小さくなり、FFP−Y形状が改善される。その他は実施例1とほぼ同様の特性が得られる。
実施例1において、障壁層22bをGaNに代えて、井戸層よりもInの少ないInGaNとGaNの2層構造とする。その他は、実施例1と同様にして窒化物半導体レーザを作成する。実施例1に比べて駆動電圧が低減する。その他は実施例1と同様の特性が得られる。
実施例1において、井戸キャップ層をGaNからAlInGaNとする。その他は、実施例1と同様にして窒化物半導体レーザを作成する。実施例1と同様の特性が得られる。
2 基板
4 n側窒化物半導体層
6 活性層
8 p側窒化物半導体層
12 第1のn側窒化物半導体層
14 第2のn側窒化物半導体層
16 n側クラッド層
18a、b n側ガイド層
22a、b、c InGaN井戸層
24a、b、c InGaN障壁層
26 Alを含む窒化物半導体層
28a、b p側光ガイド層
32 p側クラッド層
34 p側コンタクト層
36 リッジ構造
38 p側電極
40 p側ボンディングパッド
42 n側電極
46 埋め込み層
48 保護膜
49 窪み
50 転位
52 スパイク
54 極大
56 極小
Claims (8)
- 窒化物半導体から成る基板と、前記基板の上に形成されたn型不純物を含むn側窒化物半導体層と、前記n側窒化物半導体層の上に形成され、InxAlyGa1−x−yN(0<x<1、0≦y<1、0<x+y<1)を含む発光層を有する活性層と、前記活性層の上に形成されたp型不純物を含むp側窒化物半導体層と、を備えた窒化物半導体レーザダイオードであって、
前記窒化物半導体レーザダイオードの発振波長は500nm以上であり、
前記p側窒化物半導体層は、p側光ガイド層とp側クラッド層とを含み、
前記活性層を起点として発生した転位が前記p側窒化物半導体層を貫通する結果、前記p側窒化物半導体層における、前記基板に由来する転位と前記活性層を起点として発生した転位を含む転位密度は1×106cm−2以上となっており、
前記p型不純物の深さ方向の濃度分布は、前記発光層から前記p側窒化物半導体層の表面に向かって、前記p側窒化物半導体層に最も近い前記発光層の上端から300nm以内の範囲にp型不純物濃度が5×1018cm−3以上となる極大を有し、前記極大を過ぎた後も、前記300nm以内の範囲では6×1017cm−3を下回らないことを特徴とする窒化物半導体レーザダイオード。 - 前記p側窒化物半導体層に最も近い前記発光層の上端から150nm以内に前記極大を有することを特徴とする請求項1に記載の窒化物半導体レーザダイオード。
- 前記p型不純物の深さ方向の濃度分布は、前記300nmの範囲内において、前記極大を過ぎた後、前記p型不純物濃度が6×1017cm−3を下回らない極小を有し、前記極小を過ぎた後、1×1018cm−3以上に増大することを特徴とする請求項1又は2に記載の窒化物半導体レーザダイオード。
- 前記p側窒化物半導体層に最も近い前記発光層の上端から250nm以内に前記極小を有することを特徴とする請求項3に記載の窒化物半導体レーザダイオード。
- 前記発振波長は、560nm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の窒化物半導体レーザダイオード。
- 前記基板は、転位密度が1×107cm−2以下の窒化物半導体から成ることを特徴とする請求項1乃至5のいずれか1項に記載の窒化物半導体レーザダイオード。
- 前記基板の転位密度は、前記活性層で発生する転位密度よりも低いことを特徴とする請求項1乃至6のいずれか1項に記載の窒化物半導体レーザダイオード。
- 請求項1乃至7のいずれか1項に記載された波長500〜560nmで発振する窒化物半導体レーザダイオードと、波長440〜480nmで発振する窒化物半導体レーザダイオードと、波長600〜660nmで発振する半導体レーザダイオードとを有するディスプレイ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011524767A JP5771145B2 (ja) | 2009-07-31 | 2010-07-26 | 窒化物半導体レーザダイオード |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009179810 | 2009-07-31 | ||
JP2009179810 | 2009-07-31 | ||
PCT/JP2010/062527 WO2011013621A1 (ja) | 2009-07-31 | 2010-07-26 | 窒化物半導体レーザダイオード |
JP2011524767A JP5771145B2 (ja) | 2009-07-31 | 2010-07-26 | 窒化物半導体レーザダイオード |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015094131A Division JP6044671B2 (ja) | 2009-07-31 | 2015-05-01 | 窒化物半導体レーザダイオード |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011013621A1 JPWO2011013621A1 (ja) | 2013-01-07 |
JP5771145B2 true JP5771145B2 (ja) | 2015-08-26 |
Family
ID=43529277
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011524767A Active JP5771145B2 (ja) | 2009-07-31 | 2010-07-26 | 窒化物半導体レーザダイオード |
JP2015094131A Active JP6044671B2 (ja) | 2009-07-31 | 2015-05-01 | 窒化物半導体レーザダイオード |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015094131A Active JP6044671B2 (ja) | 2009-07-31 | 2015-05-01 | 窒化物半導体レーザダイオード |
Country Status (7)
Country | Link |
---|---|
US (2) | US8514904B2 (ja) |
EP (1) | EP2461436B1 (ja) |
JP (2) | JP5771145B2 (ja) |
KR (1) | KR101698629B1 (ja) |
CN (1) | CN102474077B (ja) |
TW (1) | TWI524612B (ja) |
WO (1) | WO2011013621A1 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102474077B (zh) * | 2009-07-31 | 2014-08-06 | 日亚化学工业株式会社 | 氮化物半导体激光二极管 |
KR20130007557A (ko) | 2010-01-27 | 2013-01-18 | 예일 유니버시티 | GaN 소자의 전도도 기반 선택적 에칭 및 그의 응용 |
JP5707772B2 (ja) * | 2010-08-06 | 2015-04-30 | 日亜化学工業株式会社 | 窒化物半導体レーザ素子及びその製造方法 |
JP5737111B2 (ja) * | 2011-03-30 | 2015-06-17 | 豊田合成株式会社 | Iii族窒化物半導体発光素子 |
JP5468709B2 (ja) * | 2012-03-05 | 2014-04-09 | パナソニック株式会社 | 窒化物半導体発光素子、光源及びその製造方法 |
KR20140019635A (ko) * | 2012-08-06 | 2014-02-17 | 엘지이노텍 주식회사 | 발광 소자 및 발광 소자 패키지 |
US9401452B2 (en) * | 2012-09-14 | 2016-07-26 | Palo Alto Research Center Incorporated | P-side layers for short wavelength light emitters |
US9219189B2 (en) | 2012-09-14 | 2015-12-22 | Palo Alto Research Center Incorporated | Graded electron blocking layer |
EP2741381B1 (en) | 2012-12-06 | 2020-05-06 | Nichia Corporation | Semiconductor laser element |
JP2014127708A (ja) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | 半導体発光素子及び半導体発光素子の製造方法 |
KR20140104062A (ko) * | 2013-02-15 | 2014-08-28 | 삼성전자주식회사 | P형 질화물 반도체 제조방법 및 이를 이용한 질화물 반도체 발광소자 제조방법 |
DE102013216527A1 (de) * | 2013-08-21 | 2015-02-26 | Osram Opto Semiconductors Gmbh | Laserbauelement und Verfahren zum Herstellen eines Laserbauelements |
US11095096B2 (en) | 2014-04-16 | 2021-08-17 | Yale University | Method for a GaN vertical microcavity surface emitting laser (VCSEL) |
DE102014107385A1 (de) * | 2014-05-26 | 2015-11-26 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
US11043792B2 (en) | 2014-09-30 | 2021-06-22 | Yale University | Method for GaN vertical microcavity surface emitting laser (VCSEL) |
US11018231B2 (en) | 2014-12-01 | 2021-05-25 | Yale University | Method to make buried, highly conductive p-type III-nitride layers |
TWI680587B (zh) * | 2014-12-19 | 2019-12-21 | 日商斯坦雷電氣股份有限公司 | 發光元件 |
JP6961225B2 (ja) * | 2015-05-19 | 2021-11-05 | イェール ユニバーシティーYale University | 格子整合クラッド層を有する高い閉じ込め係数のiii窒化物端面発光レーザーダイオードに関する方法およびデバイス |
US10763188B2 (en) * | 2015-12-23 | 2020-09-01 | Intel Corporation | Integrated heat spreader having electromagnetically-formed features |
JP2017224866A (ja) * | 2017-09-27 | 2017-12-21 | シャープ株式会社 | 窒化物半導体レーザ素子 |
US20210375614A1 (en) * | 2020-05-28 | 2021-12-02 | Asahi Kasei Kabushiki Kaisha | Nitride semiconductor element |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001057461A (ja) * | 1999-06-10 | 2001-02-27 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JP2001148507A (ja) * | 1999-03-29 | 2001-05-29 | Nichia Chem Ind Ltd | 窒化物半導体素子 |
JP2002151738A (ja) * | 2000-11-15 | 2002-05-24 | Sharp Corp | 窒化物半導体発光素子、光ピックアップ装置、白色光源装置および表示装置 |
JP2005303333A (ja) | 2005-07-11 | 2005-10-27 | Ngk Insulators Ltd | 半導体発光素子の転位密度低減方法 |
JP2006041491A (ja) | 2004-06-21 | 2006-02-09 | Matsushita Electric Ind Co Ltd | 半導体レーザ素子及びその製造方法 |
JP2006269773A (ja) | 2005-03-24 | 2006-10-05 | Univ Meijo | p型AlGaN半導体層、AlGaN系半導体発光素子、AlGaN系半導体受光素子、及びp型AlGaN半導体層の形成方法 |
WO2007083768A1 (ja) * | 2006-01-20 | 2007-07-26 | Matsushita Electric Industrial Co., Ltd. | 半導体発光素子、iii族窒化物半導体基板、及びその製造方法 |
JP2007305635A (ja) * | 2006-05-09 | 2007-11-22 | Sharp Corp | 窒化物半導体発光素子 |
JP2007335854A (ja) * | 2006-05-17 | 2007-12-27 | Chiba Univ | 半導体光素子 |
JP2008091608A (ja) | 2006-10-02 | 2008-04-17 | Sony Corp | 発光ダイオードおよびその製造方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法 |
JP2008110910A (ja) * | 2006-10-02 | 2008-05-15 | Ricoh Co Ltd | 製造装置、結晶製造方法、基板製造方法、窒化ガリウム結晶及び窒化ガリウム基板 |
JP2009046368A (ja) * | 2007-08-22 | 2009-03-05 | Hitachi Cable Ltd | 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008034862A (ja) * | 1997-04-11 | 2008-02-14 | Nichia Chem Ind Ltd | 窒化物半導体の成長方法 |
JP3314666B2 (ja) * | 1997-06-09 | 2002-08-12 | 日亜化学工業株式会社 | 窒化物半導体素子 |
JPH11340580A (ja) * | 1997-07-30 | 1999-12-10 | Fujitsu Ltd | 半導体レーザ、半導体発光素子、及び、その製造方法 |
JP4787205B2 (ja) * | 1997-07-30 | 2011-10-05 | 富士通株式会社 | 半導体レーザの製造方法 |
JP2000236142A (ja) | 1998-12-15 | 2000-08-29 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
US6711191B1 (en) | 1999-03-04 | 2004-03-23 | Nichia Corporation | Nitride semiconductor laser device |
US6838705B1 (en) | 1999-03-29 | 2005-01-04 | Nichia Corporation | Nitride semiconductor device |
JP4346218B2 (ja) | 2000-07-05 | 2009-10-21 | シャープ株式会社 | 窒化物半導体発光素子とそれを含む光学装置 |
US6586762B2 (en) | 2000-07-07 | 2003-07-01 | Nichia Corporation | Nitride semiconductor device with improved lifetime and high output power |
JP4416297B2 (ja) | 2000-09-08 | 2010-02-17 | シャープ株式会社 | 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置 |
US6909120B2 (en) * | 2000-11-10 | 2005-06-21 | Sharp Kabushiki Kaisha | Nitride semiconductor luminous element and optical device including it |
JP3453558B2 (ja) * | 2000-12-25 | 2003-10-06 | 松下電器産業株式会社 | 窒化物半導体素子 |
JP4441563B2 (ja) * | 2000-12-28 | 2010-03-31 | 日亜化学工業株式会社 | 窒化物半導体レーザ素子 |
JP2003163418A (ja) * | 2001-11-29 | 2003-06-06 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体レーザ |
JP4371202B2 (ja) * | 2003-06-27 | 2009-11-25 | 日立電線株式会社 | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス |
JPWO2005020396A1 (ja) * | 2003-08-26 | 2006-10-19 | ソニー株式会社 | GaN系III−V族化合物半導体発光素子及びその製造方法 |
WO2005034301A1 (ja) * | 2003-09-25 | 2005-04-14 | Matsushita Electric Industrial Co., Ltd. | 窒化物半導体素子およびその製造方法 |
TW200711171A (en) * | 2005-04-05 | 2007-03-16 | Toshiba Kk | Gallium nitride based semiconductor device and method of manufacturing same |
JP2008288527A (ja) * | 2007-05-21 | 2008-11-27 | Rohm Co Ltd | レーザ発光装置 |
JP2009152511A (ja) * | 2007-06-14 | 2009-07-09 | Sumitomo Electric Ind Ltd | GaN基板、エピタキシャル層付き基板、半導体装置、およびGaN基板の製造方法 |
JP2009032966A (ja) * | 2007-07-27 | 2009-02-12 | Rohm Co Ltd | 半導体発光素子 |
CN102474077B (zh) * | 2009-07-31 | 2014-08-06 | 日亚化学工业株式会社 | 氮化物半导体激光二极管 |
-
2010
- 2010-07-26 CN CN201080034220.6A patent/CN102474077B/zh active Active
- 2010-07-26 JP JP2011524767A patent/JP5771145B2/ja active Active
- 2010-07-26 EP EP10804367.0A patent/EP2461436B1/en active Active
- 2010-07-26 WO PCT/JP2010/062527 patent/WO2011013621A1/ja active Application Filing
- 2010-07-26 KR KR1020127002552A patent/KR101698629B1/ko active IP Right Grant
- 2010-07-26 US US13/387,855 patent/US8514904B2/en active Active
- 2010-07-29 TW TW099125175A patent/TWI524612B/zh active
-
2013
- 2013-06-25 US US13/926,858 patent/US8811443B2/en active Active
-
2015
- 2015-05-01 JP JP2015094131A patent/JP6044671B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001148507A (ja) * | 1999-03-29 | 2001-05-29 | Nichia Chem Ind Ltd | 窒化物半導体素子 |
JP2001057461A (ja) * | 1999-06-10 | 2001-02-27 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子 |
JP2002151738A (ja) * | 2000-11-15 | 2002-05-24 | Sharp Corp | 窒化物半導体発光素子、光ピックアップ装置、白色光源装置および表示装置 |
JP2006041491A (ja) | 2004-06-21 | 2006-02-09 | Matsushita Electric Ind Co Ltd | 半導体レーザ素子及びその製造方法 |
JP2006269773A (ja) | 2005-03-24 | 2006-10-05 | Univ Meijo | p型AlGaN半導体層、AlGaN系半導体発光素子、AlGaN系半導体受光素子、及びp型AlGaN半導体層の形成方法 |
JP2005303333A (ja) | 2005-07-11 | 2005-10-27 | Ngk Insulators Ltd | 半導体発光素子の転位密度低減方法 |
WO2007083768A1 (ja) * | 2006-01-20 | 2007-07-26 | Matsushita Electric Industrial Co., Ltd. | 半導体発光素子、iii族窒化物半導体基板、及びその製造方法 |
JP2007305635A (ja) * | 2006-05-09 | 2007-11-22 | Sharp Corp | 窒化物半導体発光素子 |
JP2007335854A (ja) * | 2006-05-17 | 2007-12-27 | Chiba Univ | 半導体光素子 |
JP2008091608A (ja) | 2006-10-02 | 2008-04-17 | Sony Corp | 発光ダイオードおよびその製造方法ならびに光源セルユニットならびに発光ダイオードバックライトならびに発光ダイオード照明装置ならびに発光ダイオードディスプレイならびに電子機器ならびに電子装置およびその製造方法 |
JP2008110910A (ja) * | 2006-10-02 | 2008-05-15 | Ricoh Co Ltd | 製造装置、結晶製造方法、基板製造方法、窒化ガリウム結晶及び窒化ガリウム基板 |
JP2009046368A (ja) * | 2007-08-22 | 2009-03-05 | Hitachi Cable Ltd | 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置 |
Non-Patent Citations (1)
Title |
---|
JPN6013059133; TAKASHI MIYOSHI 他: '510-515nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate' APPLIED PHYSICS EXPRESS No. 2, 200906, 062201 * |
Also Published As
Publication number | Publication date |
---|---|
TWI524612B (zh) | 2016-03-01 |
US20130287055A1 (en) | 2013-10-31 |
KR20120054590A (ko) | 2012-05-30 |
JP6044671B2 (ja) | 2016-12-14 |
WO2011013621A1 (ja) | 2011-02-03 |
JP2015159327A (ja) | 2015-09-03 |
KR101698629B1 (ko) | 2017-01-20 |
CN102474077B (zh) | 2014-08-06 |
US8811443B2 (en) | 2014-08-19 |
EP2461436A1 (en) | 2012-06-06 |
TW201130196A (en) | 2011-09-01 |
CN102474077A (zh) | 2012-05-23 |
US20120189030A1 (en) | 2012-07-26 |
EP2461436B1 (en) | 2020-05-27 |
US8514904B2 (en) | 2013-08-20 |
EP2461436A4 (en) | 2017-01-25 |
JPWO2011013621A1 (ja) | 2013-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6044671B2 (ja) | 窒化物半導体レーザダイオード | |
US6870193B2 (en) | Semiconductor light emitting device and its manufacturing method | |
KR100789028B1 (ko) | 반도체 장치 | |
JP4441563B2 (ja) | 窒化物半導体レーザ素子 | |
WO2002005399A1 (en) | Nitride semiconductor device | |
JP2008109092A (ja) | 半導体発光素子 | |
JPH11298090A (ja) | 窒化物半導体素子 | |
JP2003204122A (ja) | 窒化物半導体素子 | |
US20050082548A1 (en) | III-V group GaN-based semiconductor device and method of manufacturing the same | |
JP4821385B2 (ja) | Iii族窒化物半導体光素子 | |
JP4291960B2 (ja) | 窒化物半導体素子 | |
JP2007214221A (ja) | 窒化物半導体レーザ素子 | |
JP2011138891A (ja) | 窒化物半導体素子 | |
JP2004104088A (ja) | 窒化物半導体素子 | |
JP2002261393A (ja) | 窒化物半導体素子 | |
JP2011205148A (ja) | 半導体装置 | |
JP4955195B2 (ja) | 窒化物半導体素子 | |
JP4254373B2 (ja) | 窒化物半導体素子 | |
JP3644446B2 (ja) | 窒化物半導体素子 | |
JP2001257427A (ja) | 半導体発光装置 | |
JP2000332291A (ja) | 端面発光型発光ダイオード | |
JP2010187034A (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5771145 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |