JP3644446B2 - 窒化物半導体素子 - Google Patents

窒化物半導体素子 Download PDF

Info

Publication number
JP3644446B2
JP3644446B2 JP2002232400A JP2002232400A JP3644446B2 JP 3644446 B2 JP3644446 B2 JP 3644446B2 JP 2002232400 A JP2002232400 A JP 2002232400A JP 2002232400 A JP2002232400 A JP 2002232400A JP 3644446 B2 JP3644446 B2 JP 3644446B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
gan
composition
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002232400A
Other languages
English (en)
Other versions
JP2003060314A (ja
JP2003060314A5 (ja
Inventor
勲 木戸口
信之 大塚
雄三郎 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002232400A priority Critical patent/JP3644446B2/ja
Publication of JP2003060314A publication Critical patent/JP2003060314A/ja
Application granted granted Critical
Publication of JP3644446B2 publication Critical patent/JP3644446B2/ja
Publication of JP2003060314A5 publication Critical patent/JP2003060314A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光情報処理分野などへの応用が期待されている半導体レーザなどのGaN系半導体発光素子および製造方法に関するものである。
【0002】
【従来の技術】
V族元素に窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。中でも窒化ガリウム系化合物半導体(GaN系半導体:AlxGayInzN(0≦x, y, z≦1、x+y+z=1))は研究が盛んに行われ、青色発光ダイオード(LED)、緑色LEDが実用化されている。また、光ディスク装置の大容量化のために、400nm帯に発振波長を有する半導体レーザが熱望されており、GaN系半導体を材料とする半導体レーザが注目され現在では実用レベルに達しつつある。
【0003】
図5はレーザ発振が達成されているGaN系半導体レーザの構造断面図である。サファイア基板501上に有機金属気相成長法(MOVPE法)によりGaNバッファ層502、n-GaN層503、n-AlGaNクラッド層504、n-GaN光ガイド層505、Ga1-xInxN/Ga1-yInyN (0<y<x<1)から成る多重量子井戸(MQW)活性層506、p-GaN第2光ガイド層507、p- AlGaNクラッド層508、p-GaNコンタクト層509が成長される。そしてp-GaNコンタクト層509上に幅3から10ミクロン程度の幅のリッジストライプが形成され、その両側はSiO2511によって埋め込まれる。その後リッジストライプおよびSiO2511上に例えばNi/Auから成るp電極510、また一部をn-GaN層503が露出するまでエッチングした表面に例えばTi/Alから成るn電極512が形成される。本素子においてn電極512を接地し、p電極510に電圧を印可すると、MQW活性層506に向かってp電極510側からホールが、またn電極512側から電子が注入され、前記MQW活性層506内で光学利得を生じ、発振波長400nm帯のレーザ発振を起こす。MQW活性層506の材料であるGa1-xInxN/Ga1-yInyN薄膜の組成や膜厚によって発振波長は変化する。現在室温以上での連続発振が実現されている。
【0004】
このレーザはリッジストライプの幅と高さを制御することによって、水平方向の横モードにおいて基本モードでレーザ発振するような工夫が成される。すなわち、基本横モードと高次モード(1次以上のモード)の光閉じ込め係数に差を設けることで、基本横モードでの発振を可能としている。
【0005】
【発明が解決しようとする課題】
ところが、垂直方向の横モード(垂直横モード)においては課題が残されている。図6は、図5に示す半導体レーザの構成材料の垂直方向の屈折率分布と光の分布を示したものである。活性層および光ガイド層の部分に大きな光強度を持たせるためには、6次のモードにならざるを得ない。これは、図5のレーザに2つのコア(屈折率の高い部分)が存在するためである。すなわち、第1のコアが活性層および光ガイド層で、第2のコアがGaN層(サファイア基板とクラッド層の間の層)である。
【0006】
6次モードでレーザ発振すると、遠視野像(FFP)においても多数の発光点が結像することになる。したがって、レンズ等で集光する場合、単一のスポットには絞れなくなる。これを解決する方法として、(1)AlGaN第一クラッド層(図5におけるn-AlGaNクラッド層504)を厚くする方法、(2)AlGaN第一クラッド層のAl組成を向上させる方法、が考えられる。いずれも活性層および光ガイド層の外部に染み出す光の量を低減するのに効果的である。
【0007】
ところが、上記(1)(2)の方法を試みても、新たな課題が生じてくる。GaN層上に厚い、またはAl組成の高いAlGaN層を堆積する場合、冷却時にクラック(割れ)が生じてしまう。この原因は明らかではないが、サファイア基板、GaN、AlGaNの熱膨張係数の違いに起因しているものと考えられる。クラックの生じたAlGaN上に活性層を堆積すると、均一性の低下、信頼性の低下などの不具合を生じることになる。
【0008】
本発明は上記の事情を鑑みてなされたものであり、垂直方向の横モードの安定な窒化物半導体素子を提供するものである。特に光ディスク用レーザへの応用において効果的である。
【0009】
【課題を解決するための手段】
本発明の窒化物半導体素子は、基板とクラッド層との間に、該クラッド層のAl組成と等しいか、あるいは該クラッド層のAl組成より高いAlを含有するGaN系半導体層を有している。ただし、バッファー層は除く。
【0010】
また、本発明の窒化物半導体素子は、活性層を挟むクラッド層構造を備えており、該クラッド層構造と基板との間に薄膜多層構造を有しており、該薄膜多層構造は高Al組成の層と低Al組成の層から構成されており、該薄膜多層構造の平均Al組成が該クラッド層構造の平均Al組成と等しいか、あるいは該クラッド層構造の平均Al組成より高い平均Al組成を有している。
【0011】
また、活性層と、該活性層を挟むクラッド層構造とを備えた窒化物半導体素子であって、該クラッド層構造と基板との間に薄膜多層構造を有しており、該薄膜多層構造は高Al組成の層と低Al組成の層から構成されており、該薄膜多層構造の平均Al組成が該クラッド層構造の平均Al組成と等しいか、あるいは該クラッド層構造の平均Al組成より高い平均Al組成を有しており、薄膜多層構造を構成している高Al組成の層と低Al組成の層のいずれかに不純物が添加してある。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて詳細に説明する。本発明の製造方法は、窒化物半導体の成長方法はMOVPE法に限定するものではなく、ハイドライド気相成長法(H-VPE法)や分子線エピタキシー法(MBE法)など、窒化物半導体層を成長させるためにこれまで提案されている全ての方法に適用できる。
【0013】
(実施の形態1)
図1は第1の実施例を示すGaN系半導体レーザの構造断面図である。図1に示すレーザの作製方法は以下の通りである。
【0014】
まず、サファイア基板1上に500℃でTMGとNH3とを供給してGaNバッファ層2を堆積する。その後、1020℃まで昇温させ、TMG、SiH4、TMA等を供給してn-Al0.15Ga0.85N層3、n-Al0.07Ga0.93Nクラッド層4、n-GaN光ガイド層5、多重量子井戸(MQW)活性層6、p-GaN光ガイド層7、p-Al0.07Ga0.93Nクラッド層8、p-GaNコンタクト層9が順次積層される。p-GaNコンタクト層9およびp-Al0.07Ga0.93Nクラッド層8は、水平横モードの制御のために、リッジストライプ状に加工されている。ストライプ幅は3〜5ミクロン程度である。p-GaNコンタクト層9上にはp電極10が形成され、リッジの側壁は絶縁膜11で覆われている。絶縁膜11の開口部のp電極10表面と、絶縁膜11の一部には配線電極12が設けられている。また、n-Al0.15Ga0.85N層3の一部が露出するまでエッチングを行った表面には、n電極13が形成されている。
【0015】
本素子においてn電極13とp電極10の間に電圧を印加すると、MQW活性層6に向かってp電極10から正孔(ホール)がn電極13から電子が注入され、活性層で利得を生じ、405nmの波長でレーザ発振を起こす。MQW活性層6は厚さ2.5nmのGa0.8In0.2N井戸層と厚さ6.0nmのGaNバリア層から構成されている。
【0016】
図1に示す構造で特徴的なことは、バッファー層2の直上にn-Al0.15Ga0.85N層3が存在することである。この層の厚さは4ミクロンと十分に厚い。したがって、垂直方向も十分に光を閉じ込めることができ、安定な垂直横モードでレーザ発振を生じることができる。ただし、n-Al0.07Ga0.93Nクラッド層4とn-Al0.15Ga0.85N層3のトータルの厚さが1ミクロン以上であれば、安定な垂直横モードを得ることが可能となる。
【0017】
図1においてn-AlGaN層3のAl組成は0.13としたが、クラッド層4のAl組成と同じか、高ければ良い。すなわち、クラッド層4の屈折率と同じか、小さい屈折率を有する材料を選択することが垂直横モードの安定化のためには重要である。
【0018】
この構造でn-AlGaN層3を設けた理由は、垂直横モードの安定化のためだけではない。この層の存在でクラックの発生を大きく抑制できるからである。
【0019】
図1において、n-Al0.07Ga0.93Nクラッド層4と基板との間には、バッファー層を除いて、Al組成の低い層(従来の図5に示されるn-GaN層503)は存在していない。基板(またはバッファー層)から活性層に向けて、n-Al0.15Ga0.85N層3、n-Al0.07Ga0.93Nクラッド層4、n-GaN光ガイド層5と、Al組成が段階的に(単調に)減少している。このような構成とすることで、従来生じていたクラックが発生しないことを筆者らは実験的に見出した。クラック発生を抑制できた原因は、明確にわかっているわけではないが、熱膨張係数の違いに起因する応力の加わる方向が一定となるためと考えられる。冷却時にクラックが生じないことから、活性層を高品質とすることができ、信頼性の高いデバイスを得ることができる。
【0020】
(実施の形態2)
実施の形態1では、垂直横モードの安定化およびクラック抑制のために、単一のAlGaN層3を付加した。ここでは、基板1から活性層へ向けて、段階的にあるいは線形的にAl組成が減少する場合について述べる。
【0021】
図2に示す構造では、サファイア基板1上に、GaNバッファ層201、n-Al0.2Ga0.8N層202、n-Al0.16Ga0.84N層203、n-Al0.12Ga0.88N層204、n-Al0.1Ga0.9N層205、n-Al0.07Ga0.93Nクラッド層4が積層されている。クラッド層4上の構造は図1の構造と同様である。
【0022】
このように多段階でAl組成を減少させることで、図1の構造よりもさらにクラック発生を抑制でき、歩留まりを向上させることができる。
【0023】
また、図2の構造はAl組成が図3(a)に示すように階段状に減少しているが、図3(b)のように、バッファー層から活性層に向けて線形的に単調減少させても構わない。この場合、Alを含有する層全体がクラッド層を兼ねている。あくまでAlを含有する層とバッファー層との間にGaN層がないことが、垂直横モードの安定化とクラック抑制のために必要となる。
【0024】
(実施の形態3)
実施の形態1および実施の形態2では、クラッド層4とバッファー層との間のAlを含有する層が厚膜の場合について説明した。ここでは、クラック抑制のために特殊な薄膜多層構造を用いる場合について説明する。ここで言う“薄膜”とは、光がその膜の屈折率の変化の影響を大きく受けないくらいの厚さのことを言い、λ/(4n)以下の膜厚を有する層を言う。ここで、λはレーザの発振波長、nは層の屈折率である。
【0025】
図4はバッファ層とn-GaN光ガイド層の間に設けた層のAl組成分布を示したものである。図4(a)では、n-AlGaNクラッド層にAl組成8%(一定)の層を用いており、クラッド層とバッファー層の間には、特殊な薄膜多層構造が設けられている。この薄膜多層構造は、高Al組成のAlGaN(Al組成=18%)とGaN層から構成されており、膜厚は5nmである。この薄膜多層構造の平均Al組成は9%であり、n-AlGaNクラッド層のAl組成よりも高くしてある。
【0026】
薄膜多層構造を構成する層の膜厚は5nmと非常に薄いために、光はその屈折率変化の影響を受けることはない。したがって、光は薄膜多層構造の平均的な屈折率によって閉じ込められることになる。薄膜多層構造のトータルの厚さは1ミクロン程度であり、安定な垂直横モードでレーザ発振することができる。効果的に光を閉じ込めるために、AlGaN層のAl組成は0.1以上が望ましい。
【0027】
実施の形態1および実施の形態2では、Alを含有する層とバッファー層との間にGaN層がないことがクラック抑制のために必要となると説明した。図4においては、クラッド層の下部にGaN層(5nm)が存在していることになる。しかしながら、非常に薄くし、また多層構造とすることで、冷却時におけるクラック発生を抑制できることが実験的にわかっている。GaN層を挟んでいるAl0.18Ga0.82N層が熱収縮による歪みを緩和しているためと思われる。すなわち、歪緩和層として機能している。
【0028】
図4(b)では、クラッド層も薄膜多層構造(図中では第二の薄膜多層構造と記載)となっている。ここで、クラッド層の平均Al組成が、クラッド層下部の第一の薄膜多層構造の平均Al組成よりも低くしてあり、このことがクラック抑制には大切である。
【0029】
図4では、高Al組成の層としてAl0.18Ga0.82Nを低Al組成の層としてGaNを用いて説明したが、Al組成に差があればよく、いずれの層もAlを含有しても構わない。
【0030】
さらにクラックを抑制するためには、不純物のドーピング量を低減させることも効果的である。
【0031】
アンドープAlxGa1-xN(0≦x≦1)に比べn型AlxGa1-xNの方がクラックが発生しやすい傾向にある。図4において、薄膜多層構造を構成する層のいずれか一方に不純物を添加することで、よりクラック発生を抑えることができる。特に、バンドギャップの大きなAlGaN層にドーピングする方が、多数キャリア(電子)の活性層への注入を妨げることがないため、望ましい。n型不純物としては、SiやSeが望ましい。
【0032】
本発明では、GaN系半導体レーザを例に取って説明したが、発光ダイオードや電子デバイス等の活性領域を成長させる際にも本発明の効果は大きいことは言うまでもない。発光ダイオードではクラックの発生を抑制でき、高品質の活性層が得られるために、発光効率を向上させることができる。また、電子デバイスではキャリアの移動度が大きく向上する。
【0033】
また、実施の形態1〜実施の形態3まで個々に説明したが、これらを組み合わせても本発明の効果は大きいことは言うまでもない。例えば、図4の薄膜多層構造のAl組成を活性層へ向かって徐々に減少させてもよい。
【0034】
【発明の効果】
以上説明したように、本発明のGaN系半導体素子は、基板とクラッド層との間に、該クラッド層のAl組成と等しいか、あるいは該クラッド層のAl組成より高いAlを含有するGaN系半導体層(ただし、バッファー層は除く)を有することにより、クラックを抑制することが可能となって該クラッド層上に高品質の活性層が積層でき、同時に垂直横モードを安定化させることが可能となり、結果として信頼性が高く、かつ光ディスクに用いる際に不具合の生じないデバイスを得ることができる。
【0035】
また、本発明のGaN系半導体素子は、活性層を挟むクラッド層構造を備えており、該クラッド層構造と基板との間に薄膜多層構造を有しており、該薄膜多層構造は高Al組成の層と低Al組成の層から構成されており、該薄膜多層構造の平均Al組成が該クラッド層構造の平均Al組成と等しいか、あるいは該クラッド層構造の平均Al組成より高い平均Al組成を有しており、そのために、クラック抑制により高品質の活性層が積層でき、同時に垂直横モードを安定化させることが可能となり、結果として信頼性が高く、かつ光ディスクに用いる際に不具合の生じないデバイスを得ることができる。
【0036】
また、薄膜多層構造を構成している高Al組成の層と低Al組成の層のいずれかに不純物が添加してあることで、さらにクラック発生を防止でき、高品質の活性層を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示すGaN系半導体レーザの素子断面図
【図2】本発明の第2の実施の形態を示すGaN系半導体レーザの素子断面図
【図3】AlGaN層のAl組成のプロファイルを示す図
【図4】AlGaN層のAl組成のプロファイルを示す図
【図5】従来のGaN系量子井戸半導体レーザの素子断面図
【図6】従来の課題を説明するための図で、半導体レーザの構成材料の屈折率分布と光の分布を示した図
【図7】従来の課題を説明するための図
【符号の説明】
1 サファイア基板
2 バッファー層
3 n-Al0.15Ga0.85N層
4 n-Al0.07Ga0.93Nクラッド層
5 n-GaN光ガイド層
6 MQW活性層
7 p-GaN光ガイド層
8 p-Al0.07Ga0.93Nクラッド層
9 p-GaNコンタクト層
10 p電極
11 絶縁膜
12 配線電極
13 n電極
201 GaNバッファー層
202 n-Al0.2Ga0.8N層
203 n-Al0.16Ga0.84N層
204 n-Al0.12Ga0.88N層
205 n-Al0.1Ga0.9N層
301 サファイア基板
302 バッファー層
303 n-GaN層
304 n-AlGaNクラッド層
305 n-GaN光ガイド層
306 MQW活性層
307 p-GaN光ガイド層
308 p-AlGaNクラッド層
309 p-GaNコンタクト層
310 p電極
311 SiO2
312 n電極

Claims (7)

  1. 直上にGaN層及び各々Alを含有する複数層の窒化物半導体層をこの順に積層して形成している基板と、前記複数層の窒化物半導体層の上方に配置されている活性層と、を備え、
    前記複数層の窒化物半導体層は、前記GaN層の直上から積層されており、各々の窒化物半導体層のAlの組成比は、前記基板から前記活性層の方向に向かうに従って減少している窒化物半導体発光素子。
  2. 前記各々の窒化物半導体層のAlの組成比は、前記基板から前記活性層の方向に向かうに従って段階的に減少している請求項1に記載の窒化物半導体発光素子。
  3. 前記各々の窒化物半導体層のAlの組成比は、前記基板から前記活性層の方向に向かうに従って線形的に減少している請求項1に記載の窒化物半導体発光素子。
  4. 前記複数層の窒化物半導体層は、2層である請求項1から請求項3いずれかに記載の窒化物半導発光素子。
  5. 前記複数層の窒化物半導体層は、3層である請求項1から請求項3いずれかに記載の窒化物半導発光素子。
  6. 前記窒化物半導体層は、A l GaN層である請求項1から請求項5いずれかに記載の窒化物半導体発光素子。
  7. 前記活性層の上方に、リッジストライプ状の窒化物半導体層を有する請求項1から請求項6いずれかに記載の窒化物半導体発光素子。
JP2002232400A 2002-08-09 2002-08-09 窒化物半導体素子 Expired - Fee Related JP3644446B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232400A JP3644446B2 (ja) 2002-08-09 2002-08-09 窒化物半導体素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232400A JP3644446B2 (ja) 2002-08-09 2002-08-09 窒化物半導体素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07738699A Division JP3454181B2 (ja) 1999-03-23 1999-03-23 窒化物半導体素子

Publications (3)

Publication Number Publication Date
JP2003060314A JP2003060314A (ja) 2003-02-28
JP3644446B2 true JP3644446B2 (ja) 2005-04-27
JP2003060314A5 JP2003060314A5 (ja) 2005-06-23

Family

ID=19196306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232400A Expired - Fee Related JP3644446B2 (ja) 2002-08-09 2002-08-09 窒化物半導体素子

Country Status (1)

Country Link
JP (1) JP3644446B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482490B2 (ja) * 2005-06-13 2010-06-16 古河機械金属株式会社 Iii族窒化物半導体基板およびiii族窒化物半導体基板の製造方法
JP5151139B2 (ja) * 2006-12-19 2013-02-27 住友電気工業株式会社 半導体発光素子
EP2741381B1 (en) 2012-12-06 2020-05-06 Nichia Corporation Semiconductor laser element
WO2016199363A1 (ja) * 2015-06-08 2016-12-15 パナソニックIpマネジメント株式会社 発光素子

Also Published As

Publication number Publication date
JP2003060314A (ja) 2003-02-28

Similar Documents

Publication Publication Date Title
KR100803100B1 (ko) 질화물 반도체 소자
JP3438648B2 (ja) 窒化物半導体素子
JP6044671B2 (ja) 窒化物半導体レーザダイオード
JP4246242B2 (ja) 半導体発光素子
JP3653169B2 (ja) 窒化ガリウム系半導体レーザ素子
JP4204982B2 (ja) 半導体レーザ素子
US20040041156A1 (en) Nitride semiconductor light emitting element and production thereof
JP4441563B2 (ja) 窒化物半導体レーザ素子
JP5507792B2 (ja) Iii族窒化物半導体光素子
JP2006135221A (ja) 半導体発光素子
JP2003204122A (ja) 窒化物半導体素子
JP4291960B2 (ja) 窒化物半導体素子
JP2002374035A (ja) 半導体レーザ素子及びその製造方法
JP2002314203A (ja) 3族窒化物半導体レーザ及びその製造方法
JP2004063537A (ja) 半導体発光素子およびその製造方法ならびに半導体装置およびその製造方法
JP3454181B2 (ja) 窒化物半導体素子
JP3644446B2 (ja) 窒化物半導体素子
JP4936598B2 (ja) 窒化物半導体発光素子とその製法
JP2003243772A (ja) 半導体発光素子およびその製造方法
JP2009038408A (ja) 半導体発光素子
JP4146881B2 (ja) 窒化物半導体発光素子およびエピウエハとその製造方法
JP2002261393A (ja) 窒化物半導体素子
JPH1117277A (ja) 窒化物系半導体レーザ装置およびその製造方法
JP2002252427A (ja) Iii族窒化物半導体素子およびiii族窒化物半導体基板
JP5074863B2 (ja) 窒化物半導体発光素子およびエピウエハとその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040804

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees