JP5641537B2 - シリコンウェーハの熱処理方法 - Google Patents
シリコンウェーハの熱処理方法 Download PDFInfo
- Publication number
- JP5641537B2 JP5641537B2 JP2011062577A JP2011062577A JP5641537B2 JP 5641537 B2 JP5641537 B2 JP 5641537B2 JP 2011062577 A JP2011062577 A JP 2011062577A JP 2011062577 A JP2011062577 A JP 2011062577A JP 5641537 B2 JP5641537 B2 JP 5641537B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- wafer
- fluorine
- heat treatment
- gas atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 71
- 238000010438 heat treatment Methods 0.000 title claims description 56
- 229910052710 silicon Inorganic materials 0.000 title claims description 51
- 239000010703 silicon Substances 0.000 title claims description 50
- 238000000034 method Methods 0.000 title description 34
- 239000007789 gas Substances 0.000 claims description 72
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 47
- 239000011737 fluorine Substances 0.000 claims description 47
- 229910052731 fluorine Inorganic materials 0.000 claims description 47
- 239000001257 hydrogen Substances 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 17
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 105
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000011261 inert gas Substances 0.000 description 22
- 239000002344 surface layer Substances 0.000 description 21
- 230000003746 surface roughness Effects 0.000 description 20
- 230000007547 defect Effects 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 239000013078 crystal Substances 0.000 description 12
- 239000011800 void material Substances 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
更に、高温下(例えば、1000℃以上)で、酸化性ガスを供給して熱処理を行う場合には、酸化性ガス中の酸素によってウェーハの研磨面がエッチングされるため、ウェーハの研磨面の表面粗さが悪化するという問題もある。
しかしながら、ウェーハの表層部に存在するボイド欠陥をRTPで消滅させるためには、前記不活性ガス雰囲気にて、最低でも1000℃以上の高温熱処理が必要であり、このような高温下では、シリコン原子に終端された水素原子の結合が切れやすくなり、ウェーハ表面にシリコン原子が露出しやすくなる。このように露出したシリコン原子は不安定であり、他の原子と結合しやすい状態となっている。
以上の問題は、RTPにおける熱処理温度が高くなるほどより顕著となるものであるが、その一方で熱処理温度が高くなるほど、ウェーハの表層部のボイド欠陥の消滅力が高くなるという利点を有している。
本発明に係るシリコンウェーハの熱処理方法は、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハの前記表面のシリコン原子を水素で終端させる工程と、前記水素で終端させたシリコンウェーハの前記表面のシリコン原子をフッ素で終端させる工程と、前記水素及びフッ素で終端させたシリコンウェーハを、不活性ガス雰囲気中、1300℃以上1400℃以下の温度範囲に急速昇温し保持した後、前記温度範囲で前記不活性ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備える。
そのため、雰囲気中に他の反応性ガス(窒素等)が存在しても、シリコン原子と当該反応性ガスとの結合を抑制することができるため、ウェーハの研磨面の表面粗さの悪化を抑制することができる。
加えて、酸化性ガス雰囲気によりRTPを行うため、表層部の酸素濃度も向上させることができる。
前記温度範囲が1300℃未満である場合には、ボイド欠陥の消滅力が低下するという問題がある。前記温度範囲が1400℃を超える場合には、当該温度範囲がシリコンの融点に近くなるため、シリコンウェーハが軟化又は融解する可能性があり好ましくない。
前記温度範囲は、前記RTPを行うために使用するRTP装置(後述)としての装置寿命の観点から1300℃以上1380℃以下であることがより好ましい。
前記酸化性ガスは、酸素ガス(O2)又は酸素ガス(O2)と不活性ガス(好ましくはアルゴンガス(Ar))との混合ガスが好適に用いられる。
CZ法によるシリコン単結晶インゴットの育成は周知の方法で行う。
具体的には、シリコン単結晶インゴットは、石英ルツボに充填したシリコン原料を加熱してシリコン融液とし、該シリコン融液の液面に種結晶を接触させて、種結晶と石英ルツボを回転させながら種結晶を引上げて、種結晶にネック部、クラウン部及び直胴部を結晶成長させて、その後、シリコン融液から切り離すことで育成することができる。
具体的には、シリコン単結晶インゴットの直胴部を内周刃又はワイヤソーによりウェーハ状に切り出し、外周部の面取り、ラッピング、エッチング、鏡面研磨等の加工を行う。
このような構成とすることで、効率よく、シリコンウェーハの表面のシリコン原子に水素及びフッ素を終端させることができる。
図1に示すRTP装置10は、ウェーハWを収容して熱処理を施すための反応室20と、反応室20内に設けられ、ウェーハWを保持するウェーハ保持部30と、ウェーハWを加熱する加熱部40と、を備える。ウェーハWがウェーハ保持部30に保持された状態では、反応室20の内壁とウェーハWの表面(デバイス形成面)W1側とで囲まれた空間である第1空間20aと、反応室20の内壁と表面W1側に対向するウェーハWの裏面W2側とで囲まれた空間である第2空間20bとが形成される。
前記RTPに用いられる熱処理シーケンスは、図2に示すように、温度T0(例えば、500℃)で保持された図1に示すようなRTP装置10の反応室20内に少なくとも半導体デバイスが形成される表面W1側が鏡面研磨され、更に、前記表面W1のシリコン原子を水素及びフッ素で終端させたウェーハWを設置し、前記第1空間20a及び第2空間20b内に不活性ガスを供給する。
なお、温度T0、T1は、図1に示すようなRTP装置10の反応室20内にウェーハWを設置した場合において、ウェーハ保持部30の下方に設置された図示しない放射温度計によって測定されたウェーハWの表面温度(放射温度計がウェーハWの径方向に複数配置されている場合はその平均温度)である。
この好ましい態様について、次に、説明する。
このような方法とすることで、前記フッ素を終端させるための熱処理工程を一つ削減することができるため、生産性の向上及びコストダウンを図ることができる。
図3に示す熱処理シーケンスは、温度T0(例えば、500℃)で保持された図1に示すようなRTP装置10の反応室20内に少なくとも半導体デバイスが形成される表面W1側が鏡面研磨され、更に、前記表面W1のシリコン原子を水素で終端させたウェーハWを設置し、第1空間20a及び第2空間20b内にフッ素系ガスを供給する。
次に、温度T0(℃)から900℃以上1250℃以下(温度TM(℃))の第1の温度範囲まで、昇温速度ΔTu(℃/秒)で急速昇温することで、フッ素を終端させる(フッ素終端工程)。その後、連続して、前記第1の温度範囲(温度TM(℃))で前記フッ素系ガス雰囲気を不活性ガス雰囲気に切り替えて、前記第1空間20a及び前記第2空間20b内に供給する。
次に、前記第1の温度範囲(温度TM(℃))から1300℃以上1400℃以下の第2の温度範囲(温度T1(℃))まで、昇温速度ΔTu(℃/秒)で急速昇温し、所定時間t1(秒)保持した後、第2の温度範囲(温度T1(℃))で、前記不活性ガスを酸化性ガスに切り替えて、前記第1空間20a及び第2空間20b内に供給し、更に、所定時間t2(秒)保持した後、例えば、温度T0(℃)まで、降温速度ΔTd(℃/秒)で急速降温する。
図4に示すように、フッ素系ガス雰囲気から不活性ガス雰囲気への切替えは、前記第1の温度範囲(温度TM(℃))で一定に保持した状態で行うことが好ましい。
すなわち、前記表面W1のシリコン原子を水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲(温度TM(℃))まで昇温速度ΔTu1(℃/秒)で急速昇温し、前記第1の温度範囲(温度TM(℃))で所定時間(tM1(秒))一定に保持した後、前記第1の温度範囲(温度TM(℃))で前記フッ素系ガス雰囲気を不活性ガス雰囲気に切り替えて、更に、所定時間(tM2(秒))一定に保持し、その後、昇温速度ΔTu2(℃/秒)で1300℃以上1400℃以下の第2の温度範囲(温度T1(℃))まで急速昇温して、前記RTPを行う事が好ましい。
このような保持時間とすることで、生産性の低下を抑制しつつ、確実にフッ素を終端させることができ、かつ、フッ素系ガスによる表面粗さの悪化も抑制することができる。
このような昇温速度ΔTu、ΔTu1、ΔTu2とすることで、前記RTPにおいて、生産性が低下するのを抑制しつつ、急速昇温時の急激な温度変化による接触痕やスリップの発生を抑制することができる。
このような降温速度ΔTdとすることで、前記RTPにおいて、生産性が低下するのを抑制しつつ、急速降温時の急激な温度変化による接触痕やスリップの発生を抑制することができる。
このような保持時間t1とすることで、生産性が低下するのを抑制しつつ、効率よくボイド欠陥の消滅を図ることができる。
このような保持時間t2とすることで、生産性が低下するのを抑制しつつ、効率よくウェーハの表層部に酸素を内方拡散させることができる。
(実施例1)
CZ法によりv/G(v:引上速度、G:単結晶内の引上軸方向の温度勾配)を制御して空孔型点欠陥が存在する領域を有するシリコン単結晶インゴットを製造し、該領域から切り出して得られた両面が鏡面研磨されたシリコンウェーハ(直径300mm、厚さ775μm、酸素濃度1.2〜1.3×1018atoms/cm3)に対して、フッ素濃度5%のフッ酸溶液にウェーハ全体を浸漬させて5分間洗浄を行った後(水素終端処理)、ウェーハを純水洗浄して、スピン乾燥により乾燥させた。
具体的には、500℃で保持された反応室内に前記乾燥させたウェーハを投入し、雰囲気として、四フッ化メタンガス(CF4)を供給し、昇温速度75℃/秒で、1000℃(第1の温度範囲)まで急速昇温し、その後、1000℃で雰囲気を四フッ化メタンガス(CF4)からアルゴンガス(Ar)に切り替えた後に、昇温速度75℃/秒で1300℃(第2の温度範囲)まで急速昇温して、1300℃で15秒間保持した後に、1300℃で、アルゴンガス(Ar)から酸素ガス(O2)に切り替えて、更に、15秒間保持し、その後、降温速度90℃/秒で500℃まで急速降温させた。
前記RTPにおける第2の温度範囲を1350℃として、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
図4に示すような熱処理シーケンスを用いてRTPを行って、その他は、実施例1と同様な条件にて、アニールウェーハを作製した。
具体的には、500℃で保持された反応室内に前記乾燥させたウェーハを投入し、雰囲気として、四フッ化メタンガス(CF4)を供給し、昇温速度75℃/秒で、1000℃(第1の温度範囲)まで急速昇温し、その後、1000℃で5秒間一定に保持した後、雰囲気を四フッ化メタンガス(CF4)からアルゴンガス(Ar)に切り替えて、更に、1000℃を5秒間一定に保持し、その後、昇温速度75℃/秒で1300℃(第2の温度範囲)まで急速昇温して、1300℃で15秒間保持した後に、1300℃で、アルゴンガス(Ar)から酸素ガス(O2)に切り替えて、更に、15秒間保持し、その後、降温速度90℃/秒で500℃まで急速降温させた。
前記RTPにおける第2の温度範囲を1350℃として、その他は実施例3と同様な条件にて、アニールウェーハを作製した。
前記フッ素終端処理を行わないで前記水素終端処理を行ったウェーハに対してRTPを行って、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
前記RTPにおける第2の温度範囲を1200℃として、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
実施例1において、不活性ガス雰囲気中、1300℃で15秒間保持した後に、降温速度90℃/秒で、800℃まで急速降温し、800℃でアルゴンガスから酸素ガスに切り替えて、昇温速度75℃/秒で、1300℃まで急速昇温し、1300℃で15秒間更に保持して、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
また、半導体デバイス形成面における凹形状のピットの発生状況を外観目視にて評価した。
更に、ウェーハ表面から深さ5μmまでの表層部における欠陥密度に関し、LSTDスキャナ(Laser Scattering Topography Defect
Scanner)にて波長680nmで評価した。
また、参考例としてフッ素終端処理後RTP前のウェーハの半導体デバイス形成面における表面粗さRMS(測定範囲:3μm×3μm)もAFMを用いて評価した。
本試験における評価結果を表1に示す。
また、実施例1から4は、800℃まで急速降温して切り替える比較例3と表面粗さ及び欠陥密度とも同レベルであることが認められる。
前記フッ素終端処理における第1の温度範囲を変化させて、その他は、実施例1と同様な条件にて、アニールウェーハを作製した。
得られたアニールウェーハの半導体デバイス形成面における表面粗さ(RMS)及び凹形状のピットの発生状況を実施例1と同様な方法で評価した。
本試験における試験条件及び評価結果を表2に示す。
前記RTPにおける第2の温度範囲を1350℃として、その他は温度変更試験1と同様な条件にて、アニールウェーハを作製した。
得られたアニールウェーハの半導体デバイス形成面における表面粗さ(RMS)及び凹形状のピットの発生状況を実施例1と同様な方法で評価した。
本試験における試験条件及び評価結果を表3に示す。
20 反応室
30 ウェーハ保持部
40 加熱部
Claims (1)
- 少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハをフッ化水素系溶液又は過酸化水素系溶液により、前記表面のシリコン原子を水素で終端させる工程と、
前記水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲まで急速昇温し、前記表面のシリコン原子をフッ素で終端させる工程と、
前記フッ素で終端させる工程に連続して、前記第1の温度範囲で前記フッ素系ガス雰囲気を希ガス雰囲気に切り替えて、1300℃以上1400℃以下の第2の温度範囲まで急速昇温し保持した後、前記第2の温度範囲で前記希ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備えることを特徴とするシリコンウェーハの熱処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062577A JP5641537B2 (ja) | 2011-03-22 | 2011-03-22 | シリコンウェーハの熱処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011062577A JP5641537B2 (ja) | 2011-03-22 | 2011-03-22 | シリコンウェーハの熱処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012199390A JP2012199390A (ja) | 2012-10-18 |
JP5641537B2 true JP5641537B2 (ja) | 2014-12-17 |
Family
ID=47181327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011062577A Active JP5641537B2 (ja) | 2011-03-22 | 2011-03-22 | シリコンウェーハの熱処理方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5641537B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5641538B2 (ja) * | 2011-03-30 | 2014-12-17 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの熱処理方法 |
DE102014208815B4 (de) * | 2014-05-09 | 2018-06-21 | Siltronic Ag | Verfahren zur Herstellung einer Halbleiterscheibe aus Silizium |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0758788B2 (ja) * | 1988-05-10 | 1995-06-21 | 日本電気株式会社 | 電界効果トランジスタの製造方法 |
JPH0955379A (ja) * | 1995-08-14 | 1997-02-25 | Sony Corp | 半導体基板の処理方法及び半導体装置の製造方法 |
JPH11186255A (ja) * | 1996-11-29 | 1999-07-09 | Sony Corp | シリコン酸化膜の形成方法 |
JP3757566B2 (ja) * | 1997-08-21 | 2006-03-22 | ソニー株式会社 | シリコン酸化膜の形成方法及び酸化膜成膜装置 |
JP3714509B2 (ja) * | 1997-09-29 | 2005-11-09 | 株式会社Sumco | 薄膜エピタキシャルウェーハの製造方法 |
JP3478141B2 (ja) * | 1998-09-14 | 2003-12-15 | 信越半導体株式会社 | シリコンウエーハの熱処理方法及びシリコンウエーハ |
JP2008300779A (ja) * | 2007-06-04 | 2008-12-11 | Elpida Memory Inc | 半導体装置及びその製造方法 |
JP2010040588A (ja) * | 2008-07-31 | 2010-02-18 | Covalent Materials Corp | シリコンウェーハ |
JP5561918B2 (ja) * | 2008-07-31 | 2014-07-30 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの製造方法 |
-
2011
- 2011-03-22 JP JP2011062577A patent/JP5641537B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012199390A (ja) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101638806B (zh) | 硅晶片的制造方法 | |
JP5542383B2 (ja) | シリコンウェーハの熱処理方法 | |
JP2015032810A (ja) | シリコンウェーハ及びその製造方法 | |
JP5912368B2 (ja) | シリコンウェーハの熱処理方法及びシリコンウェーハ | |
JP2011171377A (ja) | シリコンウェーハの製造方法 | |
JP5641537B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5590644B2 (ja) | シリコンウェーハの熱処理方法 | |
KR101823229B1 (ko) | 실리콘 웨이퍼의 제조 방법 | |
JP5427636B2 (ja) | シリコンウェーハの熱処理方法 | |
KR101311003B1 (ko) | 실리콘 웨이퍼의 열처리 방법 및 실리콘 웨이퍼 | |
JP5583070B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5641538B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5512137B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5641533B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5583053B2 (ja) | シリコンウェーハの熱処理方法 | |
JP2011233556A (ja) | シリコンウェーハの熱処理方法 | |
JP5455449B2 (ja) | シリコンウェーハの熱処理方法 | |
JP5441261B2 (ja) | シリコンウェーハの熱処理方法 | |
JP2004221435A (ja) | 半導体ウエーハの製造方法及び半導体ウエーハ | |
JP2010199411A (ja) | シリコンウェーハの熱処理方法 | |
JP2019192831A (ja) | シリコンウェーハの熱処理方法 | |
JP2011009631A (ja) | シリコンウェーハの熱処理方法 | |
JP2014168090A (ja) | シリコンウェーハの製造方法 | |
JP2011035129A (ja) | シリコンウェーハ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121206 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130205 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140815 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141022 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5641537 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |