JP5641537B2 - シリコンウェーハの熱処理方法 - Google Patents

シリコンウェーハの熱処理方法 Download PDF

Info

Publication number
JP5641537B2
JP5641537B2 JP2011062577A JP2011062577A JP5641537B2 JP 5641537 B2 JP5641537 B2 JP 5641537B2 JP 2011062577 A JP2011062577 A JP 2011062577A JP 2011062577 A JP2011062577 A JP 2011062577A JP 5641537 B2 JP5641537 B2 JP 5641537B2
Authority
JP
Japan
Prior art keywords
temperature
wafer
fluorine
heat treatment
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062577A
Other languages
English (en)
Other versions
JP2012199390A (ja
Inventor
剛士 仙田
剛士 仙田
荒木 浩司
浩司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2011062577A priority Critical patent/JP5641537B2/ja
Publication of JP2012199390A publication Critical patent/JP2012199390A/ja
Application granted granted Critical
Publication of JP5641537B2 publication Critical patent/JP5641537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコンウェーハ(以下、単にウェーハともいう)に対して熱処理を行うシリコンウェーハの熱処理方法に関する。
半導体デバイス形成用基板として用いられるシリコンウェーハは、デバイス活性領域となるウェーハの表面近傍(以下、表層部という)において、COP(Crystal Originated Particle)やLSTD(Laser Scattering Tomography Defects)等のボイド欠陥を低減させて無欠陥とする努力が求められている。
近年、このようなシリコンウェーハを高生産性で製造する方法として、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハ(以下、前記鏡面研磨された表面を研磨面ともいう)に、急速昇降温熱処理(Rapid Thermal Process:以下、単にRTPともいう)を行う技術が知られている。
このような技術として、特許文献1には、主としてアルゴンまたはヘリウムである酸素含有ガス雰囲気(本願発明でいう不活性ガス雰囲気)中で約1175℃を超える温度において、約5000ppma未満の酸素分圧下、60秒未満の時間、ウェーハを加熱する熱処理方法が開示されている。
しかしながら、特許文献1に記載の方法は、アルゴンまたはヘリウム等の不活性ガス雰囲気でRTPを行うため、ウェーハの表層部のボイド欠陥を大きく低減することが可能であるが、このような不活性ガス雰囲気で熱処理を行う場合には、ウェーハの表層部から酸素が外方拡散されるため、当該表層部の酸素濃度が低下し、後の半導体デバイス形成工程における熱処理プロセスにおいて酸素のピンニング力が低下し、スリップ転位が発生しやすいという問題がある。これは、半導体デバイス形成工程における熱処理プロセスが高温であればあるほど高い頻度で発生する問題である。
このような問題に対し、特許文献2には、酸化性ガス雰囲気で熱処理を行うことで半導体ウェーハの表層部に酸素を内方拡散させて酸素を導入し、これを冷却して固化させることで、表層部が高酸素濃度領域部となる表層高強度化方法が開示されている。
しかしながら、雰囲気として酸化性ガスを用いてRTPを行う場合には、ウェーハの表層部に酸素が内方拡散し、表層部の酸素濃度が高くなる。そのため、表層部に存在するボイド欠陥の内壁酸化膜が溶解されにくくなるため、表層部においてボイド欠陥を消滅させることが難しくなる問題がある。
更に、高温下(例えば、1000℃以上)で、酸化性ガスを供給して熱処理を行う場合には、酸化性ガス中の酸素によってウェーハの研磨面がエッチングされるため、ウェーハの研磨面の表面粗さが悪化するという問題もある。
このような問題に対し、特許文献3には、希ガス雰囲気中、第1の昇温速度で1300℃以上シリコンの融点以下の第1の温度まで急速昇温し、前記第1の温度を保持した後、第1の降温速度で400℃以上800℃以下の第2の温度まで急速降温し、続いて、前記希ガス雰囲気から酸素ガスを20vol.%以上100vol.%以下含有する酸素含有雰囲気に切り替えた後、第2の昇温速度で前記第2の温度から1250℃以上シリコンの融点以下の第3の温度まで急速昇温し、前記第3の温度で保持した後、第2の降温速度で前記第3の温度から急速降温する熱処理方法が開示されている。
また、特許文献4には、ウェーハ表面上の自然酸化膜をフッ酸処理により除去した後、RTP装置を用いて、水素100%あるいは水素を10%以上含有するアルゴンの混合ガス雰囲気下で熱処理することで、ウェーハ表面のマイクロラフネスを小さくし、ウェーハ表面に存在するボイド欠陥をも除去できる熱処理方法が開示されている。
特表2001−509319号公報 特開2010−129918号公報 国際公開第2011/013280号パンフレット 特開2000−91342号公報
しかしながら特許文献3に記載の方法は、前記研磨面の表面粗さの悪化を抑制するために、希ガス雰囲気から酸素含有雰囲気に切り替える際、400℃以上800℃以下まで急速降温し、雰囲気を切り替えた後、更に1250℃以上シリコンの融点以下まで急速昇温しなければならず、生産性が低下すると共に、一回のRTPにおいて急速昇降温を実質2回行うことになるため、当該RTPにおいて、スリップが発生しやすいという問題もある。
また、特許文献4に記載の方法は、フッ酸処理によってウェーハ表面のシリコン原子に水素が終端されるため、前記表面に自然酸化膜が形成されにくい状態となる。従って、前記RTPを行ってもウェーハ表面における表面粗さの悪化を抑制することができる。
しかしながら、ウェーハの表層部に存在するボイド欠陥をRTPで消滅させるためには、前記不活性ガス雰囲気にて、最低でも1000℃以上の高温熱処理が必要であり、このような高温下では、シリコン原子に終端された水素原子の結合が切れやすくなり、ウェーハ表面にシリコン原子が露出しやすくなる。このように露出したシリコン原子は不安定であり、他の原子と結合しやすい状態となっている。
そのため、例えば、前記雰囲気中に他の反応性ガス(窒素等)が存在すると、これが露出したシリコン原子と反応して結合し、更には、その結合が前記雰囲気によってエッチングされるという現象が繰り返し発生するため、ウェーハの表面形状が変化し、表面粗さが悪化するという問題がある。
以上の問題は、RTPにおける熱処理温度が高くなるほどより顕著となるものであるが、その一方で熱処理温度が高くなるほど、ウェーハの表層部のボイド欠陥の消滅力が高くなるという利点を有している。
本発明は、上述の事情に鑑みてなされたものであり、ウェーハの表層部のボイド欠陥を大きく低減することができ、表層部の酸素濃度を向上させることができ、研磨面の表面粗さの悪化も抑制でき、かつ、RTPにおける生産性を向上させることができるシリコンウェーハの熱処理方法を提供することを目的とする。
本発明に係るシリコンウェーハの熱処理方法は、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハをフッ化水素系溶液又は過酸化水素系溶液により、前記表面のシリコン原子を水素で終端させる工程と、前記水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲まで急速昇温し、前記表面のシリコン原子をフッ素で終端させる工程と、前記フッ素で終端させる工程に連続して、前記第1の温度範囲で前記フッ素系ガス雰囲気を不活性ガス(窒素ガスを除く、希ガスをいう。以下、同様。)雰囲気に切り替えて、1300℃以上1400℃以下の第2の温度範囲まで急速昇温し保持した後、前記第2の温度範囲で前記不活性ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備えることを特徴とする。
本発明によれば、ウェーハの表層部のボイド欠陥を大きく低減することができ、表層部の酸素濃度を向上させることができ、研磨面の表面粗さの悪化も抑制でき、かつ、RTPにおける生産性を向上させることができるシリコンウェーハの熱処理方法が提供される。
本発明に係わるシリコンウェーハの熱処理方法に適用されるRTP装置の一例を示す断面概念図である。 本発明に係わるシリコンウェーハの熱処理方法に適用されるRTPにおける熱処理シーケンスの一例を示す概念図である。 本発明に係るシリコンウェーハの熱処理方法における好ましい態様を説明するためのRTPにおける熱処理シーケンスの一例を示す概念図である。 本発明に係るシリコンウェーハの熱処理方法におけるより好ましい態様を説明するためのRTPにおける熱処理シーケンスの一例を示す概念図である。
以下、本発明の実施形態について図面等を参照して詳細に説明する。
本発明に係るシリコンウェーハの熱処理方法は、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハの前記表面のシリコン原子を水素で終端させる工程と、前記水素で終端させたシリコンウェーハの前記表面のシリコン原子をフッ素で終端させる工程と、前記水素及びフッ素で終端させたシリコンウェーハを、不活性ガス雰囲気中、1300℃以上1400℃以下の温度範囲に急速昇温し保持した後、前記温度範囲で前記不活性ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備える。
このように、シリコンウェーハの少なくとも半導体デバイスが形成される研磨面のシリコン原子を水素及びフッ素で終端させることで、水素のみが終端されている場合よりもシリコン原子との結合力を高めることができる。従って、ウェーハの表層部のボイド欠陥の消滅力が高い1300℃以上1400℃以下の高温下であっても前記結合が切れにくく安定した状態となる。
そのため、雰囲気中に他の反応性ガス(窒素等)が存在しても、シリコン原子と当該反応性ガスとの結合を抑制することができるため、ウェーハの研磨面の表面粗さの悪化を抑制することができる。
更には、不活性ガス雰囲気から酸化性ガス雰囲気に切り替える際に、特許文献3に示すように、温度を400℃以上800℃以下まで急速降温させずに切り替えを行った場合でも研磨面の表面粗さの悪化を抑制することができる。従って、酸化性ガス雰囲気に切り替える際、前記温度まで急速降温させる必要がなく、1300℃以上1400℃以下の高温下で切り替えることで足りるため、RTPにおける生産性を向上させることができる。
加えて、酸化性ガス雰囲気によりRTPを行うため、表層部の酸素濃度も向上させることができる。
前記RTPは、1300℃以上1400℃以下の温度範囲に保持することが好ましい。
前記温度範囲が1300℃未満である場合には、ボイド欠陥の消滅力が低下するという問題がある。前記温度範囲が1400℃を超える場合には、当該温度範囲がシリコンの融点に近くなるため、シリコンウェーハが軟化又は融解する可能性があり好ましくない。
前記温度範囲は、前記RTPを行うために使用するRTP装置(後述)としての装置寿命の観点から1300℃以上1380℃以下であることがより好ましい。
前記不活性ガスは、ヘリウムガス(He)、アルゴンガス(Ar)、キセノンガス(Xe)等の希ガスが好適に用いられる。好ましくは、前記不活性ガスは、アルゴンガス(Ar)である。
前記酸化性ガスは、酸素ガス(O)又は酸素ガス(O)と不活性ガス(好ましくはアルゴンガス(Ar))との混合ガスが好適に用いられる。
前記少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハは、チョクラルスキー法(以下、CZ法という)により育成したシリコン単結晶インゴットから切り出して製造される。
CZ法によるシリコン単結晶インゴットの育成は周知の方法で行う。
具体的には、シリコン単結晶インゴットは、石英ルツボに充填したシリコン原料を加熱してシリコン融液とし、該シリコン融液の液面に種結晶を接触させて、種結晶と石英ルツボを回転させながら種結晶を引上げて、種結晶にネック部、クラウン部及び直胴部を結晶成長させて、その後、シリコン融液から切り離すことで育成することができる。
次に、周知の方法により、前記育成したシリコン単結晶インゴットを切り出して、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハに加工する。
具体的には、シリコン単結晶インゴットの直胴部を内周刃又はワイヤソーによりウェーハ状に切り出し、外周部の面取り、ラッピング、エッチング、鏡面研磨等の加工を行う。
前記水素で終端させる工程は、前記シリコンウェーハをフッ化水素系溶液又は過酸化水素系溶液により洗浄する工程であり、前記フッ素で終端させる工程は、前記シリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の温度範囲で熱処理する工程であることが好ましい。
このような構成とすることで、効率よく、シリコンウェーハの表面のシリコン原子に水素及びフッ素を終端させることができる。
前記フッ素で終端させる工程の温度範囲が900℃未満である場合には、シリコン原子にフッ素を終端させることが難しい場合がある。前記工程の温度範囲が1250℃を超える場合には、フッ素系ガスによりウェーハの研磨面がエッチングされてしまい、表面粗さが悪化する場合がある。
前記フッ化水素系溶液は、主に、フッ酸溶液(HF)、バッファードHF溶液(NHF+HF)が含まれる。前記過酸化水素系溶液は、主に、過酸化水素水(H)、硫化水素(HSO)と過酸化水素水(H)との混合溶液が含まれる。また、前記フッ素系ガスは、主に、四フッ化メタン(CF)、六フッ化硫黄(SF)、三フッ化窒素(NF)が含まれる。
図1は、本発明に係わるシリコンウェーハの熱処理方法に適用されるRTP装置の一例を示す断面概念図である。
図1に示すRTP装置10は、ウェーハWを収容して熱処理を施すための反応室20と、反応室20内に設けられ、ウェーハWを保持するウェーハ保持部30と、ウェーハWを加熱する加熱部40と、を備える。ウェーハWがウェーハ保持部30に保持された状態では、反応室20の内壁とウェーハWの表面(デバイス形成面)W1側とで囲まれた空間である第1空間20aと、反応室20の内壁と表面W1側に対向するウェーハWの裏面W2側とで囲まれた空間である第2空間20bとが形成される。
反応室20は、第1空間20a及び第2空間20b内に雰囲気ガスF(実線矢印)を供給する供給口22と、前記供給した雰囲気ガスFを第1空間20a及び第2空間20bから排出する排出口26と、を備える。反応室20は、例えば、石英で構成されている。
ウェーハ保持部30は、ウェーハWの裏面W2の外周部をリング状に保持するサセプタ32と、サセプタ32を保持すると共に、ウェーハWの中心を軸としてサセプタ32を回転させる回転体34とを備える。サセプタ32及び回転体34は、例えば、SiCで構成されている。
加熱部40は、ウェーハ保持部30に保持されたウェーハWの表面W1の上方及び裏面W2の下方の反応室20外に配置され、ウェーハWを両面から加熱する。加熱部40は、例えば、複数のハロゲンランプ50で構成されている。
図1に示すRTP装置10を用いて、RTPを行う場合は、反応室20に設けられた図示しないウェーハ導入口より、ウェーハWを反応室20内に導入して、ウェーハWの裏面W2の外周部をウェーハ保持部30のサセプタ32上にリング状に保持し、雰囲気ガスFを供給すると共に、ウェーハWを回転させながら、加熱部40によってウェーハWを加熱することで行う。
図2は、本発明に係わるシリコンウェーハの熱処理方法に適用されるRTPにおける熱処理シーケンスの一例を示す概念図である。
前記RTPに用いられる熱処理シーケンスは、図2に示すように、温度T0(例えば、500℃)で保持された図1に示すようなRTP装置10の反応室20内に少なくとも半導体デバイスが形成される表面W1側が鏡面研磨され、更に、前記表面W1のシリコン原子を水素及びフッ素で終端させたウェーハWを設置し、前記第1空間20a及び第2空間20b内に不活性ガスを供給する。
次に、温度T0(℃)から1300℃以上1400℃以下(温度T1(℃))の温度範囲まで、昇温速度ΔTu(℃/秒)で急速昇温し、所定時間t1(秒)保持した後、温度T1(℃)の範囲内で、前記不活性ガスを酸化性ガスに切り替えて、酸化性ガスを前記第1空間20a及び第2空間20b内に供給し、更に所定時間t2(秒)保持した後、例えば、温度T0(℃)まで、降温速度ΔTd(℃/秒)で急速降温する。
なお、温度T0、T1は、図1に示すようなRTP装置10の反応室20内にウェーハWを設置した場合において、ウェーハ保持部30の下方に設置された図示しない放射温度計によって測定されたウェーハWの表面温度(放射温度計がウェーハWの径方向に複数配置されている場合はその平均温度)である。
前記フッ素で終端させる工程は、前記RTPを行う前にRTP装置以外の装置(例えば、縦型ボートを用いて熱処理を行う縦型熱処理装置)で、図2に示すような熱処理シーケンス(雰囲気はフッ素系ガス、温度T1(℃)は、900℃以上1250℃以下の温度範囲)で別々に行ってもよい。また、前記RTPを行う装置とは別の又は同一のRTP装置で、図2に示すような熱処理シーケンス(雰囲気はフッ素系ガス、温度T1(℃)は、900℃以上1250℃以下の温度範囲)によって行ってもよい。
より好ましくは、前記フッ素で終端させる工程は、同一のRTP装置で、かつ、前記RTPと同時に(図2に示すような熱処理シーケンス中にフッ素で終端させる工程を導入して)行うことが好ましい。
この好ましい態様について、次に、説明する。
本発明に係るシリコンウェーハの熱処理方法における好ましい態様は、少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハをフッ化水素系溶液又は過酸化水素系溶液により、前記表面のシリコン原子を水素で終端させる工程と、前記水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲まで急速昇温し、前記表面のシリコン原子をフッ素で終端させる工程と、前記フッ素で終端させる工程に連続して、前記第1の温度範囲で前記フッ素系ガス雰囲気を不活性ガス雰囲気に切り替えて、1300℃以上1400℃以下の第2の温度範囲まで急速昇温し保持した後、前記第2の温度範囲で前記不活性ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備えることを特徴とする。
すなわち、前記RTPを行う際、その急速昇温時に、フッ素系ガス雰囲気にて熱処理を行ってシリコン原子をフッ素で終端させた後、連続して、フッ素系ガス雰囲気を不活性ガス雰囲気に、更には酸化性ガス雰囲気に切り替えて行う。その他の工程は前述した方法と同様であるため説明を省略する。
このような方法とすることで、前記フッ素を終端させるための熱処理工程を一つ削減することができるため、生産性の向上及びコストダウンを図ることができる。
図3は、本発明に係るシリコンウェーハの熱処理方法における好ましい態様を説明するためのRTPにおける熱処理シーケンスの一例を示す概念図である。
図3に示す熱処理シーケンスは、温度T0(例えば、500℃)で保持された図1に示すようなRTP装置10の反応室20内に少なくとも半導体デバイスが形成される表面W1側が鏡面研磨され、更に、前記表面W1のシリコン原子を水素で終端させたウェーハWを設置し、第1空間20a及び第2空間20b内にフッ素系ガスを供給する。
次に、温度T0(℃)から900℃以上1250℃以下(温度T(℃))の第1の温度範囲まで、昇温速度ΔTu(℃/秒)で急速昇温することで、フッ素を終端させる(フッ素終端工程)。その後、連続して、前記第1の温度範囲(温度T(℃))で前記フッ素系ガス雰囲気を不活性ガス雰囲気に切り替えて、前記第1空間20a及び前記第2空間20b内に供給する。
次に、前記第1の温度範囲(温度T(℃))から1300℃以上1400℃以下の第2の温度範囲(温度T1(℃))まで、昇温速度ΔTu(℃/秒)で急速昇温し、所定時間t1(秒)保持した後、第2の温度範囲(温度T1(℃))で、前記不活性ガスを酸化性ガスに切り替えて、前記第1空間20a及び第2空間20b内に供給し、更に、所定時間t2(秒)保持した後、例えば、温度T0(℃)まで、降温速度ΔTd(℃/秒)で急速降温する。
図4は、本発明に係るシリコンウェーハの熱処理方法におけるより好ましい態様を説明するためのRTPにおける熱処理シーケンスの一例を示す概念図である。
図4に示すように、フッ素系ガス雰囲気から不活性ガス雰囲気への切替えは、前記第1の温度範囲(温度T(℃))で一定に保持した状態で行うことが好ましい。
すなわち、前記表面W1のシリコン原子を水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲(温度T(℃))まで昇温速度ΔTu1(℃/秒)で急速昇温し、前記第1の温度範囲(温度T(℃))で所定時間(tM1(秒))一定に保持した後、前記第1の温度範囲(温度T(℃))で前記フッ素系ガス雰囲気を不活性ガス雰囲気に切り替えて、更に、所定時間(tM2(秒))一定に保持し、その後、昇温速度ΔTu2(℃/秒)で1300℃以上1400℃以下の第2の温度範囲(温度T1(℃))まで急速昇温して、前記RTPを行う事が好ましい。
このような方法とすることで、生産性は若干低下するものの、フッ素系ガス雰囲気で確実にフッ素を終端させることが可能となり、更に、ガス切り替えの際、反応室20内から前記フッ素系ガスを完全に排出させやすくなる。従って、1250℃を超える高温下でウェーハの研磨面がフッ素系ガスに晒される危険性が少なくなるため、前記研磨面における表面粗さの悪化を抑制することができる。
前記フッ素系ガス雰囲気にて、前記第1の温度範囲(温度T(℃))を保持する保持時間(tM1(秒))は、1秒以上5秒以下であり、前記切り替え後、不活性ガス雰囲気中、前記第1の温度範囲(温度T(℃))を保持する保持時間(tM2(秒))は、1秒以上5秒以下であることが好ましい。
このような保持時間とすることで、生産性の低下を抑制しつつ、確実にフッ素を終端させることができ、かつ、フッ素系ガスによる表面粗さの悪化も抑制することができる。
前記RTPにおける昇温速度ΔTu、ΔTu1、ΔTu2は10℃/秒以上150℃/秒以下であることが好ましい。
このような昇温速度ΔTu、ΔTu1、ΔTu2とすることで、前記RTPにおいて、生産性が低下するのを抑制しつつ、急速昇温時の急激な温度変化による接触痕やスリップの発生を抑制することができる。
前記RTPにおける降温速度ΔTdは、10℃/秒以上150℃/秒以下であることが好ましい。
このような降温速度ΔTdとすることで、前記RTPにおいて、生産性が低下するのを抑制しつつ、急速降温時の急激な温度変化による接触痕やスリップの発生を抑制することができる。
図4の熱処理シーケンスにおける第1の温度範囲(温度T(℃))までの昇温速度ΔTu1(℃/秒)及び前記切り替え後、前記第1の温度範囲(温度T(℃))から第2の温度範囲(温度T1(℃))までの昇温速度ΔTu2(℃/秒)は、10℃/秒以上150℃/秒以下であれば同じ昇温速度であってもよく、異なる昇温速度であってもよい。
前記第2の温度範囲(温度T1(℃))における不活性ガス雰囲気中の保持時間t1は、1秒以上15秒以下であることが好ましい。
このような保持時間t1とすることで、生産性が低下するのを抑制しつつ、効率よくボイド欠陥の消滅を図ることができる。
また、前記第2の温度範囲(温度T1(℃))における酸化性ガス雰囲気中の保持時間t2は、1秒以上15秒以下であることが好ましい。
このような保持時間t2とすることで、生産性が低下するのを抑制しつつ、効率よくウェーハの表層部に酸素を内方拡散させることができる。
以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により限定解釈されるものではない。
(実施例1)
CZ法によりv/G(v:引上速度、G:単結晶内の引上軸方向の温度勾配)を制御して空孔型点欠陥が存在する領域を有するシリコン単結晶インゴットを製造し、該領域から切り出して得られた両面が鏡面研磨されたシリコンウェーハ(直径300mm、厚さ775μm、酸素濃度1.2〜1.3×1018atoms/cm)に対して、フッ素濃度5%のフッ酸溶液にウェーハ全体を浸漬させて5分間洗浄を行った後(水素終端処理)、ウェーハを純水洗浄して、スピン乾燥により乾燥させた。
次に、乾燥させたウェーハに対して、図1に示すようなRTP装置10を用いて、図3に示すような熱処理シーケンスにてRTPを行い、アニールウェーハを作製した。
具体的には、500℃で保持された反応室内に前記乾燥させたウェーハを投入し、雰囲気として、四フッ化メタンガス(CF)を供給し、昇温速度75℃/秒で、1000℃(第1の温度範囲)まで急速昇温し、その後、1000℃で雰囲気を四フッ化メタンガス(CF)からアルゴンガス(Ar)に切り替えた後に、昇温速度75℃/秒で1300℃(第2の温度範囲)まで急速昇温して、1300℃で15秒間保持した後に、1300℃で、アルゴンガス(Ar)から酸素ガス(O)に切り替えて、更に、15秒間保持し、その後、降温速度90℃/秒で500℃まで急速降温させた。
(実施例2)
前記RTPにおける第2の温度範囲を1350℃として、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
(実施例3)
図4に示すような熱処理シーケンスを用いてRTPを行って、その他は、実施例1と同様な条件にて、アニールウェーハを作製した。
具体的には、500℃で保持された反応室内に前記乾燥させたウェーハを投入し、雰囲気として、四フッ化メタンガス(CF)を供給し、昇温速度75℃/秒で、1000℃(第1の温度範囲)まで急速昇温し、その後、1000℃で5秒間一定に保持した後、雰囲気を四フッ化メタンガス(CF)からアルゴンガス(Ar)に切り替えて、更に、1000℃を5秒間一定に保持し、その後、昇温速度75℃/秒で1300℃(第2の温度範囲)まで急速昇温して、1300℃で15秒間保持した後に、1300℃で、アルゴンガス(Ar)から酸素ガス(O)に切り替えて、更に、15秒間保持し、その後、降温速度90℃/秒で500℃まで急速降温させた。
(実施例4)
前記RTPにおける第2の温度範囲を1350℃として、その他は実施例3と同様な条件にて、アニールウェーハを作製した。
(比較例1)
前記フッ素終端処理を行わないで前記水素終端処理を行ったウェーハに対してRTPを行って、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
(比較例2)
前記RTPにおける第2の温度範囲を1200℃として、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
(比較例3)
実施例1において、不活性ガス雰囲気中、1300℃で15秒間保持した後に、降温速度90℃/秒で、800℃まで急速降温し、800℃でアルゴンガスから酸素ガスに切り替えて、昇温速度75℃/秒で、1300℃まで急速昇温し、1300℃で15秒間更に保持して、その他は実施例1と同様な条件にて、アニールウェーハを作製した。
以上の実施例1から4及び比較例1から3で得られたアニールウェーハの半導体デバイス形成面における表面粗さをAFM(Atomic Force Microscope)を用いて、RMS(測定範囲:3μm×3μm)を評価した。
また、半導体デバイス形成面における凹形状のピットの発生状況を外観目視にて評価した。
更に、ウェーハ表面から深さ5μmまでの表層部における欠陥密度に関し、LSTDスキャナ(Laser Scattering Topography Defect
Scanner)にて波長680nmで評価した。
また、参考例としてフッ素終端処理後RTP前のウェーハの半導体デバイス形成面における表面粗さRMS(測定範囲:3μm×3μm)もAFMを用いて評価した。
本試験における評価結果を表1に示す。
Figure 0005641537
表1に示すように、前記フッ素終端処理を行わない比較例1に関しては、参考例よりも表面粗さが悪化する傾向が認められる。また、RTPの第2の温度範囲を1200℃とした比較例2に関しては、欠陥密度の消滅力が低いことが認められる。更に、フッ素終端処理を行った実施例1〜4に関しては、表面粗さが比較例及び参考例よりも良化する傾向が認められる。加えて、図4の熱処理シーケンスにより行った実施例3、4に関しては、図3に示す熱処理シーケンス(実施例1、2)よりも、表面粗さが良化する傾向が認められる。
また、実施例1から4は、800℃まで急速降温して切り替える比較例3と表面粗さ及び欠陥密度とも同レベルであることが認められる。
(温度変更試験1:実施例5から11)
前記フッ素終端処理における第1の温度範囲を変化させて、その他は、実施例1と同様な条件にて、アニールウェーハを作製した。
得られたアニールウェーハの半導体デバイス形成面における表面粗さ(RMS)及び凹形状のピットの発生状況を実施例1と同様な方法で評価した。
本試験における試験条件及び評価結果を表2に示す。
Figure 0005641537
表2に示すように、第1の温度範囲を900℃以上1250℃以下とすることで、表面粗さ:RMS(nm)が良化する傾向が認められる。
(温度変更試験2:実施例12から17)
前記RTPにおける第2の温度範囲を1350℃として、その他は温度変更試験1と同様な条件にて、アニールウェーハを作製した。
得られたアニールウェーハの半導体デバイス形成面における表面粗さ(RMS)及び凹形状のピットの発生状況を実施例1と同様な方法で評価した。
本試験における試験条件及び評価結果を表3に示す。
Figure 0005641537
本試験においても、表3に示すように、温度変更試験1と同様な傾向(第1の温度範囲を900℃以上1250℃以下とすることで、表面粗さ:RMS(nm)が良化する傾向)があることが認められる。
10 RTP装置
20 反応室
30 ウェーハ保持部
40 加熱部

Claims (1)

  1. 少なくとも半導体デバイスが形成される表面が鏡面研磨されたシリコンウェーハをフッ化水素系溶液又は過酸化水素系溶液により、前記表面のシリコン原子を水素で終端させる工程と、
    前記水素で終端させたシリコンウェーハをフッ素系ガス雰囲気中、900℃以上1250℃以下の第1の温度範囲まで急速昇温し、前記表面のシリコン原子をフッ素で終端させる工程と、
    前記フッ素で終端させる工程に連続して、前記第1の温度範囲で前記フッ素系ガス雰囲気をガス雰囲気に切り替えて、1300℃以上1400℃以下の第2の温度範囲まで急速昇温し保持した後、前記第2の温度範囲で前記ガス雰囲気を酸化性ガス雰囲気に切り替えて更に保持し、急速降温する急速昇降温熱処理を行う工程と、を備えることを特徴とするシリコンウェーハの熱処理方法。
JP2011062577A 2011-03-22 2011-03-22 シリコンウェーハの熱処理方法 Active JP5641537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062577A JP5641537B2 (ja) 2011-03-22 2011-03-22 シリコンウェーハの熱処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062577A JP5641537B2 (ja) 2011-03-22 2011-03-22 シリコンウェーハの熱処理方法

Publications (2)

Publication Number Publication Date
JP2012199390A JP2012199390A (ja) 2012-10-18
JP5641537B2 true JP5641537B2 (ja) 2014-12-17

Family

ID=47181327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062577A Active JP5641537B2 (ja) 2011-03-22 2011-03-22 シリコンウェーハの熱処理方法

Country Status (1)

Country Link
JP (1) JP5641537B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641538B2 (ja) * 2011-03-30 2014-12-17 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの熱処理方法
DE102014208815B4 (de) * 2014-05-09 2018-06-21 Siltronic Ag Verfahren zur Herstellung einer Halbleiterscheibe aus Silizium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758788B2 (ja) * 1988-05-10 1995-06-21 日本電気株式会社 電界効果トランジスタの製造方法
JPH0955379A (ja) * 1995-08-14 1997-02-25 Sony Corp 半導体基板の処理方法及び半導体装置の製造方法
JPH11186255A (ja) * 1996-11-29 1999-07-09 Sony Corp シリコン酸化膜の形成方法
JP3757566B2 (ja) * 1997-08-21 2006-03-22 ソニー株式会社 シリコン酸化膜の形成方法及び酸化膜成膜装置
JP3714509B2 (ja) * 1997-09-29 2005-11-09 株式会社Sumco 薄膜エピタキシャルウェーハの製造方法
JP3478141B2 (ja) * 1998-09-14 2003-12-15 信越半導体株式会社 シリコンウエーハの熱処理方法及びシリコンウエーハ
JP2008300779A (ja) * 2007-06-04 2008-12-11 Elpida Memory Inc 半導体装置及びその製造方法
JP2010040588A (ja) * 2008-07-31 2010-02-18 Covalent Materials Corp シリコンウェーハ
JP5561918B2 (ja) * 2008-07-31 2014-07-30 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの製造方法

Also Published As

Publication number Publication date
JP2012199390A (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
CN101638806B (zh) 硅晶片的制造方法
JP5542383B2 (ja) シリコンウェーハの熱処理方法
JP2015032810A (ja) シリコンウェーハ及びその製造方法
JP5912368B2 (ja) シリコンウェーハの熱処理方法及びシリコンウェーハ
JP2011171377A (ja) シリコンウェーハの製造方法
JP5641537B2 (ja) シリコンウェーハの熱処理方法
JP5590644B2 (ja) シリコンウェーハの熱処理方法
KR101823229B1 (ko) 실리콘 웨이퍼의 제조 방법
JP5427636B2 (ja) シリコンウェーハの熱処理方法
KR101311003B1 (ko) 실리콘 웨이퍼의 열처리 방법 및 실리콘 웨이퍼
JP5583070B2 (ja) シリコンウェーハの熱処理方法
JP5641538B2 (ja) シリコンウェーハの熱処理方法
JP5512137B2 (ja) シリコンウェーハの熱処理方法
JP5641533B2 (ja) シリコンウェーハの熱処理方法
JP5583053B2 (ja) シリコンウェーハの熱処理方法
JP2011233556A (ja) シリコンウェーハの熱処理方法
JP5455449B2 (ja) シリコンウェーハの熱処理方法
JP5441261B2 (ja) シリコンウェーハの熱処理方法
JP2004221435A (ja) 半導体ウエーハの製造方法及び半導体ウエーハ
JP2010199411A (ja) シリコンウェーハの熱処理方法
JP2019192831A (ja) シリコンウェーハの熱処理方法
JP2011009631A (ja) シリコンウェーハの熱処理方法
JP2014168090A (ja) シリコンウェーハの製造方法
JP2011035129A (ja) シリコンウェーハ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5641537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250