JP3757566B2 - シリコン酸化膜の形成方法及び酸化膜成膜装置 - Google Patents

シリコン酸化膜の形成方法及び酸化膜成膜装置 Download PDF

Info

Publication number
JP3757566B2
JP3757566B2 JP22516497A JP22516497A JP3757566B2 JP 3757566 B2 JP3757566 B2 JP 3757566B2 JP 22516497 A JP22516497 A JP 22516497A JP 22516497 A JP22516497 A JP 22516497A JP 3757566 B2 JP3757566 B2 JP 3757566B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
gas
forming
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22516497A
Other languages
English (en)
Other versions
JPH1167747A (ja
Inventor
章秀 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22516497A priority Critical patent/JP3757566B2/ja
Publication of JPH1167747A publication Critical patent/JPH1167747A/ja
Application granted granted Critical
Publication of JP3757566B2 publication Critical patent/JP3757566B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造におけるシリコン酸化膜の形成方法、及び係るシリコン酸化膜の形成方法の実施に適した酸化膜成膜装置に関する。
【0002】
【従来の技術】
例えばMOS型半導体装置においては、シリコン酸化膜は、ゲート酸化膜や素子分離領域、層間絶縁膜等に用いられており、これらのシリコン酸化膜は、気相成長法、熱酸化法、スパッタ法等に基づき形成される。特に、ゲート酸化膜として用いられる膜厚が数nm〜十数nmの極薄シリコン酸化膜は、半導体装置の信頼性を担っているといっても過言ではない。従って、シリコン酸化膜には、常に、高い絶縁破壊耐圧及び長期信頼性が要求される。それ故、係るシリコン酸化膜は、通常、界面特性に優れ、しかも、膜厚制御性に優れた熱酸化法に基づき形成される。
【0003】
例えばMOS型半導体装置を製造する場合、従来、ゲート酸化膜を成膜する前に、NH4OH/H22水溶液で洗浄し更にHCl/H22水溶液で洗浄するというRCA洗浄によりシリコン半導体基板の表面を洗浄し、その表面から微粒子や金属不純物を除去する。ところで、RCA洗浄を行うと、シリコン半導体基板の表面は洗浄液と反応し、厚さ0.5〜1nm程度のシリコン酸化膜(以下、かかるシリコン酸化膜を単に酸化膜と呼ぶ)が形成される。かかる酸化膜の膜厚は不均一であり、しかも、酸化膜中には洗浄液成分が残留する。そこで、フッ化水素酸水溶液にシリコン半導体基板を浸漬して、かかる酸化膜を除去し、更に純水で薬液成分を除去し、シリコン半導体基板の清浄な表面を露出させる。その後、かかるシリコン半導体基板を酸化膜成膜装置の処理室(酸化炉)に搬入して、シリコン半導体基板の表面にシリコン酸化膜を形成する。フッ化水素酸水溶液による洗浄後のシリコン半導体基板の表面は、大半が水素で終端しており、極一部がフッ素で終端されている。
【0004】
酸化膜成膜装置としては、ゲート酸化膜の薄膜化及び基板の大口径化に伴い、石英製の処理室(酸化炉)を水平に保持した横型方式から垂直に保持した縦型方式の酸化膜成膜装置への移行が進んでいる。これは、縦型方式の酸化膜成膜装置の方が、横型方式の酸化膜成膜装置よりも、基板の大口径化に対処し易いばかりか、シリコン半導体基板を処理室に搬入する際の大気の巻き込みによって生成するシリコン酸化膜(以下、かかるシリコン酸化膜を自然酸化膜と呼ぶ)を低減することができるからである。しかしながら、縦型の酸化膜成膜装置を用いる場合であっても、2nm厚程度の自然酸化膜がシリコン半導体基板の表面に形成されてしまう。自然酸化膜には大気中の不純物が多く含まれており、ゲート酸化膜の薄膜化においては自然酸化膜の存在は無視することができない。そのため、(1)酸化膜成膜装置に配設された基板搬入出部に大量の窒素ガスを流して窒素ガス雰囲気とする方法(窒素ガスパージ方式)、(2)一旦、基板搬入出部内を真空とした後、窒素ガス等で基板搬入出部内を置換して大気を排除する方法(真空ロードロック方式)等を採用し、出来る限り自然酸化膜の形成を抑制する方法が提案されている。
【0005】
そして、処理室(酸化炉)内を不活性ガス雰囲気とした状態で、シリコン半導体基板を処理室(酸化炉)に搬入し、次いで、処理室(酸化炉)内を酸化性雰囲気に切り替え、シリコン半導体基板を熱処理することでゲート酸化膜を形成する。ゲート酸化膜の形成には、高温に保持された処理室内に高純度の水蒸気を導入することによってシリコン半導体基板の表面を熱酸化する方法(湿式酸化法)が採用されており、高純度の乾燥酸素ガスによってシリコン半導体基板表面を酸化する方法(乾式酸化法)よりも、電気的信頼性の高いゲート酸化膜を形成することができる。この湿式酸化法の1つに、水素ガスを酸素ガスと高温で混合し、燃焼させることによって生成した水蒸気を用いるパイロジェニック酸化法(水素燃焼酸化法とも呼ばれる)があり、多く採用されている。通常、このパイロジェニック酸化法においては、処理室(酸化炉)の外部に設けられ、そして700〜900゜Cに保持された燃焼室内に酸素ガスを導入し、その後、燃焼室内に水素ガスを導入して、高温中で水素ガスを燃焼させる。これによって得られた水蒸気を酸化種として用いる。
【0006】
パイロジェニック酸化法によってシリコン酸化膜を形成するための従来の縦型方式の酸化膜成膜装置の概念図を、図34に示す。この縦型方式の酸化膜成膜装置は、垂直方向に保持された石英製の二重管構造の炉芯管から成る処理室10と、処理室10へ水蒸気等を導入するためのガス導入部12と、処理室10からガスを排気するガス排気部13と、SiCから成る円筒状の均熱管14と、均熱管14を介して処理室10内を所定の雰囲気温度に保持するためのヒータ15と、基板搬入出部20と、基板搬入出部20へ窒素ガスを導入するためのガス導入部21と、基板搬入出部20からガスを排気するガス排気部22と、処理室10と基板搬入出部20とを仕切るシャッター16と、シリコン半導体基板を処理室10内に搬入出するためのエレベータ機構23から構成されている。エレベータ機構23には、シリコン半導体基板を載置するための石英ボート24が取り付けられている。また、配管31,32を介して燃焼室30に供給された水素ガス及び酸素ガスを、燃焼室30内で高温にて混合し、燃焼させることによって、水蒸気が生成する。かかる水蒸気は、配管33、ガス流路11及びガス導入部12を介して処理室10内に供給される。尚、ガス流路11は、二重管構造の処理室10の内壁及び外壁の間の空間に相当する。
【0007】
図34に示した従来の縦型方式の酸化膜成膜装置を使用した、パイロジェニック酸化法に基づく従来のシリコン酸化膜の形成方法の概要を、図34〜図38を参照して、以下、説明する。
【0008】
[工程−10]
配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ窒素ガスを導入し、処理室10内を窒素ガス雰囲気とし、且つ、均熱管14を介してヒータ15によって処理室10内の雰囲気温度を700〜800゜Cに保持する。尚、この状態においては、シャッター16は閉じておく(図35の(A)参照)。基板搬入出部20は大気に解放された状態である。
【0009】
[工程−20]
そして、基板搬入出部20にシリコン半導体基板40を搬入し、石英ボート24にシリコン半導体基板40を載置する。基板搬入出部20へのシリコン半導体基板40の搬入が完了した後、図示しない扉を閉め、基板搬入出部20にガス導入部21から窒素ガスを導入し、ガス排気部22から排気し、基板搬入出部20内を窒素ガス雰囲気とする(図35の(B)参照)。
【0010】
[工程−30]
基板搬入出部20内が十分に窒素ガス雰囲気となった時点で、シャッター16を開き(図36の(B)参照)、エレベータ機構23を作動させて石英ボート24を上昇させ、シリコン半導体基板40を処理室10内に搬入する(図37の(A)参照)。エレベータ機構23が上昇位置に辿り着くと、石英ボート24の基部によって処理室10と基板搬入出部20との間は連通しなくなる構造となっている。
【0011】
シャッター16を開く前に、処理室10内を窒素ガス雰囲気のままにしておくと、以下の問題が生じる。即ち、フッ化水素酸水溶液で表面を露出させたシリコン半導体基板を高温の窒素ガス雰囲気中に搬入すると、シリコン半導体基板40の表面に荒れが生じる。この現象は、フッ化水素酸水溶液での洗浄によってシリコン半導体基板40の表面に形成されたSi−H結合が、水素の昇温脱離によって失われ、シリコン半導体基板40の表面にエッチング現象が生じることに起因すると考えられている。例えば、アルゴンガス中でシリコン半導体基板を600゜C以上に昇温するとシリコン半導体基板の表面に激しい凹凸が生じることが、培風館発行、大見忠弘著「ウルトラクリーンULSI技術」、第21頁に記載されている。このような現象を抑制するために、シャッター16を開く前に、配管32から燃焼室30へ酸素ガスを導入して、例えば、0.5容量%程度の酸素ガスを含んだ窒素ガスを、配管33、ガス流路11及びガス導入部12を介して処理室10内に導入し、処理室10内を0.5容量%程度の酸素ガスを含んだ窒素ガス雰囲気とする(図36の(A)参照)。
【0012】
[工程−40]
その後、処理室10内の雰囲気温度を800〜900゜Cとする。そして、水蒸気を処理室10へ導入する前に、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介しての窒素ガスの導入を停止し、同時に、配管32から燃焼室30に酸素ガスを導入し続け、燃焼室30内を酸素ガスで満たす。こうして、不完全燃焼した水素ガスが処理室10内に導入されることによって爆鳴気反応が生じることを防止する。この結果、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10内に酸素ガスが流入する(図37の(B)参照)。尚、燃焼室30内の温度を、例えばヒータ(図示せず)によって700〜900゜Cに保持する。
【0013】
[工程−50]
次いで、配管31から水素ガスを燃焼室30内に導入し、水素ガスと酸素ガスとを燃焼室30内で高温にて混合し、燃焼させることによって生成した水蒸気を、配管33、ガス流路11及びガス導入部12を介して処理室10へ導入し、ガス排気部13から排気する(図38参照)。これによって、シリコン半導体基板40の表面にシリコン酸化膜が形成される。
【0014】
【発明が解決しようとする課題】
上述したとおり、水素ガスを燃焼させる前に、爆鳴気反応を防止するために水素ガスが導入される領域を予め酸素ガスで十分に満たしておく必要がある。ところが、図34に示した縦型方式の酸化膜成膜装置においては、[工程−40]においてガス導入部12から酸素ガスが処理室10内に流入するので、パイロジェニック酸化法によりシリコン酸化膜を形成する前に、乾燥酸素ガスを用いた所謂乾式酸化によってシリコン酸化膜(ドライ酸化膜)が形成されてしまう。例えば、処理室10内の雰囲気温度を800゜Cとし、水素ガスを導入する前に処理室10内に酸素ガスを1分間流すと、膜厚が1〜1.5nmのドライ酸化膜が形成されてしまう。
【0015】
従来の半導体装置においては、最終的に形成されるシリコン酸化膜の膜厚に対するドライ酸化膜の膜厚の比率が十分に小さかったので、半導体装置の電気的信頼性に与えるドライ酸化膜の影響を無視することができた。しかしながら、半導体装置の微細化及び高集積化に伴い、ゲート酸化膜の薄膜化が進行しており、ゲート長が0.18〜0.13nmの半導体装置では、膜厚が4〜3nmのゲート酸化膜を用いることが予想される。それ故、シリコン酸化膜におけるドライ酸化膜の膜厚の比率が増大し、ドライ酸化膜の半導体装置の電気的信頼性への影響を無視することができなくなってきている。従って、図34に示した従来の酸化膜成膜装置を用いた従来のシリコン酸化膜の形成方法では、電気的信頼性に優れたシリコン酸化膜を有する半導体装置を製造することが困難である。
【0016】
尚、以上の問題は、シリコン半導体基板の表面において生じるだけでなく、絶縁性基板等の上に設けられたシリコン層の表面においても生じる問題である。
【0017】
従って、本発明の目的は、シリコン層の表面にシリコン酸化膜を形成する際、シリコン層の表面にドライ酸化膜が形成されることを低減することができ、しかも、特性の優れたシリコン酸化膜を形成することができるシリコン酸化膜形成方法、及び係るシリコン酸化膜の形成方法の実施に適した酸化膜成膜装置を提供することにある。
【0018】
【課題を解決するための手段】
上記の目的を達成するための本発明のシリコン酸化膜の形成方法は、
(A)酸素ガスによる水素ガスの燃焼によって水蒸気を生成させる燃焼室と、
(B)燃焼室に通じ、そして、燃焼室から供給された水蒸気によってシリコン層の表面にシリコン酸化膜を形成する処理室、
を具備する酸化膜成膜装置を用いたシリコン酸化膜の形成方法であって、
(イ)シリコン層の表面からシリコン原子が脱離しない温度に保たれた不活性ガス雰囲気の処理室内にシリコン層を有する基板を配置した後、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給し、次いで、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、燃焼室から供給された水蒸気によって該シリコン層の表面にシリコン酸化膜を形成する工程と、
(ロ)処理室の雰囲気温度を所望の温度まで昇温する工程と、
(ハ)該所望の温度に雰囲気を保持した状態にて、燃焼室から供給された水蒸気によって、更にシリコン酸化膜を形成する工程、
から成ることを特徴とする。尚、不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に図1に示す。尚、図において、不活性ガス、酸素ガス、水素ガスのそれぞれの「ON」、「OFF」の表示は、処理室あるいは燃焼室へのそれらのガスの導入、不導入を示す。また、工程(イ)における水蒸気によってシリコン層の表面にシリコン酸化膜を形成する工程を第1のシリコン酸化膜形成工程と呼び、工程(ロ)を昇温工程と呼び、工程(ハ)におけるシリコン酸化膜を形成する工程を第2のシリコン酸化膜形成工程と呼ぶ。以下においても同様である。
【0019】
本発明のシリコン酸化膜の形成方法においては、工程(イ)において、シリコン層の表面からシリコン原子が脱離しない温度に保たれた不活性ガス雰囲気の処理室内にシリコン層を有する基板を配置した後、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給する。これによって、水蒸気によりシリコン酸化膜が形成される前に、シリコン層と接する酸素ガスの濃度を十分低下させることが可能となり、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を抑制することが可能となる。
【0020】
しかも、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成する。このような温度に雰囲気を保持するので、Si−Oの離脱やシリコン層の窒化を抑制することができる結果、シリコン層の表面に凹凸(荒れ)が生じることを防止し得る。更には、シリコン層における酸化反応がその表面のSi−H結合からではなく、1層内部のSi−Si−H結合から始まり得るので、界面の平坦度が原子レベルで保たれた状態でシリコン酸化膜の形成を開始することができる。しかも、水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成するので、最終的に形成されるシリコン酸化膜中にドライ酸化膜が含まれることを抑制することができ、優れた特性を有するシリコン酸化膜を形成することができる。
【0021】
更には、シリコン層の表面に既に保護膜としても機能するシリコン酸化膜が形成された状態で、所望の温度まで昇温しその温度に雰囲気を保持し、水蒸気を用いた酸化法によって更にシリコン酸化膜を形成するので、昇温工程が非酸化性雰囲気の場合においてもシリコン層の表面に凹凸(荒れ)が生じることがない。また、優れた特性を有するシリコン酸化膜を形成することができる。
【0022】
また、本発明のシリコン酸化膜の形成方法においては、水蒸気を用いた酸化法によってシリコン酸化膜を形成するので、優れた経時絶縁破壊(TDDB)特性を有するシリコン酸化膜を得ることができる。
【0023】
尚、工程(イ)で形成されたシリコン酸化膜の特性は、通常、例えばゲート酸化膜として要求される特性を十分満たしていない。工程(ハ)にてシリコン酸化膜を更に形成することによって、ゲート酸化膜として要求される特性を十分に満足するシリコン酸化膜を得ることができる。工程(ハ)を経た後の最終的なシリコン酸化膜の膜厚は、半導体装置に要求される所定の厚さとすればよい。一方、工程(イ)を経た後のシリコン酸化膜の膜厚は、出来る限る薄いことが好ましい。但し、現在、半導体装置の製造に用いられているシリコン半導体基板の面方位は殆どの場合(100)であり、如何にシリコン半導体基板の表面を平滑化しても(100)シリコンの表面には必ずステップと呼ばれる段差が形成される。このステップは通常シリコン原子1層分であるが、場合によっては2〜3層分の段差が形成されることがある。従って、工程(イ)を経た後のシリコン酸化膜の膜厚は、シリコン層として(100)シリコン半導体基板を用いる場合、1nm以上とすることが好ましい。
【0024】
本発明のシリコン酸化膜の形成方法においては、前記工程(イ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給停止後、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給する態様とすることもできる。この場合の、不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に図2に示す。
【0025】
あるいは又、前記工程(ハ)において、水蒸気によって更にシリコン酸化膜を形成する前に、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給する態様とすることもできる。この場合の、不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に図3に示す。
【0026】
更には、前記工程(ハ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給停止後、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給する態様とすることもできる。この場合の、不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に図4に示す。
【0027】
図2及び図3に示したガス導入シークエンスを組み合わせたガス導入シークエンスを図5に示す。また、図2及び図4に示したガス導入シークエンスを組み合わせたガス導入シークエンスを図6に示す。更には、図3及び図4に示したガス導入シークエンスを組み合わせたガス導入シークエンスを図7に示す。また、図2、図3及び図4に示したガス導入シークエンスを組み合わせたガス導入シークエンスを図8に示す。
【0028】
これらの各態様とすることによって、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を一層確実に抑制することが可能となる。
【0029】
水蒸気を不活性ガスで希釈してもよい。図8に示したガス導入シークエンスにおいて、水蒸気を不活性ガスで希釈し続ける場合のガス導入シークエンスを図9に示す。また、第1のシリコン酸化膜形成工程あるいは第2のシリコン酸化膜形成工程の一方の工程においてのみ、水蒸気を不活性ガスで希釈してもよい。これらの場合のガス導入シークエンスを図10及び図11に示す。このように、水蒸気を不活性ガスで希釈することによって、急激なシリコン酸化膜の形成を抑制することが可能となり、シリコン酸化膜の膜厚制御性を高めることができ、一層確実に極薄のシリコン酸化膜を形成することが可能となる。
【0030】
ここで、不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスを例示することができる。本発明のシリコン酸化膜の形成方法あるいはその各種態様においては、水素ガスの不完全燃焼を防止するために、処理室内へ酸素ガスを供給する。
【0031】
尚、工程(イ)において、処理室内にシリコン層を有する基板を配置するときの処理室の不活性ガス雰囲気温度は、水蒸気によってシリコン層の表面にシリコン酸化膜を形成するときの雰囲気温度と同じであってよいし、それよりも低い温度であってもよい。水蒸気によってシリコン層の表面にシリコン酸化膜を形成するときの雰囲気温度は、一定であっても、変化させてもよい。
【0032】
本発明のシリコン酸化膜の形成方法において、シリコン層の表面からシリコン原子が脱離しない温度は、シリコン層表面を終端している原子とシリコン原子との結合が切断されない温度であることが望ましい。この場合、シリコン層の表面からシリコン原子が脱離しない温度は、Si−H結合が切断されない温度若しくはSi−F結合が切断されない温度であることが好ましい。尚、シリコン層の表面からシリコン原子が脱離しない温度は、1.013×105Pa(1気圧)にて測定した値であり、水蒸気がシリコン層上で結露しない温度以上、好ましくは100゜C以上、一層好ましくは200゜C以上とし、430゜C以下、好ましくは400゜C以下とすることが望ましい。
【0033】
工程(イ)及び/又は工程(ハ)における水蒸気にはハロゲン元素が含有されていてもよい。これによって、タイムゼロ絶縁破壊(TZDB)特性及び経時絶縁破壊(TDDB)特性に優れたシリコン酸化膜を得ることができる。ハロゲン元素として、塩素、臭素、フッ素を挙げることができるが、なかでも塩素であることが望ましい。水蒸気中に含有されるハロゲン元素の形態としては、例えば、塩化水素(HCl)、CCl4、C2HCl3、Cl2、HBr、NF3を挙げることができる。水蒸気中のハロゲン元素の含有率は、分子又は化合物の形態を基準として、0.001〜10容量%、好ましくは0.005〜10容量%、更に好ましくは0.02〜10容量%である。例えば塩化水素ガスを用いる場合、水蒸気中の塩化水素ガス含有率は0.02〜10容量%であることが望ましい。
【0034】
本発明のシリコン酸化膜の形成方法においては、工程(ロ)における雰囲気を、不活性ガス雰囲気若しくは減圧雰囲気とするか、あるいは又、水蒸気を含む酸化雰囲気とすることが望ましい。後者の場合のガス導入シークエンスを図12に示す。尚、後者の場合、更には、水蒸気を不活性ガスで希釈してもよい。図12に示したガス導入シークエンスにおいて、水蒸気を不活性ガスで希釈し続ける場合のガス導入シークエンスを図13に示す。また、第1のシリコン酸化膜形成工程あるいは第2のシリコン酸化膜形成工程の一方の工程においてのみ、水蒸気を不活性ガスで希釈してもよい。これらの場合のガス導入シークエンスを図14及び図15に示す。このように、水蒸気を不活性ガスで希釈することによって、急激なシリコン酸化膜の形成を抑制することが可能となり、シリコン酸化膜の膜厚制御性を高めることができ、一層確実に極薄のシリコン酸化膜を形成することが可能となる。しかも、昇温工程においてもシリコン酸化膜が形成されるが、水蒸気を不活性ガスで希釈することによって、シリコン酸化膜の面内厚さばらつきを少なくすることができる。ここで、不活性ガスとして、窒素ガス、アルゴンガス、ヘリウムガスを例示することができる。尚、工程(ロ)における雰囲気中の不活性ガス若しくは水蒸気には、ハロゲン元素が含有されていてもよい。これによって、工程(イ)にて形成されたシリコン酸化膜の特性の一層の向上を図ることができる。即ち、工程(イ)において生じ得る欠陥であるシリコンダングリングボンド(Si・)やSiOHが工程(ロ)においてハロゲン元素と反応し、シリコンダングリングボンドが終端しあるいは脱水反応を生じる結果、信頼性劣化因子であるこれらの欠陥が排除される。特に、これらの欠陥の排除は、工程(イ)において形成された初期のシリコン酸化膜に対して効果的である。尚、ハロゲン元素として、塩素、臭素、フッ素を挙げることができるが、なかでも塩素であることが望ましい。不活性ガス若しくは水蒸気中に含有されるハロゲン元素の形態としては、例えば、塩化水素(HCl)、CCl4、C2HCl3、Cl2、HBr、NF3を挙げることができる。不活性ガス若しくは水蒸気中のハロゲン元素の含有率は、分子又は化合物の形態を基準として、0.001〜10容量%、好ましくは0.005〜10容量%、更に好ましくは0.02〜10容量%である。例えば塩化水素ガスを用いる場合、不活性ガス若しくは水蒸気中の塩化水素ガス含有率は0.02〜10容量%であることが望ましい。
【0035】
本発明のシリコン酸化膜の形成方法において、工程(ハ)における所望の温度は、600乃至1200゜C、好ましくは700乃至1000゜C、更に好ましくは750乃至900゜Cであることが望ましい。
【0036】
ここで、シリコン層とは、シリコン半導体基板等の基板そのものだけでなく、シリコン半導体基板、半絶縁性基板あるいは絶縁性基板といった各種基板の上に形成されたエピタキシャルシリコン層、多結晶シリコン層、あるいは非晶質シリコン層、所謂張り合わせ法やSIMOX法に基づき製造されたSOI構造におけるシリコン層、更には、基板やこれらの層に半導体素子や半導体素子の構成要素が形成されたもの等、シリコン酸化膜を形成すべきシリコン層(下地)を意味する。シリコン半導体基板の作製方法は、CZ法、MCZ法、DLCZ法、FZ法等、如何なる方法であってもよいし、また、予め高温の水素アニール処理を行い結晶欠陥を除去したものでもよい。
【0037】
形成されたシリコン酸化膜の特性を一層向上させるために、必須ではないが、本発明のシリコン酸化膜の形成方法においては、工程(ハ)の後、形成されたシリコン酸化膜に熱処理を施すことが好ましい。図8に示したガス導入シークエンスにおいて、この熱処理を施す工程を加えたときのガス導入シークエンスを図16に示すが、図1〜図15に示したガス導入シークエンスに熱処理を施す工程を加えることもできる。
【0038】
この場合、熱処理の雰囲気を、ハロゲン元素を含有する不活性ガス雰囲気とすることが望ましい。ハロゲン元素を含有する不活性ガス雰囲気中でシリコン酸化膜を熱処理することによって、タイムゼロ絶縁破壊(TZDB)特性及び経時絶縁破壊(TDDB)特性に優れたシリコン酸化膜を得ることができる。また、ハロゲン元素として、塩素、臭素、フッ素を挙げることができるが、なかでも塩素であることが望ましい。不活性ガス中に含有されるハロゲン元素の形態としては、例えば、塩化水素(HCl)、CCl4、C2HCl3、Cl2、HBr、NF3を挙げることができる。不活性ガス中のハロゲン元素の含有率は、分子又は化合物の形態を基準として、0.001〜10容量%、好ましくは0.005〜10容量%、更に好ましくは0.02〜10容量%である。例えば塩化水素ガスを用いる場合、不活性ガス中の塩化水素ガス含有率は0.02〜10容量%であることが望ましい。
【0039】
熱処理を、ハロゲン元素を含有する不活性ガス雰囲気を大気圧よりも減圧した状態で行ってもよい。熱処理時の圧力は、1.3×104Pa(100Torr)以下であることが好ましい。圧力の下限は、シリコン酸化膜を熱処理するための装置に依存するが、出来る限り低いことが望ましい。
【0040】
熱処理は炉アニール処理であることが望ましい。熱処理の温度は、700〜1200゜C、好ましくは700〜1000゜C、更に好ましくは700〜950゜Cである。また、熱処理の時間は、5〜60分、好ましくは10〜40分、更に好ましくは20〜30分である。熱処理における不活性ガスとして、窒素ガス、アルゴンガス、ヘリウムガスを例示することができる。
【0041】
尚、熱処理後、シリコン酸化膜を窒化処理してもよい。この場合、窒化処理を、N2Oガス、NOガス、NO2ガス雰囲気中で行うことが望ましいが、中でもN2Oガス雰囲気中で行うことが望ましい。あるいは又、窒化処理をNH3ガス、N24、ヒドラジン誘導体雰囲気中で行い、その後、N2Oガス、O2雰囲気中でアニール処理を行うことが望ましい。窒化処理を700乃至1200゜C、好ましくは800乃至1150゜C、更に好ましくは900乃至1100゜Cの温度で行うことが望ましく、この場合、シリコン半導体基板の加熱を赤外線照射、炉アニール処理によって行うことが好ましい。
【0042】
あるいは又、熱処理の雰囲気を、窒素系ガス雰囲気としてもよい。ここで窒素系ガスとして、N2、NH3、N2O、NO2を例示することができる。
【0043】
本発明のシリコン酸化膜の形成方法においては、形成されたシリコン酸化膜に熱処理を施す際の雰囲気温度を、工程(ハ)においてシリコン酸化膜を形成する際の雰囲気温度よりも高くする形態とすることができる。この場合、工程(ハ)におけるシリコン酸化膜の形成完了後、雰囲気を不活性ガス雰囲気に切り替えた後、熱処理を施すための雰囲気温度まで昇温してもよいが、雰囲気をハロゲン元素を含有する不活性ガス雰囲気に切り替えた後、熱処理を施すための雰囲気温度まで昇温することが好ましい。ここで、不活性ガス中に含有されるハロゲン元素の形態としては、例えば、塩化水素(HCl)、CCl4、C2HCl3、Cl2、HBr、NF3を挙げることができる。不活性ガス中のハロゲン元素の含有率は、分子又は化合物の形態を基準として、0.001〜10容量%、好ましくは0.005〜10容量%、更に好ましくは0.02〜10容量%である。例えば塩化水素ガスを用いる場合、不活性ガス中の塩化水素ガス含有率は0.02〜10容量%であることが望ましい。
【0044】
本発明のシリコン酸化膜の形成方法は、例えばMOS型トランジスタのゲート酸化膜、層間絶縁膜や素子分離領域の形成、トップゲート型若しくはボトムゲート型薄膜トランジスタのゲート酸化膜の形成、フラッシュメモリのトンネル酸化膜の形成等、各種半導体装置におけるシリコン酸化膜の形成に適用することができる。
【0045】
工程(イ)において、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給する。このときの不活性ガス雰囲気の処理室内の温度は出来る限り低い温度であることが、ドライ酸化膜の形成を抑制するために好ましい。しかしながら、このような状態にすると、燃焼室にて生成した水蒸気が処理室に達するまでの間に結露する虞がある。それ故、本発明の酸化膜成膜装置は、
(A)酸素ガスによる水素ガスの燃焼によって水蒸気を生成させる燃焼室と、
(B)燃焼室に通じ、そして、燃焼室から供給された水蒸気によってシリコン層の表面にシリコン酸化膜を形成する処理室と、
(C)燃焼室と処理室とを結ぶ配管、
を具備する酸化膜成膜装置であって、
該配管には不活性ガス導入部が設けられていることを特徴とする。尚、不活性ガス導入部を含む配管には、燃焼室で生成した水蒸気が処理室に達するまでの間に結露することを防止するための加熱手段が備えられていることが好ましい。これによって、燃焼室にて生成した水蒸気が処理室に達するまでの間に結露することを確実に防止することができる。この場合、加熱手段によって、不活性ガス導入部を含む配管を100゜Cを越える温度に加熱することが好ましい。また、配管に設けられた不活性ガス導入部から配管に流入する不活性ガスが燃焼室側に流入しないように、配管に不活性ガス導入部が設けられていることが望ましい。
【0046】
【実施例】
以下、図面を参照して、実施例に基づき本発明を説明する。
【0047】
(実施例1)
実施例1のシリコン酸化膜の形成方法の実施に適した酸化膜成膜装置の概要を図17に示す。この酸化膜成膜装置は、基本的には、図34に示した従来の縦型方式の酸化膜成膜装置と同様の構造を有する。従来の縦型方式の酸化膜成膜装置のと相違する点は、以下の点にある。即ち、燃焼室30と処理室10とを結ぶ配管33には不活性ガス導入部34が設けられており、この不活性ガス導入部34には不活性ガス(実施例1においては窒素ガス)を導入するための配管35が取り付けられている。また、不活性ガス導入部34を含む配管33には、燃焼室30で生成した水蒸気が処理室10に達するまでの間に結露することを防止するための加熱手段であるヒータ36が備えられている。尚、配管33に設けられた不活性ガス導入部34から配管33に流入する不活性ガスが燃焼室30側に流入しないように、配管33に不活性ガス導入部34が設けられていることが望ましい。具体的には、配管35内を流れてきた不活性ガスの不活性ガス導入部34における流れの方向と、燃焼室30から流れてきたガスの不活性ガス導入部34における流れの方向が、鋭角を成して交わることが好ましい。
【0048】
実施例1のシリコン酸化膜の形成方法においては、図18に示したガス導入シークエンスを採用した。即ち、
(a)工程(イ)において、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給する。
(b)工程(イ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給を停止する。そして、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給する。実施例1においては、以降、処理室内への不活性ガスの供給を継続する。
(c)工程(ハ)において、水蒸気によって更にシリコン酸化膜を形成する前に、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間も、処理室内へ不活性ガスを供給し続ける。
(d)工程(ハ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給を停止する。そして、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給し続ける。
【0049】
また、実施例1においては、第2のシリコン酸化膜形成工程において水蒸気を不活性ガスで希釈した。
【0050】
更には、実施例1のシリコン酸化膜の形成方法においては、工程(ハ)の後、形成されたシリコン酸化膜に熱処理を施した。熱処理は、ハロゲン元素を含有する不活性ガス雰囲気(塩化水素を含む窒素ガス雰囲気)中で熱処理(炉アニール処理)とした。また、第1及び第2のシリコン酸化膜形成工程においては、水蒸気のみでシリコン酸化膜を形成した。更には、工程(ロ)である昇温工程における雰囲気を、不活性ガス雰囲気(窒素ガス雰囲気)とした。実施例1においては、シリコン層をシリコン半導体基板から構成した。形成されたシリコン酸化膜はゲート酸化膜として機能する。以下、図19〜図26を参照して、実施例1のシリコン酸化膜の形成方法を説明する。
【0051】
[工程−100]
先ず、N型単結晶シリコン半導体基板(以下、単にシリコン半導体基板と呼ぶ)40に、公知の方法でLOCOS構造を有する素子分離領域41を形成し、ウエルイオン注入、チャネルストップイオン注入、閾値調整イオン注入を行う。尚、素子分離領域はトレンチ構造を有していてもよい。その後、RCA洗浄によりシリコン半導体基板40の表面の微粒子や金属不純物を除去し、次いで、0.1%フッ化水素酸水溶液に1分間浸漬することによってシリコン半導体基板40の表面洗浄を行い、シリコン半導体基板40の表面を露出させ、純水による洗浄後、公知のIPA乾燥法にてシリコン半導体基板40を乾燥させる(図19の(A)参照)。尚、シリコン半導体基板の表面は大半が水素で終端しており、極一部がフッ素で終端されている。
【0052】
[工程−110]
次に、シリコン半導体基板40を、図17に示した酸化膜成膜装置の基板搬入出部20に図示しない扉から搬入し、石英ボート24に載置する(図20の(A)参照)。尚、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ室温の窒素ガスを10SLMの流量にて導入し、処理室10内を室温の窒素ガス雰囲気としておく。この状態においては、シャッター15は閉じておく。
【0053】
[工程−120]
そして、基板搬入出部20へのシリコン半導体基板40の搬入が完了した後、図示しない扉を閉め、基板搬入出部20にガス導入部21から窒素ガスを導入し、ガス排気部22から排出し、基板搬入出部20内を窒素ガス雰囲気とする。尚、基板搬入出部20内の酸素ガス濃度をモニターし、酸素ガス濃度が例えば100ppm以下となったならば、基板搬入出部20内が十分に窒素ガス雰囲気となったと判断する。その後、シャッター15を開き(図20の(B)参照)、エレベータ機構23を作動させて石英ボート24を500mm/分の上昇速度で上昇させ、シリコン半導体基板40を石英製の二重管構造の処理室10内に搬入する(図21の(A)参照)。エレベータ機構23が最上昇位置に辿り着くと、石英ボート24の基部によって処理室10と基板搬入出部20との間は連通しなくなる。処理室10には、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ窒素ガスを流し続ける。次いで、ヒータ15を作動させて、処理室10内の雰囲気温度を350゜Cとする(図21の(B)参照)。尚、昇温速度を20゜C/分とした。一方、図示しないヒータによって燃焼室30を加熱し、燃焼室30の温度を750゜Cとする。また、ヒータ36によって配管33内の温度を昇温させ、350゜Cとする。
【0054】
[工程−130]
処理室10内の雰囲気温度が350゜Cにて安定した時点で、配管31からの窒素ガスの供給を停止し、配管35からの不活性ガス(実施例1においては窒素ガス)の供給(流量:10SLM)を開始する。それと同時に、配管32から燃焼室30への酸素ガス(流量:5SLM)の供給を開始する(図22の(A)参照)。このように、シリコン層(実施例1においてはシリコン半導体基板40)の表面からシリコン原子が脱離しない温度(実施例1においては350゜C)に保たれた不活性ガス雰囲気の処理室10内にシリコン層を有する基板(シリコン半導体基板40)を配置した後、燃焼室30への酸素ガスの供給開始後、燃焼室10への水素ガスの供給により水蒸気が燃焼室30内で生成しそして処理室10に供給されるまでの間、処理室10内へ不活性ガス(実施例1においては窒素ガス)を供給するので、水蒸気によりシリコン酸化膜がシリコン層(実施例1においてはシリコン半導体基板40)に形成される前に、シリコン層と接する酸素ガスの濃度を十分低下させることが可能となる。その結果、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を抑制することができる。また、シリコン半導体基板40は350゜Cに保持されているので、シリコン半導体基板40の表面に荒れが発生することを抑制することができる。更には、シリコン半導体基板40の表面に水素が終端した状態でシリコン酸化膜が形成されるので、シリコン酸化膜/シリコン半導体基板40の界面の平坦性が原子レベルで保たれる。
【0055】
[工程−131]
配管32から燃焼室30への酸素ガスの供給開始後、1分間が経過したならば、配管31から水素ガス(流量:2.5SLM)を燃焼室30に導入する。燃焼室30内に配設された炎検出器等で水素ガスの燃焼が確認されたならば、配管35からの窒素ガスの供給を停止する。こうして、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、具体的には、実施例1においては処理室10の雰囲気温度を350゜Cに保持した状態にて、燃焼室30から供給された水蒸気によってシリコン層(実施例1においてはシリコン半導体基板40)の表面にシリコン酸化膜を形成する(図22の(B)参照)。尚、実施例1においては、この第1のシリコン酸化膜形成工程において、1.2nmのシリコン酸化膜をシリコン半導体基板40の表面に形成した。このシリコン酸化膜の厚さはSiO2の2〜3分子層に相当する厚さであり、シリコン半導体基板の表面のステップを考慮しても、保護膜として機能するのに十分な厚さである。
【0056】
[工程−132]
シリコン層の表面にシリコン酸化膜を形成した後、燃焼室30への水素ガスの供給を停止する。そして、所定の時間、配管32から燃焼室30へ酸素ガスを供給しながら、処理室10内へ不活性ガス(実施例1においては窒素ガス)を配管35から供給する(図23の(A)参照)。燃焼室30への酸素ガスの供給量を5SLM、配管35から処理室10への窒素ガスの供給量を10SLMとした。この状態を1分間保持し、燃焼室30や配管33内に残存した水素ガスを燃焼させながら排気した。その後、配管35からの窒素ガスの供給を停止し、配管31から燃焼室30、配管33を経由して処理室10への不活性ガス(実施例1においては窒素ガス)の供給(流量:10SLM)を行う。
【0057】
[工程−140]
その後、不活性ガス(窒素ガス)をガス導入部12から処理室10内に供給し続けながら、酸化膜成膜装置の処理室10内の雰囲気温度を、均熱管14を介してヒータ15によって所望の温度(実施例1においては、800゜C)まで昇温させる(図23の(B)参照)。昇温速度を10゜C/分とした。尚、[工程−131]にてシリコン層の表面には保護膜としても機能するシリコン酸化膜が既に形成されているので、この[工程−140](昇温工程)において、シリコン層(シリコン半導体基板40)の表面に荒れが発生することはない。
【0058】
[工程−150]
次に、所望の温度(実施例1においては、800゜C)に雰囲気を保持した状態にて、燃焼室30から供給された水蒸気によって、更にシリコン酸化膜を形成する。具体的には、配管31からの窒素ガスの供給を停止し、配管35からの不活性ガス(実施例1においては窒素ガス)の供給(流量:10SLM)を開始する。それと同時に、配管32から燃焼室30への酸素ガス(流量:5SLM)の供給を開始する(図24の(A)参照)。このように、燃焼室30への酸素ガスの供給を開始した後、燃焼室10への水素ガスの供給により水蒸気が燃焼室30内で生成しそして処理室10に供給されるまでの間、処理室10内へ不活性ガスを供給するので、所謂ドライ酸化膜の形成を確実に防止することができる。
【0059】
[工程−151]
配管32から燃焼室30への酸素ガスの供給開始後、1分間が経過したならば、配管31から水素ガス(流量:2.5SLM)を燃焼室30に導入する。燃焼室30内に配設された炎検出器等で水素ガスの燃焼が確認された後も、実施例1においては、配管35から窒素ガスの供給(流量:5SLM)を継続した。こうして、燃焼室30から供給された水蒸気によってシリコン層(実施例1においてはシリコン半導体基板40)の表面に更にシリコン酸化膜を形成する(図24の(B)参照)。実施例1においては、総厚4.0nmのシリコン酸化膜を形成した。
【0060】
[工程−152]
シリコン層の表面にシリコン酸化膜を形成した後、燃焼室30への水素ガスの供給を停止する。そして、所定の時間、燃焼室30へ酸素ガスを供給しながら、処理室10内へ不活性ガス(実施例1においては窒素ガス)を配管35から供給する(図25の(A)参照)。燃焼室30への酸素ガスの供給量を5SLM、配管35から処理室10への窒素ガスの供給量を10SLMとした。この状態を1分間保持し、燃焼室30や配管33内に残存した水素ガスを燃焼させながら排気した。その後、配管35からの窒素ガスの供給を停止し、配管31から燃焼室30への不活性ガス(実施例1においては窒素ガス)の供給(流量:10SLM)を行う。
【0061】
[工程−160]
そして、処理室10の雰囲気温度をヒータ15によって850゜Cまで昇温する(図25の(B)参照)。その後、塩化水素を0.1容量%含有する窒素ガスをガス導入部12から処理室10内に導入し、30分間、熱処理を行う(図26参照)。
【0062】
[工程−170]
以上により、シリコン半導体基板40の表面におけるシリコン酸化膜42の形成が完了する(図19の(B)参照)。以降、処理室10内を窒素ガス雰囲気とし、エレベータ機構23を動作させて石英ボート24を下降させ、次いで、基板搬入出部20からシリコン半導体基板40を搬出する。
【0063】
[工程−180]
実施例1においては、こうしてシリコン酸化膜が形成されたシリコン半導体基板を用いて、公知のCVD技術、フォトリソグラフィ技術及びドライエッチング技術を用いて、シリコン酸化膜42の上にリンをドーピングしたポリシリコンから成るゲート電極43を形成し、MOSキャパシタを作製した(図19の(C)参照)。
【0064】
(比較例1)
比較例1においては、従来のシリコン酸化膜の形成方法に基づき、シリコン半導体基板の表面に厚さ4.0nmのシリコン酸化膜を形成した。即ち、[工程−10]〜[工程−40]に基づき、シリコン酸化膜を形成した。尚、[工程−20]において、シャッター15を開く前に、0.5容量%の酸素ガスを含んだ窒素ガスをガス導入部12から処理室10内に導入し、処理室10内を0.5容量%の酸素ガスを含んだ窒素ガス雰囲気(雰囲気温度:800゜C)とした。また、処理室10内の温度を800゜Cとし、パイロジェニック酸化法にて、シリコン半導体基板の表面にシリコン酸化膜を形成した。こうしてシリコン酸化膜が形成されたシリコン半導体基板から、実施例1と同様に、MOSキャパシタを作製した。尚、パイロジェニック酸化法にてシリコン半導体基板の表面にシリコン酸化膜を形成する前に、0.5容量%の酸素ガスを含んだ窒素ガス雰囲気の処理室10内にシリコン半導体基板を搬入した結果、シリコン半導体基板の表面には厚さ2.3nmのドライ酸化膜が形成されていた。
【0065】
実施例1及び比較例1により作製されたMOSキャパシタに対して、シリコン酸化膜の長期信頼性を評価するために、経時絶縁破壊(Time Dependent Dielectric Breakdown、TDDB)特性の測定を行った。この経時絶縁破壊は、電流ストレス又は電圧ストレスを印加した瞬間には破壊しないが、ストレス印加後ある時間が経過してからシリコン酸化膜に絶縁破壊が生じる現象である。
【0066】
経時絶縁破壊(TDDB)特性を以下の方法で評価した。1枚のシリコン半導体基板40に50個のMOSキャパシタを作製した。また、MOSキャパシタのゲート面積を0.1mm2とした。そして、評価には2枚のシリコン半導体基板を使用した。図27に模式的に図示する回路を作り、ゲート電極43に定電流(J=0.1A/cm2)ストレスを印加する定電流ストレス法により所謂クーロンブレイクダウン(QBD)を測定した。ここで、QBDは、J(A/cm2)と、絶縁破壊に至るまでの時間tBDの積で表される。そして、QBDのワイブル確率分布における累積不良率50%に相当する電荷量を求めた。結果は以下の表1のとおりであった。試験の結果、実施例1にて作製されたシリコン酸化膜の信頼性は、比較例1と比較して4〜5倍高いものであった。
【0067】
(実施例2)
実施例2においては、シリコン層として、P型単結晶シリコン半導体基板の上に形成されたN型シリコンエピタキシャル層を用いた。この点を除き、実施例1と同様の方法で、係るN型シリコンエピタキシャル層の表面にシリコン酸化膜を形成した。但し、実施例1の[工程−110]において、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ窒素ガスを10SLMの流量にて導入するが、この際の処理室10の雰囲気温度を350゜Cとした。また、実施例1の[工程−120]において、エレベータ機構23を作動させて石英ボート24を250mm/分の上昇速度で上昇させ、シリコン半導体基板40を石英製の二重管構造の処理室10内に搬入した。このときの処理室10の雰囲気温度を350゜Cとした。
【0068】
実施例2においても、実施例1と同様にMOSキャパシタを作製し、シリコン酸化膜の長期信頼性を評価するために、TDDB特性の測定を行った。結果を表1に示す。試験の結果、実施例2で作製されたシリコン酸化膜の信頼性は、実施例1と比較しても一層高い信頼性を有していた。
【0069】
【表1】
実施例1 45〜48C/cm2
実施例2 56〜58C/cm2
比較例1 10〜11C/cm2
【0070】
(実施例3)
実施例3においては、図28に示したガス導入シークエンスを採用した。即ち、実施例3が実施例1と相違する点は、実施例1の[工程−120]及び[工程−130]にある。以下、実施例3が実施例1と相違する工程を説明する。
【0071】
実施例3においては、実施例1の[工程−110]と同様に、シリコン半導体基板40を、図17に示した酸化膜成膜装置の基板搬入出部20に図示しない扉から搬入し、石英ボート24に載置する。尚、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ室温の窒素ガスを10SLMの流量にて導入し、処理室10内を室温の窒素ガス雰囲気としておく。この状態においては、シャッター15は閉じておく。
【0072】
そして、基板搬入出部20へのシリコン半導体基板40の搬入が完了した後、図示しない扉を閉め、基板搬入出部20にガス導入部21から窒素ガスを導入し、ガス排気部22から排出し、基板搬入出部20内を窒素ガス雰囲気とする。尚、基板搬入出部20内の酸素ガス濃度をモニターし、酸素ガス濃度が例えば100ppm以下となったならば、基板搬入出部20内が十分に窒素ガス雰囲気となったと判断する。その後、シャッター15を開き、エレベータ機構23を作動させて石英ボート24を500mm/分の上昇速度で上昇させ、シリコン半導体基板40を石英製の二重管構造の処理室10内に搬入する。処理室10には、配管31、燃焼室30、配管33、ガス流路11及びガス導入部12を介して処理室10へ窒素ガスを流し続ける。次いで、ヒータ15を作動させて、処理室10内の雰囲気温度を120゜Cとする。尚、昇温速度を20゜C/分とした。一方、図示しないヒータによって燃焼室30を加熱し、燃焼室30の温度を750゜Cとする。また、ヒータ36によって、配管33内の温度を120゜Cとする。
【0073】
次に、実施例1の[工程−130]と同様の工程において、処理室10内の雰囲気温度が120゜Cにて安定した時点で、配管31からの窒素ガスの供給を停止し、配管35からの不活性ガス(実施例3においては窒素ガス)の供給(流量:10SLM)を開始する。それと同時に、配管32から燃焼室30への酸素ガス(流量:5SLM)の供給を開始する。このように、シリコン層(実施例3においてはシリコン半導体基板40)の表面からシリコン原子が脱離しない温度(実施例3においては120゜C)に保たれた不活性ガス雰囲気の処理室10内にシリコン層を有する基板を配置した後、燃焼室30への酸素ガスの供給開始後、燃焼室10への水素ガスの供給により水蒸気が燃焼室30内で生成しそして処理室10に供給されるまでの間、処理室10内へ不活性ガス(実施例3においては窒素ガス)を供給する。その結果、水蒸気によりシリコン酸化膜がシリコン層(実施例3においてはシリコン半導体基板40)に形成される前に、シリコン層と接する酸素ガスの濃度を十分低下させることが可能となり、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を抑制することができる。また、シリコン半導体基板40は120゜Cに保持されているので、シリコン半導体基板40の表面に荒れが発生することを抑制することができる。更には、シリコン半導体基板40の表面に水素が終端した状態でシリコン酸化膜が形成されるので、シリコン酸化膜/シリコン半導体基板40の界面の平坦性が原子レベルで保たれる。
【0074】
配管32から燃焼室30への酸素ガスの供給開始後、1分間が経過したならば、配管31から水素ガス(流量:2.5SLM)を燃焼室30に導入する。燃焼室30内に配設された炎検出器等で水素ガスの燃焼が確認された後も、実施例3においては、配管35からの窒素ガスの供給を継続する。こうして、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、具体的には、実施例3においては処理室10の雰囲気温度を120゜Cに保持した状態にて、燃焼室30から供給された水蒸気によってシリコン層(実施例3においてはシリコン半導体基板40)の表面におけるシリコン酸化膜の形成を開始する。尚、配管33はヒータ36によって120゜Cに保持されているので、配管33内に結露が生じる虞はない。
【0075】
その後、ヒータ15によって処理室10内の雰囲気温度を350゜Cまで昇温した。昇温速度を20゜C/分とした。尚、処理室10内の雰囲気温度が350゜Cとなるまでは、処理室10内には水蒸気が供給されるものの、低い温度であること、及び水蒸気は窒素ガスによって希釈されていることにより、シリコン層(実施例3においてはシリコン半導体基板)の表面にはシリコン酸化膜は殆ど形成されない。処理室10内の雰囲気温度が350゜Cにて安定したならば、配管35からの窒素ガスの供給を停止する。そして、実施例3においても、第1のシリコン酸化膜形成工程において、1.2nmのシリコン酸化膜をシリコン半導体基板40の表面に形成した。
【0076】
以降のシリコン酸化膜の形成工程は、実施例1の[工程−132]〜[工程−170]と同様とすることができるので、詳細な説明は省略する。
【0077】
(実施例4)
実施例4においては、第1にシリコン酸化膜形成工程、昇温工程、第2のシリコン酸化膜形成工程を、図12に示した、不活性ガス、酸素ガス、水素ガスの導入シークエンスとした。即ち、実施例1の[工程−132]及び[工程−140]の代わりに、不活性ガス(窒素ガス)をガス導入部12から処理室10に供給することなく、しかも、処理室10内への水蒸気の供給を中止することなく、酸化膜成膜装置の処理室10内の雰囲気温度を、均熱管14を介してヒータ15によって所望の温度(実施例4においては、800゜C)まで昇温した。尚、[工程−130]と同様の工程においては、厚さ1.0nmのシリコン酸化膜を形成した。また、実施例1の[工程−150]の代わりに、不活性ガス(窒素ガス)をガス導入部12から処理室10に供給せず、しかも、処理室10内への水蒸気の供給を継続し続けた。その他の工程は実施例1と同様とした。以上の点を除き、実施例4においては、実施例1と同様の工程にてシリコン酸化膜を形成した。
【0078】
(実施例5)
実施例5においても、図17に示した縦型の酸化膜成膜装置を用いた。また、実施例5においても、シリコン層をシリコン半導体基板から構成した。形成されたシリコン酸化膜はゲート酸化膜として機能する。実施例5においては、実施例1と異なり、水蒸気にはハロゲン元素(具体的には、塩素)が含有されている。尚、塩素は塩化水素の形態であり、水蒸気中に含有される塩化水素の濃度を0.1容量%とした。雰囲気温度を所望の温度まで昇温する工程(昇温工程)の雰囲気を不活性ガス雰囲気とした。尚、第2のシリコン酸化膜形成工程の後、形成されたシリコン酸化膜に対して、ハロゲン元素を含有する不活性ガス雰囲気(塩化水素を含む窒素ガス雰囲気)中で熱処理(炉アニール処理)を施した。実施例5のシリコン酸化膜の形成方法を以下説明するが、実施例1におけるシリコン酸化膜の形成方法と相違する点を専ら説明する。尚、実施例5のシリコン酸化膜の形成方法においては、実施例1と同様に、図18に示したガス導入シークエンスを採用した。
【0079】
実施例5においては、実施例1の[工程−100]〜[工程−130]と同様の工程を実行する。実施例1の[工程−131]と同様の工程において、実施例5においては、配管32から燃焼室30への酸素ガスの供給開始後、1分間が経過したならば、配管31から水素ガス(流量:2.5SLM)を燃焼室30に導入する。燃焼室30内に配設された炎検出器等で水素ガスの燃焼が確認されたならば、配管35からの窒素ガスの供給を停止する。こうして、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、具体的には、実施例5においては処理室10の雰囲気温度を350゜Cに保持した状態にて、燃焼室30から供給された水蒸気によってシリコン層(実施例5においてはシリコン半導体基板40)の表面にシリコン酸化膜を形成する。尚、実施例5においては、配管35を介して塩化水素が導入され、水蒸気中には濃度0.1容量%の塩化水素が含有されている。尚、場合によっては、配管32を介して塩化水素を導入することもできる。具体的には、燃焼室30内で生成した水蒸気、及び塩化水素ガスを、配管33、ガス流路11及びガス導入部12を介して処理室10内に供給し、パイロジェニック酸化法によってシリコン半導体基板の表面に厚さ1nm程度のシリコン酸化膜を形成する。
【0080】
その後、実施例1の[工程−132]〜[工程−150]を実行する。尚、[工程−140](昇温工程)と同様の工程において、シリコン層(シリコン半導体基板)の表面に荒れが発生することはない。
【0081】
尚、処理室10内への水蒸気(ハロゲン元素が含有されていてもいなくともよい)の供給を継続しながら、酸化膜成膜装置の処理室10内の雰囲気温度を、均熱管14を介してヒータ15によって所望の温度(実施例5においては、800゜C)まで昇温してもよい。この場合、実施例1の[工程−132]及び[工程−150]と同様の工程は省略され、不活性ガスの導入は行われない。即ち、不活性ガス(窒素ガス)をガス導入部12から処理室10に供給しない。この場合のガス導入シークエンスを図29に示す。
【0082】
その後、実施例1の[工程−151]と同様の工程において、実施例5においては、配管32から燃焼室30への酸素ガスの供給開始後、1分間が経過したならば、配管31から水素ガス(流量:2.5SLM)を燃焼室30に導入する。燃焼室30内に配設された炎検出器等で水素ガスの燃焼が確認された後も、実施例5においても、配管35から窒素ガスの供給(流量:5SLM)を継続した。こうして、燃焼室30から供給された水蒸気によってシリコン層(実施例5においてもシリコン半導体基板40)の表面に更にシリコン酸化膜を形成する。実施例5においては、総厚4.0nmのシリコン酸化膜を形成した。尚、水蒸気中には、濃度0.1容量%の塩化水素が含有されている。
【0083】
その後、実施例1の[工程−160]及び[工程−170]と同様の工程を実行することによって、シリコン層(実施例5においてもシリコン半導体基板)にシリコン酸化膜を形成することができる。
【0084】
(実施例6)
実施例6においては、枚葉式の酸化膜成膜装置を使用した。実施例6の実施に適した横型の酸化膜成膜装置の模式図を、図30に示す。この酸化膜成膜装置は、処理室50と、シリコン層を加熱するための加熱手段である抵抗加熱ヒータ51とを備えている。処理室50は石英炉心管から成り、シリコン層にシリコン酸化膜を形成するためにその内部にシリコン層を有する基板を収納する。加熱手段である抵抗加熱ヒータ51は、処理室50の外側に配設されており、且つ、シリコン層の表面と略平行に配設されている。シリコン層を有する基板である例えばシリコン半導体基板40は、ウエハ台52に載置され、処理室50の一端に設けられたゲートバルブ53を介して、処理室50内に搬入出される。酸化膜成膜装置には、処理室50へ水蒸気等を導入するためのガス導入部54と、処理室50からガスを排気するガス排気部55が更に備えられている。基板の温度は、図示しない熱電対によって測定することができる。
【0085】
配管61及び配管62を介して燃焼室60に供給された水素ガスを酸素ガスと、燃焼室60内で高温にて混合し、燃焼させることによって、水蒸気を生成させる。かかる水蒸気は、配管63及びガス導入部54を介して処理室50内に供給される。燃焼室60と処理室50とを結ぶ配管63には不活性ガス導入部64が設けられており、この不活性ガス導入部64には不活性ガス(実施例6においても窒素ガス)を導入するための配管65が取り付けられている。また、不活性ガス導入部64を含む配管63には、燃焼室60で生成した水蒸気が処理室50に達するまでの間に結露することを防止するための加熱手段であるヒータ66が備えられている。配管63に設けられた不活性ガス導入部64から配管63に流入する不活性ガスが燃焼室60側に流入しないように、配管63に不活性ガス導入部64が設けられていることが望ましい。具体的には、配管65内を流れてきた不活性ガスの不活性ガス導入部64における流れの方向と、燃焼室60から流れてきたガスの不活性ガス導入部64における流れの方向が、鋭角を成して交わることが好ましい。
【0086】
あるいは又、図31に模式図を示す形式の横型の酸化膜成膜装置を用いることもできる。この図31に示した横型の酸化膜成膜装置においては、加熱手段は、赤外線若しくは可視光を発する複数のランプ51Aから構成されている。また、図示しないパイロメータによって基板の温度を測定する。その他の構造は、基本的には、図30に示した酸化膜成膜装置と同様とすることができるので、詳細な説明は省略する。
【0087】
以下、実施例6のシリコン酸化膜の形成方法を説明するが、実施例6のシリコン酸化膜の形成方法においては、図29に示したガス導入シークエンスを採用した。
【0088】
[工程−600]
先ず、シリコン半導体基板に、実施例1と同様の方法で、素子分離領域等を形成した後、RCA洗浄によりシリコン半導体基板の表面の微粒子や金属不純物を除去し、次いで、0.1%フッ化水素酸水溶液によりシリコン半導体基板の表面洗浄を行い、シリコン半導体基板40の表面を露出させ、純水による洗浄後、公知のIPA乾燥法にてシリコン半導体基板40を乾燥させる。尚、シリコン半導体基板の表面は大半が水素で終端しており、極一部がフッ素で終端されている。
【0089】
[工程−610]
予め、配管61、燃焼室60、配管63及びガス導入部54を介して処理室50へ室温の窒素ガス(流量:5SLM)を導入し、処理室50内を室温の窒素ガス雰囲気としておく。そして、ウエハ台52に載置されたシリコン半導体基板40を、図30若しくは図31に示した酸化膜成膜装置のゲートバルブ53を開いて、処理室50内に搬入した後、ゲートバルブ53を閉じる。
【0090】
[工程−620]
処理室50には、配管61、燃焼室60、配管63及びガス導入部52を介して処理室50へ窒素ガスを流し続ける。次いで、ヒータ51を作動させて、処理室50内の雰囲気温度を350゜Cとする。一方、図示しないヒータによって燃焼室60を加熱し、燃焼室60の温度を750゜Cとする。また、ヒータ66によって配管63内の温度を昇温させ、350゜Cとする。
【0091】
[工程−630]
処理室50内の雰囲気温度が350゜Cにて安定した時点で、配管61からの窒素ガスの供給を停止し、配管65からの不活性ガス(実施例6においても窒素ガス)の供給(流量:5SLM)を開始する。それと同時に、配管62から燃焼室60への酸素ガスの供給(流量:2.5SLM)を開始する。このように、シリコン層(実施例6においてもシリコン半導体基板40)の表面からシリコン原子が脱離しない温度(実施例6においては350゜C)に保たれた不活性ガス雰囲気の処理室50内にシリコン層を有する基板(シリコン半導体基板40)を配置した後、燃焼室60への酸素ガスの供給開始後、燃焼室60への水素ガスの供給により水蒸気が燃焼室60内で生成しそして処理室50に供給されるまでの間、処理室50内へ不活性ガス(実施例6においては窒素ガス)を供給するので、水蒸気によりシリコン酸化膜がシリコン層(実施例6においてはシリコン半導体基板40)に形成される前に、シリコン層と接する酸素ガスの濃度を十分低下させることが可能となる。その結果、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を抑制することができる。また、シリコン半導体基板40は350゜Cに保持されているので、シリコン半導体基板40の表面に荒れが発生することを抑制することができる。更には、シリコン半導体基板40の表面に水素が終端した状態でシリコン酸化膜が形成されるので、シリコン酸化膜/シリコン半導体基板40の界面の平坦性が原子レベルで保たれる。
【0092】
[工程−631]
配管62から燃焼室60への酸素ガスの供給開始後、1分間が経過したならば、配管61から水素ガス(流量:2.5SLM)を燃焼室60に導入する。燃焼室60内に配設された炎検出器等で水素ガスの燃焼が確認されたならば、配管65からの窒素ガスの供給を停止する。こうして、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、具体的には、実施例6においては処理室50の雰囲気温度を350゜Cに保持した状態にて、燃焼室60から供給された水蒸気によってシリコン層(実施例6においてはシリコン半導体基板40)の表面にシリコン酸化膜を形成する。尚、実施例6においては、この第1のシリコン酸化膜形成工程において、1.2nmのシリコン酸化膜をシリコン半導体基板40の表面に形成した。
【0093】
[工程−640]
その後、処理室50内への水蒸気の供給を継続しながら、処理室50内の雰囲気温度を、加熱手段51によって所望の温度(実施例6においては、800゜C)まで昇温する。尚、実施例6においては、加熱手段がシリコン層の表面と略平行に配設されているので、基板の昇温時の基板の面内温度ばらつきの発生を抑制することができる結果、昇温中に形成されるシリコン酸化膜の面内膜厚ばらつきの発生を効果的に抑制することができる。
【0094】
[工程−650]
所望の温度(実施例6においては、800゜C)に処理室50内の雰囲気温度が達した後、この所望の温度に雰囲気を保持した状態にて、水蒸気を用いた熱酸化法によって、更にシリコン酸化膜を形成する。具体的には、燃焼室60内で生成した水蒸気を配管63及びガス導入部54を介して処理室50内に供給し続け、パイロジェニック酸化法によってシリコン半導体基板40の表面に総厚4.0nmのシリコン酸化膜42を形成する。
【0095】
[工程−660]
シリコン層の表面にシリコン酸化膜を形成した後、燃焼室60への水素ガスの供給を停止する。そして、所定の時間、燃焼室60へ酸素ガスを供給しながら、処理室50内へ不活性ガス(実施例6においては窒素ガス)を配管65から供給し続ける。燃焼室60への酸素ガスの供給量を2.5SLM、配管65から処理室50への窒素ガスの供給量を5SLMとした。この状態を1分間保持し、燃焼室60や配管63内に残存した水素ガスを燃焼させながら排気した。その後、配管65からの窒素ガスの供給を停止し、配管61から燃焼室60への不活性ガス(実施例6においては窒素ガス)の供給(流量:5SLM)を行う。
【0096】
[工程−670]
そして、処理室50の雰囲気温度をヒータ51によって850゜Cまで昇温する。その後、塩化水素を0.1容量%含有する窒素ガスをガス導入部54から処理室50内に導入し、5分間、熱処理を行う。
【0097】
[工程−680]
以上により、シリコン半導体基板40の表面におけるシリコン酸化膜の形成が完了する。以降、処理室50内を窒素ガス雰囲気とし、ゲートバルブ53を開き、ウエハ台52に載置されたシリコン半導体基板40を処理室50から搬出する。
【0098】
尚、実施例6にて説明した横型の酸化膜成膜装置を用いて、実施例1〜実施例5にて説明したシリコン酸化膜の形成を実施することもできる。
【0099】
以上、本発明を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例にて説明した各種の条件や酸化膜成膜装置の構造は例示であり、適宜変更することができる。各実施例における不活性ガス、酸素ガス、水素ガスの導入シークエンスも例示であり、適宜変更することができる。
【0100】
実施例1の[工程−140]あるいは実施例5の昇温工程において、不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に供給しながら、酸化膜成膜装置の処理室10内の雰囲気温度を均熱管14を介してヒータ15によって所望の温度まで昇温したが、その代わりに、例えば塩化水素ガスを0.1容量%含有する不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に供給しながら、酸化膜成膜装置の処理室10内の雰囲気温度を均熱管14を介してヒータ15によって所望の温度まで昇温してもよい。また、実施例1の[工程−160]や実施例5において、不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に導入しつつ処理室10の雰囲気温度をヒータ15によって850゜Cまで昇温したが、その代わりに、例えば塩化水素ガスを0.1容量%含有する不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に導入しつつ、処理室10の雰囲気温度をヒータ15によって850゜Cまで昇温してもよい。
【0101】
実施例においては、専らシリコン半導体基板の表面にシリコン酸化膜を形成し、あるいは又、基板の上に形成された絶縁層の上に成膜されたエピタキシャルシリコン層にシリコン酸化膜を形成したが、多結晶シリコン層、あるいは非晶質シリコン層の表面にシリコン酸化膜を形成することもできる。あるいは又、SOI構造におけるシリコン層の表面にシリコン酸化膜を形成してもよいし、半導体素子や半導体素子の構成要素が形成された基板やこれらの上に成膜されたシリコン層の表面にシリコン酸化膜を形成してもよい。更には、半導体素子や半導体素子の構成要素が形成された基板やこれらの上に成膜された下地絶縁層の上に形成されたシリコン層の表面にシリコン酸化膜を形成してもよい。シリコン酸化膜形成後の熱処理は必須ではなく、場合によっては省略することができる。
【0102】
図17に示した縦型の酸化膜成膜装置とは若干形式の異なる縦型の酸化膜成膜装置の模式的な断面図を図32に示す。この縦型の酸化膜成膜装置の処理室10は、上方領域10Aと下方領域10Bから構成され、下方領域10Bの雰囲気温度はヒータ15によって制御される。一方、上方領域10Aの外側には、赤外線若しくは可視光を発する複数のランプ15Aが配設されている。そして、例えば、実施例1の[工程−130]〜[工程−132]と同様の工程において、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態で水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成するが、このシリコン酸化膜の形成は処理室10の下方領域10Bにて行う。このとき、処理室10の上方領域10Aの雰囲気温度は、ランプ15Aによって400゜Cに保持する。その後、実施例1の[工程−140]と同様の工程において、処理室10内への水蒸気の供給を中止し、不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に供給しながら、酸化膜成膜装置の処理室10の上方領域10Aの雰囲気温度をランプ15Aによって所望の温度まで昇温させ、次いで、エレベータ機構23を作動させて石英ボート24を上昇させ、シリコン半導体基板40を処理室10の上方領域10Aに移す。そして、実施例1の[工程−150]〜[工程−152]と同様の工程において、パイロジェニック酸化法によってシリコン半導体基板40の表面にシリコン酸化膜42を形成する。次いで、実施例1の[工程−160]と同様の工程において、水蒸気の供給を中止し、不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に導入しつつ、処理室10の上方領域10Aの雰囲気温度をランプ15Aによって850゜Cまで昇温する。その後、塩化水素を0.1容量%含有する不活性ガス(例えば窒素ガス)をガス導入部12から処理室10内に導入し、処理室10の上方領域10Aにおいて、30分間、熱処理を行う。
【0103】
あるいは又、図31に示した横型のシリコン酸化膜成膜装置とは若干形式の異なる横型のシリコン酸化膜成膜装置の模式的な断面図を図33に示す。この横型のシリコン酸化膜成膜装置の処理室50は、第1の領域50Aと第2の領域50Bから構成され、第1の領域50A及び第2の領域50Bのそれぞれの雰囲気温度はランプ151A及びランプ151Bによって制御される。そして、例えば、実施例6の[工程−631]と同様の工程において、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態で、水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成するが、このシリコン酸化膜の形成は処理室50の第1の領域50Aにて行う。尚、第1の領域50Aにおける雰囲気温度の制御はランプ151Aによって行われる。このとき、処理室50の第2の領域50Bの雰囲気温度は、ランプ151Bによって350゜Cに保持する。その後、実施例6の[工程−640]と同様の工程において、処理室50内への水蒸気の供給を継続しながら、処理室50の第2の領域50Bの雰囲気温度を、ランプ151Bによって所望の温度まで昇温し、基板を第2の領域50Bに移す。その後、[工程−650]と同様の工程において、所望の温度に処理室50の第2の領域50Bの雰囲気温度をランプ151Bによって保持した状態にて、水蒸気を用いた酸化法にて、更にシリコン酸化膜を形成する。その後、[工程−660]と同様の工程において、水蒸気の供給を中止し、不活性ガス(例えば窒素ガス)をガス導入部54から処理室50内に導入しつつ、処理室50の第2の領域50Bの雰囲気温度をランプ151Bによって850゜Cまで昇温する。その後、塩化水素を0.1容量%含有する不活性ガス(例えば窒素ガス)をガス導入部54から処理室50内に導入し、5分間、熱処理を行う。尚、図33のシリコン酸化膜成膜装置におけるランプの代わりに、図30に示したと同様に抵抗加熱ヒータを用いることもできる。
【0104】
表2に、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成する工程(表2では第1の酸化工程と表示した)における雰囲気、雰囲気温度を所望の温度まで昇温する工程(表2では第1の昇温工程と表記した)における雰囲気、所望の温度に雰囲気を保持した状態にて、水蒸気を用いた酸化法によって、更にシリコン酸化膜を形成する工程(表2では第2の酸化工程と表記した)における雰囲気、並びに、形成されたシリコン酸化膜に熱処理を施すために雰囲気を昇温する工程(表2では第2の昇温工程と表記した)における雰囲気の組み合わせを示す。尚、表2中、水蒸気雰囲気を「水蒸気」と表記し、ハロゲン元素を含有する水蒸気雰囲気を「*水蒸気」と表記し、不活性ガス雰囲気を「不活性ガス」と表記し、ハロゲン元素を含有する不活性ガス雰囲気「*不活性ガス」と表記した。ここで、表2に示した各種の雰囲気の組み合わせは、図17や図32、図30や図31、図33に示した酸化膜成膜装置にて実現することができる。
【0105】
【表2】
Figure 0003757566
Figure 0003757566
【0106】
【発明の効果】
本発明のシリコン酸化膜の形成方法においては、水蒸気によりシリコン酸化膜が形成される前に、シリコン層と接する酸素ガスの濃度を十分低下させることが可能となり、酸素ガスによるシリコン酸化膜の形成(ドライ酸化膜の形成)を抑制することが可能となる。しかも、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、水蒸気を用いた酸化法によってシリコン層の表面にシリコン酸化膜を形成する。以上の結果、最終的に形成されるシリコン酸化膜中には信頼性の劣るドライ酸化膜が含まれず、優れた特性を有するシリコン酸化膜を形成することができるだけでなく、シリコン層の表面に凹凸(荒れ)が生じることを防止し得る。それ故、チャネル移動度の低下を防止でき、MOS型トランジスタ素子の駆動電流の劣化が生じ難く、また、フラッシュメモリ等でデータリテンション特性の劣化を引き起こすストレスリーク現象の発生を抑制することができる。
【0107】
更には、シリコン層の表面に既に保護膜としても機能するシリコン酸化膜が形成された状態で、雰囲気温度を所望の温度に昇温した後、更に、水蒸気を用いた酸化法によって更にシリコン酸化膜を形成するので、昇温工程においてシリコン層の表面に凹凸(荒れ)が生じることがないし、優れた特性を有するシリコン酸化膜を形成することができる。以上の結果として、長期信頼性に優れた極薄の例えばゲート酸化膜の形成が可能となる。また、本発明のシリコン酸化膜の形成方法においては、水蒸気を用いた酸化法によってシリコン酸化膜を形成するので、優れた経時絶縁破壊(TDDB)特性を有するシリコン酸化膜を得ることができる。
【図面の簡単な説明】
【図1】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図2】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図3】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図4】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図5】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図6】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図7】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図8】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図9】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図10】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図11】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図12】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図13】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図14】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図15】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図16】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図17】実施例1におけるシリコン酸化膜の形成方法の実施に適した酸化膜成膜装置の模式図である。
【図18】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図19】本発明のシリコン酸化膜の形成方法を説明するためのシリコン半導体基板等の模式的な一部断面図である。
【図20】実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図21】図20に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図22】図21に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図23】図22に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図24】図23に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図25】図24に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図26】図25に引き続き、実施例1におけるシリコン酸化膜の形成方法を説明するための酸化膜成膜装置等の模式的な断面図である。
【図27】経時絶縁破壊(TDDB)特性を測定するための回路の模式図である。
【図28】実施例3のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図29】本発明のシリコン酸化膜の形成方法における不活性ガス、酸素ガス、水素ガスの導入シークエンスを模式的に示す図である。
【図30】本発明の第2の態様に係るシリコン酸化膜の形成方法の実施に適した横型の酸化膜成膜装置の模式的な断面図である。
【図31】図30とは若干構造が異なる、本発明の第2の態様に係るシリコン酸化膜の形成方法の実施に適した横型の酸化膜成膜装置の模式的な断面図である。
【図32】図17に示した縦型の酸化膜成膜装置とは若干形式の異なる縦型の酸化膜成膜装置の模式的な断面図である。
【図33】図31に示した横型のシリコン酸化膜成膜装置とは若干形式の異なる横型のシリコン酸化膜成膜装置の模式的な断面図である。
【図34】従来の縦型方式の酸化膜成膜装置の概念図である。
【図35】図34に示した従来の縦型方式の酸化膜成膜装置を用いて、シリコン半導体基板にシリコン酸化膜を形成する方法を説明するための概念図である。
【図36】図35に引き続き、シリコン半導体基板にシリコン酸化膜を形成する方法を説明するための概念図である。
【図37】図36に引き続き、シリコン半導体基板にシリコン酸化膜を形成する方法を説明するための概念図である。
【図38】図37に引き続き、シリコン半導体基板にシリコン酸化膜を形成する方法を説明するための概念図である。
【符号の説明】
10,50・・・処理室、11・・・ガス流路、12・・・ガス導入部、13・・・ガス排気部、14・・・均熱管、15・・・ヒータ、16・・・シャッター、20・・・基板搬入出部、21・・・ガス導入部、22・・・ガス排気部、23・・・エレベータ機構、24・・・石英ボート、30,60・・・燃焼室、31,32,33,35,61,62,63,65・・・配管、34,64・・・不活性ガス導入部、36,66・・・ヒータ、40・・・シリコン半導体基板、41・・・素子分離領域、42・・・シリコン酸化膜、43・・・ゲート電極、51・・・抵抗加熱ヒータ、51A,151A,151B・・・ランプ、52・・・ウエハ台、53・・・ゲートバルブ、54・・・ガス導入部、55・・・ガス排気部

Claims (32)

  1. (A)酸素ガスによる水素ガスの燃焼によって水蒸気を生成させる燃焼室と、
    (B)燃焼室に通じ、そして、燃焼室から供給された水蒸気によってシリコン層の表面にシリコン酸化膜を形成する処理室、
    を具備する酸化膜成膜装置を用いたシリコン酸化膜の形成方法であって、
    (イ)シリコン層の表面からシリコン原子が脱離しない温度に保たれた不活性ガス雰囲気の処理室内にシリコン層を有する基板を配置した後、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給し、次いで、シリコン層の表面からシリコン原子が脱離しない温度に雰囲気を保持した状態にて、燃焼室から供給された水蒸気によって該シリコン層の表面にシリコン酸化膜を形成する工程と、
    (ロ)処理室の雰囲気温度を所望の温度まで昇温する工程と、
    (ハ)該所望の温度に雰囲気を保持した状態にて、燃焼室から供給された水蒸気によって、更にシリコン酸化膜を形成する工程、
    から成ることを特徴とするシリコン酸化膜の形成方法。
  2. 前記工程(イ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給停止後、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給することを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  3. 前記工程(ハ)において、水蒸気によって更にシリコン酸化膜を形成する前に、少なくとも、燃焼室への酸素ガスの供給開始後、燃焼室への水素ガスの供給により水蒸気が燃焼室内で生成しそして処理室に供給されるまでの間、処理室内へ不活性ガスを供給することを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  4. 前記工程(ハ)において、シリコン層の表面にシリコン酸化膜を形成した後、燃焼室への水素ガスの供給停止後、所定の時間、燃焼室へ酸素ガスを供給しながら、処理室内へ不活性ガスを供給することを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  5. 水素ガスの不完全燃焼を防止するために、処理室内へ酸素ガスを供給することを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  6. シリコン層の表面からシリコン原子が脱離しない温度は、シリコン層表面を終端している原子とシリコン原子との結合が切断されない温度であることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  7. シリコン層の表面からシリコン原子が脱離しない温度は、Si−H結合が切断されない温度若しくはSi−F結合が切断されない温度であることを特徴とする請求項6に記載のシリコン酸化膜の形成方法。
  8. 工程(イ)及び/又は工程(ハ)における水蒸気は不活性ガスで希釈されることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  9. 工程(イ)及び/又は工程(ハ)における水蒸気にはハロゲン元素が含有されていることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  10. ハロゲン元素は塩素であることを特徴とする請求項9に記載のシリコン酸化膜の形成方法。
  11. 塩素は塩化水素の形態であり、水蒸気中に含有される塩化水素の濃度は0.02乃至10容量%であることを特徴とする請求項10に記載のシリコン酸化膜の形成方法。
  12. 工程(ロ)における雰囲気は、不活性ガス雰囲気であることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  13. 不活性ガス雰囲気にはハロゲン元素が含有されていることを特徴とする請求項12に記載のシリコン酸化膜の形成方法。
  14. ハロゲン元素は塩素であることを特徴とする請求項13に記載のシリコン酸化膜の形成方法。
  15. 塩素は塩化水素の形態であり、水蒸気中に含有される塩化水素の濃度は0.02乃至10容量%であることを特徴とする請求項14に記載のシリコン酸化膜の形成方法。
  16. 工程(ロ)における雰囲気は、燃焼室から供給された水蒸気を含む酸化雰囲気であることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  17. 工程(ロ)における雰囲気は、燃焼室から供給された水蒸気が不活性ガスで希釈された酸化雰囲気であることを特徴とする請求項16に記載のシリコン酸化膜の形成方法。
  18. 工程(ロ)における雰囲気中の水蒸気にはハロゲン元素が含有されていることを特徴とする請求項16に記載のシリコン酸化膜の形成方法。
  19. ハロゲン元素は塩素であることを特徴とする請求項18に記載のシリコン酸化膜の形成方法。
  20. 塩素は塩化水素の形態であり、水蒸気中に含有される塩化水素の濃度は0.02乃至10容量%であることを特徴とする請求項19に記載のシリコン酸化膜の形成方法。
  21. 工程(ハ)の後、形成されたシリコン酸化膜に熱処理を施すことを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
  22. 熱処理の雰囲気は、ハロゲン元素を含有する不活性ガス雰囲気であることを特徴とする請求項21に記載のシリコン酸化膜の形成方法。
  23. ハロゲン元素は塩素であることを特徴とする請求項22に記載のシリコン酸化膜の形成方法。
  24. 塩素は塩化水素の形態であり、不活性ガス中に含有される塩化水素の濃度は0.02乃至10容量%であることを特徴とする請求項23に記載のシリコン酸化膜の形成方法。
  25. 熱処理は700乃至950゜Cの温度で行われることを特徴とする請求項21に記載のシリコン酸化膜の形成方法。
  26. 熱処理は炉アニール処理であることを特徴とする請求項25に記載のシリコン酸化膜の形成方法。
  27. 熱処理の雰囲気は、窒素系ガス雰囲気であることを特徴とする請求項21に記載のシリコン酸化膜の形成方法。
  28. 形成されたシリコン酸化膜に熱処理を施す際の雰囲気温度は、工程(ハ)においてシリコン酸化膜を形成する際の雰囲気温度よりも高いことを特徴とする請求項21に記載のシリコン酸化膜の形成方法。
  29. 工程(ハ)におけるシリコン酸化膜の形成完了後、雰囲気をハロゲン元素を含有する不活性ガス雰囲気に切り替えた後、熱処理を施すための雰囲気温度まで昇温することを特徴とする請求項28に記載のシリコン酸化膜の形成方法。
  30. ハロゲン元素は塩素であることを特徴とする請求項29に記載のシリコン酸化膜の形成方法。
  31. 塩素は塩化水素の形態であり、不活性ガス中に含有される塩化水素の濃度は0.02乃至10容量%であることを特徴とする請求項30に記載のシリコン酸化膜の形成方法。
  32. シリコン層は、基板上に形成されたエピタキシャルシリコン層から成ることを特徴とする請求項1に記載のシリコン酸化膜の形成方法。
JP22516497A 1997-08-21 1997-08-21 シリコン酸化膜の形成方法及び酸化膜成膜装置 Expired - Fee Related JP3757566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22516497A JP3757566B2 (ja) 1997-08-21 1997-08-21 シリコン酸化膜の形成方法及び酸化膜成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22516497A JP3757566B2 (ja) 1997-08-21 1997-08-21 シリコン酸化膜の形成方法及び酸化膜成膜装置

Publications (2)

Publication Number Publication Date
JPH1167747A JPH1167747A (ja) 1999-03-09
JP3757566B2 true JP3757566B2 (ja) 2006-03-22

Family

ID=16824952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22516497A Expired - Fee Related JP3757566B2 (ja) 1997-08-21 1997-08-21 シリコン酸化膜の形成方法及び酸化膜成膜装置

Country Status (1)

Country Link
JP (1) JP3757566B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278933B (en) 1997-03-05 2007-04-11 Hitachi Ltd Method of making semiconductor IC device
JP3965167B2 (ja) 2003-07-04 2007-08-29 東京エレクトロン株式会社 熱処理方法及び熱処理装置
WO2009099254A1 (ja) * 2008-02-08 2009-08-13 Tokyo Electron Limited 絶縁膜の形成方法、コンピュータ読み取り可能な記憶媒体および処理システム
JP5641537B2 (ja) * 2011-03-22 2014-12-17 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの熱処理方法
JP6573578B2 (ja) * 2016-05-31 2019-09-11 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6456893B2 (ja) 2016-09-26 2019-01-23 株式会社Kokusai Electric 半導体装置の製造方法、記録媒体および基板処理装置

Also Published As

Publication number Publication date
JPH1167747A (ja) 1999-03-09

Similar Documents

Publication Publication Date Title
US6297172B1 (en) Method of forming oxide film
US6239044B1 (en) Apparatus for forming silicon oxide film and method of forming silicon oxide film
JP3974547B2 (ja) 半導体装置および半導体装置の製造方法
US6797323B1 (en) Method of forming silicon oxide layer
US6204205B1 (en) Using H2anneal to improve the electrical characteristics of gate oxide
JP4095326B2 (ja) 半導体装置の製造方法及び半導体装置
JP3757566B2 (ja) シリコン酸化膜の形成方法及び酸化膜成膜装置
JPH11162970A (ja) 酸化膜の形成方法
JPH11186255A (ja) シリコン酸化膜の形成方法
JPH11204517A (ja) シリコン酸化膜の形成方法、及びシリコン酸化膜形成装置
JP3800788B2 (ja) シリコン酸化膜の形成方法
JPH11135492A (ja) シリコン酸化膜の形成方法及びシリコン酸化膜形成装置
JP2000068266A (ja) 酸化膜の形成方法
JPH11186248A (ja) シリコン酸化膜の形成方法及びシリコン酸化膜形成装置
JP2000216154A (ja) 酸化膜の形成方法及びp形半導体素子の製造方法
JP4797358B2 (ja) 半導体装置の製造方法
JP3588994B2 (ja) 酸化膜の形成方法及びp形半導体素子の製造方法
JPH11297689A (ja) シリコン絶縁膜の熱処理方法並びに半導体装置の製造方法
JP3952542B2 (ja) シリコン酸化膜の形成方法
JPH09153489A (ja) 半導体装置の製造方法
JPH10284484A (ja) シリコン酸化膜の形成方法
JP2000216156A (ja) シリコン窒化酸化膜の形成方法及びp形半導体素子の製造方法
JPH1167749A (ja) シリコン酸化膜の形成方法及び乾燥・成膜装置
JPH1174264A (ja) シリコン酸化膜の形成方法
JPH10289905A (ja) シリコン酸化膜の形成方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees