JP5638739B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5638739B2
JP5638739B2 JP2008057820A JP2008057820A JP5638739B2 JP 5638739 B2 JP5638739 B2 JP 5638739B2 JP 2008057820 A JP2008057820 A JP 2008057820A JP 2008057820 A JP2008057820 A JP 2008057820A JP 5638739 B2 JP5638739 B2 JP 5638739B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor device
mask
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008057820A
Other languages
English (en)
Other versions
JP2009218267A (ja
Inventor
俵 武志
武志 俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008057820A priority Critical patent/JP5638739B2/ja
Publication of JP2009218267A publication Critical patent/JP2009218267A/ja
Application granted granted Critical
Publication of JP5638739B2 publication Critical patent/JP5638739B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は半導体装置の製造方法に関し、特に、炭化珪素で構成された半導体装置の製造方法に関する。
次世代の半導体材料として、炭化珪素(SiC)が期待されている。SiCで構成された半導体素子は、これまでのシリコン(Si)で構成された場合と比較して、オン状態における素子の抵抗(オン抵抗)が数百分の一に低減でき、200℃以上の高温環境下で使用可能であるなどの特徴を有する。これは材料そのものの優位性、つまりSiCはバンドギャップが4H−SiCで3.25eVとSiの1.12eVに対して3倍程度大きく、電界強度がSiより1桁近く大きい2〜4mV/cmという特徴に起因している。そして、現在までにSiCを用いた、例えば、ダイオードなどの整流デバイス、トランジスタ、サイリスタなどのスイッチングデバイスなどの様々なデバイスが試作されている。特に、ショットキーバリアダイオード(Schottky Barrier Diode)は、ユニポーラデバイスであることからスイッチング時の逆回復時間が短く、高速スイッチングを行うことができる。このため、SiCを用いたショットキーバリアダイオードを、Siを用いた高速pnダイオードと置き換える検討がなされている。さらに、SiCで構成されたショットキーバリアダイオードは、Siのショットキーバリアダイオードと異なり、1kVを超える高耐圧で使用するために、フローティングガードリング(Floating Guard Ring)などの耐圧構造を備えている。フローティングガードリングをSiCの半導体素子に形成するためには、Siと比較して不純物の拡散速度が遅いため、イオン注入を行って、1500℃以上の高温アニール処理を行う方法が用いられている。
しかし、注入したイオンを活性化させるための、1500℃以上の高温アニール処理によって、SiC表面からSiが蒸発し、表面荒れが生じる。この表面荒れとともに、イオン注入時に形成された欠陥がショットキーバリアダイオードのリーク電流を増加させ、製造歩留まりの低下を招いてきた。
そこで、p型の不純物濃度を有するエピタキシャル膜を形成し、そのエピタキシャル膜をエッチングして、フローティングガードリングを形成する方法が提案されている(例えば、特許文献1参照)。
特表2005−518672号公報
しかし、上記特許文献1のように、p型の不純物濃度を有するエピタキシャル膜をエッチングして、フローティングガードリングを形成する方法では、エッチングによって、エピタキシャル膜に損傷を与え、損傷によって欠陥が形成されてしまう。さらに、マスク材の飛散などによりSiC表面が汚染されてしまう。このような損傷、欠陥および表面汚染はショットキーバリアダイオードの製造歩留まりを低下させるという課題があった。
本発明はこのような点に鑑みてなされたものであり、製造歩留まりが向上した半導体装置の製造方法を提供することを目的とする。
上記目的を達成するために、以下のような半導体装置の製造方法が提供される。
この半導体装置の製造方法は、第1導電型炭化珪素の基板上に、炭化珪素の第1導電型の第1の半導体層と該第1の半導体層よりも薄い炭化珪素であって、主面がSi面から10度以内に傾いた面である第2導電型の第2の半導体層とをこの順にエピタキシャル成長で形成する工程と、前記第2の半導体層上に、パターン化されたマスク層を形成する工程と、前記マスク層をマスクとして、前記第2の半導体層に、前記第2の半導体層の前記主面に対して垂直に不活性元素イオンを注入してからパイロジェニック酸化処理を行い、前記マスクで覆われていない領域の前記第2の半導体層を酸化膜に置き換える工程と、前記マスク層の内周側の前記第2の半導体層が酸化された領域をエッチングし、前記第1の半導体層上と、前記基板の前記第1の半導体層が形成された反対側とに金属層を形成する工程と、を有する。
このような半導体装置の製造方法によれば、第1導電型炭化珪素の基板上に、炭化珪素の第1導電型の第1の半導体層と該第1の半導体層よりも薄い炭化珪素であって、主面がSi面から10度以内に傾いた面である第2導電型の第2の半導体層とがこの順にエピタキシャル成長で形成され、第2の半導体層上に、パターン化されたマスク層が形成され、マスク層をマスクとして、第2の半導体層に、第2の半導体層の主面に対して垂直に不活性元素イオンが注入されてからパイロジェニック酸化処理が行われ、マスクで覆われていない領域の第2の半導体層が酸化膜に置き換えられ、マスク層の内周側の第2の半導体層が酸化された領域がエッチングされ、第1の半導体層上と、基板の第1の半導体層が形成された反対側とに金属層が形成されるようになる。
上記半導体装置の製造方法では、フローティングガードリングを形成する際の、損傷、欠陥および表面汚染を低減し、製造歩留まりが向上した半導体装置を得ることができる。
以下、本発明の実施の形態として、実施の形態の概要を、その後に概要を踏まえた実施の形態について、図面を参照しながら説明する。ただし、本発明の技術的範囲はこれらの実施の形態に限定されるものではない。また、以下の図面の記載において、同一または類似の部分は同一または類似の符合を付している。
まず、本実施の形態の概要について説明する。
図1は、実施の形態の概要を説明する概念図である。なお、図1は、半導体装置の各製造プロセスの要部断面を模式的に示している。
まず、図1(A)を参照しながら説明する。n導電型の基板11を用意する。そして、基板11上に、n型およびp型の半導体層12,13aをそれぞれ順に積層する。以上により図1(A)に示す構成が得られる。
次いで、図1(B)に示すように、p型の半導体層13a上に、絶縁物層を形成して、パターン化し、マスク層14を形成する。
次いで、図1(C)を参照しながら説明する。マスク層14の形成後、酸化処理を行う。すると、半導体層13aのマスク層14で覆った領域以外が酸化される。そして、マスク層14の下部はp型の半導体層13aのままであるので、p型のフローティングガードリング13が形成される。また、酸化処理とともに、パッシベーション膜16をフローティングガードリング13の周囲に形成するようにしてもよい。なお、図1(C)では、パッシベーション膜16を形成した場合について示している。以上により図1(C)に示す構成が得られる。
最後に、図1(D)を参照しながら説明する。基板11の裏面側に金属層を形成する。そして、金属層の形成後、金属層に熱処理を行って、接触抵抗を下げて、金属層15bを形成する。さらにパッシベーション膜16にコンタクトホールを形成し、金属層15aを形成する。以上により、図1(D)に示すようなフローティングガードリング13を備えた半導体装置10が形成される。
このように、p型の半導体層13aにマスク層14を形成し、マスク層14で覆った領域以外を酸化することで、マスク層14で覆われた領域にフローティングガードリング13を形成することができた。したがって、フローティングガードリング13の形成のためにイオン注入を行わないので、半導体層13aおよび半導体層12などに不要な欠陥が導入されない。また、フローティングガードリング13の形成のために、SiCのエッチングなどを行わないため、半導体層13aや半導体層12に損傷を与えることがなく、さらに、マスク層14の飛散などにより半導体層13aおよび半導体層12などが汚染されることがない。このため、製造歩留まりが向上し、信頼性が高まった半導体装置が提供される。
なお、本実施の形態の概要では、基板11、半導体層12および半導体層13aは、n型、n型およびp型のSiCであるとしたが、基板11、半導体層12および半導体層13aは、それぞれp型、p型およびn型のSiCであってもよい。
次に、実施の形態について説明する。
<第1の実施の形態>
第1の実施の形態では、上記概要を踏まえ、SiCで構成され、さらに、半導体層の主面がC面である半導体装置の製造方法について図面を参照しながら説明する。2種類の元素(Si、C)からなる化合物半導体においては、表面と裏面とで、原子配列の違いが生じるため、同様の条件下において酸化を行っても、酸化速度が大幅に変わってしまう。例えば、通常Si面と呼ばれる(0001)面と、通常C面と呼ばれる(000−1)面とでは、酸化速度はC面の方が一桁近く速いことが知られている。
図2は、第1の実施の形態における半導体装置の要部断面模式図である。
半導体装置100は、ショットキーバリアダイオードであって、具体的には以下に示す構成をなしている。n型のSiC基板101、n型のエピタキシャル層102が順に積層されている。エピタキシャル層102上にはフローティングガードリング103、窒化シリコン(SiN)によって構成されるマスク層104が形成されて、これらの周辺がパッシベーション膜106で覆われている。さらに、フローティングガードリング103の内周側のコンタクト領域および基板101の裏面にコンタクト電極105a,105bがそれぞれ形成されている。なお、基板101、エピタキシャル層102およびフローティングガードリング103はSiCにより構成されている。
以下に、半導体装置100の作成方法について図面を用いて説明する。
まず、基板を形成する。
図3は、第1の実施の形態における半導体装置の基板の形成工程を説明する要部断面模式図である。
n型のSiC基板101を用意する。SiC基板101は、4H型であって、基板表面はC面に対して、<11−20>方向に8°ほど傾いている。この面は厳密にC面ではないが、酸化速度はC面とほぼ同様である。また、SiC基板101の厚さは、200μm程度、例えば、5.0×1018/cm3程度の窒素(N)がドーピングされている。
このようなSiC基板101上に、エピタキシャル成長装置によって、エピタキシャル層102を成長させる。エピタキシャル層102は、n型であって、厚さは10.0μm程度であって、SiC基板101と同様にNのドーピング濃度は1.0×1016/cm3程度である。
さらに、エピタキシャル層102上に、エピタキシャル成長装置によって、エピタキシャル層103aを成長させる。エピタキシャル層103aは、p型であって、厚さは0.5μm程度、例えば、2.0×1017/cm3程度のアルミニウム(Al)がドーピングされている。以上によって、図3に示す構成が得られる。
次いで、エピタキシャル層の上にマスク層を形成する。
図4は、第1の実施の形態における半導体装置のマスク層の形成工程を説明する要部断面模式図である。
エピタキシャル層103a上に、SiN膜を成膜する。成膜には、熱CVD(Chemical Vapor Deposition:化学気相成長)法によって、SiN膜を、例えば、90nm程度成膜する。さらに、成膜したSiN膜をパターニングすることによって、マスク層104が形成される。以上によって、図4に示す構成が得られる。
次いで、フローティングガードリングおよびパッシベーション膜の形成を行う。
図5は、第1の実施の形態における半導体装置のフローティングガードリングおよびパッシベーション膜の形成工程を説明する要部断面模式図である。
マスク層104の形成後、1200℃程度の温度で、水素と酸素とを流しながら、パイロジェニック酸化を4.5時間程度行うとともに、パッシベーション膜を形成した。マスク層104によって覆われたエピタキシャル層103aはp型のSiCのままであるのでp型のフローティングガードリング103が形成される。そして、マスク層104によって覆われた領域以外のエピタキシャル層103aが酸化されて、酸化珪素(SiO2)膜が構成される。SiO2膜は、その後のパッシベーション膜106aとして用いることができる。ここで素子評価用のTEG(Test Element Group)パターンを形成し、p型のエピタキシャル層103aが層分離(マスク層104によって覆われた領域以外のエピタキシャル層103aが酸化されて、SiO2膜に置き換わっていること)できていることを確認した。なお、作成している半導体装置100は、実際にはSiC基板101上に複数形成されている。
そして、SiC基板101の裏面に、例えば、厚さが0.05μm程度のニッケル(Ni)を成膜し、温度が1000℃程度のアルゴン(Ar)雰囲気中で1分間程度アニールを行って、オーミックコンタクト電極115bを形成した。以上によって、図5に示す構成が得られる。
次いで、ショットキーコンタクト電極を形成する。
図6は、第1の実施の形態における半導体装置のコンタクト領域の形成工程を説明する要部断面模式図である。
パッシベーション膜106aの形成後、p型のフローティングガードリング103の内周側にパッシベーション膜106aにコンタクトホール106bを、例えば、RIE(Reactive Ion Etching)によって形成する。以上により、図6に示す構成が得られる。
最後に、ショットキーコンタクト電極を形成する。
図2に示したように、コンタクトホール106bに、Niにより金属層を形成して、ショットキーコンタクト電極105aを形成する。以上の製造工程によって、半導体装置100が形成される。
なお、第1の実施の形態によって製造した半導体装置100と、フローティングガードリングの形成にイオン注入および活性化アニールを行って製造した半導体装置との製造歩留まりを比較した。その結果、第1の実施の形態によって製造した半導体装置100が、約30%製造歩留まりが高かった。また、同様に、製造コストについて比較すると、第1の実施の形態によって製造した半導体装置100の方が約50%製造コストが低かった。
このように、エピタキシャル層103aにマスク層104を形成し、酸化することで、エピタキシャル層103aの覆われた領域にフローティングガードリング103を形成することができた。したがって、第1の実施の形態では、フローティングガードリング103の形成のためにイオン注入を行わないために、エピタキシャル層103aおよびエピタキシャル層102などに不要な欠陥が導入されない。また、フローティングガードリング103の形成のためにSiCのエッチングなどを行わないため、エピタキシャル層103aやエピタキシャル層102に損傷を与えず、さらに、マスク層104の構成材料の飛散などによりエピタキシャル層103aおよびエピタキシャル層102などが汚染されることがない。このため、製造歩留まりが向上し、信頼性が高まった半導体装置100が提供される。
<第2の実施の形態>
第1の実施の形態では、SiCで構成され、半導体層の主面が酸化速度の速いC面であった場合を例に挙げて説明した。一方、第2の実施の形態では、半導体層の主面が酸化速度の遅いSi面である場合を例に挙げて、図面を参照しながら説明する。なお、第2の実施の形態で用いた図面を利用する。その場合は、図面の説明は省略する。
まず、図3に示したように、n型のSiC基板101、n型のエピタキシャル層102およびp型のエピタキシャル層103aを形成する。なお、各構成については、第1の実施の形態で説明した通りである。ただしSiC基板101は、4H型であって、基板表面はSi面に対して、<11−20>方向に8°ほど傾いている。この面は厳密にSi面ではないが、酸化速度はSi面とほぼ同様である。
次いで、エピタキシャル層の上にマスク層を形成する。
図7は、第2の実施の形態における半導体装置のマスク層の形成工程の要部断面模式図である。
エピタキシャル層103a上に、SiO2膜を成膜する。成膜には、PE(Plasma Enhanced)CVD法によって、SiO2膜を、例えば、100nm程度成膜する。そして、成膜したSiO2膜をパターニングすることによって、マスク層104が形成される。さらに、第2の実施の形態では、マスク層104をマスクとして、Arイオンをエピタキシャル層103aの0.6μm程度の深さに達し、濃度が1.0×1019/cm3程度になるまで注入する。イオンを注入することによって、マスク層104で覆われた領域以外のエピタキシャル層103aの結晶性が崩れ、酸化速度が速くなる。なお、注入するイオンは不活性元素であればよく、Arイオンの代わりに、例えば、ネオン(Ne)イオン、Kr(クリプトン)イオン、キセノン(Xe)イオンまたはラドン(Rn)イオンのいずれかであればよい。以上によって、図7に示す構成が得られる。
次いで、フローティングガードリングおよびパッシベーション膜の形成を行う。
図5に示したように、イオンの注入後、温度が1200℃程度で、水素と酸素とを流しながら、パイロジェニック酸化を4.5時間程度行うとともに、パッシベーション膜106aを形成した。既述の通り、マスク層104によって覆われた領域以外のエピタキシャル層103aが酸化されて、SiO2膜から構成されるパッシベーション膜106aとなった。そして、マスク層104に覆われたエピタキシャル層103aからフローティングガードリング103が形成される。なお、TEGパターンを用いて、このようなパイロジェニック酸化により、p型のエピタキシャル層103aが層分離できていることが確認された。
そして、SiC基板101の裏面に、例えば、厚さが0.05μm程度のNiを成膜し、温度が1000℃程度のアルゴン(Ar)雰囲気中で1分間程度アニールを行って、オーミックコンタクト電極115bを形成した。以上によって、図5に示す構成が得られる。
次いで、コンタクト領域を形成する。
図6に示したように、パッシベーション膜106aの形成後、コンタクト領域となるコンタクトホール106bをフローティングガードリング103の内周側のパッシベーション膜106aに形成する。以上により、図6に示す構成が得られる。
最後に、ショットキーコンタクト電極を形成する。
図2に示したように、コンタクトホール106bに、Niにより金属層を形成して、ショットキーコンタクト電極105aを形成する。以上の製造工程によって、半導体装置100が形成される。
なお、第2の実施の形態によって製造した半導体装置100と、フローティングガードリングの形成にイオン注入および活性化アニールを行って製造した半導体装置との製造歩留まりも比較した。その結果、第2の実施の形態によって製造した半導体装置100が、約30%製造歩留まりが高かった。また、同様に、製造コストについて比較すると、第2の実施の形態によって製造した半導体装置100の方が約30%製造コストが低かった。
このように、p型のエピタキシャル層103aにマスク層104を形成し、酸化することで、エピタキシャル層103aがマスク層104で覆われた領域にフローティングガードリング103を形成することができた。したがって、第1の実施の形態では、フローティングガードリング103の形成のためにイオン注入を行わないために、エピタキシャル層103aおよびエピタキシャル層102などに不要な欠陥が導入されない。また、フローティングガードリング103の形成のためにエッチングなどを行わないため、エピタキシャル層103aやエピタキシャル層102に損傷を与えず、さらに、マスク層104の構成材料の飛散などによりエピタキシャル層103aおよびエピタキシャル層102などが汚染されることがない。このため、製造歩留まりが向上し、信頼性が高まった半導体装置100が提供される。なお、第2の実施の形態では、エピタキシャル層103aにイオン注入を行っているが、イオン注入を行った領域はその後のパイロジェニック酸化工程でSiO2膜に変えられるので欠陥の問題がない。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
実施の形態の概要を説明する概念図である。 第1の実施の形態における半導体装置の要部断面模式図である。 第1の実施の形態における半導体装置の基板の形成工程を説明する要部断面模式図である。 第1の実施の形態における半導体装置のマスク層の形成工程を説明する要部断面模式図である。 第1の実施の形態における半導体装置のフローティングガードリングおよびパッシベーション膜の形成工程を説明する要部断面模式図である。 第1の実施の形態における半導体装置のコンタクト領域の形成工程を説明する要部断面模式図である。 第2の実施の形態における半導体装置のマスク層の形成工程の要部断面模式図である。
符号の説明
10 半導体装置
11 基板
12,13a 半導体層
13 フローティングガードリング
14 マスク層
15a,15b 金属層
16 パッシベーション膜

Claims (3)

  1. 第1導電型炭化珪素の基板上に、炭化珪素の第1導電型の第1の半導体層と該第1の半導体層よりも薄い炭化珪素であって、主面がSi面から10度以内に傾いた面である第2導電型の第2の半導体層とをこの順にエピタキシャル成長で形成する工程と、
    前記第2の半導体層上に、パターン化されたマスク層を形成する工程と、
    前記マスク層をマスクとして、前記第2の半導体層に、前記第2の半導体層の前記主面に対して垂直に不活性元素イオンを注入してからパイロジェニック酸化処理を行い、前記マスクで覆われていない領域の前記第2の半導体層を酸化膜に置き換える工程と、
    前記マスク層の内周側の前記第2の半導体層が酸化された領域をエッチングし、前記第1の半導体層上と、前記基板の前記第1の半導体層が形成された反対側とに金属層を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  2. 前記マスク層の外周側の前記酸化膜をパッシベーション膜とすることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記マスク層は、酸化珪素膜で構成されていることを特徴とする請求項1乃至のいずれか1項に記載の半導体装置の製造方法。
JP2008057820A 2008-03-07 2008-03-07 半導体装置の製造方法 Expired - Fee Related JP5638739B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057820A JP5638739B2 (ja) 2008-03-07 2008-03-07 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057820A JP5638739B2 (ja) 2008-03-07 2008-03-07 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009218267A JP2009218267A (ja) 2009-09-24
JP5638739B2 true JP5638739B2 (ja) 2014-12-10

Family

ID=41189870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057820A Expired - Fee Related JP5638739B2 (ja) 2008-03-07 2008-03-07 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5638739B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270244A (en) * 1993-01-25 1993-12-14 North Carolina State University At Raleigh Method for forming an oxide-filled trench in silicon carbide
JPH0897441A (ja) * 1994-09-26 1996-04-12 Fuji Electric Co Ltd 炭化けい素ショットキーダイオードの製造方法
JPH09330920A (ja) * 1996-06-11 1997-12-22 Seiko Epson Corp 半導体装置の製造方法
JPH11162973A (ja) * 1997-11-28 1999-06-18 Nec Corp 半導体装置の製造方法
US6573128B1 (en) * 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
JP4470333B2 (ja) * 2001-03-05 2010-06-02 住友電気工業株式会社 SiC半導体における酸化膜形成方法およびSiC半導体装置
JP3801091B2 (ja) * 2002-05-09 2006-07-26 富士電機デバイステクノロジー株式会社 炭化珪素半導体装置およびその製造方法
JP2004022796A (ja) * 2002-06-17 2004-01-22 Matsushita Electric Ind Co Ltd 炭化珪素半導体素子およびその形成方法
JP2005079339A (ja) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology 半導体装置、およびその半導体装置を用いた電力変換器、駆動用インバータ、汎用インバータ、大電力高周波通信機器
JP4978024B2 (ja) * 2006-02-22 2012-07-18 三菱電機株式会社 SiC半導体装置の製造方法

Also Published As

Publication number Publication date
JP2009218267A (ja) 2009-09-24

Similar Documents

Publication Publication Date Title
US9391136B1 (en) Semiconductor device
JP5046083B2 (ja) 炭化珪素半導体装置の製造方法
JP5439215B2 (ja) 半導体装置および半導体装置の製造方法
JP2011044688A (ja) 半導体装置および半導体装置の製造方法
JP6010773B2 (ja) 半導体素子及びその製造方法
JP2010050267A (ja) 半導体装置および半導体装置の製造方法
WO2016013471A1 (ja) 半導体装置及び半導体装置の製造方法
JP6125748B2 (ja) 半導体装置
JP2012160485A (ja) 半導体装置とその製造方法
JP6208106B2 (ja) 半導体装置及びその製造方法
JP4800239B2 (ja) 半導体装置の製造方法
JP2011040431A (ja) 半導体装置およびその製造方法
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2008004726A (ja) 半導体素子およびその製造方法
JP6014322B2 (ja) 炭化珪素半導体装置の製造方法
JP2006148048A (ja) 半導体素子およびその製造方法
JP6648574B2 (ja) 炭化珪素半導体装置の製造方法
JP5469068B2 (ja) バイポーラ型炭化珪素半導体装置およびその製造方法
JP6790010B2 (ja) 半導体装置及びその製造方法
JP3856729B2 (ja) 半導体装置およびその製造方法
JP4281378B2 (ja) 炭化珪素ショットキー障壁ダイオード
JP6441412B2 (ja) 半導体装置
JP5638739B2 (ja) 半導体装置の製造方法
CN111326590A (zh) 半导体装置及其制造方法
JP5775711B2 (ja) 炭化珪素半導体装置及びその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131025

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

LAPS Cancellation because of no payment of annual fees