JP5606327B2 - エポキシ化合物の製造方法 - Google Patents

エポキシ化合物の製造方法 Download PDF

Info

Publication number
JP5606327B2
JP5606327B2 JP2010544025A JP2010544025A JP5606327B2 JP 5606327 B2 JP5606327 B2 JP 5606327B2 JP 2010544025 A JP2010544025 A JP 2010544025A JP 2010544025 A JP2010544025 A JP 2010544025A JP 5606327 B2 JP5606327 B2 JP 5606327B2
Authority
JP
Japan
Prior art keywords
carbon atoms
acid
ether
alkyl group
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010544025A
Other languages
English (en)
Other versions
JPWO2010073960A1 (ja
Inventor
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010544025A priority Critical patent/JP5606327B2/ja
Publication of JPWO2010073960A1 publication Critical patent/JPWO2010073960A1/ja
Application granted granted Critical
Publication of JP5606327B2 publication Critical patent/JP5606327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0259Phosphorus acids or phosphorus acid esters comprising phosphorous acid (-ester) groups ((RO)P(OR')2) or the isomeric phosphonic acid (-ester) groups (R(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten

Description

本発明は、エポキシ化合物の製造方法に関する。さらに詳しくは、本発明は、芳香環を有するアリルエーテルのアリル基を効率よくエポキシ化するエポキシ化合物の製造方法に関する。
エポキシ樹脂の原料として知られるアリールグリシジルエーテルは、工業的に大規模に工業生産されており、様々な分野で広く使用されている。
従来知られているアリールグリシジルエーテルの製造方法としては、対応するフェノールを触媒の存在下又は不在下に塩基性条件下でエピクロロヒドリンと反応させて、グリシジルエーテルを得る方法である。この方法では有機塩素化合物が必ず残存してしまい、幾つかの用途、例えばエレクトロニクス用途で使用するには、絶縁特性が低くなるという欠点がある。
そこで、フェノールのアリルエーテルを、酸化剤を利用して直接エポキシ化することも検討されている。以下の特許文献1(特表平10−511722号公報)及び特許文献2(特開昭60−60123号公報)には、ビスフェノール-Aのジアリルエーテルやノボラック型フェノール樹脂のポリアリルエーテルをトルエン等の有機溶媒中でタングステン酸ナトリウムとリン酸触媒を用いて、4級アンモニウム塩の存在下で過酸化水素によりエポキシ化する方法が開示されている。この方法ではタングステン化合物の使用量を非常に多く必要とする上、エポキシ化速度が十分ではなく、工業的製造方法として実施することはできない。
以下の特許文献3(米国特許第5633391号公報)には、オレフィンを有機溶媒中、酸化レニウム触媒の存在下で、酸化剤としてのビス(トリメチルシリル)ペルオキシドと接触させることにより、オレフィンをエポキシ化する方法が開示されているが、高価な触媒と酸化剤を必要とする上に、フェニルアリルエーテルの場合は収率も十分ではない。
以下の特許文献4(特開平7−145221号公報)及び特許文献5(特開昭58−173118号公報)には、フェノールノボラック樹脂をハロゲン化アリルによりアリルエーテル化後、有機溶媒中過酸によりエポキシ化する方法が開示されているが、危険性の高い過酸を使用する必要がある。
また、以下の特許文献6(特表2002−526483号公報)にはチタン含有ゼオライト触媒、及び3級アミン、3級アミンオキサイド又はそれらの混合物の存在下、過酸化水素によりエポキシ化する方法が開示されているが、この方法は分子量の小さな基質の有機物には有用であるものの、フェニルエーテルのような分子量の大きな基質では、触媒効率が悪く、適用することができない。
特表平10−511722号公報 特開昭60−60123号公報 米国特許第5633391号公報 特開平7−145221号公報 特開昭58−173118号公報 特表2002−526483号公報
本発明は、温和な条件下、有機溶媒を使用せず、過酸化水素を酸化剤に用いて、芳香環を有するアリルエーテルからエポキシ化合物を効率良く製造する方法を提供することを課題とする。
本発明者は、前記課題を解決するために鋭意研究及び実験を重ねた結果、有機溶媒を使用せず、タングステン化合物並びに3級有機アミン及び/又は4級アンモニウム塩と必要により鉱酸を触媒として使用することにより、過酸化水素水溶液と芳香環を有するアリルエーテル類とを反応させることにより、対応するエポキシ化合物が高効率で選択的に生成されることを見出し、本発明を完成するに至った。
本発明は、具体的には、以下の[1]〜[11]である。
[1]芳香環を有するアリルエーテルを過酸化水素と反応させてアリル基の炭素−炭素二重結合をエポキシ化することにより対応する芳香環を有するエポキシ化合物を製造する方法であって、溶媒として有機溶媒を使用せずに水のみを使用し、かつ、反応触媒としてタングステン化合物並びに3級アミン及び/又は4級アンモニウム塩を使用することを特徴とするエポキシ化合物の製造方法。
[2]前記芳香環を有するアリルエーテルが、以下の式(1):
Figure 0005606327
{式中、R1、及びR2は、各々独立して水素原子、炭素数1〜6のアルキル基、シクロアルキル基又は炭素数10までのアリール基であり、あるいは、R1とR2は一緒になって炭素数3〜12のシクロアルキル基を形成し、R3、R4、R5、及びR6は、各々独立して、水素原子、炭素数1〜10のアルキル基、シクロアルキル基又はアリール基であり、そして、nは0又は1の整数を表す。}で表される構造を有する、前記[1]に記載の方法。
[3]前記芳香環を有するアリルエーテルが、ビスフェノール−Aのジアリルエーテル、ビスフェノール−Fのジアリルエーテル、及び3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテルからなる群より選択される少なくとも1種である、前記[1]又は[2]に記載の方法。
[4]前記芳香環を有するアリルエーテルの25℃での粘度が200mPa・s以下である、前記[1]〜[3]のいずれかに記載の方法。
[5]前記芳香環を有するアリルエーテルの60℃での粘度が100mPa・s以下である、前記[1]〜[3]のいずれかに記載の方法。
[6]前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が12以上30以下である、前記[1]〜[5]のいずれかに記載の方法。
[7]前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が6以上50以下であり、そして前記4級アンモニウム塩の窒素原子に結合したアルキル基の炭素数の総和が7以上80以下である、前記[1]〜[5]のいずれかに記載の方法。
[8]触媒として、さらに鉱酸を使用する、前記[1]〜[7]のいずれかに記載の方法。
[9]触媒として、タングステン化合物と3級アミンと鉱酸を使用する、前記[1]〜[7]のいずれかに記載の方法。
[10]前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が12以上30以下であり、そして前記鉱酸が硫酸及び/又はリン酸である、前記[9]に記載の方法。
[11]助触媒として、以下の式(2):
Figure 0005606327
{式中、R7は、水素原子又はアシル基であり、そしてR8とR9は、それぞれ独立に、水素原子、炭素数1〜18のアルキル基又はアリール基を表す。}で表される構造を有するα−アミノアルキルホスホン酸化合物又はα−アミノアリールホスホン酸化合物をさらに使用する、前記[1]〜[10]のいずれかに記載の方法。
本発明のエポキシ化合物の製造方法によれば、反応溶媒として有機溶媒を使用せず、タングステン化合物並びに3級有機アミン及び/又は4級アンモニウム塩と必要により鉱酸を触媒として使用することにより、過酸化水素水溶液と芳香環を有するアリルエーテル類とを反応させることにより、対応するエポキシ化合物を製造することができ、電子材料分野や、接着剤、塗料樹脂といった各種ポリマーの原料として化学工業をはじめとする様々な産業分野で幅広く用いられる有用な物質であるエポキシ樹脂を、有機塩素系の不純物の混入を極力抑えながら、簡便な操作で安全に、収率良く、かつ、低コストで製造できる。したがって、本発明のエポキシ化合物の製造方法は、工業的に多大な効果をもたらす。
以下本発明を詳細に説明する。
本発明のエポキシ化合物の製造方法では酸化剤として過酸化水素を用いる。過酸化水素は過酸化水素水溶液として用いることができる。過酸化水素の濃度には特に制限はないが、一般的には1〜80%、好ましくは20〜80%の範囲から選ばれる。過酸化水素の使用量についても、特に制限はないが、エポキシ化しようとするアリルエーテルの炭素−炭素二重結合に対して、0.5〜10当量、好ましくは0.8〜2当量の範囲から選ばれる。
触媒として用いるタングステン化合物としては、水中でタングステン酸アニオンを生成する化合物が好適であり、例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物等が挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物等が特に好ましい。これらタングステン化合物類は単独で使用しても2種以上を混合使用してもよい。その使用量は基質のオレフィン類に対して炭素−炭素二重結合数を基準として0.0001〜20モル%、好ましくは0.01〜20モル%の範囲から選ばれる。
触媒として用いる3級アミンとしては、その窒素原子に結合したアルキル基の炭素数の合計が6以上、好ましくは12以上の3級有機アミンが、エポキシ化反応の活性が高くて好ましい。
このような3級有機アミンとしては、トリブチルアミン、トリ−n−オクチルアミン、トリ-(2-エチルヘキシル)アミン、N,N-ジメチルラウリルアミン、N,N-ジメチルミリスチルアミン、N,N-ジメチルパルミチルアミン、N,N-ジメチルステアリルアミン、N.N-ジメチルベヘニルアミン、N,N-ジメチルココアルキルアミン、N,N-ジメチル牛脂アルキルアミン、N,N-ジメチル硬化牛脂アルキルアミン、N,N-ジメチルオレイルアミン、N,N-ジイソプロピル-2-エチルヘキシルアミン、N,N-ジブチル-2-エチルヘキシルアミン、N-メチルジオクチルアミン、N-メチルジデシルアミン、N-メチルジココアルキルアミン、N-メチル硬化牛脂アルキルアミン、N-メチルジオレイルアミンなどが挙げられる。有機アルキル基の炭素数の合計は、基質との溶解性を考えると50以下であることが好ましく、より好ましくは30以下である。
一方、4級アンモニウム塩としては、その窒素原子に結合したアルキル基の炭素数の総和が7以上80以下、より好ましくは13以上50以下であり、さらに30以下である4級有機アンモニウム塩が、エポキシ化反応の活性が高くて好ましい。炭素数が少な過ぎると水相−有機相の二相系にした場合に、アミンの有機相への溶解性が低くなり反応活性が低下するし、多すぎると疎水性が高くなって基質との溶解性が低くなり、やはり反応活性が低下してしまう。
4級アンモニウム塩としては、具体的には、硫酸水素トリ−n−オクチルメチルアンモニウム、硫酸水素トリオクチル(C6〜C10の混合物)メチルアンモニウム、硫酸水素トリ−n−オクチルエチルアンモニウム、硫酸水素トリ−n−オクチルブチルアンモニウム、硫酸水素テトラ−n−オクチルアンモニウム、硫酸水素トリ(デシル)メチルアンモニウム、硫酸水素トリ(デシル)エチルアンモニウム、硫酸水素トリ(デシル)ブチルアンモニウム、硫酸水素テトラ(デシル)アンモニウム、硫酸水素トリ(ドデシル)メチルアンモニウム、硫酸水素トリ(ドデシル)エチルアンモニウム、硫酸水素トリ(ドデシル)ブチルアンモニウム、硫酸水素テトラ(ドデシル)アンモニウム、硫酸水素トリ(テトラデシル)メチルアンモニウム、硫酸水素トリ(テトラデシル)エチルアンモニウム、硫酸水素トリ(テトラデシル)ブチルアンモニウム、硫酸水素テトラ(テトラデシル)アンモニウム、硫酸水素トリ(ヘキサデシル)メチルアンモニウム、硫酸水素トリ(ヘキサデシル)エチルアンモニウム、硫酸水素トリ(ヘキサデシル)ブチルアンモニウム、硫酸水素テトラ(ヘキサデシル)アンモニウム、硫酸水素トリ(オクタデシル)メチルアンモニウム、硫酸水素トリ(オクタデシル)エチルアンモニウム、硫酸水素トリ(オクタデシル)ブチルアンモニウム、硫酸水素テトラ(オクタデシル)アンモニウム、硫酸水素トリヘキシルメチルアンモニウム、硫酸水素トリヘキシルエチルアンモニウム、硫酸水素トリヘキシルブチルアンモニウム、硫酸水素テトラヘキシルアンモニウム、硫酸水素テトラブチルアンモニウム、硫酸水素テトラメチルアンモニウム、硫酸水素テトラエチルアンモニウム、硫酸水素テトラプロピルアンモニウム、硫酸水素ラウリルジメチルベンジルアンモニウム、硫酸水素ベンジルトリメチルアンモニウム、硫酸水素ベンジルトリエチルアンモニウム、硫酸水素N−ラウリルピリジニウム、硫酸水素N−セチルピリジニウム、硫酸水素N−ラウリルピコリニウム等の硫酸水素アンモニウム塩、これらの硝酸塩、亜硫酸塩、硫酸塩、クロライド、ブロマイド、ヨーダイドなどが挙げられる。上記4級有機アンモニウム塩の炭素数が多いと配合後にゲル状になることがあるので、好ましい上限は50である。
また、4級アンモニウム塩としては、窒素環含有4級アンモニウム塩であることもできる。窒素環含有4級アンモニウム塩としては、窒素環がピリジン環、ピコリン環、キノリン環、イミダゾリン環、モルホリン環などからなる第4級アンモニウム塩類が挙げられるが、ピリジン環からなる第4級アンモニウム化合物が好ましく、具体例として下記のものが挙げられる:アルキル(炭素数8〜20の直鎖又は分岐のアルキル、以下同様)ピリジニウム塩(例えば、N−ラウリルピリジニウムクロライド、N−セチルピリジニウムクロライドなど)、アルキルピコリニウム塩(例えばN−ラウリルピコリニウムクロライドなど)、アルキルキノリウムクロライド、アルキルイソキノリウムクロライド、アルキルヒドロキシエチルイミダゾリンクロライド、アルキルヒドロキシモルホリンクロライドなど。これらのブロマイド、ヨーダイド、硫酸塩又は硫酸水素塩でもよい。
これらの3級アミン、4級アンモニウム塩類は、単独で使用しても2種以上を混合使用してもよい。その使用量は基質のオレフィン類に対して炭素−炭素二重結合数を基準として0.0001〜10モル%、好ましくは0.01〜10モル%の範囲から選ばれる。また、触媒として、鉱酸及び/又はその部分中和塩をさらに使用することができる。
触媒として用いる鉱酸は、リン酸、硫酸、及びホウ酸から成る群から選ばれる少なくとも1種であることが好ましい。これらの使用量は基質のエポキシ化しようとする炭素−炭素二重結合1モルに対して、鉱酸類のプロトンが0.01〜20モル、好ましくは0.1〜20モルの範囲から選ばれる。また、鉱酸の部分中和塩は、アルカリ金属、アルカリ土類金属、有機アミン等の塩基性化合物によって、一部、部分的に中和されていてもよい。これら鉱酸の中でも特に燐酸、硫酸又は両者を併用することが特に好ましい。
さらに、助触媒として、以下の式(2):
Figure 0005606327
{式中、R7は、水素原子又はアシル基であり、そしてR8とR9は、それぞれ独立に、水素原子、炭素数1〜18のアルキル基又はアリール基を表す。}で表される構造を有するα−アミノアルキルホスホン酸化合物又はα−アミノアリールホスホン酸を使用することにより、エポキシ化反応の効率をさらに高めることができる。
このようなα−アミノアルキルホスホン酸又はα−アミノアリールホスホン酸は、例えば、特開平5−112586号公報に開示されている方法で合成することができる。具体的には、α−アミノアルキルホスホン酸又はα−アミノアリールホスホン酸としては、α−アミノメチルホスホン酸、α−アミノエチルホスホン酸、α−アミノプロピルホスホン酸、α−アミノブチルホスホン酸、α−アミノペンチルホスホン酸、α−アミノヘキシルホスホン酸、α−アミノヘプチルホスホン酸、α−アミノオクチルホスホン酸、α−アミノノニルホスホン酸、α−アミノ−α−フェニルメチルホスホン酸、N−アセチル−α−アミノメチルホスホン酸、N−プロピオニル−α−アミノメチルホスホン酸、N−ベンゾイル−α−アミノメチルホスホン酸、N−(4−メトキシベンゾイル)−α−アミノメチルホスホン酸などが挙げられる。これらのα−アミノアルキルホスホン酸又はα−アミノアリールホスホン酸は、単独で使用しても2種以上を混合使用してもよい。その使用量は基質のオレフィン類に対して二重結合数を基準として0.0001〜5モル%、好ましくは0.01〜5モル%の範囲から選ばれる。
反応生成物であるエポキシ化合物は、電子材料用の原料として用いる場合、電気絶縁特性の観点からハロゲン化物や硫酸イオンの含有量が少ないほうが好ましい。そのためには4級アンモニウム塩の使用は避け、3級アミンを用いる方がよく、好ましくは炭素数が6から50の3級アミンを、より好ましくは炭素数が12から30の3級アミンを用いる。
3級アミンを用いる場合には、鉱酸を併用したほうがよく、これにより収率が高くなる。このような鉱酸としては硫酸や燐酸が好ましい。なお、4級アンモニウム塩の塩として用いる場合と異なり、鉱酸そのものを用いる場合には、反応後に水又はアルカリ水溶液での洗浄により容易に除去することができる。
また、反応基質のアリルエーテルとしては、芳香環を有し、かつ、アリルエーテル基を少なくとも一個以上、より好ましくは二個以上のアリルエーテル基を有する化合物が挙げられる。アリルエーテルとしては、特に以下の式(1):
Figure 0005606327
{式中、R1、及びR2は、各々独立して、水素原子、炭素数1〜6のアルキル基又はシクロアルキル基、あるいは、R1とR2は一緒になって炭素数3〜12のシクロアルカンを形成し、R3、R4、R5、及びR6は、各々独立して、水素原子、炭素数1から10のアルキル基、シクロアルキル基又はアリール基であり、そして、nは0又は1の整数を表す。}で表される化合物が好ましい。
このような化合物としては、具体的には、ビスフェノール−Aジアリルエーテル、ビスフェノール−Fジアリルエーテル、2,6,2’,6’−テトラメチルビスフェノール−Aジアリルエーテル、2,2’−ジアリルビスフェノール−Aジアリルエーテル、2,2’−ジ−t−ブチルビスフェノール−Aジアリルエーテル、2,6,2’,6’−テトラメチルビフェノールジアリルエーテル、2,2’−ジイソプロピルビフェノールジアリルエーテル、4,4’−エチリデンビスフェノールジアリルエーテル、4,4’−シクロヘキシリデンビスフェノールジアリルエーテル、4,4’−(1−α−メチルベンジリデン)ビスフェノールジアリルエーテル、4,4’−(3,3,5−トリメチルシクロヘキシリデン)ビスフェノールジアリルエーテル、4,4’−(1−メチル−ベンジリデン)ビスフェノールジアリルエーテル、3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテルなどが挙げられる。
これらの基質は、有機溶媒を用いずに、これらの基質と過酸化水素水溶液と触媒とを混合し、エポキシ化反応を進行させることが重要である。溶媒を用いた場合には、反応速度が著しく遅くなる上に、溶媒によっては加水分解反応等の望ましくない反応が進行しやすくなり好ましくない。ただし、反応基質としての芳香環を有するアリルエーテルの粘度があまりに高いと基質への過酸化水素の移動速度が遅くなり反応速度にも影響を与えるので、このように無溶媒で反応を行うためには、芳香環を有するアリルエーテルが反応温度雰囲気下で、ある程度粘度が低い液状である必要がある。好ましくは25℃での粘度は200mPa・s以下である。なお、前記物性値は単品の状態で達成されていなくても、例えば室温で固体状であっても他の芳香環を有するアリルエーテル基含有化合物と混合し、液状の状態で粘度が前記範囲に入るようであれば適用できる。また、25℃で固体状のものであっても、例えば60℃で反応する場合60℃での粘度が100mPa・s以下であれば適用可能である。
粘度は、以下の回転粘度計を使用し、以下の条件で測定した。
回転粘度計
メーカー名:BROOKFIELD
装置名:DV−E VISCOMETER
スピンドル番号:No.18
回転数:50rpm
温度設定
恒温槽:EYELA製NCB−1200(温度調整用)
また、エポキシ化を行う方法としては工業的に安定に生産を行うことを考えると、触媒と基質を最初に反応器に仕込み、反応温度を極力一定に保ちつつ、過酸化水素については反応で消費されているのを確認しながら、徐々に加えていった方がよい。このような方法を採れば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限に留めることができる。
反応温度としては、あまりに高いと副反応が多くなるし、低すぎる場合には過酸化水素の消費速度が遅くなり、反応系内に蓄積することがあるので、−10〜120℃、好ましくは40℃〜100℃の範囲で選択することが好ましい。
反応終了後は、水層と有機層の比重差がほとんど無い場合があるが、その場合には水層に無機化合物の飽和水溶液を混合して、有機層と比重差をつけることにより有機抽出溶媒を使用しなくても二層分離を行うことができる。特にタングステン化合物の比重は重いので、水層を下層に持って来るために、本来触媒として必要な前記した使用量を超えるタングステン化合物を用いてもよい。この場合、水層からのタングステン化合物を再使用して、タングステン化合物の効率を上げることが望ましい。
また、逆に基質によっては有機層の比重が1.2近くあるものもあるので、このような場合には水を追添して、水層の比重を1に近づけることにより、上層に水層、下層に有機層を持って来ることもできる。また、本発明に係る方法においては、反応中は無溶媒で行うが、反応液の抽出にトルエン、シクロヘキサンやヘキサンのような有機溶媒を用いて抽出を実施することもでき、状況に応じて最適な分離方法を選択することができる。
このようにして水層と分離した有機層を濃縮後、蒸留、クロマト分離、再結晶や昇華等の通常の方法によって、得られたエポキシ化合物を取り出すことができる。
以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。
実施例1
滴下ロート、ジムロート冷却管を備えた300mLの三ツ口フラスコに、50%硫酸水溶液0.254g (1.3mmol)トリオクチルアミン0.459g (1.3mmol)、ビスフェノール-Aジアリルエーテル(25℃での粘度:50mPa・s)20g (64.8mmol)、タングステン酸ナトリウム2 水和物 2.58g (2.59mmol)、アミノメチルホスホン酸0.144g (1.3mmol)を入れ、マグネチックスターラーで撹拌しながら、オイルバスで80℃に加温した後、35%過酸化水素水溶液12.6g (0.13mol)を、反応温度が85℃を超えないように滴下した。滴下終了後、2時間、攪拌を継続し、反応液を室温まで冷却した。この後、酢酸エチルを30g追加し、上層に有機層、下層に水層が来るようにして、有機層を分離した。
この有機層を分析した結果、ビスフェノール-Aジアリルエーテルの転化率は75%であり、そしてモノグリシジルエーテルへの選択率は60%、ジグリシジルエーテルへの選択率は32%であった。
なお、転化率、選択率はガスクロにより分析した結果を元に、以下の計算式により計算した。
転化率(%)=(1−残存した原料のモル数/使用した原料のモル数)×100
選択率(%)={(目的化合物のモル数/使用した原料のモル数)×10000}/転化率(%)
比較例1
応溶溶媒としてトルエン20gをさらに加えた以外は実施例1と同様の条件で反応を行なった。その結果、ビスフェノール-Aジアリルエーテルの転化率は35%であり、そしてモノグリシジルエーテルへの選択率は88%、ジグリシジルエーテルへの選択率は6%であった。
比較例2
反応溶媒として酢酸エチル20gをさらに加えた以外は実施例1と同様の条件で反応を行なった。その結果、ビスフェノール-Aジアリルエーテルの転化率は37%であり、そしてモノグリシジルエーテルへの選択率は84%、ジグリシジルエーテルへの選択率は7%であった。
実施例2
滴下ロート、ジムロート冷却管を備えた300mLの三ツ口フラスコに、硫酸水素メチルトリオクチルアンモニウム0.606g(1.3mmol)、アミノメチルホスホン酸0.144g (1.30mmol)、タングステン酸ナトリウム2 水和物2.58g (2.59mmol)、ビスフェノール-Aジアリルエーテル(25℃での粘度:50mPa・s)20g (64.8mmol)を、三ッ口丸底フラスコに入れ、反応液を80℃に調節し、撹拌しながら、更に35%過酸化水素水溶液12.6g(0.13mol)を反応温度が85℃を超えないように滴下した。滴下終了後、2時間、攪拌を継続し、反応液を室温まで冷却した。反応終了後、酢酸エチルを20g加えて、上層に有機層、下層に水層となるように二層分離させた。
上層の有機層を分析した結果、ビスフェノール-Aジアリルエーテルの転化率は92%であり、そしてモノグリシジルエーテルへの選択率は47%、ジグリシジルエーテルへの選択率は46%であった。
実施例3
タングステン酸ナトリウム20.0g(60.6mmmol) を、50%硫酸水溶液5.95g(30.3mmol)、純水34g、35%過酸化水素水溶液5.90g(60.7mmol)に予め溶解した。滴下ロート、ジムロート冷却管を備えた2000mLの三ツ口フラスコに、先に調製したタングステン酸水溶液25.7g、トリオクチルアミン(TNOA)4.26g (12.0mmol)、88%燐酸1.34g(12.0mmol)、ビスフェノール-Aジアリルエーテル(25℃での粘度:50mPa・s)370g (1.2mol)を入れ、反応液を90℃に調節し、撹拌しながら更に35%過酸化水素水溶液233g(2.4mol)を反応温度が95℃を超えないようにして滴下した。滴下終了後、2時間、攪拌を継続し、反応液を室温まで冷却した。反応終了後、酢酸エチルを400g加えて、上層に有機層、下層に水層となるように二層分離させた。
上層の有機層を分析した結果、ビスフェノール-Aジアリルエーテルの転化率は76%であり、そしてモノグリシジルエーテルへの選択率は56%、ジグリシジルエーテルへの選択率は35%であった。
合成例1
ビスフェノール-Fのジアリルエーテルの合成
2000mlのナス型フラスコに、ビスフェノール-F-ST(三井化学(株)製)200g(0.999mol)、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット(株)製)2.13g(0.499mol)、トリフェニルホスフィン(北興化学(株)製)2.62g(9.99mmol)、炭酸カリウム(旭硝子(株)製)276g(2.00mol)、酢酸アリル(昭和電工(株)製)220g(2.20mol)、及びイソプロパノール200gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、ビスフェノール-Fジアリルエーテル対モノアリルエーテルの比率が99:1までになっていることを確認した。
この後、反応液にトルエン400gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応、後処理操作を4回繰り返し後、分子蒸留装置(大科工業(株)製)により、留出物748g(単離収率66%、ビスフェノール-Fジアリルエーテル98.7%、残りはモノアリルエーテル)、非留出物368g(ビスフェノール-Fジアリルエーテル88%)を得た。留出物の25℃における粘度は、25mPa・sであった。また、異性体比はo,o’-:o,p’-:p,p’-=17:52:31であった。
合成例2
3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテルの合成
2000mlのナス型フラスコに、3,3’,5,5’-テトラメチル-4,4’-ビスフェノール(中国:甘粛省化工研究院製)150g(0.619mol)、50%含水5%-Pd/C-STDタイプ(エヌ・イーケムキャット(株)製)1.32g(0.310mol)、トリフェニルホスフィン(北興化学(株)製)1.624g(6.19mmol)、炭酸カリウム(日本曹達(株)製)171g(1.24mol)、酢酸アリル(昭和電工(株)製)136g(1.36mol)、及びイソプロパノール68.1gを入れ、窒素雰囲気中、85℃で8時間反応させた。反応後、一部サンプリングし、酢酸エチルで希釈後、ガスクロマトグラフィーによる分析で、3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテル対モノアリルエーテルの比率が97:3までになっていることを確認した。
この後、反応液にトルエン200gを加え、Pd/Cと析出した固体を濾過により除き、エバポレーターにより、イソプロパノールとトルエンを留去した。この反応、後処理操作を4回繰り返し後、分子蒸留装置(大科工業(株)製)により、留出物127.5g(単離収率66%、ジアリルエーテル97.9%、残りはモノアリルエーテル)、非留出物31.7g(3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテル97.5%)を得た。留出物は融点が51.7℃の固体であり、60℃における粘度は、29mPa・sであった。
実施例4
滴下ロート、ジムロート冷却管を備えた300mLの三ツ口フラスコに、硫酸水素メチルトリオクチルアンモニウム0.333g(0.714mmol)、アミノメチルホスホン酸79.3mg (0.714mmol)、タングステン酸ナトリウム2 水和物0.471g (1.43mmol)、合成例1で合成したビスフェノール-Fジアリルエーテル20g (71.4mmol)を、三ッ口丸底フラスコに入れ、反応液を80℃に調節し、撹拌しながら、更に35%過酸化水素水溶液13.9g(0.143mol)を反応温度が85℃を超えないように滴下した。滴下終了後、2時間、攪拌を継続し、反応液を室温まで冷却した。反応終了後、酢酸エチルを20g加えて、上層に有機層、下層に水層が二層分離するように調節した。
上層の有機層を分析した結果、ビスフェノール-Fジアリルエーテルの転化率は82%であり、そしてモノグリシジルエーテルへの選択率は56%、ジグリシジルエーテルへの選択率は34%であった。
実施例5
滴下ロート、ジムロート冷却管を備えた300mLの三ツ口フラスコに、硫酸水素メチルトリオクチルアンモニウム0.289g(0.620mmol)、アミノメチルホスホン酸68.9mg (0.0620mmol)、タングステン酸ナトリウム2 水和物0.409g (1.24mmol)、合成例2で合成した3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテル20g (60.2mmol)を三ッ口丸底フラスコに入れ、反応液を90℃に調節し、撹拌しながら、更に35%過酸化水素水溶液24.1g(0.248mol)を反応温度が95℃を超えないように滴下した。滴下終了後、2時間、攪拌を継続し、反応液を室温まで冷却した。反応終了後、トルエンを30g加えて、上層に有機層、下層に水層が二層分離するように調節した。
上層の有機層を分析した結果、ジアリルエーテルの転化率は83%であり、そしてモノグリシジルエーテルへの選択率は61%、ジグリシジルエーテルへの選択率は34%であった。
本発明のエポキシ化合物の製造方法によれば、反応溶媒として有機溶媒を使用せず、タングステン化合物並びに3級有機アミン及び/又は4級アンモニウム塩と必要により鉱酸を触媒として使用することにより、過酸化水素水溶液と芳香環を有するアリルエーテル類とを反応させることにより、対応するエポキシ化合物を製造することができ、電子材料分野や、接着剤、塗料樹脂といった各種ポリマーの原料として化学工業をはじめとする様々な産業分野で幅広く用いられる有用な物質であるエポキシ樹脂を、有機塩素系の不純物の混入を極力抑えながら、簡便な操作で安全に、収率良く、かつ、低コストで製造できる。

Claims (10)

  1. 以下の式(1):
    Figure 0005606327
    {式中、R 1 、及びR 2 は、各々独立して、水素原子、炭素数1〜6のアルキル基、シクロアルキル基又は炭素数10までのアリール基であり、あるいは、R 1 とR 2 は一緒になって炭素数3〜12のシクロアルキル基を形成し、R 3 、R 4 、R 5 、及びR 6 は、各々独立して、水素原子、炭素数1〜10のアルキル基、シクロアルキル基又はアリール基であり、そして、nは0又は1の整数を表す。}で表される構造を有する、芳香環を有するアリルエーテルを過酸化水素と反応させてアリル基の炭素−炭素二重結合をエポキシ化することにより対応する芳香環を有するエポキシ化合物を製造する方法であって、溶媒として有機溶媒を使用せずに水のみを使用し、かつ、反応触媒としてタングステン化合物並びに3級アミン及び/又は4級アンモニウム塩を使用することを特徴とするエポキシ化合物の製造方法。
  2. 前記芳香環を有するアリルエーテルが、ビスフェノール−Aのジアリルエーテル、ビスフェノール−Fのジアリルエーテル、及び3,3’,5,5’−テトラメチル−4,4’−ビフェニルジオールジアリルエーテルからなる群より選択される少なくとも1種である、請求項1に記載の方法。
  3. 前記芳香環を有するアリルエーテルの25℃での粘度が200mPa・s以下である、請求項1又は2に記載の方法。
  4. 前記芳香環を有するアリルエーテルの60℃での粘度が100mPa・s以下である、請求項1又は2に記載の方法。
  5. 前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が12以上30以下である、請求項1〜4のいずれか1項に記載の方法。
  6. 前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が6以上50以下であり、そして前記4級アンモニウム塩の窒素原子に結合したアルキル基の炭素数の総和が7以上80以下である、請求項1〜4のいずれか1項に記載の方法。
  7. 触媒として、さらに鉱酸を使用する、請求項1〜6のいずれか1項に記載の方法。
  8. 触媒として、タングステン化合物と3級アミンと鉱酸を使用する、請求項1〜6のいずれか1項に記載の方法。
  9. 前記3級アミンの窒素原子に結合したアルキル基の炭素数の総和が12以上30以下であり、そして前記鉱酸が硫酸及び/又はリン酸である、請求項に記載の方法。
  10. 助触媒として、以下の式(2):
    Figure 0005606327
    {式中、R7は、水素原子又はアシル基であり、そしてR8とR9は、それぞれ独立に、水素原子、炭素数1〜18のアルキル基又はアリール基を表す。}で表される構造を有するα−アミノアルキルホスホン酸化合物又はα−アミノアリールホスホン酸化合物をさらに使用する、請求項1〜のいずれか1項に記載の方法。
JP2010544025A 2008-12-26 2009-12-17 エポキシ化合物の製造方法 Active JP5606327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544025A JP5606327B2 (ja) 2008-12-26 2009-12-17 エポキシ化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008335187 2008-12-26
JP2008335187 2008-12-26
JP2010544025A JP5606327B2 (ja) 2008-12-26 2009-12-17 エポキシ化合物の製造方法
PCT/JP2009/071043 WO2010073960A1 (ja) 2008-12-26 2009-12-17 エポキシ化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2010073960A1 JPWO2010073960A1 (ja) 2012-06-14
JP5606327B2 true JP5606327B2 (ja) 2014-10-15

Family

ID=42287575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010544025A Active JP5606327B2 (ja) 2008-12-26 2009-12-17 エポキシ化合物の製造方法

Country Status (6)

Country Link
US (1) US8536352B2 (ja)
EP (1) EP2383264B1 (ja)
JP (1) JP5606327B2 (ja)
KR (1) KR101260339B1 (ja)
CN (1) CN102264712B (ja)
WO (1) WO2010073960A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415113B1 (ko) * 2009-12-24 2014-07-04 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 글리시딜에테르 화합물의 제조 방법 및 모노알릴모노글리시딜에테르 화합물
JP5669532B2 (ja) * 2010-11-25 2015-02-12 昭和電工株式会社 半導体封止用硬化性組成物
WO2013147092A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
KR101799820B1 (ko) * 2013-04-02 2017-11-21 쇼와 덴코 가부시키가이샤 도전성 접착제, 이방성 도전 필름 및 그들을 사용한 전자 기기
JP6609902B2 (ja) * 2013-10-02 2019-11-27 三菱ケミカル株式会社 エポキシ化合物の製造方法
JP6351487B2 (ja) * 2014-11-12 2018-07-04 昭和電工株式会社 多価グリシジル化合物の製造方法
CN107074794B (zh) 2014-11-12 2019-09-24 昭和电工株式会社 多价缩水甘油化合物的制造方法
JP2016108281A (ja) * 2014-12-08 2016-06-20 株式会社Adeka エポキシ化合物の製造方法
WO2020256045A1 (ja) * 2019-06-20 2020-12-24 本州化学工業株式会社 ヘキサメチル置換/ジメチル置換4,4'-ビス(2-プロペン-1-イルオキシ)-1,1'-ビフェニルの結晶体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275281A (ja) * 1990-12-24 1992-09-30 Istit Guido Donegani Spa ジオレフィンの接触モノエポキシ化方法
JPH0827136A (ja) * 1994-07-14 1996-01-30 Mitsui Toatsu Chem Inc エポキシ化合物の製造方法
JPH10511721A (ja) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー アリルエーテル、チオエーテル及びアミン化合物の製造方法
JPH11349579A (ja) * 1998-06-08 1999-12-21 Ube Ind Ltd エポキシシクロドデカジエンの製造方法
US6087513A (en) * 1999-05-21 2000-07-11 The Dow Chemical Company Epoxidation process for aryl allyl ethers
JP2003192679A (ja) * 2001-12-25 2003-07-09 Kuraray Co Ltd オレフィンのエポキシ化方法
JP2003300971A (ja) * 2002-02-08 2003-10-21 Sumitomo Chem Co Ltd エポキシド類の製造方法
JP2008094741A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk トリオレフィン化合物の選択的酸化による多官能性エポキシ化合物の製造方法
JP2010106009A (ja) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd エポキシ化合物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173118A (ja) 1982-04-05 1983-10-12 Sumitomo Bakelite Co Ltd 半導体ダイボンディング用エポキシ樹脂組成物
JPS6060123A (ja) 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd エポキシ化物の製造法
JP2525977B2 (ja) 1991-10-17 1996-08-21 昭和電工株式会社 N−アシルアミノメチルホスホン酸の製造法
JPH07145221A (ja) 1993-11-24 1995-06-06 Arakawa Chem Ind Co Ltd グリシジルエーテル化フェノールノボラック樹脂の製造方法
US5633391A (en) 1996-04-12 1997-05-27 National Starch And Chemical Investment Holding Corporation Methyltrioxorhenium-bis(trimethylsilyl)peroxide epoxidation of olefins
US6037484A (en) 1998-09-22 2000-03-14 Arco Chemical Technology, L.P. Epoxidation process
CN1310895C (zh) 2002-02-08 2007-04-18 住友化学工业株式会社 制备环氧化合物的方法
WO2009107754A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 エポキシ化合物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275281A (ja) * 1990-12-24 1992-09-30 Istit Guido Donegani Spa ジオレフィンの接触モノエポキシ化方法
JPH0827136A (ja) * 1994-07-14 1996-01-30 Mitsui Toatsu Chem Inc エポキシ化合物の製造方法
JPH10511721A (ja) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー アリルエーテル、チオエーテル及びアミン化合物の製造方法
JPH11349579A (ja) * 1998-06-08 1999-12-21 Ube Ind Ltd エポキシシクロドデカジエンの製造方法
US6087513A (en) * 1999-05-21 2000-07-11 The Dow Chemical Company Epoxidation process for aryl allyl ethers
JP2003192679A (ja) * 2001-12-25 2003-07-09 Kuraray Co Ltd オレフィンのエポキシ化方法
JP2003300971A (ja) * 2002-02-08 2003-10-21 Sumitomo Chem Co Ltd エポキシド類の製造方法
JP2008094741A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk トリオレフィン化合物の選択的酸化による多官能性エポキシ化合物の製造方法
JP2010106009A (ja) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd エポキシ化合物の製造方法

Also Published As

Publication number Publication date
US8536352B2 (en) 2013-09-17
EP2383264A1 (en) 2011-11-02
WO2010073960A1 (ja) 2010-07-01
US20110263882A1 (en) 2011-10-27
KR20110063848A (ko) 2011-06-14
EP2383264A4 (en) 2012-10-24
CN102264712B (zh) 2014-08-13
JPWO2010073960A1 (ja) 2012-06-14
EP2383264B1 (en) 2015-03-04
CN102264712A (zh) 2011-11-30
KR101260339B1 (ko) 2013-05-03

Similar Documents

Publication Publication Date Title
JP5606327B2 (ja) エポキシ化合物の製造方法
EP1080084B1 (en) Process for epoxidation of aryl allyl ethers
JP5550051B2 (ja) エポキシ化合物の製造方法
KR101415113B1 (ko) 글리시딜에테르 화합물의 제조 방법 및 모노알릴모노글리시딜에테르 화합물
WO2011019061A1 (ja) ポリグリシジルエーテル化合物の製造方法
WO2010110151A1 (ja) エポキシ化合物の製造方法
JP5901521B2 (ja) エポキシ化合物の製造方法
JP4998977B2 (ja) ジオレフィン化合物の選択酸化による二官能性エポキシモノマーの製造方法
JP4118642B2 (ja) 環状オレフィンのエポキシ化方法
JP5787770B2 (ja) エポキシ化合物の製造方法
JP4067823B2 (ja) 環状モノオレフィンのエポキシ化方法
JPWO2018083881A1 (ja) 多価グリシジル化合物の製造方法
JP5745258B2 (ja) グリシジルエーテル化合物の製造方法
KR101520059B1 (ko) 저농도 할로겐을 함유하는 에폭시 수지 및 이의 제조방법
JP5103661B2 (ja) ジエポキシ化合物の製造方法
JP2001181227A (ja) 新規脂環基含有化合物及びその製造方法
JP6641681B2 (ja) エポキシ化合物の製造方法
CN112638887A (zh) 环氧化合物的制造方法
JPH11116561A (ja) エポキシ化合物の製造方法
JPS6253526B2 (ja)
Kaczmarczyk et al. Important Parameters of Epoxidation of 1, 4‐bis (allyloxy) butane in Aqueous‐Organic Phase Transfer Catalytic System
JP2000334307A (ja) エノン類の不斉エポキシ化触媒及びそれを用いた光学活性エポキシドの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350