JP5554239B2 - フォトマスクブランク、フォトマスク及びその製造方法 - Google Patents

フォトマスクブランク、フォトマスク及びその製造方法 Download PDF

Info

Publication number
JP5554239B2
JP5554239B2 JP2010531743A JP2010531743A JP5554239B2 JP 5554239 B2 JP5554239 B2 JP 5554239B2 JP 2010531743 A JP2010531743 A JP 2010531743A JP 2010531743 A JP2010531743 A JP 2010531743A JP 5554239 B2 JP5554239 B2 JP 5554239B2
Authority
JP
Japan
Prior art keywords
film
photomask
atomic
light shielding
photomask blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010531743A
Other languages
English (en)
Other versions
JPWO2010038444A1 (ja
Inventor
雅広 橋本
淳志 小湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2010531743A priority Critical patent/JP5554239B2/ja
Publication of JPWO2010038444A1 publication Critical patent/JPWO2010038444A1/ja
Application granted granted Critical
Publication of JP5554239B2 publication Critical patent/JP5554239B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は、半導体デバイス等の製造において使用されるフォトマスクブランク、フォトマスク及びその製造方法等に関する。
半導体デバイス等の微細化は、性能、機能の向上(高速動作や低消費電力化等)や低コスト化をもたらす利点があり、微細化はますます加速されている。この微細化を支えているのがリソグラフィ技術であり、転写用マスクは、露光装置、レジスト材料とともにキー技術となっている。
近年、半導体デバイスの設計仕様でいうハーフピッチ(hp)32nm世代の開発が進められている。これはArFエキシマレーザー露光光の波長193nmの1/6に相当している。hp32nm以降の世代では従来の位相シフト法、斜入射照明法や瞳フィルター法などの超解像技術(Resolution Enhancement Technology:RET)と光近接効果補正(Optical Proximity Correction : OPC)技術の適用だけでは不十分となってきており、超高NA技術(液浸リソグラフィ)や二重露光法(ダブルパターニング)が必要となってきている。
透明基板上に、遮光膜のマスクパターンを有するフォトマスクを作成する場合、マスクパターンが形成されたレジスト膜をマスクとして遮光膜(例えばCr系の単層膜又は複数の積層膜)のドライエッチングを行う際、レジスト膜もエッチングされて消費される。このため遮光層にマスクパターンを転写したときの解像性が低下してしまう。
この対応策としては、遮光膜の薄膜化が有効である。しかし、遮光膜を薄膜化すると、OD値(光学濃度)が減少してしまう。
上記の対応策として、特許文献1の方法が提案されている。この方法は、例えば、基板上に、MoSi系遮光膜/Cr系のエッチングマスク膜(兼反射防止膜)を形成したブランクを用いる(同文献[0174]欄等参照)。そして、膜厚の薄いCr系のエッチングマスク膜を用いることによって、レジストへの負担が軽減され、膜厚の薄いCr系のエッチングマスク膜にマスクパターンを転写したときの解像性の低下は改善される。これと共に、レジストに比べて遮光膜に対しより高いエッチング選択性を有し、かつレジストに比べて膜厚の大幅に薄いエッチングマスク膜が遮光膜のエッチングマスクとなることで遮光膜パターンのCDの改善を図ろうとするものである。このとき遮光膜のOD=3 も確保されるが、MoSi系の遮光膜自体を薄膜化しようとするものではない。
また、特許文献2には、MoSi系材料の積層構造からなる遮光膜として、例えば、基板側からMoSiN主遮光層/MoSiON反射防止層の積層構造からなる遮光膜等が記載されている。
特開2007−241065号公報 特開2006−78806号公報
DRAM hp32nm以降の世代に適応するモリブデンシリサイド系の遮光膜を用いたフォトマスクを作成する場合、従来のCr系材料を用いたエッチングマスクを用いたマスク作製プロセス(遮光膜とのエッチング選択性の観点だけでエッチングマスクを選定すること。)を採用するだけでは不十分となっている。
DRAM hp32nm以降の世代に使用するフォトマスクに求められる解像性(40nm未満)を得るためには、レジストパターンのアスペクト比を低減し、レジストパターンの倒れを防止する観点から、レジスト膜の膜厚を100nm以下とする必要がある。
レジスト膜の膜厚を100nm以下とするためには、上記した従来のフォトマスクブランクの層構成では不十分であり、エッチングマスク、遮光膜の両方を改善する必要があることを本発明者は突き止めた。
詳しくは、100nm以下のレジスト膜厚でエッチングマスクにマスクパターンを転写できるように、エッチングマスク膜の構成を改善する必要があるが、エッチングマスク膜の膜厚を単に薄くするだけでは不十分であり、下層の遮光膜にマスクパターンを転写するエッチングプロセスが完了するまで、エッチングマスク膜がマスクパターンを維持できなければならないため、従来のエッチングマスク膜の構成、従来の遮光膜の構成では、実現が困難であることを本発明者は突き止めた。
一方、レジスト膜厚を100nm以下とすると、LER(Line Edge Roughness)が従来よりも大きくなる傾向が発生する。これは、マスクパターンが形成されたレジスト膜をマスクにエッチングマスク膜をドライエッチングする際、レジスト膜もエッチングされて消費されるが、膜厚が薄い方がパターンの形状悪化が顕著であり、エッチングマスク膜にマスクパターンを転写したときのLERが悪化してしまうことを本発明者は突き止めた。また、レジストパターンの線幅が40nm未満となると、レジストパターンのドライエッチングによる消費(減膜)の影響が相対的に大きくなり、その影響が無視できなくなることを本発明者は突き止めた。これらの問題を解決するためにも、エッチングマスクにマスクパターンを転写するときにドライエッチングする時間を短縮する必要があることを本発明者は突き止めた。
本発明は、レジスト膜厚100nm以下(概ねhp32nm以降)、更にはレジスト膜厚75nm以下(概ねhp32nm以降)、更にはレジスト膜厚65nm以下(概ねhp22nm以降)をねらった世代のフォトマスクブランク及びフォトマスクの提供を目的とする。
また本発明は、半導体デザインルールにおけるDRAMハーフピッチ(hp)32nm以降の世代に適用可能なフォトマスクブランク及びフォトマスクの提供を目的とする。
また本発明は、マスク上のパターンの解像性40nm未満を達成可能なフォトマスクブランク及びフォトマスクの提供を目的とする。
本発明は、以下の構成を有する。
(構成1)
波長200nm以下の露光光が適用されるフォトマスクであって半導体デバイスの設計仕様でいうハーフピッチ(hp)32nm世代以降で使用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
前記フォトマスクブランクは、
透光性基板上に、遮光膜、エッチングマスク膜をこの順で備え、
前記エッチングマスク膜は、その上に形成されるレジスト膜であって、膜厚が100nm以下のレジスト膜を用いて加工され、
前記エッチングマスク膜は、クロムに、窒素、酸素のうち少なくともいずれかの成分を含み、膜中のクロムの含有量が50原子%以下であり、かつ、膜厚が5nm以上、20nm以下であり、
前記遮光膜は、モリブデンシリサイドを含み、膜中のモリブデンの含有量が9原子%以上40原子%以下であり、かつ、膜厚が60nm以下である
ことを特徴とするフォトマスクブランク。
(構成2)
前記レジスト膜の膜厚が75nm以下であり、かつ、
前記エッチングマスク膜の膜厚が5nm以上、15nm以下である
ことを特徴とする構成1記載のフォトマスクブランク。
(構成3)
前記レジスト膜の膜厚が65nm以下であり、かつ、
前記エッチングマスク膜の膜厚が5nm以上、10nm以下である
ことを特徴とする構成1記載のフォトマスクブランク。
(構成4)
前記エッチングマスク膜は、
酸化炭化窒化クロム、酸化炭化クロム、酸化窒化クロム、窒化クロム、のいずれかを主成分とする材料で形成されている
ことを特徴とする構成1から3のいずれかに記載のフォトマスクブランク。
(構成5)
前記エッチングマスク膜は、
酸化炭化窒化クロム、あるいは、酸化炭化クロムであり、
クロムターゲットを用い、少なくとも、COガス、Nガスおよび希ガス、あるいは、COガスおよび希ガス、を含む混合気体中(ヒステリシスの小さいガス系を選択)で、かつ、メタルモードと反応モードとの間の遷移領域で成膜されることを特徴とする構成1から3のいずれかに記載のフォトマスクブランク。
(構成6)
前記遮光膜は、少なくとも2層以上で構成され、そのうちの1層は、モリブデンシリサイド金属、又は、モリブデンシリサイドの窒化物で構成されている
ことを特徴とする構成1から5のいずれかに記載のフォトマスクブランク。
(構成7)
前記遮光膜は、少なくとも3層で構成され、
モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイド金属、又は、モリブデンシリサイドの窒化物からなり、層の厚さが40nm未満である遮光層と、
該遮光層の上に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる反射防止層と、
前記遮光層の下に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる低反射層と
からなることを特徴とする構成6記載のフォトマスクブランク。
(構成8)
前記遮光膜は、2層で構成され、
モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドの窒化物からなる遮光層と、
該遮光層の上に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる反射防止層と、
からなることを特徴とする構成6記載のフォトマスクブランク。
(構成9)
前記遮光層のモリブデンの含有量が、20原子%以上、40原子%以下であることを特徴とする構成7または構成8のいずれかに記載のフォトマスクブランク。
(構成10)
構成1から構成9のいずれかに記載のフォトマスクブランクを用いて作製されるフォトマスク。
(構成11)
構成1から構成10のいずれかに記載のフォトマスクブランクを用いるフオトマスクの製造方法。
本発明によれば、レジスト膜厚100nm以下、更にはレジスト膜厚75nm以下、更にはレジスト膜厚65nm以下であっても、レジストパターンのLERの影響が少ない、エッチングマスクパターンのLERの影響が少ない、遮光膜が所定以上の遮光性能を有するという複数の条件を同時に満たすように、エッチングマスク膜をエッチングレートが速い材料でかつ最適な膜厚の範囲で設定し、遮光膜も遮光性能の高い材料でかつ最大膜厚を設定することにより、半導体デザインルールにおけるDRAMハーフピッチ(hp)32nm以降の世代に求められる解像性(40nm未満)を満たし、かつレジストパターンの倒れも防止できるフォトマスクブランク及びフォトマスクを提供できる。
以下、本発明を詳細に説明する。
本発明のフォトマスクブランクは、波長200nm以下の露光光が適用されるフォトマスク(例えばArFエキシマレーザー露光用のフォトマスク)であって半導体デバイスの設計仕様でいうハーフピッチ(hp)32nm世代以降で使用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
前記フォトマスクブランクは、
透光性基板上に、遮光膜、エッチングマスク膜をこの順で備え、
前記エッチングマスク膜は、その上に形成されるレジスト膜であって、膜厚が100nm以下のレジスト膜を用いて加工され、
前記エッチングマスク膜は、クロムに、窒素、酸素のうち少なくともいずれかの成分を含み、膜中のクロムの含有量が50原子%以下であり、かつ、膜厚が5〜20nmであり、
前記遮光膜は、モリブデンシリサイドを含み、膜中のモリブデンの含有量が9原子%〜40原子%であり、かつ、膜厚が60nm以下である
ことを特徴とする(構成1)。
本発明者は、透光性基板上に、MoSi系遮光膜、Cr系エッチングマスク膜、レジスト膜(膜厚100nm以下)をこの順で(互いに接して)備えるマスクブランクを用いて加工を行う際に、
(1)エッチングマスク膜の膜厚を単に薄くする(例えば20nm以下にする)だけではレジストパターンのLERを低減できない場合があること、
(2)レジストパターンのLERを低減する観点からは、Cr系エッチングマスク膜は、Cr成分がリッチな材料では塩素系(Cl+O)ドライエッチングのエッチングレートが遅いので好ましくなく、従ってこの観点からはCr系エッチングマスク膜は、Cr成分が少なく、高窒化、高酸化されたCr系材料が好ましいこと、
(3)Cr系エッチングマスク膜パターンのLERを低減する観点からは、Cr系エッチングマスク膜は、Cr成分がリッチな材料の方がフッ素系ドライエッチングのエッチングレートが遅いので好ましく、従ってこの観点からはCr系エッチングマスク膜は、Cr成分が多いCr系材料が好ましいこと、
(4)上記(2)と(3)はトレードオフの関係にあり、それを考慮すると、Cr系エッチングマスク膜は、膜中のクロムの含有量が50原子%以下であることが好ましいこと、更にCr系エッチングマスク膜中のクロムの含有量は35原子%以下であることが好ましいこと、また、Cr系エッチングマスク膜中のクロムの含有量の下限は20原子%以上が好ましく、さらに好ましくは30原子%以上が好ましいこと、特に、エッチングマスク膜が酸化クロム膜の場合は33原子%以上が好ましいこと、
(5)上記(2)及び(4)に関連し(即ちCr系エッチングマスク膜のエッチング時間の短縮に関連し)、レジストパターンのLERを低減する観点からは、Cr系エッチングマスク膜の膜厚は20nm以下であることが好ましいこと、
(6)上記(3)及び(4)に関連し(即ちCr系エッチングマスク膜のエッチング耐性に関連し)、下層の遮光膜にマスクパターンを転写するエッチングプロセスが完了するまで、エッチングマスクがマスクパターンを維持できなければならないため、Cr系エッチングマスク膜の膜厚は5nm以上であることが好ましいこと、
(7)Cr系材料は、MoSi系材料との間でフッ素系ガスに対する高いエッチング選択比を有する。しかし、フッ素系ガスによるエッチング中は物理的なエッチングの影響は少なからず受けるので全く減膜しないわけではない。よって、Cr系エッチングマスク膜を最適化しても、MoSi系遮光膜の膜厚が60nmを超えて厚くなると、フッ素系ガスによるドライエッチングのエッチング時間が長くなり、このドライエッチング後のCr系エッチングマスク膜の膜厚が薄くなり、Cr系エッチングマスク膜パターンのLERが悪化するので、MoSi系遮光膜の膜厚は60nm以下であることが好ましいこと、
を見い出した。
本発明者は、モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドを含む遮光層は、図16に示すとおり、単位膜厚当たりの光学濃度が大きく、ArFエキシマレーザー露光光における遮光性が相対的に大きい遮光層が得られること、遮光層の厚さが40nm未満という従来よりも大幅に薄い層の厚さでも所定の遮光性(光学濃度)が得られること、さらに従来と同等の遮光性の反射防止層および低反射層と組み合わせることで、ArFエキシマレーザー露光用フォトマスクの遮光膜として十分な遮光性(光学濃度2.8以上、好ましくは3以上)が得られることを見い出した。
モリブデンシリサイドを含む遮光層中のモリブデンの含有量が9原子%以上であると、ΔOD=0.075nm−1@193.4nm以上にできる。モリブデンの含有量が15原子%以上であると、ΔOD=0.08nm−1@193.4nm以上にできるのでより好ましい。モリブデンの含有量が20原子%以上であると、ΔOD=0.082nm−1@193.4nm以上にできるのでさらに好ましい。
モリブデンシリサイドを含む遮光層中のモリブデンの含有量は、15原子%以上40原子%以下が好ましく、20原子%以上40原子%以下がさらに好ましい。
モリブデンシリサイドは、モリブデンの含有量が高いと、耐薬性や耐洗浄性(特に、アルカリ洗浄や温水洗浄)が低下するという問題がある。フォトマスクとして使用する際の必要最低限の耐薬性、耐洗浄性を確保できるモリブデンの含有量である40原子%以下とすることが好ましい。また、図16でも明らかなようにモリブデンシリサイドの遮光性能は、モリブデン含有量を増やしていくと所定値で頭打ちとなる。モリブデンは、希少金属であることから、コスト面から見てもモリブデン含有量を40原子%以下とすることが好ましい。
本発明の上記構成、即ち、モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドを含む遮光層によれば、以下の作用効果が得られる。
(A)遮光層の薄膜化(遮光膜の薄膜化による転写パターンの薄膜化)によって次の作用効果が得られる。
a)マスク洗浄時の転写パターン倒れ防止が図られる。
b)遮光層の薄膜化によって、転写パターンの側壁高さも低くなることから、特に側壁高さ方向のパターン精度が向上し、CD精度(特にリニアリティ)を高めることができる。
c)特に高NA(液浸)世代で使用されるフォトマスクに関しては、シャドーイング対策として、転写パターンを薄くする(マスクパターンの側壁高さを低くする)必要があるが、その要求に応えられる。
(B)遮光層のMo含有量が本発明の範囲であると、次の作用効果が得られる。
1)本発明の範囲外の組成に対して、相対的に、フッ素系ガスによるドライエッチングにおけるエッチング速度が大きい。
本発明においては、
前記レジスト膜の膜厚が75nm以下であり、かつ、
前記エッチングマスク膜の膜厚が5nm以上、15nm以下である
態様が含まれる(構成2)。
上記(2)及び(4)に関連し(即ちCr系エッチングマスク膜のエッチング時間の短縮に関連し)、レジストパターンのLERを低減する観点からは、前記レジスト膜の膜厚が75nm以下である場合では、Cr系エッチングマスク膜の膜厚は5以上、15nm以下であることが好ましいからである。
本発明においては、
前記レジスト膜の膜厚が65nm以下であり、かつ、
前記エッチングマスク膜の膜厚が5以上、10nm以下である
態様が含まれる(構成3)。
上記(2)及び(4)に関連し(即ちCr系エッチングマスク膜のエッチング時間の短縮に関連し)、レジストパターンのLERを低減する観点からは、前記レジスト膜の膜厚が65nm以下である場合では、Cr系エッチングマスク膜の膜厚は5以上、10nm以下であることが好ましいからである。
本発明においては、前記エッチングマスク膜は、酸化炭化窒化クロム(CrOCN)、酸化炭化クロム(CrOC)、酸化窒化クロム(CrON)、窒化クロム(CrN)、のいずれかを主成分とする材料で形成されていることが好ましい(構成4。)
Cr系材料は、酸化を進行させるほど塩素系ガスに対するエッチングレートが向上する。また、酸化させたときほどではないが、窒化を進行させても塩素系ガスに対するエッチングレートが向上する。よって、ただ単にエッチングマスク膜のクロム含有量を35原子%以下にするだけでなく、高酸化、高窒化させることが好ましい。
なお、膜の欠陥品質に優れる観点からは、酸化炭化窒化クロム、酸化炭化クロムが好ましい。また、応力の制御性(低応力膜を形成可能)の観点からは、酸化炭化窒化クロム(CrOCN)が好ましい。
エッチングマスク膜の膜構造としては、上記膜材料からなる単層とすることが多いが、複数層構造とすることもできる。また、複数層構造では、異なる組成で段階的に形成した複数層構造や、連続的に組成が変化した膜構造とすることができる。
本発明においては、前記エッチングマスク膜は、
酸化炭化窒化クロム、あるいは、酸化炭化クロムであり、
クロムターゲットを用い、少なくとも、「COガス、Nガスおよび希ガス」、あるいは、「COガスおよび希ガス」、を含む混合気体を用い(ヒステリシスの小さいガス系を選択し)、かつ、メタルモードから反応モードへの移行が始まる付近の条件、又は反応モード寄り、で成膜されることが好ましい(構成5)。
DCスパッタにおいて安定的にエッチングレートの速い膜を製造可能となるからである。
詳しくは、図3に示すように、DCスパッタにおいて、プラズマが形成された状態において、縦軸の電圧[V](成膜レートに対応する)と、横軸に示す各ガスの流量との関係を調べる。
横軸に示す各ガスの流量を0から50sccmまで増加させた場合(行きの経路)と、50から0sccmまで減少させた場合(帰りの経路)とは、一致せず、いわゆるヒステリシスを示す。
メタルモードは高電圧(例えば330〜350V)を維持している領域(ArでCrがイオンスパッタされる領域)、遷移領域は電圧が急降下する領域、反応モードは急降下した電圧の急降下後の領域(急降下した電圧290〜310Vを維持している領域)(ガスが活性化し反応性を示す領域)をそれぞれ指す。
メタルモードは、図3(1)では0〜30sccmの領域、図3(2)では0〜25sccmの領域、図3(3)では0〜32sccmの領域である。
遷移領域は、図3(1)では増加モードで35〜50sccmの領域、図3(2)では増加モードで35〜50sccmの領域、図3(3)では増加モードで43〜50sccmの領域である。
反応領域は、図3(1)では減少モードで50〜35sccmの領域、図3(2)では減少モードで50〜35sccmの領域、図3(3)では減少モードで48〜32sccmの領域である。
メタルモードでは非常に酸化度、窒化度が低いクロムが成膜され、反応モードでは酸化、窒化度の高いクロムが成膜され、メタルモードと反応モードの中間のモード(メタルモードと反応モードとの遷移領域)では条件が安定しないので通常使用しない。
クロムを酸化、窒化させるガス系は種々あるが、図3(3)に示すように、ヒステリシスが大きいガス系(NOガス+希ガス)を用いた場合、DCスパッタで酸化、窒化されたクロムを反応モードで安定して低欠陥で成膜するのは難しい。Oガス+希ガスを用いた場合も同様である。
これに対し、図3(1)や図3(2)に示すように、ヒステリシスが小さいガス系を用いた場合(図3(1)では「COガス+希ガス」を用い、図3(2)では「COガス+Nガス+希ガス」を用いる)、DCスパッタで酸化、窒化されたクロムを反応モード(図3(1)では40〜30sccmの減少モードの領域、図3(2)では35〜25sccmの減少モードの領域)で安定して低欠陥で成膜することができ、しかも得られた酸化、窒化されたクロムはエッチングレートの速い膜を製造できる。特に、図3(1)や図3(2)における流量35sccm付近の増加モードと減少モードが若干ずれた箇所(条件)、すなわちメタルモードから反応モードに行きかけるあたりの条件(メタルモードから反応モードへの移行が始まる付近(間際)の条件)で成膜を行うことで、他の条件に比べ相対的にエッチングレートの速い酸化、窒化されたクロム膜をDCスパッタで安定して低欠陥で製造できる。
本発明においては、
前記遮光膜は、少なくとも2層以上で構成され、そのうちの1層は、モリブデンシリサイド金属、又は、モリブデンシリサイドの窒化物で構成されている
態様が含まれる(構成6)。
本発明においては、
前記遮光膜は、少なくとも3層で構成され、
モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイド金属からなり、層の厚さが40nm未満である遮光層と、
該遮光層の上に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる反射防止層と、
前記遮光層の下に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる低反射層と
からなる態様が含まれる(構成7)。
また、本発明においては、
前記遮光膜は、2層で構成され、
モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドの窒化物からなる遮光層と、
該遮光層の上に接して形成され、酸素、窒素のうち少なくとも一方を含むモリブデンシリサイド化合物からなる反射防止層と、
からなるからなる態様が含まれる(構成8)。
上記のような構成によって、遮光膜の表面側、及び裏面側(透光性基板側)の反射防止が図られる。
モリブデンシリサイドを含む遮光膜中のモリブデンの含有量は、15原子%以上40原子%以下が好ましく、20原子%以上40原子%以下がさらに好ましい(構成9)。
本発明において、モリブデンシリサイド金属からなる遮光層は、モリブデンとシリコンとで実質的に構成される遮光層(酸素や窒素などを実質的に含まない金属性の膜)のことをいう。この実質的に酸素や窒素を含まない場合には、本発明の作用効果が得られる範囲(酸素、窒素ともに遮光層中の成分の各5at%未満)でこれらの元素を含む態様が含まれる。遮光性能の観点からは、本来、これらの元素は遮光層中に含まないことが好ましい。しかし、成膜プロセスの段階やフォトマスク製造プロセス等で不純物として混入することが多大にあるので、遮光性能の低下に実質的な影響を与えない範囲で許容している。
また、本発明において、モリブデンシリサイド金属からなる遮光層には、上記の特性、作用効果を損なわない範囲で、他の元素(炭素、ヘリウム、水素、アルゴン、キセノン等)を含んでも良い。
本発明において、モリブデンシリサイド金属からなる遮光層は、層の厚さが36nm以上55nm以下であることが望ましく、42nm以上52nm以下であるとより望ましい。
本発明において、MoSi遮光層は、Arガス圧とHeガス圧、加熱処理によって引張応力と圧縮応力を自在に制御可能である。例えば、MoSi遮光層の膜応力を引張応力となるよう制御することによって、反射防止層(例えばMoSiON)の圧縮応力と調和が取れる。つまり、遮光膜を構成する各層の応力を相殺でき、遮光膜の膜応力を極力低減できる(実質的にゼロにできる)。
本発明において、酸素、窒素のうちの少なくとも一方を含むモリブデンシリサイド化合物からなる反射防止層は、MoSiON、MoSiO、MoSiN、MoSiOC、MoSiOCN等が挙げられる。これらのうちでも、耐薬品性、耐熱性の観点からはMoSiO、MoSiONが好ましく、ブランクス欠陥品質の観点からMoSiONが好ましい。
本発明において、反射防止層であるMoSiON、MoSiO、MoSiN、MoSiOC、MoSiOCN等では、Mo多くすると耐洗浄性、特にアルカリ(アンモニア水等)や温水に対する耐性が小さくなる。この観点からは、反射防止層であるMoSiON、MoSiO、MoSiN、MoSiOC、MoSiOCN等では、Mo極力減らすことが好ましい。
また、応力制御を目的として高温で加熱処理(アニール)する際、Moの含有量が高いと膜の表面が白く曇る(白濁する)現象が生じることがわかった。これは、MoOが表面に析出するためであると考えられる。このような現象を避ける観点からは、反射防止層であるMoSiON、MoSiO、MoSiN、MoSiOC、MoSiOCN等では、反射防止層中のMoの含有量は10at%未満であることが好ましい。しかし、Mo含有量が少なすぎる場合、DCスパッタリングの際の異常放電が顕著になり、欠陥発生頻度が高まる。よって、Moは正常にスパッタできる範囲で含有していることが望ましい。他の成膜技術によってはMoを含有せずに成膜可能な場合がある。
本発明において、反射防止層は、層の厚さが5nmから20nmであることが望ましく、7nmから15nmであるとより望ましい。
本発明のフォトマスクは、上記本発明に係るフォトマスクブランクを用いて作製される(構成10)。
これにより、上記構成1〜9に記載したのと同様の効果が得られる。
本発明のフォトマスクの製造方法は、上記本発明に係るフォトマスクブランクを用いる(構成11)。
これにより、上記構成1〜10に記載したのと同様の効果が得られる。
本発明において、クロム系薄膜のドライエッチングには、塩素系ガス、又は、塩素系ガスと酸素ガスとを含む混合ガスからなるドライエッチングガスを用いることが好ましい。この理由は、クロムと酸素、窒素等の元素とを含む材料からなるクロム系薄膜に対しては、上記のドライエッチングガスを用いてドライエッチングを行うことにより、ドライエッチング速度を高めることができ、ドライエッチング時間の短縮化を図ることができ、断面形状の良好な遮光膜パターンを形成することができるからである。ドライエッチングガスに用いる塩素系ガスとしては、例えば、Cl2、SiCl4、HCl、CCl、CHCl等が挙げられる。
本発明において、モリブデンシリサイド系薄膜のドライエッチングには、例えば、SF、CF、C、CHF等のフッ素系ガス、これらとHe、H、N、Ar、C、O等の混合ガス、或いはCl、CHCl等の塩素系のガス又は、これらとHe、H、N、Ar、C等の混合ガスを用いることができる。
本発明において、基板としては、合成石英基板、CaF基板、ソーダライムガラス基板、無アルカリガラス基板、低熱膨張ガラス基板、アルミノシリケートガラス基板などが挙げられる。
本発明において、フォトマスクブランクには、位相シフト効果を使用しないバイナリ型フォトマスクブランク、レジスト膜付きマスクブランク、が含まれる。
本発明において、フォトマスクには、位相シフト効果を使用しないバイナリ型フォトマスク、位相シフト効果を使用する位相シフトマスクの中ではレベンソン型位相シフトマスク、エンハンサーマスクが含まれる。フォトマスクにはレチクルが含まれる。
本発明において、波長200nm以下の露光光が適用されるフォトマスクには、ArFエキシマレーザー露光用のフォトマスクが含まれる。
以下、本発明の実施例及び比較例を示す。なお、各実施例、比較例中の遮光膜やエッチングマスク膜等の各膜は、成膜法としてスパッタリング法で行われ、スパッタ装置としてDCマグネトロンスパッタ装置を用いて成膜された。ただし、本発明を実施するにあたっては、特にこの成膜法や成膜装置に限定されるわけではなく、RFマグネトロンスパッタ装置等、他の方式のスパッタ装置を使用してもよい。
実施例(1−1)
(フォトマスクブランクの作製)
透光性基板1としてサイズ6インチ角、厚さ0.25インチの合成石英基板を用い、透光性基板1上に、遮光膜10として、MoSiON膜11(裏面反射防止層)、MoSi(遮光層)12、MoSiON膜(表面反射防止層)13、をそれぞれ形成した(図1)。
詳しくは、Mo:Si=21:79(原子%比)のターゲットを用い、ArとOとNとHeをスパッタリングガス圧0.2Pa(ガス流量比 Ar:O:N:He=5:4:49:42)とし、DC電源の電力を3.0kWで、モリブデン、シリコン、酸素、窒素からなる膜(Mo:0.3原子%、Si:24.6原子%、O:22.5原子%、N:52.6原子%)を7nmの膜厚で形成し、
次いで、Mo:Si=21:79(原子%比)のターゲットを用い、Arをスパッタリングガス圧0.1Paとし、DC電源の電力を2.0kWで、モリブデン及びシリコンからなる膜(Mo:21.0原子%、Si:79原子%を30nmの膜厚で形成し、
次いで、Mo:Si=4:96(原子%比)のターゲットを用い、ArとOとNとHeをスパッタリングガス圧0.1Pa(ガス流量比 Ar:O:N:He=6:5:11:16)とし、DC電源の電力を3.0kWで、モリブデン、シリコン、酸素、窒素からなる膜(Mo:1.6原子%、Si:38.8原子%、O:18.8原子%、N:40.8原子%)を15nmの膜厚で形成した。遮光膜10の合計膜厚は52nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
次に、上記基板を450℃で30分間加熱処理(アニール処理)した。
次に、遮光膜10上に、エッチングマスク膜20を形成した(図1)。具体的には、クロムターゲットを使用し、ArとCOとNとHeをスパッタリングガス圧0.2Pa(ガス流量比 Ar:CO:N:He=21:37:11:31)とし、DC電源の電力を1.8kW、電圧を334Vで、メタルモードから反応モードへの移行が始まる付近(間際)の条件(CO流量37sccm付近)で成膜を行い(図3(2)参照)、CrOCN膜(膜中のCr含有量:33原子%)を5nmの膜厚で形成した。このときCrOCN膜を前記MoSi遮光膜のアニール処理温度よりも低い温度でアニールすることにより、MoSi遮光膜の膜応力に影響を与えずCrOCN膜の応力を極力低く(好ましくは膜応力が実質ゼロ)なるよう調整した。
上記により、ArFエキシマレーザー露光用の遮光膜を形成したフォトマスクブランクを得た。
なお、薄膜の元素分析は、ラザフォード後方散乱分析法を用いた。以下の実施例、比較例において同様である。
(フォトマスクの作製)
フォトマスクブランクのエッチングマスク膜20の上に、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)をスピンコート法により膜厚が100nmとなるように塗布した(図1、図2(1))。
次に、レジスト膜50に対し、電子線描画装置を用いて所望のパターン(40nm、45nm、50nm、55nm、60nmのラインアンドスペース)の描画を行った後、所定の現像液で現像してレジストパターン50aを形成した(図2(2))。
次に、レジストパターン50aをマスクとして、エッチングマスク膜20のドライエッチングを行った(図2(3))。ドライエッチングガスとして、ClとOの混合ガス(Cl:O=4:1)を用いた。
次いで、残留したレジストパターン50aを薬液により剥離除去した。
次いで、エッチングマスク膜パターン20aをマスクにして、遮光膜10を、SFとHeの混合ガスを用い、ドライエッチングを行い、遮光膜パターン10aを形成した(図2(4))。
次いで、エッチングマスク膜パターン20aを、ClとOの混合ガスでドライエッチングによって剥離し(図2(5))、所定の洗浄を施してフォトマスク100を得た。
このフォトマスクの作製例では、エッチングマスク膜パターン20aを形成後、レジストパターン50aを剥離除去したが、これは、その次のプロセスで遮光膜10に遮光膜パターン10aを形成する際、マスクパターンの側壁高さ(=エッチングマスク膜パターン20aの側壁高さ)が低い方が、CD精度をより高く、マイクロローディングをより小さくすることができ、より加工精度に優れるためである。なお、そこまでの加工精度が要求されないフォトマスクを作製する場合やエッチングマスク膜にも露光光に対する反射防止の役割を持たせたい場合においては、レジストパターン50aを遮光膜パターン10aが形成された後に剥離除去するようにしてもよい。
実施例(1−1)で使用したフォトマスクブランクの構成(遮光膜、エッチングマスク膜、レジスト膜の材料及び膜厚等の特性)を図4に示す。また、実施例(1−1)で使用したフォトマスクブランクの加工特性(エッチングマスク膜のドライエッチング後のレジスト膜厚、遮光膜のドライエッチング後のエッチングマスク膜の膜厚、レジスト膜の解像性(40nm未満でのLER(Line Edge Roughness)、レジスト倒れ等)、エッチングマスク膜のLER(Line Edge Roughness))、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図4に示す。
実施例(1−2)
実施例(1−2)は、実施例(1−1)において、エッチングマスク膜20であるCrOCN膜の膜厚を5nmから10nmに変えたこと、を除き実施例(1−1)と同様である。
実施例(1−2)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図4に示す。
実施例(1−3)
実施例(1−3)は、実施例(1−1)において、エッチングマスク膜20であるCrOCN膜の膜厚を5nmから15nmに変えたこと、を除き実施例(1−1)と同様である。
実施例(1−3)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図4に示す。
実施例(1−4)
実施例(1−4)は、実施例(1−1)において、エッチングマスク膜20であるCrOCN膜の膜厚を5nmから20nmに変えたこと、を除き実施例(1−1)と同様である。
実施例(1−4)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図4に示す。
実施例(1−5)〜(1−8)
実施例(1−5)〜(1−8)は、実施例(1−1)〜(1−4)において、エッチングマスク膜20であるCrOCN膜をCrOC膜に変え、下記条件で成膜を行い、CrOC膜中のCr含有量を35原子%としたこと、を除き実施例(1−1)〜(1−4)と同様である。
エッチングマスク膜20であるCrOC膜は、具体的には、クロムターゲットを使用し、ArとCOとHeをスパッタリングガス圧0.2Pa(ガス流量比 Ar:CO:He=18:40:32)とし、DC電源の電力を1.8kW、電圧を343Vで、メタルモードから反応モードへの移行が始まる付近(間際)の条件(CO流量40sccm付近)で成膜を行い(図3(1)参照)、CrOC膜(膜中のCr含有量:35原子%)を5nm、10nm、15nm、20nmの各膜厚で形成した。
実施例(1−5)〜(1−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図4に示す。
実施例(1−9)〜(1−12)
実施例(1−9)〜(1−12)は、実施例(1−1)〜(1−4)において、エッチングマスク膜20であるCrOCN膜をCrON膜に変え、下記条件で成膜を行ったこと、を除き実施例(1−1)〜(1−4)と同様である。
エッチングマスク膜20であるCrON膜は、具体的には、クロムターゲットを使用し、ArとNOとHeをスパッタリングガス圧0.2Pa(ガス流量比 Ar:NO:He=18:80:32)とし、DC電源の電力を1.8kW、電圧を295Vで、反応モードで成膜を行い(図3(3)参照)、CrON膜(膜中のCr含有量:35原子%)を5nm、10nm、15nm、20nmの各膜厚で形成した。
実施例(1−9)〜(1−12)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図5に示す。
実施例(1−13)〜(1−16)
実施例(1−13)〜(1−16)は、実施例(1−1)〜(1−4)において、エッチングマスク膜20であるCrOCN膜をCrN膜に変え、下記条件で成膜を行ったこと、を除き実施例(1−1)〜(1−4)と同様である。
エッチングマスク膜20であるCrN膜は、具体的には、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比 Ar:N=10:60)とし、DC電源の電力を2.0kW、電圧を350Vで、反応モードで成膜を行い、CrN膜(膜中のCr含有量:50原子%)を5nm、10nm、15nm、20nmの各膜厚で形成した。
実施例(1−13)〜(1−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図5に示す。
実施例(1−17)
実施例(1−17)は、実施例(1−1)において、遮光膜10におけるMoSi(遮光層)12に関し、下記条件で成膜を行い、MoSi(遮光層)12の膜厚を変化させ、MoSi(遮光層)12中のSi含有量を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSi(遮光層)12は、Mo:Si=9:91(原子%比)のターゲットを用い、Arをスパッタリングガス圧0.1Paとし、DC電源の電力を2.0kWで、モリブデン及びシリコンからなる膜(Mo:9原子%、Si:91原子%)を34nmの膜厚で形成し、遮光膜10の合計膜厚は56nmとした。
実施例(1−17)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−18)
実施例(1−18)は、実施例(1−1)において、遮光膜10におけるMoSi(遮光層)12に関し、下記条件で成膜を行い、MoSi(遮光層)12の膜厚を変化させ、MoSi(遮光層)12中のSi含有量を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSi(遮光層)12は、Mo:Si=15:85(原子%比)のターゲットを用い、Arをスパッタリングガス圧0.1Paとし、DC電源の電力を2.0kWで、モリブデン及びシリコンからなる膜(Mo:15原子%、Si:85原子%)を31nmの膜厚で形成し、遮光膜10の合計膜厚は53nmとした。
実施例(1−18)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−19)
実施例(1−19)は、実施例(1−1)において、遮光膜10におけるMoSi(遮光層)12に関し、下記条件で成膜を行い、MoSi(遮光層)12の膜厚を変化させ、MoSi(遮光層)12中のSi含有量を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSi(遮光層)12は、Mo:Si=1:2(原子%比)のターゲットを用い、Arをスパッタリングガス圧0.1Paとし、DC電源の電力を2.0kWで、モリブデン及びシリコンからなる膜(Mo:33原子%、Si:67原子%)を29nmの膜厚で形成し、遮光膜10の合計膜厚は51nmとした。
実施例(1−19)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−20)
実施例(1−20)は、実施例(1−1)において、遮光膜10におけるMoSi(遮光層)12に関し、下記条件で成膜を行い、MoSi(遮光層)12の膜厚を変化させ、MoSi(遮光層)12中のSi含有量を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSi(遮光層)12は、Mo:Si=40:60(原子%比)のターゲットを用い、Arをスパッタリングガス圧0.1Paとし、DC電源の電力を2.0kWで、モリブデン及びシリコンからなる膜(Mo:40原子%、Si:60原子%)を30nmの膜厚で形成し、遮光膜10の合計膜厚は52nmとした。
実施例(1−20)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−21)
実施例(1−21)は、実施例(1−1)において、遮光膜10に関し、MoSiON膜11(裏面反射防止層)を形成しなかったこと、遮光膜10におけるMoSi(遮光層)12及びMoSiON膜(表面反射防止層)13に関し、下記条件で成膜を行い、MoSi(遮光層)12をMoSiN(遮光層)12に変え、その膜厚及び膜中のSi含有量を変化させたこと、MoSiON膜(表面反射防止層)13の膜厚を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSiN(遮光層)12は、モリブデン、シリコン、窒素からなる膜(Mo:9原子%、Si:72.8原子%、N:18.2原子%)を52nmの膜厚で形成した。
遮光膜10におけるMoSiON膜(表面反射防止層)13は、モリブデン、シリコン、酸素、窒素からなる膜(Mo:1.6原子%、Si:38.8原子%、O:18.8原子%、N:40.8原子%)を8nmの膜厚で形成した。
遮光膜10の合計膜厚は60nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
実施例(1−21)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−22)
実施例(1−22)は、実施例(1−1)において、遮光膜10に関し、MoSiON膜11(裏面反射防止層)を形成しなかったこと、遮光膜10におけるMoSi(遮光層)12及びMoSiON膜(表面反射防止層)13に関し、下記条件で成膜を行い、MoSi(遮光層)12をMoSiN(遮光層)12に変え、その膜厚及び膜中のSi含有量を変化させたこと、MoSiON膜(表面反射防止層)13の膜厚を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSiN(遮光層)12は、モリブデン、シリコン、窒素からなる膜(Mo:18原子%、Si:63.8原子%、N:18.2原子%)を50nmの膜厚で形成した。
遮光膜10におけるMoSiON膜(表面反射防止層)13は、モリブデン、シリコン、酸素、窒素からなる膜(Mo:1.6原子%、Si:38.8原子%、O:18.8原子%、N:40.8原子%)を10nmの膜厚で形成した。
遮光膜10の合計膜厚は60nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
実施例(1−22)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−23)
実施例(1−23)は、実施例(1−1)において、遮光膜10に関し、MoSiON膜11(裏面反射防止層)を形成しなかったこと、遮光膜10におけるMoSi(遮光層)12及びMoSiON膜(表面反射防止層)13に関し、下記条件で成膜を行い、MoSi(遮光層)12をMoSiN(遮光層)12に変え、その膜厚及び膜中のSi含有量を変化させたこと、MoSiON膜(表面反射防止層)13の膜厚を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSiN(遮光層)12は、モリブデン、シリコン、窒素からなる膜(Mo:30原子%、Si:51.8原子%、N:18.2原子%)を45nmの膜厚で形成した。
遮光膜10におけるMoSiON膜(表面反射防止層)13は、モリブデン、シリコン、酸素、窒素からなる膜(Mo:1.6原子%、Si:38.8原子%、O:18.8原子%、N:40.8原子%)を15nmの膜厚で形成した。
遮光膜10の合計膜厚は60nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
実施例(1−23)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(1−24)
実施例(1−24)は、実施例(1−1)において、遮光膜10に関し、MoSiON膜11(裏面反射防止層)を形成しなかったこと、遮光膜10におけるMoSi(遮光層)12及びMoSiON膜(表面反射防止層)13に関し、下記条件で成膜を行い、MoSi(遮光層)12をMoSiN(遮光層)12に変え、その膜厚及び膜中のSi含有量を変化させたこと、MoSiON膜(表面反射防止層)13の膜厚を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−1)と同様である。
遮光膜10におけるMoSiN(遮光層)12は、モリブデン、シリコン、窒素からなる膜(Mo:40原子%、Si:41.8原子%、N:18.2原子%)を42nmの膜厚で形成した。
遮光膜10におけるMoSiON膜(表面反射防止層)13は、モリブデン、シリコン、酸素、窒素からなる膜(Mo:1.6原子%、Si:38.8原子%、O:18.8原子%、N:40.8原子%)を18nmの膜厚で形成した。
遮光膜10の合計膜厚は60nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
実施例(1−24)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図6に示す。
実施例(2−1)〜(2−16)
実施例(2−1)〜(2−16)は、実施例(1−1)〜(1−16)において、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)を、電子線描画(露光)用化学増幅型ポジレジスト50(SVL−08:富士フィルムエレクトロニクスマテリアルズ社製)に変えたこと、を除き実施例(1−1)〜(1−16)と同様である。
実施例(2−1)〜(2−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図7および図8に示す。
実施例(3−1)〜(3−16)
実施例(3−1)〜(3−16)は、実施例(1−1)〜(1−16)において、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)の膜厚を、100nmから90nmに変えたこと、それに伴いレジストパターンの線幅(40nm)とレジスト膜の膜厚90nmとの比(アスペクト比)が1:2.25に変わったこと、を除き実施例(1−1)〜(1−16)と同様である。
実施例(3−1)〜(3−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図9および図10に示す。
実施例(4−1)〜(4−12)
実施例(4−1)〜(4−12)は、実施例(1−1)〜(1−3)、実施例(1−5)〜(1−7)、実施例(1−9)〜(1−11)、実施例(1−13)〜(1−15)、において、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)の膜厚を、100nmから75nmに変えたこと、それに伴いレジストパターンの線幅(40nm)とレジスト膜の膜厚75nmとの比(アスペクト比)が1:1.9に変わったこと、を除き実施例(1−1)〜(1−3)、実施例(1−5)〜(1−7)、実施例(1−9)〜(1−11)、実施例(1−13)〜(1−15)と同様である。
実施例(4−1)〜(4−12)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図11および12に示す。
実施例(5−1)〜(5−8)
実施例(5−1)〜(5−8)は、実施例(1−1)〜(1−2)、実施例(1−5)〜(1−5)、実施例(1−9)〜(1−10)、実施例(1−13)〜(1−14)、において、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)の膜厚を、100nmから65nmに変えたこと、それに伴いレジストパターンの線幅(40nm)とレジスト膜の膜厚65nmとの比(アスペクト比)が1:1.4に変わったこと、を除き実施例(1−1)〜(1−2)、実施例(1−5)〜(1−5)、実施例(1−9)〜(1−10)、実施例(1−13)〜(1−14)と同様である。
実施例(5−1)〜(5−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図13に示す。
比較例1〜2
比較例1は、実施例(2−1)において、エッチングマスク膜20であるCrOCN膜の膜厚を5nmから4nmに変えたこと、を除き実施例(2−1)と同様である。
比較例2は、実施例(2−4)において、エッチングマスク膜20であるCrOCN膜の膜厚を20nmから30nmに変えたこと、を除き実施例(2−4)と同様である。
比較例1〜2で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図14に示す。
比較例3〜4
比較例3は、実施例(1−4)において、電子線描画(露光)用化学増幅型ポジレジスト50(PRL009:富士フィルムエレクトロニクスマテリアルズ社製)の膜厚を、100nmから120nmに変えたこと、それに伴いレジストパターンの線幅(40nm)とレジスト膜の膜厚120nmとの比(アスペクト比)が1:1.3に変わったこと、を除き実施例(1−4)と同様である。
比較例4は、実施例(2−4)において、電子線描画(露光)用化学増幅型ポジレジスト50(SVL−08:富士フィルムエレクトロニクスマテリアルズ社製)の膜厚を、100nmから120nmに変えたこと、それに伴いレジストパターンの線幅(40nm)とレジスト膜の膜厚120nmとの比(アスペクト比)が1:1.3に変わったこと、を除き実施例(2−4)と同様である。
比較例3〜4で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図14に示す。
比較例5〜7
比較例5〜7は、実施例(2−14)〜(2−16)において、エッチングマスク膜20であるCrN膜に関し、下記条件で成膜を行い、CrN膜中のCr含有量を50原子%から90原子%に変えたこと、を除き実施例(2−14)〜(2−16)と同様である。
エッチングマスク膜20であるCrN膜は、具体的には、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比 Ar:N:He=18:18:32)とし、DC電源の電力を1.8kW、電圧を335Vで、メタルモードで成膜を行い、CrN膜(膜中のCr含有量:90原子%)を10nm、15nm、20nmの各膜厚で形成した。
比較例5〜7で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図14に示す。
比較例8
比較例8は、実施例(1−16)において、エッチングマスク膜20であるCrN膜に関し、下記条件で成膜を行い、CrN膜中のCr含有量を50原子%から90原子%に変えたこと、を除き実施例(1−16)と同様である。
エッチングマスク膜20であるCrN膜は、具体的には、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比 Ar:N:He=18:18:32)とし、DC電源の電力を1.8kW、電圧を335Vで、メタルモードで成膜を行い、CrN膜(膜中のCr含有量:90原子%)を20nmの膜厚で形成した。
比較例8で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図14に示す。
比較例9
比較例9は、実施例(2−16)において、エッチングマスク膜20であるCrN膜に関し、下記条件で成膜を行い、CrN膜中のCr含有量を50原子%から60原子%に変えたこと、を除き実施例(2−16)と同様である。
エッチングマスク膜20であるCrN膜は、具体的には、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比 Ar:N:He=18:24:32)とし、DC電源の電力を1.8kW、電圧を338Vで、メタルモードで成膜を行い、CrN膜(膜中のCr含有量:60原子%)を20nmの膜厚で形成した。
比較例9で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図15示す。
比較例10
比較例10は、実施例(2−16)において、エッチングマスク膜20であるCrN膜をCr膜に変え、下記条件で成膜を行ったこと、を除き実施例(2−16)と同様である。
エッチングマスク膜20であるCr膜は、具体的には、クロムターゲットを使用し、Arをスパッタリングガス圧0.2Paとし、DC電源の電力を1.8kW、電圧を330Vで、メタルモードで成膜を行い、Cr膜中のCr含有量100原子%のピュアクロムを20nmの膜厚で形成した。
比較例10で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図15に示す。
比較例11
比較例11は、実施例(1−16)において、エッチングマスク膜20であるCrN膜をCr膜に変え、下記条件で成膜を行ったこと、を除き実施例(1−16)と同様である。
エッチングマスク膜20であるCr膜は、具体的には、クロムターゲットを使用し、Arをスパッタリングガス圧0.2Paとし、DC電源の電力を1.8kW、電圧を330Vで、メタルモードで成膜を行い、Cr膜中のCr含有量100原子%のピュアクロムを20nmの膜厚で形成した。
比較例11で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図15に示す。
比較例12
比較例12は、実施例(1−21)において、遮光膜10におけるMoSi(遮光層)12に関し、下記条件で成膜を行い、その膜厚及び膜中のSi含有量を変化させたこと、遮光膜10の合計膜厚を変化させたこと、を除き実施例(1−21)と同様である。
遮光膜10におけるMoSiN(遮光層)12は、モリブデン、シリコン、窒素からなる膜(Mo:6原子%、Si:75.8原子%、N:18.2原子%)を62nmの膜厚で形成した。
遮光膜10の合計膜厚は70nmとした。遮光膜10の光学濃度(OD)はArFエキシマレーザー露光光の波長193nmにおいて3であった。
比較例12で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図15に示す。
比較例13
比較例13は、実施例(4−11)において、エッチングマスク膜20であるCrN膜に関し、下記条件で成膜を行い、CrN膜中のCr含有量を50原子%から90原子%に変えたこと、を除き実施例(4−11)と同様である。
エッチングマスク膜20であるCrN膜は、具体的には、クロムターゲットを使用し、ArとNをスパッタリングガス圧0.2Pa(ガス流量比 Ar:N:He18:18:32)とし、DC電源の電力を1.8kW、電圧を335Vで、メタルモードで成膜を行い、CrN膜(膜中のCr含有量:90原子%)を10nmの膜厚で形成した。
比較例13で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を図15に示す。
(評価)
実施例(1−1)〜(1−24)では、エッチングマスク膜のドライエッチング後のレジスト膜厚が、最大93.6nm(実施例1−9)〜最小70.1nm(実施例1−16)の範囲で変動し、並びに、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が、最小3.1nm(実施例1−21)〜最大18.6nm(実施例1−4等)の範囲で変動している。
実施例(1−1)〜(1−24)では、レジスト膜の解像性(40nm未満でのLER、レジスト倒れ等)は良好であり、また、エッチングマスク膜のLER)は良好であり、さらに、得られたフォトマスクにおける遮光膜パターンの解像性は40nm未満であった。
実施例(2−1)〜(2−16)では、エッチングマスク膜のドライエッチング後のレジスト膜厚が、最大92.7nm(実施例2−9)〜最小66.2nm(実施例2−16)の範囲で変動し、並びに、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が、最小3.6nm(実施例2−1等)〜最大66.2nm(実施例2−4等)の範囲で変動している。
実施例(2−1)〜(2−16)では、レジスト膜の解像性(40nm未満でのLER、レジスト倒れ等)は良好であり、また、エッチングマスク膜のLER)は良好であり、さらに、得られたフォトマスクにおける遮光膜パターンの解像性は40nm未満であった。
実施例(3−1)〜(3−16)では、エッチングマスク膜のドライエッチング後のレジスト膜厚が、最大83.6nm(実施例3−9)〜最小60.1nm(実施例3−16)の範囲で変動し、並びに、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が、最小3.6nm(実施例3−1等)〜最大18.6nm(実施例3−4等)の範囲で変動している。
実施例(3−1)〜(3−16)では、レジスト膜の解像性(40nm未満でのLER、レジスト倒れ等)は良好であり、また、エッチングマスク膜のLER)は良好であり、さらに、得られたフォトマスクにおける遮光膜パターンの解像性は40nm未満であった。
実施例(4−1)〜(4−12)では、エッチングマスク膜のドライエッチング後のレジスト膜厚が、最大68.6nm(実施例4−7)〜最小52.5nm(実施例4−12)の範囲で変動し、並びに、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が、最小3.6nm(実施例4−1等)〜最大13.6nm(実施例4−3等)の範囲で変動している。
実施例(4−1)〜(4−12)では、レジスト膜の解像性(40nm未満でのLER、レジスト倒れ等)は良好であり、また、エッチングマスク膜のLER)は良好であり、さらに、得られたフォトマスクにおける遮光膜パターンの解像性は40nm未満であった。
実施例(5−1)〜(5−8)では、エッチングマスク膜のドライエッチング後のレジスト膜厚が、最大58.6nm(実施例5−5)〜最小50.3nm(実施例5−8)の範囲で変動し、並びに、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が、最小3.6nm(実施例5−1等)〜最大8.6nm(実施例5−2等)の範囲で変動している。
実施例(5−1)〜(5−8)では、レジスト膜の解像性(40nm未満でのLER、レジスト倒れ等)は良好であり、また、エッチングマスク膜のLER)は良好であり、さらに、得られたフォトマスクにおける遮光膜パターンの解像性は40nm未満であった。
比較例1
比較例1は、エッチングマスク膜20はCrOCN膜(膜中のCr含有量は33原子%)であるものの、その膜厚が4nmと薄く、遮光膜のドライエッチング後のエッチングマスク膜の膜厚が2.6nmまで薄くなってしまうことに起因し、エッチングマスク膜のLER))は不良であり、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
比較例2
比較例2は、エッチングマスク膜20はCrOCN膜(膜中のCr含有量は33原子%)であるものの、その膜厚が30nmと厚く、エッチングマスク膜のドライエッチング後のレジスト膜の膜厚が49.6nmまで薄くなってしまうことに起因し、レジスト膜の解像性(40nm未満でのLER)は不良であり、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
比較例3〜4
比較例3〜4は、レジスト50の膜厚が120nmと厚く、アスペクト比が1:1.3と大きいため、レジストパターンの倒れが発生し、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
比較例5〜9、13
比較例5〜9、13は、エッチングマスク膜20はCrN膜であり、膜中のCr含有量は50原子%を超え、60%、90%と高く、塩素系ガスに対するエッチングレートが遅い。このため、エッチングマスク膜のドライエッチング時におけるレジスト膜の消費量が多く、ドライエッチング後のレジスト膜の膜厚が薄くなってしまうことに起因し、エッチングマスク膜のLER)は不良であり、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
比較例10〜11
比較例10〜11は、エッチングマスク膜20はCr膜であり、膜中のCr含有量は100と高いため、塩素系ガスに対するエッチングレートが遅い。このため、エッチングマスク膜のドライエッチング時におけるレジスト膜の消費量が多く、ドライエッチング後のレジスト膜の膜厚が薄くなってしまうことに起因し、エッチングマスク膜のLER)は不良であり、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
比較例12
比較例12は、遮光膜10におけるMoSiN(遮光層)12は、膜中のMo含有量は6原子%と低く、その膜厚は62nmと厚く、遮光膜10の合計膜厚も70nmと厚いため、遮光膜のフッ素系ガスによるドライエッチング時に、エッチングマスク膜が物理的なエッチングを受ける時間が長くなる。遮光膜のドライエッチング後におけるエッチングマスク膜の膜厚が2.9nmまで薄くなってしまうことに起因し、エッチングマスク膜のLER)は不良であり、また、得られたフォトマスクにおいて遮光膜パターンの解像性40nm未満は実現できなかった。
以上のことから、本発明によれば、hp32nm世代、更にはhp22nm以降の世代に適した高品質のフォトマスクが得られた。
また、マスク上に形成される転写パターンの解像性に関しては、40nm未満の転写パターンの解像が可能となった。
以上、本発明を実施例を用いて説明したが、本発明の技術的範囲は、上記実施例に記載の範囲には限定されない。上記実施例に、多様な変更又は改良を加えることが可能であることは、当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
本発明の実施例1に係るフォトマスクブランクの一例を示す模式的断面である。 本発明の実施例1に係るフォトマスクの製造工程を説明するための模式的断面である。 エッチングマスク膜20成膜におけるモードを説明するための図である。 実施例(1−1)〜(1−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(1−9)〜(1−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(1−17)〜(1−24)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(2−1)〜(2−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(2−9)〜(2−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(3−1)〜(3−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(3−9)〜(3−16)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(4−1)〜(4−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(4−9)〜(4−12)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 実施例(5−1)〜(5−8)で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 比較例1〜8で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 比較例9〜13で使用したフォトマスクブランクの構成、その加工特性、並びに、得られたフォトマスクにおける遮光膜パターンの解像性を示す図である。 モリブデンシリサイド金属からなる薄膜におけるモリブデン含有量と単位膜厚当たりの光学濃度との関係を示す図である。
1 透光性基板
10 遮光膜
11 裏面反射防止層
12 遮光層
13 表面反射防止層
20 エッチングマスク膜
50 レジスト膜
100 フォトマスク

Claims (18)

  1. 波長200nm以下の露光光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクであって、
    透光性基板と、透光性基板上に形成され、透光性基板側から遮光層と反射防止層が順に積層してなる遮光膜と、前記反射防止層に接して形成されるエッチングマスク膜とからなり、
    前記反射防止層は、モリブデンおよびシリコンを含有し、さらに酸素および窒素のうちの少なくともいずれかを含有し、かつモリブデンの含有量が10原子%未満である材料からなり、
    前記エッチングマスク膜は、クロムの含有量が20原子%以上50原子%以下である窒化クロムからなり、クロムターゲットを用い、Nガスおよび希ガスを含む混合気体を用い、反応モードとなる条件でDCスパッタによって形成されたものであることを特徴とするフォトマスクブランク。
  2. 前記反射防止層は、モリブデンの含有量が1.6原子%以上である材料からなることを特徴とする請求項1記載のフォトマスクブランク。
  3. 前記反射防止層は、MoSiON、MoSiO、MoSiN、MoSiOCまたはMoSiOCNのいずれかからなることを特徴とする請求項1または2に記載のフォトマスクブランク。
  4. 前記遮光層は、モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドの窒化物からなることを特徴とする請求項1から3のいずれかに記載のフォトマスクブランク。
  5. 前記エッチングマスク膜は、その表面に接して形成される膜厚が100nm以下のレジスト膜を用いて加工されるものであり、
    前記エッチングマスク膜は、膜厚が5nm以上、20nm以下であり、
    前記遮光膜は、膜厚が60nm以下であることを特徴とする請求項1から4のいずれかに記載のフォトマスクブランク。
  6. 前記遮光膜は、前記遮光層の下に接して形成され、酸素および窒素のうちの少なくともいずれかを含むモリブデンシリサイド化合物からなる低反射層を備えることを特徴とする請求項1から5のいずれかに記載のフォトマスクブランク。
  7. 半導体デバイスの設計仕様でいうハーフピッチ(hp)32nm世代以降で使用されるフォトマスクを作製するために用いられることを特徴とする請求項1から6のいずれかに記載のフォトマスクブランク。
  8. 請求項1から請求項7のいずれかに記載のフォトマスクブランクを用いて作製されるフォトマスク。
  9. 前記フォトマスクは、線幅が40nm未満の遮光膜パターンを含む転写パターンが形成されていることを特徴とする請求項8記載のフォトマスク。
  10. 波長200nm以下の露光光が適用されるフォトマスクを作製するために用いられるフォトマスクブランクの製造方法であって、
    透光性基板上に、遮光層と、モリブデンおよびシリコンを含有し、さらに酸素および窒素のうちの少なくともいずれかを含有し、かつモリブデンの含有量が10原子%未満である材料からなる反射防止層が順に積層してなる遮光膜を形成する工程と、
    クロムターゲットを用い、Nガスおよび希ガスを含む混合気体を用い、反応モードとなる条件でDCスパッタによってクロムの含有量が20原子%以上50原子%以下である窒化クロムからなるエッチングマスク膜を前記反射防止層の上に接して形成する工程とを有することを特徴とするフォトマスクブランクの製造方法。
  11. 前記反射防止層は、モリブデンの含有量が1.6原子%以上である材料からなることを特徴とする請求項10記載のフォトマスクブランクの製造方法。
  12. 前記反射防止層は、MoSiON、MoSiO、MoSiN、MoSiOCまたはMoSiOCNのいずれかからなることを特徴とする請求項10または11に記載のフォトマスクブランクの製造方法
  13. 前記遮光層は、モリブデンの含有量が9原子%以上、40原子%以下であるモリブデンシリサイドの窒化物からなることを特徴とする請求項10から12のいずれかに記載のフォトマスクブランクの製造方法。
  14. 前記エッチングマスク膜の表面に接して膜厚が100nm以下のレジスト膜形成する工程をさらに備え、
    前記エッチングマスク膜は、膜厚が5nm以上、20nm以下であり、
    前記遮光膜は、膜厚が60nm以下であることを特徴とする請求項10から13のいずれかに記載のフォトマスクブランクの製造方法。
  15. 前記フォトマスクブランクは、半導体デバイスの設計仕様でいうハーフピッチ(hp)32nm世代以降で使用されるフォトマスクを作製するために用いられることを特徴とする請求項10から14のいずれかに記載のフォトマスクブランクの製造方法。
  16. 請求項10から15のいずれかに記載のフォトマスクブランクの製造方法により製造されたフォトマスクブランクを用いて作製することを特徴とするフォトマスクの製造方法。
  17. 請求項8または9に記載のフォトマスクのパターンを露光転写することにより、半導体デバイスを製造することを特徴とする半導体デバイスの製造方法。
  18. 請求項16に記載のフォトマスクの製造方法によって製造されたフォトマスクのパターンを露光転写することにより、半導体デバイスを製造することを特徴とする半導体デバイスの製造方法。
JP2010531743A 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法 Active JP5554239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531743A JP5554239B2 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008252416 2008-09-30
JP2008252416 2008-09-30
PCT/JP2009/005020 WO2010038444A1 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法
JP2010531743A JP5554239B2 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2010038444A1 JPWO2010038444A1 (ja) 2012-03-01
JP5554239B2 true JP5554239B2 (ja) 2014-07-23

Family

ID=42073226

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010531744A Active JP5558359B2 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP2010531743A Active JP5554239B2 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法
JP2014115492A Active JP5797812B2 (ja) 2008-09-30 2014-06-04 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010531744A Active JP5558359B2 (ja) 2008-09-30 2009-09-30 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014115492A Active JP5797812B2 (ja) 2008-09-30 2014-06-04 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法

Country Status (7)

Country Link
US (1) US8940462B2 (ja)
JP (3) JP5558359B2 (ja)
KR (3) KR20110066207A (ja)
CN (1) CN102165369A (ja)
DE (1) DE112009002348T5 (ja)
TW (3) TWI446103B (ja)
WO (2) WO2010038444A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853684B2 (ja) * 2009-03-31 2012-01-11 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP5653888B2 (ja) * 2010-12-17 2015-01-14 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP5541265B2 (ja) * 2011-11-18 2014-07-09 信越化学工業株式会社 エッチングマスク膜の評価方法
WO2013111631A1 (ja) * 2012-01-23 2013-08-01 旭硝子株式会社 ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法
JP5906143B2 (ja) * 2012-06-27 2016-04-20 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
KR101497593B1 (ko) * 2012-08-27 2015-03-03 주식회사 에스앤에스텍 블랭크 마스크, 포토마스크 및 그의 제조 방법
JP5596111B2 (ja) * 2012-12-05 2014-09-24 Hoya株式会社 半導体デバイスの製造方法
EP2824511A1 (en) * 2013-07-11 2015-01-14 Basf Se The use of surfactants having at least three short-chain perfluorinated groups in formulations for photo mask cleaning
KR102046729B1 (ko) * 2013-09-24 2019-11-19 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크, 및 반도체 디바이스의 제조방법
JP6229466B2 (ja) * 2013-12-06 2017-11-15 信越化学工業株式会社 フォトマスクブランク
JP6394496B2 (ja) * 2014-07-15 2018-09-26 信越化学工業株式会社 バイナリフォトマスクブランク、その製造方法、及びバイナリフォトマスクの製造方法
JP5775631B2 (ja) * 2014-08-06 2015-09-09 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、および半導体デバイスの製造方法
JP6287932B2 (ja) * 2015-03-31 2018-03-07 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランクの製造方法
EP3086174B1 (en) * 2015-03-31 2017-11-15 Shin-Etsu Chemical Co., Ltd. Method for preparing halftone phase shift photomask blank
EP3125041B1 (en) 2015-07-27 2020-08-19 Shin-Etsu Chemical Co., Ltd. Method for preparing a photomask
JP6398927B2 (ja) * 2015-09-18 2018-10-03 信越化学工業株式会社 フォトマスクブランク、その製造方法及びフォトマスク
JP6158460B1 (ja) 2015-11-06 2017-07-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
KR20180114895A (ko) * 2016-02-15 2018-10-19 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
JP6900872B2 (ja) * 2016-12-26 2021-07-07 信越化学工業株式会社 フォトマスクブランク及びその製造方法
US11048160B2 (en) * 2017-06-14 2021-06-29 Hoya Corporation Mask blank, phase shift mask and method for manufacturing semiconductor device
JP6463536B1 (ja) * 2018-05-09 2019-02-06 株式会社エスケーエレクトロニクス プロキシミティ露光用フォトマスクとその製造方法
JP6988697B2 (ja) 2018-05-31 2022-01-05 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP7044095B2 (ja) 2019-05-31 2022-03-30 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP7280171B2 (ja) 2019-12-05 2023-05-23 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP7331793B2 (ja) * 2020-06-30 2023-08-23 信越化学工業株式会社 フォトマスクの製造方法及びフォトマスクブランク
CN112981316A (zh) * 2021-02-05 2021-06-18 上海传芯半导体有限公司 相移反位膜掩模基版的制作方法
US11763062B2 (en) 2021-05-10 2023-09-19 GBT Tokenize Corp. Systems and methods for eliminating electromigration and self-heat violations in a mask layout block
CN113311660B (zh) * 2021-06-03 2023-07-18 上海传芯半导体有限公司 掩模基版的制作方法及具有等离子体加热装置的涂胶设备
US11853682B2 (en) 2021-06-07 2023-12-26 GBT Tokenize Corp. Systems and methods for identification and elimination of geometrical design rule violations of a mask layout block
US11586799B1 (en) 2021-09-27 2023-02-21 GBT Technologies, Inc. Systems and methods of eliminating connectivity mismatches in a mask layout block
US11741284B2 (en) 2021-09-28 2023-08-29 GBT Technologies, Inc. Systems and methods of automatic generation of integrated circuit IP blocks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124454A1 (ja) * 2004-06-16 2005-12-29 Hoya Corporation 光半透過膜、フォトマスクブランク及びフォトマスク、並びに光半透過膜の設計方法
JP2006078807A (ja) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2007241137A (ja) * 2006-03-10 2007-09-20 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JP2007241060A (ja) * 2006-03-10 2007-09-20 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスクの製造方法
JP2007292824A (ja) * 2006-04-21 2007-11-08 Shin Etsu Chem Co Ltd フォトマスクブランク
WO2009123172A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240243A (ja) * 1985-04-18 1986-10-25 Asahi Glass Co Ltd フオトマスクブランクおよびフオトマスク
JPS6270849A (ja) * 1985-09-24 1987-04-01 Hoya Corp フオトマスクブランクとフオトマスク
JPH0239153A (ja) * 1988-07-29 1990-02-08 Toppan Printing Co Ltd フォトマスクブランク及びフォトマスク
JPH04371954A (ja) * 1991-06-20 1992-12-24 Toppan Printing Co Ltd フォトマスクブランク及びフォトマスク
EP0585872B1 (en) * 1992-09-01 2000-03-29 Dai Nippon Printing Co., Ltd. Process for fabricating a phase shift photomask or phase shift photomask blank
JP2000114246A (ja) * 1998-08-07 2000-04-21 Ulvac Seimaku Kk ドライエッチング方法および装置、フォトマスクおよびその作製方法、ならびに半導体回路およびその製作方法
KR20020009410A (ko) * 2000-07-25 2002-02-01 포만 제프리 엘 3원 리소그래픽 att-PSM 포토마스크 및 그 제조 방법
TW498435B (en) 2000-08-15 2002-08-11 Hitachi Ltd Method of producing semiconductor integrated circuit device and method of producing multi-chip module
JP2002122980A (ja) 2000-10-17 2002-04-26 Hitachi Ltd 半導体集積回路装置の製造方法およびフォトマスクの製造方法
JP3572053B2 (ja) * 2001-05-31 2004-09-29 株式会社東芝 露光マスクの製造方法、マスク基板情報生成方法、半導体装置の製造方法およびサーバー
JP2004053663A (ja) * 2002-07-16 2004-02-19 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びフォトマスクブランクの選定方法
JP4025267B2 (ja) * 2002-08-09 2007-12-19 株式会社神戸製鋼所 α型結晶構造主体のアルミナ皮膜の製造方法
TWI297101B (en) * 2005-04-20 2008-05-21 Nanya Technology Corp Phase shifting mask for equal line/space dense line patterns
DE602006021102D1 (de) 2005-07-21 2011-05-19 Shinetsu Chemical Co Photomaskenrohling, Photomaske und deren Herstellungsverfahren
KR100725371B1 (ko) * 2006-01-13 2007-06-07 삼성전자주식회사 다층의 차광 패턴을 포함하는 포토마스크와 그 제조방법 및블랭크 포토마스크
JP4509050B2 (ja) 2006-03-10 2010-07-21 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP5294227B2 (ja) * 2006-09-15 2013-09-18 Hoya株式会社 マスクブランク及び転写マスクの製造方法
JP5530075B2 (ja) * 2008-03-31 2014-06-25 Hoya株式会社 フォトマスクブランク、フォトマスク及びこれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124454A1 (ja) * 2004-06-16 2005-12-29 Hoya Corporation 光半透過膜、フォトマスクブランク及びフォトマスク、並びに光半透過膜の設計方法
JP2006078807A (ja) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2007241137A (ja) * 2006-03-10 2007-09-20 Toppan Printing Co Ltd ハーフトーン型位相シフトマスク及びその製造方法
JP2007241060A (ja) * 2006-03-10 2007-09-20 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスクの製造方法
JP2007292824A (ja) * 2006-04-21 2007-11-08 Shin Etsu Chem Co Ltd フォトマスクブランク
WO2009123172A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法

Also Published As

Publication number Publication date
WO2010038445A1 (ja) 2010-04-08
US8940462B2 (en) 2015-01-27
KR20160138586A (ko) 2016-12-05
TW201028790A (en) 2010-08-01
KR101681335B1 (ko) 2016-11-30
TWI476507B (zh) 2015-03-11
JP2014197215A (ja) 2014-10-16
TW201520684A (zh) 2015-06-01
JP5797812B2 (ja) 2015-10-21
KR20110066207A (ko) 2011-06-16
WO2010038444A1 (ja) 2010-04-08
US20110229807A1 (en) 2011-09-22
JPWO2010038445A1 (ja) 2012-03-01
JP5558359B2 (ja) 2014-07-23
JPWO2010038444A1 (ja) 2012-03-01
TWI446103B (zh) 2014-07-21
TW201027237A (en) 2010-07-16
TWI567483B (zh) 2017-01-21
DE112009002348T5 (de) 2012-01-19
CN102165369A (zh) 2011-08-24
KR20110066206A (ko) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5554239B2 (ja) フォトマスクブランク、フォトマスク及びその製造方法
JP5602930B2 (ja) マスクブランクおよび転写用マスク
JP5530075B2 (ja) フォトマスクブランク、フォトマスク及びこれらの製造方法
JP5497288B2 (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP5507860B2 (ja) フォトマスクの製造方法
CN106019809B (zh) 半色调相移掩模坯,半色调相移掩模,和图案曝光方法
JP5823563B2 (ja) フォトマスクブランク、フォトマスク及びその製造方法
JP2009244793A (ja) フォトマスクブランク、フォトマスク及びその製造方法
JP2011102968A (ja) 転写用マスク、転写用マスクの製造方法及び半導体デバイスの製造方法
JP2011100108A (ja) マスクブランク、転写用マスク、および転写用マスクセット
JP2011059502A (ja) フォトマスクブランクおよびフォトマスクの製造方法
TWI807597B (zh) 半色調相移型空白光罩、其製造方法及半色調相移型光罩
JP2020052195A (ja) 位相シフト型フォトマスクブランク及び位相シフト型フォトマスク
JP2010107921A (ja) フォトマスクブランク、フォトマスク及びその製造方法
JP2011102969A (ja) 転写用マスクの製造方法及び半導体デバイスの製造方法
JP2009092840A (ja) フォトマスクおよびフォトマスクブランクス
JP5829302B2 (ja) フォトマスクブランクの製造方法およびフォトマスクの製造方法
JP5701946B2 (ja) 位相シフトマスクの製造方法
JP6627926B2 (ja) 位相シフトマスクブランクスの製造方法
JP5802294B2 (ja) フォトマスクブランクの製造方法及びフォトマスクの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250