WO2013111631A1 - ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法 - Google Patents

ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法 Download PDF

Info

Publication number
WO2013111631A1
WO2013111631A1 PCT/JP2013/050488 JP2013050488W WO2013111631A1 WO 2013111631 A1 WO2013111631 A1 WO 2013111631A1 JP 2013050488 W JP2013050488 W JP 2013050488W WO 2013111631 A1 WO2013111631 A1 WO 2013111631A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard mask
mask layer
nanoimprint mold
glass substrate
film
Prior art date
Application number
PCT/JP2013/050488
Other languages
English (en)
French (fr)
Inventor
和幸 林
和伸 前重
康臣 岩橋
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147020510A priority Critical patent/KR20140117429A/ko
Publication of WO2013111631A1 publication Critical patent/WO2013111631A1/ja
Priority to US14/338,825 priority patent/US20140335215A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4414Electrochemical vapour deposition [EVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a nanoimprint mold blank used for manufacturing a nanoimprint mold used in semiconductor manufacturing or the like, a nanoimprint mold manufactured using the nanoimprint mold blank, and a manufacturing method thereof.
  • the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the ArF laser (193 nm) is used. Even if the immersion method is used, it is expected that the resolution limit of the pattern is about 45 nm.
  • EUV lithography which is an exposure technique using EUV light having a shorter wavelength than an ArF laser, is being developed as an exposure technique with a pattern resolution limit of 45 nm or later.
  • nanoimprint technology has been developed as a method for transferring a fine pattern to a Si substrate or the like.
  • the nanoimprint technique is a technique in which a glass substrate on which a fine pattern called a mold is formed is brought into direct contact with a Si substrate coated with a resist and the fine pattern is transferred (see Patent Document 1).
  • the nanoimprint technology is promising as a next-generation lithography technology because it is less expensive to manufacture members used for transferring fine patterns and the exposure apparatus.
  • the member used for transferring the fine pattern is called a transmissive mask in the case of ArF immersion, a reflective mask in the case of EUV lithography, and a mold (nanoimprint mold) in the case of nanoimprint technology.
  • the nanoimprint technology described above is a transfer method in which a mold is directly pressed against a Si substrate or the like, and because of pattern transfer at the same magnification, the precision required for a semiconductor circuit pattern is required for producing a mold with a fine pattern formed. Necessary.
  • the nanoimprint mold described above is produced by forming a fine pattern on a glass substrate.
  • a conventional nanoimprint mold manufacturing procedure will be described with reference to FIG.
  • FIG. 2 (a) after applying the resist 20 on the glass substrate 11, the master mold 40 having a fine pattern formed on the surface is pressed against the resist 20, and as shown in FIG. 2 (b). Then, the fine pattern formed on the master mold 40 is transferred to the resist 20.
  • the resist 20 was thermally cured or photocured, when the master mold 40 was removed, a fine pattern of the resist 20 was formed on the glass substrate 11 as shown in FIGS. It becomes a state.
  • the fine pattern is formed on the glass substrate 11 as shown in FIG. Is formed.
  • the resist 20 is removed using an acid solution or an alkali solution, a nanoimprint mold 30 having a fine pattern formed on the glass substrate 11 shown in FIG. 2F is obtained.
  • a hard mask layer made of a material having a high etching selectivity with respect to a substrate is used instead of a resist, thereby reducing the thickness of the mask (hard mask layer) and obtaining sufficient resolution.
  • a hard mask layer for a glass substrate (quartz substrate) is preferably a layer made of chromium (Cr film).
  • Patent Document 3 discloses a method for producing a template that serves as a matrix for a pattern transfer method such as nanoimprint using a mask blank in which an ultrathin film and a resist film are laminated on a base layer.
  • the film thickness of the ultrathin film functions as a mask when the base layer is etched, and the base layer is etched using the ultrathin film on which the pattern is formed as a mask to form a three-dimensional pattern. It is stated that it is set to the minimum possible thickness. Specifically, it is set in the range of 5 nm to 40 nm.
  • the etching selectivity with the glass substrate is high. For example, assuming that a pattern having a depth of 100 nm is formed on a glass substrate, when the etching selectivity between the glass substrate and the hard mask layer is 5, the hard mask layer requires 20 nm.
  • the hard mask layer can be thinned to about 3.3 nm.
  • the etching selectivity of SiO 2 constituting the quartz substrate in Example 2 and the chromium nitride film formed as an extremely thin film is about 20: 1.
  • the hard mask layer can be thinned only to 5 nm.
  • the present invention has a characteristic that the etching selectivity with a glass substrate is sufficiently high when dry etching using a fluorine-based gas is performed, and that the film can be made thin. It aims at providing the nanoimprint mold blank which has a hard mask layer with high adhesiveness, the nanoimprint mold produced using this blank for nanoimprint mold, and those manufacturing methods.
  • the present inventors have made a glass substrate and a glass substrate containing Cr and N at a specific ratio (CrN film) when performing dry etching using a fluorine-based gas. It was found that a hard mask layer having a sufficiently high etching selectivity and excellent adhesion to a glass substrate can be obtained.
  • the present invention has been made on the basis of the above findings, and is a nanoimprint mold blank including a glass substrate and a hard mask layer formed on the glass substrate,
  • the hard mask layer contains chromium (Cr) and nitrogen (N), the Cr content is 45 to 95 at%, the N content is 5 to 55 at%, and the total content of Cr and N Is at least 95 at%, and the film thickness of the hard mask layer is 1.5 nm or more and less than 5 nm.
  • the hard mask layer further contains hydrogen (H),
  • H hydrogen
  • the total content of Cr and N in the hard mask layer is preferably 95 to 99.9 at%, and the content of H is preferably 0.1 to 5 at%.
  • the crystal state of the hard mask layer is amorphous.
  • the hard mask layer preferably has an etching selectivity represented by (glass substrate etching rate) / (hard mask layer etching rate) of 30 or more.
  • the glass substrate does not contain a dopant or is made of quartz glass containing a dopant.
  • the present invention provides a nanoimprint mold produced using the nanoimprint mold blank of the present invention.
  • the present invention is a method for producing a nanoimprint mold blank comprising a glass substrate and a hard mask layer formed on the glass substrate,
  • the hard mask layer contains chromium (Cr) and nitrogen (N), the Cr content is 45 to 95 at%, the N content is 5 to 55 at%, and the total content of Cr and N Is at least 95 at%,
  • a nanoimprint mold blank manufacturing method for forming the hard mask layer on the glass substrate by performing a sputtering method using a Cr target in an inert gas atmosphere containing argon (Ar) and nitrogen (N). provide.
  • this invention is a method of manufacturing a nanoimprint mold using the mask blank for nanoimprint molds of this invention, Comprising: The said hard mask layer of the said mask blank for nanoimprint molds is carried out by the dry etching process using chlorine gas. Etching to form a pattern on the hard mask layer, and using the pattern formed on the hard mask layer as a mask, etching the glass substrate by a dry etching process using a fluorine-based gas. A method for producing a nanoimprint mold is provided.
  • the present invention also provides a nanoimprint mold produced by the method for producing a nanoimprint mold of the present invention.
  • the blank for imprint mold of the present invention provides adhesion to a glass substrate by using a film containing Cr and N in a specific ratio as a hard mask layer when forming a fine pattern on the glass substrate. It is excellent and has a sufficiently high etching selectivity with the glass substrate when dry etching using a fluorine-based gas is performed. For this reason, it is expected that the hard mask layer can be thinned and a higher-resolution nanoimprint mold can be produced.
  • 1 (a) to 1 (f) are diagrams showing a procedure for producing a nanoimprint mold using the nanoimprint mold blank of the present invention.
  • 2 (a) to 2 (f) are diagrams illustrating a procedure for producing a nanoimprint mold using a conventional blank for nanoimprint mold.
  • the nanoimprint mold blank of the present invention includes a glass substrate and a hard mask layer formed on the glass substrate. Each configuration of the nanoimprint mold blank of the present invention will be described below.
  • the glass substrate is required to satisfy characteristics as a substrate for a nanoimprint mold.
  • the thermal expansion coefficient at 20 to 35 ° C. is preferably 0 ⁇ 6 ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ 5 ⁇ 10 ⁇ 7 / ° C.
  • a substrate for a nanoimprint mold is required to have a surface on which a fine pattern is formed having excellent smoothness and flatness. Specifically, it is preferable to have a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 500 nm or less. Further, the surface opposite to the surface on which the fine pattern is formed is preferably excellent in flatness, and preferably has a flatness of 3 ⁇ m or less.
  • the pattern is transferred to the resist coated on the Si substrate, for example, it is necessary to have a certain degree of transparency with respect to the wavelength because it is photocured using light having a wavelength of 300 to 400 nm. Specifically, it preferably has a transmittance of 60% or more for light with a wavelength of 300 to 400 nm.
  • quartz glass As a glass substrate satisfying the above characteristics, quartz glass is preferably exemplified.
  • quartz glass in addition to quartz glass containing no dopant, quartz glass containing a dopant such as TiO 2 can be used for the purpose of reducing the thermal expansion coefficient.
  • quartz glass containing TiO 2 as a dopant (hereinafter referred to as “SiO 2 —TiO 2 glass”) is preferable.
  • the concentration of TiO 2 in the SiO 2 —TiO 2 glass is preferably 3 to 10 wt%.
  • the size, thickness, and the like of the glass substrate are appropriately determined depending on the design value of the nanoimprint mold (nanoimprint mold blank).
  • SiO 2 —TiO 2 glass having an outer shape of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
  • the hard mask layer formed on the glass substrate is required to have a high etching selectivity with the glass substrate when dry etching using a fluorine-based gas is performed. Moreover, it is calculated
  • the hard mask layer is etched by a dry etching process using a chlorine-based gas, so the hard mask layer has a high etching rate when performing etching using a chlorine-based gas. Is required.
  • the hard mask layer surface is excellent in smoothness.
  • the hard mask layer in the present invention contains chromium (Cr) and nitrogen (N) in a specific ratio described below.
  • the hard mask layer in the present invention has a Cr content of 45 to 95 at%.
  • the Cr content is less than 45 at%, the film stress (compressive stress) of the hard mask layer increases and the adhesion to the glass substrate decreases. Moreover, since it becomes a film
  • the Cr content exceeds 95 at%, the film stress (tensile stress) of the hard mask layer increases, and the adhesion to the glass substrate decreases. Moreover, since it becomes a film
  • the content of Cr is preferably 50 to 95 at%, more preferably 50 to 90 at%, and further preferably 55 to 90 at%.
  • the hard mask layer in the present invention has a N content of 5 to 55 at%.
  • the N content is less than 5 at%, the film stress (tensile stress) of the hard mask layer increases, and the adhesion to the glass substrate decreases. Moreover, since it becomes a film
  • the N content exceeds 55 at%, the film stress (compressive stress) of the hard mask layer increases and the adhesion to the glass substrate decreases. Moreover, since it becomes a film
  • the N content is preferably 5 to 50 at%, more preferably 10 to 50 at%, and further preferably 10 to 45 at%.
  • the hard mask layer in the present invention has a total content of Cr and N of 95 at% or more.
  • the hard mask layer in the present invention may contain other elements that do not adversely affect the hard mask layer as long as the total content of Cr and N is 95 at% or more. Specific examples of such other elements include hydrogen (H) and oxygen (O).
  • H hydrogen
  • O oxygen
  • the hard mask layer in the present invention contains such other elements, for example, the total content of Cr and N in the hard mask layer is 95 to 99.9 at%, and other elements (such as H)
  • the content of can be 0.1 to 5 at%.
  • effects such as “can suppress crystallinity” and “can reduce surface roughness” can be obtained.
  • the etching selectivity with the glass substrate is high when dry etching using a fluorine-based gas is performed.
  • the etching selectivity obtained by the following formula is preferably 30 or more.
  • (Etching selectivity) (Glass substrate etching rate) / (Hard mask layer etching rate)
  • the etching selection ratio is preferably 35 or more, more preferably 40 or more, and further preferably 45 or more.
  • the film stress in the present invention has the above-described configuration, the film stress is low and the adhesiveness to the glass substrate is excellent.
  • the film stress of the hard mask layer varies depending on the film thickness of the hard mask layer, the absolute value of the film stress is preferably 200 MPa or less, more preferably 175 MPa or less, even more preferably in the case of a suitable range of film thickness to be described later. Is 150 MPa or less.
  • the hard mask layer in the present invention is preferable because it has the above-described configuration, and its crystal state is likely to be amorphous.
  • the phrase “crystalline state is amorphous” includes a microcrystalline structure other than an amorphous structure having no crystal structure.
  • the smoothness of the hard mask layer surface is improved.
  • the surface roughness (rms) of the hard mask layer is, for example, 0.5 nm or less.
  • the surface roughness of the hard mask layer can be measured using an atomic force microscope.
  • the surface roughness (rms) of the hard mask layer is more preferably 0.45 nm or less, and further preferably 0.4 nm or less.
  • crystal state of the hard mask layer is amorphous, that is, an amorphous structure or a microcrystalline structure can be confirmed by an X-ray diffraction (XRD) method. If the crystal state of the hard mask layer is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in a diffraction peak obtained by XRD measurement.
  • XRD X-ray diffraction
  • the hard mask layer is a film having a crystal structure
  • a nanoimprint mold is manufactured according to the procedure described later, only a specific crystal orientation is selectively etched when etching the hard mask layer using a chlorine-based gas. For some reason, the line edge roughness of the pattern formed on the hard mask layer is increased, and the dimensional accuracy of the pattern may be deteriorated. For this reason, it is preferable that the crystal state of the hard mask layer is amorphous.
  • the hard mask layer is formed by a dry process using a chlorine-based gas because a hard mask layer is etched using a chlorine-based gas with a resist having a fine pattern formed as a mask when a nanoimprint mold is manufactured by a procedure described later. It is preferable that the etching selectivity between the hard mask layer and the resist is high when performing the etching.
  • the etching selectivity determined by the above formula is preferably 0.10 or more, more preferably 0.11 or more, and further preferably 0.12 or more.
  • the film thickness of the hard mask layer is 1.5 nm or more and less than 5 nm. If the thickness of the hard mask layer is less than 1.5 nm, the glass substrate may not be etched by a desired amount depending on the etching selectivity with the glass substrate during dry etching using a fluorine-based gas. On the other hand, when the thickness of the hard mask layer is increased, the thickness of the resist applied on the hard mask layer is increased when the nanoimprint mold is manufactured by the procedure described later, and the dimensional accuracy of the pattern formed on the hard mask layer is increased. Gets worse. If the thickness of the hard mask layer is 5 nm or more, it cannot cope with the miniaturization of the pattern size to 20 nm or less. Since the hard mask layer of the present invention has a high etching selectivity expressed by (glass substrate etching rate) / (hard mask layer etching rate) (preferably 30 or more), such an ultra-thin film can be formed. is there.
  • the hard mask layer in the present invention can be formed by performing a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • Sputtering gas Mixed gas of Ar and N 2 (N 2 gas concentration 1 to 80 vol%, preferably 5 to 75 vol%, Ar gas concentration 20 to 99 vol%, preferably 25 to 95 vol%, gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 Pa to 40 ⁇ 10 ⁇ 1 Pa, more preferably 1.0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.)
  • Input power 30 to 3000 W, preferably 100 to 3000 W, more preferably 500 to 3000 W
  • Deposition rate 0.5 to 60 nm / min, preferably 1.0 to 45 nm / min, more preferably 1.5 to 30 nm / min
  • the concentration of the inert gas is set to the same concentration range as the Ar gas concentration described above. Further, when a plurality of types of inert gases are used, the total concentration of the inert gases is set to the same concentration range as the Ar gas concentration described above.
  • the sputtering gas contains hydrogen (H 2 ) and oxygen (O 2 ) at a concentration of 10 vol% or less, preferably 5 vol% or less, more preferably 3 vol% or less. You may contain.
  • the sputtering gas when forming a hard mask layer containing Cr, N and H, at least one inert gas of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe).
  • a sputtering method using a Cr target may be performed in an atmosphere containing nitrogen (N 2 ) and hydrogen (H 2 ).
  • the magnetron sputtering method specifically, for example, the following film formation conditions may be used.
  • Sputtering gas Ar, N 2 and H 2 mixed gas (H 2 gas concentration 1 to 10 vol%, preferably 1 to 3 vol%, N 2 gas concentration 4 to 85 vol%, preferably 5 to 75 vol%, Ar gas concentration 5 ⁇ 95 vol%, preferably 22 to 94 vol%, gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 Pa to 40 ⁇ 10 ⁇ 1 Pa, more preferably 1.0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.)
  • Input power 30 to 3000 W, preferably 100 to 3000 W, more preferably 500 to 3000 W
  • Deposition rate 0.5 to 60 nm / min, preferably 1.0 to 45 nm / min, more preferably 1.5 to 30 nm / min
  • FIG. 1 (a) to 1 (f) are diagrams showing a procedure for producing a nanoimprint mold using the nanoimprint mold blank of the present invention.
  • the resist 20 is apply
  • the resist may be either a negative resist or a positive resist.
  • the master mold 40 having a fine pattern formed on the surface is pressed against the resist 20, and the fine pattern formed on the master mold 40 is transferred to the resist 20 as shown in FIG.
  • the master 20 is removed after the resist 20 is thermally or photocured in this state, a fine pattern is formed on the hard mask layer 12 by the resist 20 as shown in FIG. .
  • the hard mask layer 12 is etched by a dry etching process using a chlorine-based gas, and then the resist 20 is removed with an acid solution or an alkali solution. As shown in (d), a fine pattern is formed on the hard mask layer 12.
  • the chlorine-based gas used here include Cl 2 , BCl 3 , HCl, a mixed gas thereof, or a gas containing a rare gas (He, Ar, Xe, etc.) as an additive gas.
  • the glass substrate 11 is etched by a dry etching process using a fluorine-based gas using the hard mask layer 12 on which the fine pattern is formed as a mask, as shown in FIG. A fine pattern is formed.
  • a fluorine-based gas used here include C x F y (for example, CF 4 , C 2 F 6 , C 3 F 8 ), CHF 3 , a mixed gas thereof, or a rare gas (He, Ar) as an additive gas thereto. , Xe, etc.).
  • a nanoimprint mold blank 10 shown in FIG. 1A that is, a nanoimprint mold blank in which a hard mask layer 12 was formed on a glass substrate 11 was produced.
  • a SiO 2 —TiO 2 type glass substrate (outer shape 6 inch (152.4 mm) square, thickness 6.3 mm) was used.
  • Formation of Hard Mask Layer 12 (CrN Film) A CrN film was formed as the hard mask layer 12 on the surface of the glass substrate 11 by using a magnetron sputtering method.
  • composition of the hard mask layer 12 formed by the above procedure was measured using an X-ray electron spectrometer (manufactured by PERKIN ELEMER-PHI).
  • the film stress of the hard mask layer 12 formed by the above procedure was measured by the following procedure.
  • the radius of curvature of the nanoimprint mold blank 10 is calculated using a laser interferometer, and the film stress of the hard mask layer 12 is calculated using the Young's modulus and Poisson's ratio of the glass substrate 11 and the film thickness of the hard mask layer 12. Calculated. As a result, it was confirmed that a compressive stress of ⁇ 98 MPa was generated in the hard mask layer 12.
  • Crystal State of Hard Mask Layer 12 (CrN Film) The crystal state of the hard mask layer 12 was confirmed with an X-ray diffractometer (manufactured by RIGAKU). Since no sharp peak was observed in the obtained diffraction peak, it was confirmed that the crystal state of the hard mask layer 12 was an amorphous structure or a microcrystalline structure.
  • the surface roughness of the hard mask layer 12 was measured by a dynamic force mode using an atomic force microscope (SII, SPI-3800). The surface roughness measurement area was 1 ⁇ m ⁇ 1 ⁇ m, and SI-DF40 (manufactured by SII) was used as the cantilever. The surface roughness (rms) of the hard mask layer 12 was 0.4 nm.
  • Adhesiveness of hard mask layer 12 (CrN film) A test piece with a grid pattern applied to the surface of the hard mask layer 12 formed by the above procedure according to the grid pattern test method described in JIS K5400 (1990) was made. Next, after affixing an adhesive tape (manufactured by Nichiban Co., Ltd., cellophane tape) on the grid of the test piece, it is quickly peeled off by pulling in the direction of 90 °, and peeling occurs at 100 squares. Whether it was tested. As a result, no peeling of the squares occurred.
  • an adhesive tape manufactured by Nichiban Co., Ltd., cellophane tape
  • Etching Characteristics of Hard Mask Layer 12 (CrN Film) Etching characteristics were evaluated by the following method instead of using the imprint mold blank 10 produced by the above procedure.
  • an imprint mold blank 10 in which a hard mask layer 12 (CrN film) was formed to a thickness of 100 nm on a glass substrate 11 under the same conditions as described above was prepared, and an ICP using a chlorine-based gas or a fluorine-based gas.
  • Etching was performed by a -RIE (inductively coupled plasma reactive ion etching) process. Etching conditions are shown below.
  • Chlorine-based gas etching conditions Etching conditions: Cl 2 + He (Cl 2 : 4 sccm, He: 16 sccm) Etching vacuum: 0.3 Pa
  • the etching rate of the hard mask layer 12 in a dry etching process using a chlorine-based gas used when etching the hard mask layer 12 was examined.
  • the etching rate is 15.6 nm / min, and it is confirmed that the etching can be sufficiently performed by a dry etching process using a chlorine-based gas. did.
  • the etching rate of the hard mask layer 12 in a dry etching process using a fluorine-based gas used when etching the glass substrate was examined.
  • the etching rate was 0.6 nm / min.
  • the etching rate was 35 nm / min.
  • the etching selectivity of the SiO 2 —TiO 2 -based glass substrate with respect to the hard mask layer 12 (CrN film) was calculated by the following equation.
  • (Etching selectivity) (Etching rate of SiO 2 —TiO 2 glass) / (etching rate of CrN film)
  • the etching selectivity calculated by the above equation was 58, and it was confirmed that a sufficient etching selectivity was secured.
  • the required film thickness of the hard mask layer 12 (CrN film) calculated from the above etching selectivity is 1.7 nm. It is clear that the film functions sufficiently as a hard mask layer at a film thickness thinner than that of the conventional resist process.
  • Example 2 is the same as Example 1 except that a CrNH film is formed as the hard mask layer 12 by the following procedure.
  • Formation of Hard Mask Layer 12 (CrNH) A CrNH film was formed as the hard mask layer 12 on the surface of the substrate 11 by using a magnetron sputtering method. Specifically, after the inside of the film forming chamber is evacuated to 1 ⁇ 10 ⁇ 4 Pa or less, magnetron sputtering is performed using a Cr target in a mixed gas atmosphere of Ar, N 2, and H 2 to a thickness of 4 nm. The hard mask layer 12 (CrNH film) was formed.
  • the conditions for forming the hard mask layer 12 (CrNH film) are as follows.
  • composition of the hard mask layer 12 was measured using an X-ray electron spectrometer in the same procedure as in Example 1.
  • Crystal State of Hard Mask Layer 12 (CrNH Film) The crystal state of the hard mask layer 12 was confirmed by the same procedure as in Example 1. Since no sharp peak was observed in the obtained diffraction peak, it was confirmed that the crystal state of the hard mask layer 12 was an amorphous structure or a microcrystalline structure.
  • Adhesion of the hard mask layer 12 (CrNH film) As a result of evaluating the adhesion of the hard mask layer 12 by the same method as in Example 1, it was confirmed that there was no peeling of the cells and there was sufficient adhesion. It was.
  • Etching characteristics of the hard mask layer 12 in a dry etching process using a fluorine-based gas were evaluated by the same method as in Example 1.
  • the etching rate of the hard mask layer 12 (CrNH film) was 0.7 nm / min.
  • the etching selectivity is 50, and it is confirmed that a sufficient etching selectivity can be secured. did it.
  • the required film thickness of the hard mask layer 12 (CrNH film) calculated from the above etching selectivity is 2.0 nm. It is clear that the film functions sufficiently as a hard mask layer at a film thickness thinner than that of the conventional resist process.
  • Comparative Example 1 Comparative Example 1 was performed in the same procedure as Example 1 except that a resist was applied on the glass substrate 11 instead of the hard mask layer 12. In Comparative Example 1, only the etching characteristics are shown.
  • a chemically amplified positive resist for electron beam drawing was applied as a resist on a SiO 2 —TiO 2 glass substrate by a spin coating method to a thickness of 300 nm. Post bake was performed.
  • the etching rate in the dry etching process using a fluorine-based gas was examined for the formed SiO 2 —TiO 2 -based substrate with a resist in the same manner as in Example 1. The etching rate of the resist was 77 nm / min.
  • the etching rate of the SiO 2 —TiO 2 glass substrate without resist under the same conditions is 35 nm / min, so the etching selectivity is 0.5, and a sufficient etching selectivity can be secured. could not.
  • the required film thickness of the resist calculated from the above etching selectivity is 200 nm.
  • Example 2 This comparative example is the same as Example 1 except that a Cr film is formed as the hard mask layer 12 by the following procedure.
  • Formation of Hard Mask Layer 12 (Cr Film) A Cr film was formed as the hard mask layer 12 on the surface of the substrate 11 by using a magnetron sputtering method. Specifically, after the inside of the film forming chamber is evacuated to 1 ⁇ 10 ⁇ 4 Pa or less, magnetron sputtering is performed in an Ar gas atmosphere using a Cr target to form a hard mask layer 12 (Cr film having a thickness of 5 nm). ) Was formed.
  • the conditions for forming the hard mask layer 12 (Cr film) are as follows.
  • composition of the hard mask layer 12 was measured using an X-ray electron spectrometer in the same procedure as in Example 1.
  • Adhesiveness of hard mask layer 12 (Cr film) As a result of evaluating the adhesiveness of hard mask layer 12 by the same method as in Example 1, it was found that the peeling of the squares occurred and the adhesiveness was insufficient. became. That is, it was confirmed that the Cr film could not perform a sufficient function as a hard mask layer of the imprint mold blank.
  • This comparative example is the same as Example 1 except that a CrN film having an N content of less than 5% is formed as the hard mask layer 12 by the following procedure.
  • Formation of Hard Mask Layer 12 (CrN) A CrN film was formed as the hard mask layer 2 on the surface of the substrate 1 by using a magnetron sputtering method. Specifically, after the inside of the film forming chamber is evacuated to 1 ⁇ 10 ⁇ 4 Pa or less, magnetron sputtering is performed in a mixed gas atmosphere of Ar and N 2 using a Cr target to form a hard mask having a thickness of 5 nm. Layer 12 (CrN film) was formed. The conditions for forming the hard mask layer 12 (CrN film) are as follows. Target: Cr target sputtering gas: Ar and N 2 mixed gas (Ar: 90 vol%, N 2 : 10 vol%, gas pressure: 0.1 Pa) Input power: 1500W Deposition rate: 12 nm / min Film thickness: 5nm
  • composition of the hard mask layer 12 was measured using an X-ray electron spectrometer in the same procedure as in Example 1.
  • the stress of the hard mask layer 12 was measured by the same method as in Example 1. It was confirmed that a very large tensile stress of +960 MPa was generated in the hard mask layer 12.
  • Adhesiveness of the hard mask layer 12 (CrN film) As a result of evaluating the adhesiveness of the hard mask layer 12 by the same method as in Example 1, it is clear that peeling of the squares occurred and the adhesiveness was insufficient. became. That is, it was confirmed that a sufficient function could not be achieved as a hard mask layer of blanks for imprint molds.
  • This comparative example is the same as Example 1 except that a CrN film having an N content of more than 55% is formed as the hard mask layer 2 by the following procedure.
  • Formation of Hard Mask Layer 12 (CrN Film) A CrN film was formed as the hard mask layer 12 on the surface of the substrate 11 by using a magnetron sputtering method. Specifically, after the inside of the film forming chamber is evacuated to 1 ⁇ 10 ⁇ 4 Pa or less, magnetron sputtering is performed in a mixed gas atmosphere of Ar and N 2 using a Cr target to form a hard mask having a thickness of 5 nm. Layer 12 (CrN film) was formed. The conditions for forming the hard mask layer 12 (CrN film) are as follows. Target: Cr target Sputtering gas: Mixed gas of Ar and N 2 (Ar: 30 vol%, N 2 : 70 vol%, gas pressure: 0.1 Pa) Input power: 1500W Deposition rate: 7.8 nm / min Film thickness: 5nm
  • composition of the hard mask layer 12 was measured using an X-ray electron spectrometer in the same procedure as in Example 1.
  • the stress of the hard mask layer 12 was measured by the same method as in Example 1. It was confirmed that a very large compressive stress of ⁇ 2000 MPa was generated in the hard mask layer 12.
  • Adhesiveness of the hard mask layer 12 (CrN film) As a result of evaluating the adhesiveness of the hard mask layer 12 by the same method as in Example 1, it is clear that peeling of the squares occurred and the adhesiveness was insufficient. became. That is, it was confirmed that a sufficient function could not be achieved as a hard mask layer of blanks for imprint molds.
  • Etching characteristics of hard mask layer 12 The etching characteristics of hard mask layer 12 in a dry etching process using a fluorine-based gas were evaluated by the same method as in Example 1.
  • the etching rate of the hard mask layer 12 (CrN film) was 2.0 nm / min.
  • the etching selectivity is 18, and the etching selectivity is less than 30, so that the thin film having a sufficient hard mask is obtained. I cannot expect it.
  • the required film thickness of the hard mask layer 12 (CrN film) calculated from the above etching selectivity is 5. 6 nm.
  • Nanoimprint mold blank 11 Glass substrate 12: Hard mask layer 20: Resist 30: Nanoimprint mold 40: Master mold

Abstract

 本発明は、ガラス基板と、該ガラス基板上に形成したハードマスク層と、を含むナノインプリントモールド用ブランクであって、前記ハードマスク層が、クロム(Cr)及び窒素(N)を含有し、Crの含有率が45~95at%であり、Nの含有率が5~55at%であり、CrおよびNの合計含有率が95at%以上であり、該ハードマスク層の膜厚が1.5nm以上5nm未満である、ナノインプリントモールド用ブランクに関する。

Description

ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法
 本発明は、半導体製造等に使用されるナノインプリントモールドの製造に用いる、ナノインプリントモールド用ブランク、該ナノインプリントモールド用ブランクを用いて作製されるナノインプリントモールド、およびそれらの製造方法に関する。
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いてもパターンの解像限界は45nm程度が限界と予想される。半導体デバイスの微細化が加速している近年、パターンの解像限界が45nm以降の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィの開発も行われている。
 一方、Si基板等に微細なパターンを転写する方法として、近年、ナノインプリント技術の開発が行われている。ナノインプリント技術は、モールドと呼ばれる微細パターンが形成されたガラス基板を、レジストを塗布したSi基板等に直接密着させ、微細パターンを転写する技術である(特許文献1参照)。このナノインプリント技術は、前記のArFの液浸法やEUVリソグラフィと比較して、微細パターンの転写に用いる部材の作製や、露光装置にかかる費用が安価なため、次世代のリソグラフィ技術として有望視されている。なお、微細パターンの転写に用いる部材は、ArFの液浸法の場合は透過型マスク、EUVリソグラフィの場合は反射型マスク、ナノインプリント技術の場合はモールド(ナノインプリントモールド)という。
 しかしながら、上記したナノインプリント技術は、モールドをSi基板等に直接押しつける転写方式であり、等倍でのパターン転写のため、微細パターンが形成されたモールドの作製には半導体回路パターンに要求される精度が必要となる。
 上記したナノインプリントモールドは、ガラス基板上に微細パターンを形成することにより作製される。従来のナノインプリントモールド作製手順を、図2を参照して説明する。
 図2(a)に示すように、ガラス基板11上にレジスト20を塗布した後、表面に微細パターンが形成されたマスターモールド40をレジスト20に押圧して、図2(b)に示すように、マスターモールド40に形成された微細パターンをレジスト20に転写させる。この状態でレジスト20を熱硬化または光硬化させた後、マスターモールド40を取り外すと、図2(c)、(d)に示すように、ガラス基板11上にレジスト20による微細パターンが形成された状態となる。次に、微細パターンが形成されたレジスト20をマスクとして、フッ素系ガスを用いたドライエッチングプロセスにより、ガラス基板11をエッチングすると、図2(e)に示すように、ガラス基板11上に微細パターンが形成される。次に、酸溶液またはアルカリ溶液を用いてレジスト20を除去すると、図2(f)に示すガラス基板11上に微細パターンが形成されたナノインプリントモールド30が得られる。
 前述したように、ナノインプリントモールドの作製には半導体回路パターンに要求される精度が必要であるが、図2(a)~(f)に示した、フッ素系ガスを用いたドライエッチングプロセスにおけるマスクとして、レジストを用いたプロセスの場合、フッ素系ガスに対するレジストのエッチング耐性が低いため、フッ素系ガスを用いてドライエッチングを実施した際、下記式で表わされるレジストとガラス基板とのエッチング選択比が十分でない。そこで、レジストの膜厚を厚く(約200~300nm)する必要があるため、十分な解像度を得ることができなかった(特許文献2参照)。
(エッチング選択比)
 =(ガラス基板のエッチング速度)/(レジストのエッチング速度)
 特許文献2では、基板に対するエッチング選択比が高い材料からなるハードマスク層を、レジストの代りに用いることで、マスク(ハードマスク層)の厚さを小さくして、十分な解像度を得ている。特許文献2では、ガラス基板(石英基板)に対するハードマスク層としては、クロムからなる層(Cr膜)が好ましいとしている。
 また、特許文献3には、基層上に極薄膜およびレジスト膜が積層したマスクブランクを用いるナノインプリント等のパターン転写法の母型となるテンプレートの製造方法が開示されている。特許文献3では、該極薄膜の膜厚が、基層をエッチングする際にマスクとして機能し、かつ、パターンが形成された該極薄膜をマスクとして該基層をエッチングし三次元パターンを形成することが可能な最小限の厚さに設定されていると記載されている。具体的には、5nm~40nmの範囲に設定されている。
日本国特表2007-521645号 日本国特開2010-219456号 日本国特許第4619043号明細書
 しかしながら、特許文献2に記載のようにハードマスク層としてCr膜を形成した場合、膜の引張応力が大きいため、ガラス基板との密着性が悪いことが明らかとなった。ハードマスク層とガラス基板との密着性が悪いと、ナノインプリントモールドの作製時に、ガラス基板からハードマスク層が剥離するおそれがあるため、フッ素系ガスを用いたドライエッチングプロセスにおけるマスクとしての機能を発揮しないおそれがある。
 また、膜の引張応力が大きいと、ハードマスク層にピンホールが生じるおそれがある。ハードマスク層にピンホールが生じると、製造されたナノインプリントモールド用ブランクの欠点となるので問題となる。
 さらに、ハードマスク層を用いた場合であっても、今後パターンが微細化するにつれて、ハードマスク層をより薄くすることが必要である。たとえば、パターンサイズが20nm以下の場合、ハードマスク層の厚さを5nmよりも小さくする必要があると考えられ、特許文献3に記載のナノインプリント用テンプレートでは対応できない。
 ハードマスク層を薄くした場合に、ハードマスクの微細パターンで所定の寸法精度を得るには、ガラス基板とのエッチング選択比が高いことが必要である。例えば、ガラス基板に100nmの深さのパターンを形成することを想定した場合、ガラス基板とハードマスク層とのエッチング選択比が5の場合では、ハードマスク層としては20nm必要であるのに対して、ガラス基板とハードマスク層とのエッチング選択比が30の場合、ハードマスク層を3.3nm程度まで薄膜化可能となる。特許文献3の場合、実施例2で石英基板を構成するSiO2と、極薄膜として形成した窒化クロム膜と、のドライエッチング選択比が約20:1とされているこのエッチング選択比だと、ハードマスク層を5nmまでしか薄膜化できない。
 本発明は、上記した従来技術の問題点を解決するため、フッ素系ガスを用いたドライエッチング実施時にガラス基板とのエッチング選択比が十分高く薄膜化可能な特性を有し、かつガラス基板との密着性が高い、ハードマスク層を有するナノインプリントモールド用ブランク、該ナノインプリントモールド用ブランクを用いて作製されるナノインプリントモールド、およびそれらの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、CrおよびNを特定の割合で含有する膜(CrN膜)とすることにより、フッ素系ガスを用いたドライエッチング実施時にガラス基板とのエッチング選択比が十分高く、かつ、ガラス基板との密着性に優れるハードマスク層が得られることを見出した。
 本発明は、上記した知見に基づいてなされたものであり、ガラス基板と、該ガラス基板上に形成したハードマスク層と、を含むナノインプリントモールド用ブランクであって、
 前記ハードマスク層が、クロム(Cr)及び窒素(N)を含有し、Crの含有率が45~95at%であり、Nの含有率が5~55at%であり、CrおよびNの合計含有率が95at%以上であり、該ハードマスク層の膜厚が1.5nm以上5nm未満である、ナノインプリントモールド用ブランクを提供する。
 本発明のナノインプリントモールド用ブランクにおいて、前記ハードマスク層が、さらに水素(H)を含有し、
 前記ハードマスク層における、CrおよびNの合計含有率が95~99.9at%であり、Hの含有率が0.1~5at%であることが好ましい。
 本発明のナノインプリントモールド用ブランクにおいて、前記ハードマスク層の結晶状態がアモルファスであることが好ましい。
 本発明のナノインプリントモールド用ブランクは、前記ハードマスク層において、(ガラス基板のエッチング速度)/(ハードマスク層のエッチング速度)で表されるエッチング選択比が30以上であることが好ましい。
 本発明のナノインプリントモールド用ブランクにおいて、前記ガラス基板が、ドーパントを含まない、または、ドーパントを含む、石英ガラス製であることが好ましい。
 また、本発明は、本発明のナノインプリントモールド用ブランクを用いて作製されるナノインプリントモールドを提供する。
 また、本発明は、ガラス基板と、該ガラス基板上に形成したハードマスク層と、を含むナノインプリントモールド用ブランクを製造する方法であって、
 前記ハードマスク層が、クロム(Cr)及び窒素(N)を含有し、Crの含有率が45~95at%であり、Nの含有率が5~55at%であり、CrおよびNの合計含有率が95at%以上であり、
 アルゴン(Ar)及び窒素(N)を含む不活性ガス雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより、前記ガラス基板に、前記ハードマスク層を形成する、ナノインプリントモールド用ブランクの製造方法を提供する。
 また、本発明は、本発明のナノインプリントモールド用マスクブランクを用いてナノインプリントモールドを製造する方法であって、前記ナノインプリントモールド用マスクブランクの前記ハードマスク層を、塩素系ガスを用いたドライエッチング処理によりエッチング加工して前記ハードマスク層上にパターンを形成する工程と、該ハードマスク層上に形成したパターンをマスクとして、前記ガラス基板を、フッ素系ガスを用いたドライエッチング処理によりエッチング加工する工程を含む、ナノインプリントモールドの製造方法を提供する。
 また、本発明は、本発明のナノインプリントモールドの製造方法で製造されるナノインプリントモールドを提供する。
 本発明のインプリントモールド用ブランクは、ガラス基板上に微細なパターンを形成する際のハードマスク層として、CrおよびNを特定の割合で含有する膜を用いることにより、ガラス基板との密着性に優れ、かつ、フッ素系ガスを用いたドライエッチング実施時にガラス基板とのエッチング選択比が十分高い。このため、ハードマスク層を薄膜化することができ、より高解像度のナノインプリントモールドを作製することが可能であると期待される。
図1(a)~(f)は、本発明のナノインプリントモールド用ブランクを用いて、ナノインプリントモールドを作製する手順を示した図である。 図2(a)~(f)は、従来のナノインプリントモールド用ブランクを用いて、ナノインプリントモールドを作製する手順を示した図である。
 以下、本発明のナノインプリントモールド用ブランクについて説明する。
 本発明のナノインプリントモールド用ブランクは、ガラス基板と、該ガラス基板上に形成されたハードマスク層と、を含む。本発明のナノインプリントモールド用ブランクの個々の構成について、以下に説明する。
<ガラス基板>
 ガラス基板は、ナノインプリントモールド用の基板としての特性を満たすことが要求される。
 微細パターン転写時に、温度変化によってナノインプリントモールドが形状変化すると、転写される微細パターンの位置精度が低下する。そのため、ナノインプリントモールド用のガラス基板は、微細パターン転写時に、温度変化による形状変化が少ないことが求められる。これを達成するため、ガラス基板は、微細パターン転写時の温度域において、熱膨張係数が低いことが求められる。
 具体的には、20~35℃における熱膨張係数が0±6×10-7/℃が好ましく、より好ましくは0±5×10-7/℃である。
 ナノインプリントモールド用の基板は、微細パターンを形成する面が、平滑性および平坦度に優れることが求められる。具体的には、表面粗さ(rms)0.15nm以下の平滑な表面と、500nm以下の平坦度を有していることが好ましい。また、微細パターンを形成する面と反対の面も平坦度に優れることが好ましく、3μm以下の平坦度を有することが好ましい。
 また、ナノインプリントモールド作製時に実施される洗浄等に用いる洗浄液への耐性に優れることが求められる。さらに、Si基板上に塗布したレジストにパターンを転写する際、例えば波長300~400nmの光を用いて光硬化させるため、前記波長に対してある程度の透過性を有する必要がある。具体的には、波長300~400nmの光に対して60%以上の透過率を有することが好ましい。
 上記の特性を満たすガラス基板としては、石英ガラスが好ましく例示される。石英ガラスとしては、ドーパントを含まない石英ガラスに加えて、熱膨張係数を下げる目的で、TiO2等のドーパントを含有させた石英ガラスを用いることができる。
 なかでも、ドーパントとしてTiO2を含有する石英ガラス(以下、「SiO2-TiO2系ガラス」という。)が好ましい。SiO2-TiO2系ガラスにおけるTiO2の濃度は3~10wt%が好ましい。
 ガラス基板の大きさや厚さなどはナノインプリントモールド(ナノインプリントモールド用ブランク)の設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。
<ハードマスク層>
 ガラス基板上に形成するハードマスク層は、フッ素系ガスを用いたドライエッチング実施時にガラス基板とのエッチング選択比が高いことが求められる。
 また、ハードマスク層は、ガラス基板との密着性に優れることが求められる。
 また、後述する手順でナノインプリントモールドを作製する際、塩素系ガスを用いたドライエッチングプロセスにより、ハードマスク層をエッチングするため、ハードマスク層は、塩素系ガスを用いたエッチング実施時にエッチング速度が高いことが求められる。
 また、後述する手順でナノインプリントモールドを作製する際、ハードマスク層に形成されるパターンの寸法精度を向上させるため、ハードマスク層表面が平滑性に優れることが好ましい。
 上記の要求を満たすため、本発明におけるハードマスク層は、クロム(Cr)及び窒素(N)を以下に述べる特定の割合で含有する。
 本発明におけるハードマスク層は、Crの含有率が45~95at%である。
 Crの含有率が45at%未満だと、ハードマスク層の膜応力(圧縮応力)が大きくなり、ガラス基板に対する密着性が低下する。また、結晶構造の膜となるため、ハードマスク層表面の平滑性が低下する。
 一方、Crの含有率が95at%超だと、ハードマスク層の膜応力(引張応力)が大きくなり、ガラス基板に対する密着性が低下する。また、結晶構造の膜となるため、ハードマスク層表面の平滑性が低下する。
 Crの含有率が、50~95at%が好ましく、50~90at%がより好ましく、55~90at%がさらに好ましい。
 本発明におけるハードマスク層は、Nの含有率が5~55at%である。
 Nの含有率が5at%未満だと、ハードマスク層の膜応力(引張応力)が大きくなり、ガラス基板に対する密着性が低下する。また、結晶構造の膜となるため、ハードマスク層表面の平滑性が低下する。
 一方、Nの含有率が55at%超だと、ハードマスク層の膜応力(圧縮応力)が大きくなり、ガラス基板に対する密着性が低下する。また、結晶構造の膜となるため、ハードマスク層表面の平滑性が低下する。
 Nの含有率が、5~50at%が好ましく、10~50at%がより好ましく、10~45at%がさらに好ましい。
 本発明におけるハードマスク層は、CrおよびNの合計含有率が95at%以上である。CrおよびNの合計含有率が95at%未満の場合、ガラス基板との十分なエッチング選択比が確保できない、膜が結晶化するなどの問題が生じる。
 本発明におけるハードマスク層は、CrおよびNの合計含有率が95at%以上となる限り、ハードマスク層に悪影響を及ぼさない他の元素を含有してもよい。このような他の元素の具体例としては、水素(H)、酸素(O)が例示される。なお、本発明におけるハードマスク層がこのような他の元素を含有する場合、例えば、前記ハードマスク層における、CrおよびNの合計含有率を95~99.9at%、他の元素(Hなど)の含有率を0.1~5at%とすることができる。
 例えば、水素を含有する場合、「結晶性を抑制できる」、「表面粗さを低減できる」といった効果が得られる。
 本発明におけるハードマスク層は、上記の構成であることで、フッ素系ガスを用いたドライエッチング実施時にガラス基板とのエッチング選択比が高い。
 具体的には、下記式により求まるエッチング選択比が30以上であることが好ましい。
(エッチング選択比)
 =(ガラス基板のエッチング速度)/(ハードマスク層のエッチング速度)
 エッチング選択比は、35以上が好ましく、40以上がより好ましく、45以上がさらに好ましい。
 また、本発明におけるハードマスク層は、上記の構成であることで、膜応力が低くなり、ガラス基板に対する密着性に優れている。
 ハードマスク層の膜応力は、該ハードマスク層の膜厚によっても異なるが、後述する膜厚の好適範囲の場合、膜応力の絶対値が、好ましくは200MPa以下、より好ましくは175MPa以下、さらに好ましくは150MPa以下、となる。
 本発明におけるハードマスク層は、上記の構成であることで、その結晶状態がアモルファスとなりやすく、好ましい。なお、本明細書において、「結晶状態がアモルファスである」と言った場合、全く結晶構造を持たないアモルファス構造となっているもの以外に、微結晶構造のものを含む。
 ハードマスク層がアモルファス構造の膜または微結晶構造の膜であることにより、ハードマスク層表面の平滑性が向上する。具体的には、ハードマスク層の表面粗さ(rms)が、例えば0.5nm以下となる。
 ここで、ハードマスク層の表面粗さは原子間力顕微鏡(Atomic Force Microscope)を用いて測定できる。
 ハードマスク層の表面粗さが大きいと、後述する手順でナノインプリントモールドを作製する際、塩素系ガスを用いたハードマスク層のドライエッチング時にラインエッジラフネスの影響によって、ハードマスク層に形成されるパターンの寸法精度が悪化するおそれがある。ハードマスク層に形成されるパターンの寸法精度が悪化すると、パターンが形成されたハードマスク層をマスクとして、フッ素系ガスを用いたドライエッチングプロセスを実施した際に、ガラス基板に形成される微細パターンの寸法精度が悪化するので問題となる。形成するパターンが微細になるに従いラインエッジラフネスの影響が顕著になるため、ハードマスク層表面が平滑であることが好ましい。
 ハードマスク層の表面粗さ(rms)が0.5nm以下であれば、ハードマスク層の表面が十分平滑であるため、ラインエッジラフネスの影響によって、ハードマスク層に形成されるパターンの寸法精度が悪化するおそれがない。ハードマスク層の表面粗さ(rms)は0.45nm以下であることがより好ましく、0.4nm以下であることがさらに好ましい。
 なお、ハードマスク層の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認できる。ハードマスク層の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 ハードマスク層が結晶構造を有する膜であると、後述する手順でナノインプリントモールドを作製する際、塩素系ガスを用いたハードマスク層のエッチング時に、特定の結晶方位のみ選択的にエッチングが進むなどの理由によっても、ハードマスク層に形成されるパターンのラインエッジラフネスが大きくなり、パターンの寸法精度が悪くなるおそれがある。
 このような理由からも、ハードマスク層の結晶状態がアモルファスであることが好ましい。
 また、ハードマスク層は、後述する手順でナノインプリントモールドを作製する際、微細パターンが形成されたレジストをマスクとして、塩素系ガスを用いてハードマスク層をエッチングするため、塩素系ガスを用いたドライエッチング実施時にハードマスク層とレジストとのエッチング選択比が高いことが好ましい。
 ここで、両者のエッチング選択比は、下記の式により表わされる。
(エッチング選択比)
 =(ハードマスク層のエッチング速度)/(レジストのエッチング速度)
 具体的には、上記式により求まるエッチング選択比が、0.10以上が好ましく、0.11以上がより好ましく、0.12以上がさらに好ましい。
 ハードマスク層の膜厚は、1.5nm以上5nm未満である。ハードマスク層の膜厚が1.5nm未満だと、フッ素系ガスを用いたドライエッチング実施時のガラス基板とのエッチング選択比によっては、ガラス基板を所望量エッチングできないおそれがある。
 一方、ハードマスク層の膜厚が大きくなると、後述する手順でナノインプリントモールドを作製する際に、ハードマスク層上に塗布するレジストの厚さが厚くなり、ハードマスク層に形成されるパターンの寸法精度が悪化する。ハードマスク層の厚さが5nm以上だと、20nm以下へのパターンサイズの微細化には対応できない。
 本発明のハードマスク層は、(ガラス基板のエッチング速度)/(ハードマスク層のエッチング速度)で表されるエッチング選択比が高い(好ましくは30以上)ため、このような超薄膜化が可能である。
 本発明におけるハードマスク層は、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法を実施することにより形成できる。スパッタリング法によって、CrとNを含有するハードマスク層を形成する場合、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつの不活性ガスと、窒素(N2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を実施すればよい。マグネトロンスパッタリング法を用いる場合、具体的には、例えば以下の成膜条件で実施すればよい。
スパッタガス:ArとN2との混合ガス(N2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度20~99vol%、好ましくは25~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
投入電力:30~3000W、好ましくは100~3000W、より好ましくは500~3000W
成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にする。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にする。
 また、スパッタガスは、不活性ガスと窒素(N)に加えて、水素(H2)、酸素(O2)を10vol%以下、好ましくは5vol%以下、より好ましくは3vol%以下の濃度で含有してもよい。
 例えば、Cr、NおよびHを含有するハードマスク層を形成する場合、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつの不活性ガス、窒素(N2)、および、水素(H2)を含む雰囲気中でCrターゲットを用いたスパッタリング法を実施すればよい。マグネトロンスパッタリング法を用いる場合、具体的には、例えば以下の成膜条件で実施すればよい。
スパッタガス:ArとN2とH2の混合ガス(H2ガス濃度1~10vol%、好ましくは1~3vol%、N2ガス濃度4~85vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは22~94vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
投入電力:30~3000W、好ましくは100~3000W、より好ましくは500~3000W
成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
 次に、本発明のナノインプリントモールド用ブランクを用いて、ナノインプリントモールドを作製する手順を説明する。
 図1(a)~(f)は、本発明のナノインプリントモールド用ブランクを用いて、ナノインプリントモールドを作製する手順を示した図である。
 図1(a)に示すように、ガラス基板11上にハードマスク層12が形成された、本発明のナノインプリントモールド用ブランク10のハードマスク層12上にレジスト20を塗布する。ここで、レジストとしては、ネガ型レジスト、ポジ型レジストのいずれであってもよい。
 次に、表面に微細パターンが形成されたマスターモールド40をレジスト20に押圧して、図1(b)に示すように、マスターモールド40に形成された微細パターンをレジスト20に転写させる。この状態でレジスト20を熱硬化または光硬化させた後、マスターモールド40を取り外すと、図1(c)に示すように、ハードマスク層12上にレジスト20による微細パターンが形成された状態となる。
 次に、微細パターンが形成されたレジスト20をマスクとして、塩素系ガスを用いたドライエッチングプロセスにより、ハードマスク層12をエッチングし、その後、酸溶液またはアルカリ溶液によりレジスト20を除去すると、図1(d)に示すように、ハードマスク層12上に微細パターンが形成される。ここで用いられる塩素系ガスとしては、Cl2、BCl3、HCl、これらの混合ガス又はこれらに添加ガスとして希ガス(He、Ar、Xeなど)を含むもの等が挙げられる。
 次に、微細パターンが形成されたハードマスク層12をマスクとして、フッ素系ガスを用いたドライエッチングプロセスにより、ガラス基板11をエッチングすると、図1(e)に示すように、ガラス基板11上に微細パターンが形成される。ここで用いられるフッ素系ガスとしては、Cxy(例えば、CF4、C26、C38)、CHF3、これらの混合ガス又はこれらに添加ガスとして希ガス(He、Ar、Xeなど)を含むもの等が挙げられる。
 次に、塩素系ガスを用いたドライエッチングプロセスにより、ハードマスク層12を除去すると、図1(f)に示すような、ガラス基板11上に微細パターンが形成されたナノインプリントモールド30が得られる。
 以下、実施例を用いて本発明をさらに説明するが、本発明はこれらに限定して解釈されるものではない。
(実施例1)
 本実施例では、図1(a)に示すナノインプリントモールド用ブランク10、すなわち、ガラス基板11上にハードマスク層12が形成されたナノインプリントモールド用ブランクを作製した。
 ガラス基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。
ハードマスク層12(CrN膜)の形成
 ガラス基板11の表面上に、マグネトロンスパッタリング法を用いて、ハードマスク層12としてCrN膜を成膜した。具体的には、成膜チャンバー内を1×10-4Pa以下の真空にした後、Crターゲットを用いて、ArとN2の混合ガス雰囲気中でマグネトロンスパッタリングを行い、厚さ4nmのハードマスク層12(CrN膜)を形成した。ハードマスク層12(CrN膜)の成膜条件は以下の通りである。
ターゲット:Crターゲット
スパッタガス:ArとN2の混合ガス(Ar:58.2vol%、N2:41.8vol%、ガス圧:0.1Pa)
投入電力:1500W
成膜速度:10.8nm/min
膜厚:4nm
ハードマスク層12(CrN膜)の組成分析
 上記の手順で形成したハードマスク層12の組成を、X線電子分光装置(PERKIN ELEMER-PHI社製)を用いて測定した。ハードマスク層12の組成比(at%)は、Cr:N=86.0:14.0であった。
ハードマスク層12(CrN膜)の膜応力
 上記の手順で形成したハードマスク層12の膜応力を以下の手順で測定した。
 レーザ干渉計を用いてナノインプリントモールド用ブランク10の曲率半径を算出し、ガラス基板11のヤング率、ポアソン比と、ハードマスク層12の膜厚と、を用いて、ハードマスク層12の膜応力を算出した。その結果、ハードマスク層12には-98MPaの圧縮応力が生じていることを確認した。
ハードマスク層12(CrN膜)の結晶状態
 ハードマスク層12の結晶状態を、X線回折装置(X-Ray Diffractmeter)(RIGAKU社製)で確認した。得られる回折ピークにはシャープなピークが見られないことから、ハードマスク層12の結晶状態がアモルファス構造または微結晶構造であることを確認した。
ハードマスク層12(CrN膜)の表面粗さ
 ハードマスク層12の表面粗さを、原子間力顕微鏡(SII社製、SPI-3800)を用いて、dynamic force modeで測定した。表面粗さの測定領域は1μm×1μmであり、カンチレバーには、SI-DF40(SII社製)を用いた。ハードマスク層12の表面粗さ(rms)は、0.4nmであった。
ハードマスク層12(CrN膜)の密着性
 上記手順で形成したハードマスク層12表面に、JIS K5400(1990年)に記載されている碁盤目試験の方法に準じて、碁盤目をつけて試験片を作製した。次に、粘着テープ(ニチバン(株)製、セロハンテープ)を、試験片の碁盤目上に貼り付けた後、速やかに90゜の方向に引っ張って剥離させ、100個のマス目に剥離が起こるかどうか試験した。その結果、マス目の剥離は起こらなかった。
ハードマスク層12(CrN膜)のエッチング特性
 エッチング特性については、上記手順で作製されたインプリントモールド用ブランク10を用いて評価する代わりに以下の方法で評価した。
 試料として、ハードマスク層12(CrN膜)が、上記と同条件で、ガラス基板11上に100nm成膜されたインプリントモールド用ブランク10を作製し、塩素系ガスまたはフッ素系ガスを用いたICP-RIE(誘導結合型プラズマ反応性イオンエッチング)プロセスにて、エッチングした。エッチング条件を下記に示す。
塩素系ガスエッチング条件
エッチング条件:Cl2+He(Cl2:4sccm,He:16sccm)
エッチング真空度:0.3Pa
Antena Power:100W
Bias Power:40W
フッ素系ガスエッチング条件
エッチングガス:CF4+He(CF4:50sccm、He:50sccm)
エッチング真空度:1.0Pa
Antena Power:60W
Bias Power:20W
 はじめに、ハードマスク層12をエッチングする際に用いる、塩素系ガスを用いたドライエッチングプロセスにおける、ハードマスク層12のエッチング速度を調べた。
 上記の塩素ガス系エッチング条件で、ハードマスク層12(CrN膜)をエッチングした結果、エッチング速度は、15.6nm/minであり、塩素系ガスを用いたドライエッチングプロセスにより、十分エッチングできることを確認した。
 次に、ガラス基板をエッチングする際に用いられる、フッ素系ガスを用いたドライエッチングプロセスにおける、ハードマスク層12のエッチング速度を調べた。
 上記のフッ素系ガスエッチング条件で、ハードマスク層12(CrN膜)をエッチングした結果、エッチング速度は、0.6nm/minであった。一方、同条件で、ハードマスク層12が無いSiO2-TiO2系のガラス基板をエッチングした結果、エッチング速度は、35nm/minであった。フッ素系ガスを用いたドライエッチングプロセスについて、ハードマスク層12(CrN膜)に対する、SiO2-TiO2系のガラス基板のエッチング選択比を下記の式にて算出した。
(エッチング選択比)
=(SiO2-TiO2系ガラスのエッチング速度)/(CrN膜のエッチング速度)
 上記式により算出した、エッチング選択比は58であり、十分なエッチング選択比が確保できていることが確認できた。
 さらに、ナノインプリントモールド作製のために、SiO2-TiO2系ガラスを100nmエッチングすると想定した場合、上記のエッチング選択比から算出されるハードマスク層12(CrN膜)の必要膜厚は、1.7nmであり、従来のレジストプロセスより薄い膜厚において、ハードマスク層として十分に機能することが明らかである。
(実施例2)
 実施例2は、ハードマスク層12として、下記手順でCrNH膜を形成した以外は、実施例1と同様である。
ハードマスク層12(CrNH)の形成
 基板11の表面上に、マグネトロンスパッタリング法を用いて、ハードマスク層12としてCrNH膜を成膜した。具体的には、成膜チャンバー内を1×10-4Pa以下の真空にした後、Crターゲットを用いて、ArとN2とH2の混合ガス雰囲気中でマグネトロンスパッタリングを行い、厚さ4nmのハードマスク層12(CrNH膜)を形成した。ハードマスク層12(CrNH膜)の成膜条件は以下の通りである。
ターゲット:Crターゲット
スパッタガス:ArとN2とH2の混合ガス(Ar:58.2vol%、N2:40vol%、H2:1.8vol%、ガス圧:0.1Pa)
投入電力:1500W
成膜速度:10.8nm/min
膜厚:4nm
ハードマスク層12(CrNH膜)の組成分析
 実施例1と同様の手順で、ハードマスク層12の組成を、X線電子分光装置を用いて測定した。ハードマスク層12の組成比(at%)は、Cr:N:H=86.0:13.7:0.3であった。
ハードマスク層12(CrNH膜)の膜応力
 上記の手順で形成したハードマスク層12の膜応力を、実施例1と同様の手順で測定した結果、ハードマスク層12には+58MPaの引張応力が生じていることを確認した。
ハードマスク層12(CrNH膜)の結晶状態
 ハードマスク層12の結晶状態を、実施例1と同様の手順で確認した。得られる回折ピークにはシャープなピークが見られないことから、ハードマスク層12の結晶状態がアモルファス構造または微結晶構造であることを確認した。
ハードマスク層12(CrNH膜)の表面粗さ
 ハードマスク層12の表面粗さを、実施例1と同様の手法で評価した結果、ハードマスク層12の表面粗さ(rms)は、0.25nmであった。
ハードマスク層12(CrNH膜)の密着性
 ハードマスク層12の密着性を、実施例1と同様の手法で評価した結果、マス目の剥離は起こらず、十分な密着性があることが確認できた。
ハードマスク層12(CrNH膜)のエッチング特性
 フッ素系ガスを用いたドライエッチングプロセスにおけるハードマスク層12のエッチング特性は、実施例1と同様の手法で評価した。ハードマスク層12(CrNH膜)のエッチング速度は、0.7nm/minであった。一方、ハードマスク層12が無いSiO2-TiO2系のガラス基板のエッチング速度は、35nm/minであるため、エッチング選択比は50であり、十分なエッチング選択比が確保できていることが確認できた。
 さらに、ナノインプリントモールド作製のために、SiO2-TiO2系ガラスを100nmエッチングすると想定した場合、上記のエッチング選択比から算出されるハードマスク層12(CrNH膜)の必要膜厚は、2.0nmであり、従来のレジストプロセスより薄い膜厚において、ハードマスク層として十分に機能することが明らかである。
(比較例1)
 比較例1は、ハードマスク層12の代わりに、ガラス基板11上にレジストを塗布とした以外は実施例1と同様の手順で実施した。なお、比較例1では、エッチング特性のみを示す。
 本比較例1では、レジストとして電子線描画用の化学増幅型ポジレジストを、スピンコート法により、SiO2-TiO2系ガラス基板上に、300nmの厚さで塗布し、塗布後、110℃のポストベークを実施した。
 上記のように、形成したレジスト付きSiO2-TiO2系基板を、実施例1と同様の手法で、フッ素系ガスを用いたドライエッチングプロセスにおけるエッチング速度を調べた。
 レジストのエッチング速度は、77nm/minであった。一方、同条件で、レジストが無いSiO2-TiO2系のガラス基板のエッチング速度は、35nm/minであるため、エッチング選択比は0.5であり、十分なエッチング選択比を確保することができなかった。この場合、ナノインプリントモールド作製のために、SiO2-TiO2系ガラスを100nmエッチングすると想定した場合、上記のエッチング選択比から算出されるレジストの必要膜厚は、200nmとなる。
(比較例2)
 本比較例では、ハードマスク層12として、下記手順でCr膜を形成した以外は、実施例1と同様である。
ハードマスク層12(Cr膜)の形成
 基板11の表面上に、マグネトロンスパッタリング法を用いて、ハードマスク層12としてCr膜を成膜した。具体的には、成膜チャンバー内を1×10-4Pa以下の真空にした後、Crターゲットを用いて、Arガス雰囲気中でマグネトロンスパッタリングを行い、厚さ5nmのハードマスク層12(Cr膜)を形成した。ハードマスク層12(Cr膜)の成膜条件は以下の通りである。
ターゲット:Crターゲット
スパッタガス:Arガス(Ar:100vol%、ガス圧:0.1Pa)
投入電力:1500W
成膜速度:18nm/min
膜厚:5nm
ハードマスク層12(Cr膜)の組成分析
 実施例1と同様の手順でハードマスク層12の組成をX線電子分光装置を用いて測定した。ハードマスク層2の組成比(at%)は、Cr=100.0であった。
ハードマスク層12(Cr膜)の膜応力
 ハードマスク層12の膜応力を、実施例1と同様の方法で測定した。
 ハードマスク層12には、+1000MPaの非常に大きい引張応力が生じていることを確認した。
ハードマスク層12(Cr膜)の結晶状態
 ハードマスク層12の結晶状態を、実施例1と同様の方法で確認した。得られる回折ピークにはシャープなピークが見られたことから、ハードマスク層12が結晶構造を有することを確認した。
ハードマスク層12(Cr膜)の表面粗さ
 ハードマスク層12の表面粗さを、実施例1と同様の手法で評価した結果、ハードマスク層12の表面粗さ(rms)は、0.5nmであった。
ハードマスク層12(Cr膜)の密着性
 ハードマスク層12の密着性を、実施例1と同様の手法で評価した結果、マス目の剥離が起き、密着性が不十分であることが明らかとなった。すなわち、インプリントモールド用ブランクのハードマスク層として、Cr膜は、十分な機能を果たすことができないことを確認した。
(比較例3)
 本比較例では、ハードマスク層12として、下記手順でNの含有率が5%未満であるCrN膜を形成した以外は、実施例1と同様である。
ハードマスク層12(CrN)の形成
 基板1の表面上に、マグネトロンスパッタリング法を用いて、ハードマスク層2としてCrN膜を成膜した。具体的には、成膜チャンバー内を1×10-4Pa以下の真空にした後、Crターゲットを用いて、ArとN2の混合ガス雰囲気中でマグネトロンスパッタリングを行い、厚さ5nmのハードマスク層12(CrN膜)を形成した。ハードマスク層12(CrN膜)の成膜条件は以下の通りである。
ターゲット:Crターゲット
スパッタガス:ArとN2の混合ガス(Ar:90vol%、N2:10vol%、ガス圧:0.1Pa)
投入電力:1500W
成膜速度:12nm/min
膜厚:5nm
ハードマスク層12(CrN膜)の組成分析
 実施例1と同様の手順でハードマスク層12の組成をX線電子分光装置を用いて測定した。ハードマスク層12の組成比(at%)は、Cr:N=96.0:4.0であった。
ハードマスク層12(CrN膜)の応力
 ハードマスク層12の応力を、実施例1と同様の方法で測定した。ハードマスク層12には、+960MPaの非常に大きい引張応力が生じていることを確認した。
ハードマスク層12(CrN膜)の結晶状態
 ハードマスク層12の結晶状態を、実施例1と同様の方法で確認した。得られる回折ピークにはシャープなピークが見られたことから、ハードマスク層が結晶構造を有することを確認した。
ハードマスク層12(CrN膜)の表面粗さ
 ハードマスク層12の表面粗さを、実施例1と同様の手法で評価した結果、ハードマスク層12の表面粗さ(rms)は、0.6nmであった。
ハードマスク層12(CrN膜)の密着性
 ハードマスク層12の密着性を、実施例1と同様の手法で評価した結果、マス目の剥離が起き、密着性が不十分であることが明らかとなった。すなわち、インプリントモールド用ブランクスのハードマスク層として、十分な機能を果たすことができないことを確認した。
(比較例4)
 本比較例では、ハードマスク層2として、下記手順でNの含有率が55%超であるCrN膜を形成した以外は、実施例1と同様である。
ハードマスク層12(CrN膜)の形成
 基板11の表面上に、マグネトロンスパッタリング法を用いて、ハードマスク層12としてCrN膜を成膜した。具体的には、成膜チャンバー内を1×10-4Pa以下の真空にした後、Crターゲットを用いて、ArとN2の混合ガス雰囲気中でマグネトロンスパッタリングを行い、厚さ5nmのハードマスク層12(CrN膜)を形成した。ハードマスク層12(CrN膜)の成膜条件は以下の通りである。
ターゲット:Crターゲット
スパッタガス:ArとN2の混合ガス(Ar:30vol%、N2:70vol%、ガス圧:0.1Pa)
投入電力:1500W
成膜速度:7.8nm/min
膜厚:5nm
ハードマスク層12(CrN膜)の組成分析
 実施例1と同様の手順でハードマスク層12の組成をX線電子分光装置を用いて測定した。ハードマスク層12の組成比(at%)は、Cr:N=41.5:58.5であった。
ハードマスク層12(CrN膜)の応力
 ハードマスク層12の応力を、実施例1と同様の方法で測定した。ハードマスク層12には、-2000MPaの非常に大きい圧縮応力が生じていることを確認した。
ハードマスク層12(CrN膜)の結晶状態
 ハードマスク層12の結晶状態を、実施例1と同様の方法で確認した。得られる回折ピークにはシャープなピークが見られたことから、ハードマスク層が結晶構造を有することを確認した。
ハードマスク層12(CrN膜)の表面粗さ
 ハードマスク層12の表面粗さを、実施例1と同様の手法で評価した結果、ハードマスク層12の表面粗さ(rms)は、0.55nmであった。
ハードマスク層12(CrN膜)の密着性
 ハードマスク層12の密着性を、実施例1と同様の手法で評価した結果、マス目の剥離が起き、密着性が不十分であることが明らかとなった。すなわち、インプリントモールド用ブランクスのハードマスク層として、十分な機能を果たすことができないことを確認した。
ハードマスク層12(CrN膜)のエッチング特性
 フッ素系ガスを用いたドライエッチングプロセスにおけるハードマスク層12のエッチング特性は、実施例1と同様の手法で評価した。ハードマスク層12(CrN膜)のエッチング速度は、2.0nm/minであった。一方、ハードマスク層12が無いSiO2-TiO2系のガラス基板のエッチング速度は、35nm/minであるため、エッチング選択比は18となり、エッチング選択比が30未満のためハードマスクの十分な薄膜化は期待できない。この場合、ナノインプリントモールド作製のために、SiO2-TiO2系ガラスを100nmエッチングすると想定した場合、上記のエッチング選択比から算出されるハードマスク層12(CrN膜)の必要膜厚は、5.6nmとなる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年1月23日出願の日本特許出願2012-010975に基づくものであり、その内容はここに参照として取り込まれる。
10:ナノインプリントモールド用ブランク
11:ガラス基板
12:ハードマスク層
20:レジスト
30:ナノインプリントモールド
40:マスターモールド

Claims (9)

  1.  ガラス基板と、該ガラス基板上に形成したハードマスク層と、を含むナノインプリントモールド用ブランクであって、
     前記ハードマスク層が、クロム(Cr)及び窒素(N)を含有し、Crの含有率が45~95at%であり、Nの含有率が5~55at%であり、CrおよびNの合計含有率が95at%以上であり、該ハードマスク層の膜厚が1.5nm以上5nm未満である、ナノインプリントモールド用ブランク。
  2.  前記ハードマスク層が、さらに水素(H)を含有し、
     前記ハードマスク層における、CrおよびNの合計含有率が95~99.9at%であり、Hの含有率が0.1~5at%である、請求項1に記載のナノインプリントモールド用ブランク。
  3.  前記ハードマスク層の結晶状態が、アモルファスである、請求項1または2に記載のナノインプリントモールド用ブランク。
  4.  前記ハードマスク層において、(ガラス基板のエッチング速度)/(ハードマスク層のエッチング速度)で表されるエッチング選択比が30以上である、請求項1~3のいずれか一項に記載のナノインプリントモールド用ブランク。
  5.  前記ガラス基板が、ドーパントを含まない、または、ドーパントを含む、石英ガラス製である、請求項1~4のいずれか一項に記載のナノインプリントモールド用ブランク。
  6.  請求項1~5のいずれか一項に記載のナノインプリントモールド用ブランクを用いて作製されるナノインプリントモールド。
  7.  ガラス基板と、該ガラス基板上に形成したハードマスク層と、を含むナノインプリントモールド用ブランクを製造する方法であって、
     前記ハードマスク層が、クロム(Cr)及び窒素(N)を含有し、Crの含有率が45~95at%であり、Nの含有率が5~55at%であり、CrおよびNの合計含有率が95at%以上であり、
     アルゴン(Ar)及び窒素(N)を含む不活性ガス雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより、前記ガラス基板に、前記ハードマスク層を形成する、ナノインプリントモールド用ブランクの製造方法。
  8.  請求項1~5のいずれか一項に記載のナノインプリントモールド用ブランクを用いてナノインプリントモールドを製造する方法であって、前記ナノインプリントモールド用ブランクの前記ハードマスク層を、塩素系ガスを用いたドライエッチング処理によりエッチング加工して前記ハードマスク層上にパターンを形成する工程と、該ハードマスク層上に形成したパターンをマスクとして、前記ガラス基板を、フッ素系ガスを用いたドライエッチング処理によりエッチング加工する工程を含む、ナノインプリントモールドの製造方法。
  9.  請求項8に記載の製造方法で製造されるナノインプリントモールド。
PCT/JP2013/050488 2012-01-23 2013-01-11 ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法 WO2013111631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147020510A KR20140117429A (ko) 2012-01-23 2013-01-11 나노임프린트 몰드용 블랭크, 나노임프린트 몰드 및 그들의 제조 방법
US14/338,825 US20140335215A1 (en) 2012-01-23 2014-07-23 Blank for nanoimprint mold, nanoimprint mold, and methods for producing said blank and said nanoimprint mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010975 2012-01-23
JP2012-010975 2012-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/338,825 Continuation US20140335215A1 (en) 2012-01-23 2014-07-23 Blank for nanoimprint mold, nanoimprint mold, and methods for producing said blank and said nanoimprint mold

Publications (1)

Publication Number Publication Date
WO2013111631A1 true WO2013111631A1 (ja) 2013-08-01

Family

ID=48873352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050488 WO2013111631A1 (ja) 2012-01-23 2013-01-11 ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法

Country Status (5)

Country Link
US (1) US20140335215A1 (ja)
JP (1) JPWO2013111631A1 (ja)
KR (1) KR20140117429A (ja)
TW (1) TW201335971A (ja)
WO (1) WO2013111631A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579421A (zh) * 2013-11-07 2014-02-12 无锡英普林纳米科技有限公司 一种大面积图案化蓝宝石衬底的制备方法
JP2015032792A (ja) * 2013-08-06 2015-02-16 大日本印刷株式会社 ナノインプリントリソグラフィ用のテンプレートの欠陥修正方法、検査方法および製造方法
JP2019201224A (ja) * 2019-08-19 2019-11-21 大日本印刷株式会社 インプリントモールド用基材及びインプリントモールド

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156786B2 (en) 2015-09-30 2018-12-18 Thomas E. Seidel Method and structure for nanoimprint lithography masks using optical film coatings
TWI646389B (zh) 2017-09-12 2019-01-01 友達光電股份有限公司 壓印模具以及壓印模具製造方法
US10978632B2 (en) 2019-01-18 2021-04-13 Microsoft Technology Licensing, Llc Fabrication of a device
US10777728B2 (en) * 2019-01-18 2020-09-15 Microsoft Technology Licensing, Llc Fabrication of a quantum device
US11745453B2 (en) * 2020-03-05 2023-09-05 Continental Autonomous Mobility US, LLC Method of making and using a reusable mold for fabrication of optical elements
US11520228B2 (en) * 2020-09-03 2022-12-06 International Business Machines Corporation Mass fabrication-compatible processing of semiconductor metasurfaces

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345737A (ja) * 2004-06-02 2005-12-15 Hoya Corp マスクブランク、位相シフトマスクの製造方法及びテンプレートの製造方法
JP2009206339A (ja) * 2008-02-28 2009-09-10 Hoya Corp インプリントモールド用マスクブランク及びインプリントモールドの製造方法
JP2009206338A (ja) * 2008-02-28 2009-09-10 Hoya Corp インプリントモールド用マスクブランク及びインプリントモールドの製造方法
JP2010008868A (ja) * 2008-06-30 2010-01-14 Hoya Corp フォトマスクブランク、フォトマスク及びその製造方法
JP2010107921A (ja) * 2008-10-31 2010-05-13 Hoya Corp フォトマスクブランク、フォトマスク及びその製造方法
JP2011029248A (ja) * 2009-07-22 2011-02-10 Dainippon Printing Co Ltd ナノインプリント用モールドの製造方法
JP2011207163A (ja) * 2010-03-30 2011-10-20 Hoya Corp モールド製造用マスクブランクス、モールド製造用レジスト付きマスクブランクスおよびモールドの製造方法
JP2011222834A (ja) * 2010-04-12 2011-11-04 Hoya Corp ベーク処理装置、レジストパターン形成方法、フォトマスクの製造方法、及び、ナノインプリント用モールドの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198023A (ja) * 1997-01-09 1998-07-31 Nec Corp X線露光マスク及びその製造方法
TWI224078B (en) * 2003-12-09 2004-11-21 Ind Tech Res Inst Manufacture method and structure for impression mold insert
JP5000112B2 (ja) * 2005-09-09 2012-08-15 東京応化工業株式会社 ナノインプリントリソグラフィによるパターン形成方法
JP4509050B2 (ja) * 2006-03-10 2010-07-21 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP4465405B2 (ja) * 2008-02-27 2010-05-19 Hoya株式会社 フォトマスクブランクおよびフォトマスク並びにこれらの製造方法
TWI567483B (zh) * 2008-09-30 2017-01-21 Hoya Corp A mask substrate, a mask, a manufacturing method thereof, and a method of manufacturing the semiconductor element
JP5363856B2 (ja) * 2009-03-30 2013-12-11 富士フイルム株式会社 パターン形成方法
TWI553399B (zh) * 2009-07-16 2016-10-11 Hoya Corp Mask base and transfer mask
JP5606028B2 (ja) * 2009-09-11 2014-10-15 Hoya株式会社 フォトマスクブランクおよびフォトマスクの製造方法
WO2011097514A2 (en) * 2010-02-05 2011-08-11 Molecular Imprints, Inc. Templates having high contrast alignment marks
KR101691157B1 (ko) * 2010-12-15 2017-01-02 삼성전자주식회사 나노임프린트용 스탬프 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345737A (ja) * 2004-06-02 2005-12-15 Hoya Corp マスクブランク、位相シフトマスクの製造方法及びテンプレートの製造方法
JP2009206339A (ja) * 2008-02-28 2009-09-10 Hoya Corp インプリントモールド用マスクブランク及びインプリントモールドの製造方法
JP2009206338A (ja) * 2008-02-28 2009-09-10 Hoya Corp インプリントモールド用マスクブランク及びインプリントモールドの製造方法
JP2010008868A (ja) * 2008-06-30 2010-01-14 Hoya Corp フォトマスクブランク、フォトマスク及びその製造方法
JP2010107921A (ja) * 2008-10-31 2010-05-13 Hoya Corp フォトマスクブランク、フォトマスク及びその製造方法
JP2011029248A (ja) * 2009-07-22 2011-02-10 Dainippon Printing Co Ltd ナノインプリント用モールドの製造方法
JP2011207163A (ja) * 2010-03-30 2011-10-20 Hoya Corp モールド製造用マスクブランクス、モールド製造用レジスト付きマスクブランクスおよびモールドの製造方法
JP2011222834A (ja) * 2010-04-12 2011-11-04 Hoya Corp ベーク処理装置、レジストパターン形成方法、フォトマスクの製造方法、及び、ナノインプリント用モールドの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032792A (ja) * 2013-08-06 2015-02-16 大日本印刷株式会社 ナノインプリントリソグラフィ用のテンプレートの欠陥修正方法、検査方法および製造方法
CN103579421A (zh) * 2013-11-07 2014-02-12 无锡英普林纳米科技有限公司 一种大面积图案化蓝宝石衬底的制备方法
JP2019201224A (ja) * 2019-08-19 2019-11-21 大日本印刷株式会社 インプリントモールド用基材及びインプリントモールド

Also Published As

Publication number Publication date
US20140335215A1 (en) 2014-11-13
KR20140117429A (ko) 2014-10-07
TW201335971A (zh) 2013-09-01
JPWO2013111631A1 (ja) 2015-05-11
TWI562197B (ja) 2016-12-11

Similar Documents

Publication Publication Date Title
WO2013111631A1 (ja) ナノインプリントモールド用ブランク、ナノインプリントモールドおよびそれらの製造方法
US9086629B2 (en) Substrate with conductive film, substrate with multilayer reflective film and reflective mask blank for EUV lithography
US8956787B2 (en) Reflective mask blank for EUV lithography and process for producing the same
JP5348140B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP6396118B2 (ja) 位相シフトマスクブランク及びその製造方法、並びに位相シフトマスクの製造方法
US9097976B2 (en) Reflective mask blank for EUV lithography
JP5040996B2 (ja) Euvリソグラフィ用反射型マスクブランク
US7294438B2 (en) Method of producing a reflective mask and method of producing a semiconductor device
JP4867695B2 (ja) Euvリソグラフィ用反射型マスクブランク
TW200847236A (en) Reflective mask blank for EUV lithography
WO2015037564A1 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2015215602A (ja) Euvリソグラフィ用反射型マスクブランク、該マスクブランク用の機能膜付基板および、それらの製造方法
JP6544964B2 (ja) マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
JP2011127221A (ja) 基板の再生方法、マスクブランクの製造方法、多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法
JP4390418B2 (ja) Euv露光用反射型マスクブランクおよびeuv露光用反射型マスク並びに半導体の製造方法
JP2009210802A (ja) Euvリソグラフィ用反射型マスクブランク
KR101563874B1 (ko) 블랭크 스탬프 및 나노 임프린트 리소그래피용 스탬프
US6128363A (en) X-ray mask blank, x-ray mask, and pattern transfer method
JP3631017B2 (ja) X線マスクブランク及びその製造方法、並びにx線マスク及びその製造方法
US20230142180A1 (en) Mask blank, transfer mask, and method of manufacturing semiconductor device
WO2022176749A1 (ja) Euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、およびそれらの製造方法
JP2022135927A (ja) 反射型マスクブランク及び反射型マスク
JP2011209628A (ja) マスクブランクス及びモールドの製造方法
JP2016191822A (ja) 膜応力の評価方法、マスクブランクの製造方法および転写用マスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147020510

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741558

Country of ref document: EP

Kind code of ref document: A1