JP5121125B2 - ポリブチレンテレフタレート - Google Patents

ポリブチレンテレフタレート Download PDF

Info

Publication number
JP5121125B2
JP5121125B2 JP2005095033A JP2005095033A JP5121125B2 JP 5121125 B2 JP5121125 B2 JP 5121125B2 JP 2005095033 A JP2005095033 A JP 2005095033A JP 2005095033 A JP2005095033 A JP 2005095033A JP 5121125 B2 JP5121125 B2 JP 5121125B2
Authority
JP
Japan
Prior art keywords
polybutylene terephthalate
ppm
less
pbt
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005095033A
Other languages
English (en)
Other versions
JP2005314674A (ja
Inventor
俊之 濱野
正規 山本
真一郎 松園
健二 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005095033A priority Critical patent/JP5121125B2/ja
Publication of JP2005314674A publication Critical patent/JP2005314674A/ja
Application granted granted Critical
Publication of JP5121125B2 publication Critical patent/JP5121125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、ポリブチレンテレフタレートに関し、詳しくは、色調、耐加水分解性、熱安定性、透明性、成形性に優れ、しかも、異物が低減された、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用することが出来るポリブチレンテレフタレートに関する。
熱可塑性ポリエステル樹脂の中で代表的なエンジニアリンブプラスチックであるポリブチレンテレフタレートは、成形加工の容易さ、機械的物性、耐熱性、耐薬品性、保香性、その他の物理的、化学的特性に優れていることから、自動車部品、電気・電子部品、精密機器部品などの射出成型品に広く使用されている。近年は、その優れた性質を活かし、フィルム、シート、モノフィラメント、繊維などの分野でも広く使用される様になってきた。
しかしながら、ポリブチレンテレフタレートは、耐加水分解性が必ずしも十分ではなく、特に湿熱下の使用においては、分子量の低下に伴う機械的物性の低下が問題になっている。一般に、ポリエステルは末端カルボキシル基濃度が高いほど耐加水分解性が悪化することが知られており(例えば非特許文献1)、ポリブチレンテレフタレートにおいても、末端カルボキシル基濃度が高いほど湿熱下での加水分解反応速度が大きく、加水分解による分子量低下、ひいては機械的物性などの低下を招くことが大きな問題である。
上記の問題を解決するため、溶融重合で得られたポリブチレンテレフタレートを一旦固化させ、その融点以下の温度で固相重合させることにより、末端カルボキシル基濃度を低減させることが広く行われている(例えば特許文献1参照)。ところが、通常の溶融成形はポリブチレンテレフタレートの融点以上で行われるため、従来のポリブチレンテレフタレートでは、固相重合によって末端カルボキシル基濃度を低減させても、成型時に再び末端カルボキシル基濃度の上昇が起こるという問題がある。この末端カルボキシル基濃度の上昇は、ブタジエンやテトラヒドロフランを発生する反応と表裏一体である(例えば非特許文献1参照)。そのため、結果的に成型時のガスの発生が多くなるという問題も惹起する。
また、溶融時の末端カルボキシル基濃度の上昇速度は、チタン化合物の存在によって促進されることが知られているが、これを抑制するためにチタン化合物を減らそうとすると、重合速度が遅くなり、実用的な重合速度でポリブチレンテレフタレートを製造する場合は重合温度を上げざるを得なくなる。そのため、結果として、末端カルボキシル基濃度が上昇する分解反応を促進し、意図した様には末端カルボキシル基濃度が低下しない。また、高温の反応は色調の悪化を招き、商品価値を落とすという問題もある。
上記の様な問題を解決するため、触媒として特定のモル比のチタン化合物とマグネシウム化合物を使用することにより重合温度を低く設定する方法が試みている(例えば特許文献2参照)。しかしながら、末端カルボキシル基濃度の低減は十分とは言えず、ポリブチレンテレフタレートへの耐加水分解性要求が高まる中で、満足できる方法とは言えない。一方、ポリブチレンテレフタレートの耐加水分解性を向上を図るため、特定状態のチタンの使用が提案されている(例えば特許文献3参照)。しかしながら、特に分子量低下による機械的物性の影響が大きい低分子量領域においては、末端カルボキシル基濃度が十分に低減されているは言えず、その一層の低減が求められている。
飽和ポリエステル樹脂ハンドブック(1989年12月22日、日刊工業新聞社発行、第192〜193頁、304頁) 特開平9−316183号公報 特開平8−20638号公報 特開平8−41182号公報
本発明は、上記実情に鑑みなされたものであり、その目的は、色調、耐加水分解性、熱安定性、透明性、成形性に優れ、しかも、異物の低減された、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用することが出来るポリブチレンテレフタレートを提供することにある。
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、触媒としてチタン化合物および周期表2A族金属化合物を使用して特定の態様で重合反応を行うならば、驚くべきことに、熱分解反応に起因する末端カルボキシル基の上昇が抑制され、低分子量領域においても末端カルボキシル基濃度を著しく低減でき、更には、溶融成型時における末端カルボキシル基濃度の上昇も抑制可能であるだけでなく、重縮合時反応が大幅に促進されるために、結果的に重合温度を下げることが可能であるとの知見を得、本発明の完成に至った。
本発明は、上記の知見に基づき完成されたものであり、その要旨は、直接重合法を採用した連続エステル化工程を含む製造方法で得られるポリブチレンテレフタレートであって、触媒としてチタン化合物と周期表2A族金属化合物を使用して得られ、チタンの含有量がチタン原子として80ppm以下で、固有粘度が0.7〜1.0dL/gであり、末端メトキシカルボニル基濃度が0.5μeq/g以下、末端カルボキシル基濃度が0.1〜18μeq/gであることを特徴とするポリブチレンテレフタレートに存する。
本発明によれば、色調、耐加水分解性、熱安定性、透明性、成形性に優れ、しかも、異物の低減された、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用することが出来るポリブチレンテレフタレートが提供される。
以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。
本発明のポリブチレンテレフタレート(以下、PBTと略記する)とは、テレフタル酸単位および1,4−ブタンジオール単位がエステル結合した構造を有し、ジカルボン酸単位の50モル%以上がテレフタル酸単位から成り、ジオール成分の50モル%以上が1,4−ブタンジオール単位から成る高分子を言う。全ジカルボン酸単位中のテレフタル酸単位の割合は、好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは95モル%以上であり、全ジオール単位中の1,4ブタンジオール単位の割合は、好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは95モル%以上である。テレフタル酸単位または1,4−ブタンジオール単位が50モル%より少ない場合は、PBTの結晶化速度が低下し、成形性の悪化を招く。
本発明において、テレフタル酸以外のジカルボン酸成分には特に制限はなく、例えば、フタル酸、イソフタル酸、4,4'−ジフェニルジカルボン酸、4,4'−ジフェニルエーテルジカルボン酸、4,4'−ベンゾフェノンジカルボン酸、4,4'−ジフェノキシエタンジカルボン酸、4,4'−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸などの芳香族ジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることが出来る。これらのジカルボン酸成分は、ジカルボン酸として、または、ジカルボン酸エステル、ジカルボン酸ハライド等のジカルボン酸誘導体を原料として、ポリマー骨格に導入できる。
本発明において、1,4−ブタンジオール以外のジオール成分には特に制限はなく、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ポリプロピレングリコール、ポリテトラメチレングリコール、ジブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,8−オクタンジオール等の脂肪族ジオール、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール等の脂環式ジオール、キシリレングリコール、4,4'−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン等の芳香族ジオール等を挙げることが出来る。
本発明においては、更に、乳酸、グリコール酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフタレンカルボン酸、p−β−ヒドロキシエトキシ安息香酸などのヒドロキシカルボン酸、アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸、ベンゾイル安息香酸などの単官能成分、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官能成分などを共重合成分として使用することが出来る。
本発明のPBTは、1,4−ブタンジオールとテレフタル酸(又はテレフタル酸ジアルキル)とのエステル化反応(又はエステル交換反応)で得られたオリゴマーを重縮合する際に触媒としてチタン化合物および周期表2A族金属化合物を使用することによって得られる。これらの触媒は、エステル化反応(又はエステル交換反応)時に使用して、そのまま重縮合反応に持ち込んでもよいし、エステル化反応(又はエステル交換反応)では使用せずに、または、どちらか一方の触媒のみ使用し、他方の触媒は重縮合段階で追加してもよい。更には、エステル化反応(又はエステル交換反応)で、最終的に使用する触媒量の一部を使用し、重縮合反応の進行と共に適宜追加することも出来る。何れにしても、本発明においては、最終的に得られるPBT中に、必然的にチタン及び周期表2A族金属が含有されるが、その量については後述する。なお、以下において、チタン化合物をチタン触媒、周期表2A族金属化合物を2A族金属触媒ということがある。
チタン化合物の具体例としては、酸化チタン、四塩化チタン等の無機チタン化合物、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等が挙げられる。これらの中ではテトラアルキルチタネートが好ましく、その中ではテトラブチルチタネートが好ましい。
チタンの他に、スズが触媒として使用されていてもよい。スズは、通常、スズ化合物として使用され、その具体例としては、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、シクロヘキサヘキシルジスズオキサイド、ジドデシルスズオキサイド、トリエチルスズハイドロオキサイド、トリフェニルスズハイドロオキサイド、トリイソブチルスズアセテート、ジブチルスズジアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸、ブチルスタンノン酸などが挙げられる。
スズはポリブチレンテレフタレートの色調を悪化させるため、その添加量はスズ原子として、通常200ppm以下、好ましくは100ppm以下、更に好ましくは10ppm以下、中でも添加しないことが好ましい。
本発明における周期表2A族金属化合物の具体例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの各種化合物が挙げられるが、取り扱いや入手の容易さ、触媒効果の点から、マグネシウム化合物またはカルシウム化合物が好ましく、特に、触媒効果に優れるマグネシウムが好ましい。マグネシウム化合物の具体例としては、酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水素マグネシウム等が挙げられ、カルシウム化合物の具体例としては、酢酸カルシウム、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、カルシウムアルコキサイド、燐酸水素カルシウム等が挙げられる。これらの中では酢酸マグネシウムが好ましい。
また、前記のチタン化合物や周期表2A族金属化合物とは別に、三酸化アンチモン等のアンチモン化合物、二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム化合物、マンガン化合物、亜鉛化合物、ジルコニウム化合物、コバルト化合物、正燐酸、亜燐酸、次亜燐酸、ポリ燐酸、それらのエステルや金属塩などの燐化合物、水酸化ナトリウム、安息香酸ナトリウム等の反応助剤を使用してもよい。
本発明のPBTにおけるチタンの含有量は、特に制限されないが、チタン原子としてPBTに対する重量比で150ppm以下であることが好ましい。
本発明において、上記のチタン含有量の下限は、通常5ppmであるが、10ppm、20ppm、25ppmの順序で一層好ましくなり、上限は、通常100ppmであるが、80ppm、60ppm、50ppm、40ppmの順序で一層好ましくなる。チタンの含有量が多過ぎる場合は、色調、耐加水分解性などが悪化し、少な過ぎる場合は重合性が悪化する。
本発明のPBTにおける周期表2A族金属の含有量は、特に制限されないが、周期表2A族金属原子としてPBTに対する重量比で150ppm以下であることが好ましい。
本発明において、上記の周期表2A族金属含有量の下限は、通常3ppmであるが、5ppm、10ppmの順序で一層好ましくなり、上限は、通常100ppmであるが、50ppm、40ppm、30ppm、15ppmの順序で一層好ましくなる。周期表2A族金属の含有量が多過ぎる場合は、色調、耐加水分解性などが悪化し、少な過ぎる場合は重合性が悪化する。
また、本発明のPBTに含まれるチタン原子と周期表2A族金属原子のモル比(周期表2A族金属/チタン)は、通常0.01〜100、好ましくは0.1〜10、更に好ましくは0.3〜3、特に好ましくは0.3〜1.5である。
チタン原子などの金属含有量は、湿式灰化などの方法でポリマー中の金属を回収した後、原子発光、原子吸光、Inductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。
本発明のPBTは、その末端カルボキシル基濃度が0.1〜18μeq/gであることが必要である。末端カルボキシル基濃度が高すぎる場合はPBTの耐加水分解性が悪化し、本発明の目的を達成することが出来ない。末端カルボキシル基濃度は、好ましくは0.5〜15μeq/g、更に好ましくは1〜12μeq/g、特に好ましくは1〜10μeq/gである。
ところで、PBTの末端カルボキシル基濃度を下げても、混練時や成型時の熱により上昇すると、結果的に製品の耐加水分解性を悪化させるだけでなく、THF等のガスの発生を招くことがある。従って、本発明のPBTにおいて、不活性ガス雰囲気下、245℃で40分間、熱処理した際の加水分解反応を除く末端カルボキシル基濃度の上昇は、通常0.1〜20μeq/g、好ましくは0.1〜15μeq/g、更に好ましくは0.1〜10μeq/g、特に好ましくは0.1〜8μeq/gである。
加水分解反応は、PBT中に含まれる水分を減少させる操作、具体的には乾燥を十分行えば防止することが可能であり、成形時などに問題となるTHFの発生も伴わないが、加水分解以外の分解反応による末端カルボキシル基濃度の上昇は、乾燥操作で防ぐことが不可能である。一般的には、分子量が低い方が、また、PBT中のチタン濃度が高い方が、加水分解以外の熱分解による末端カルボキシル基濃度の上昇が大きい傾向がある。
上記の評価法において温度と時間を規定したのは、温度が低すぎたり時間が短すぎたりすると末端カルボキシル基濃度の上昇の速度が小さすぎ、逆の場合は大きすぎて評価が不正確になるためである。また、極端に高い温度で評価すると、末端カルボキシル基が生成する以外の副反応が併発し、評価が不正確になることも理由の一つである。当該熱処理条件では、PBTに含まれる水分が引き起こす加水分解反応以外の反応による数平均分子量の低下は無視することが可能であり、加水分解反応による末端カルボキシル基濃度の上昇分は、熱処理前後の末端グリコール基濃度の上昇分と略同じと見做すことが出来るため、混練時や成型時に問題となる加水分解反応以外の熱分解反応による末端カルボキシル基濃度の上昇分は以下の式(1)で求めることが出来る。
Figure 0005121125
熱分解反応評価の信頼性の観点からは、加水分解反応が少ない方が好ましいため、熱処理に用いるPBTの含水量は、通常300ppm以下が推奨される。熱処理前後の末端グリコール基濃度は、1H−NMRによって定量することが出来る。
本発明のPBTの末端カルボキシル基濃度は、PBTを有機溶媒などに溶解し、水酸化ナトリウム溶液などのアルカリ溶液を使用して滴定することにより求めることが出来る。
また、本発明のPBTの末端ビニル基濃度は、通常15μeq/g以下、好ましくは10μeq/g以下、更に好ましくは8μeq/g以下である。末端ビニル基濃度が高すぎる場合は、色調悪化や固相重合性悪化の原因となる。生産性を低下させることなく、分子量の大きいPBTや触媒濃度の低いPBTを製造する場合、一般的には重合温度を上げたり、反応時間を長くしたりすることが求められるため、末端ビニル基濃度は上昇する傾向にある。
PBTの末端には、水酸基、カルボキシル基、ビニル基の他に、原料由来のメトキシカルボニル基が残存していることがあり、特に、テレフタル酸ジメチルを原料とする場合には多く残存することがある。ところで、メトキシカルボニル末端は、固相重合、混練、成型などによる熱により、メタノール、ホルムアルデヒド、蟻酸を発生し、特に、食品用途に使用される場合には、これらの毒性が問題になる。また、蟻酸は金属製の成形機器や真空関連機器などを痛める。そこで、本発明における末端メトキシカルボニル基濃度は、通常0.5μeq/g以下、好ましくは0.3μeq/g以下、更に好ましくは0.2μeq/g以下、特に好ましくは0.1μeq/g以下である。
上記の各末端基濃度は、重クロロホルム/ヘキサフルオロイソプロパノール=7/3(体積比)の混合溶媒にPBTを溶解させ、1H−NMRを測定することによって定量することが出来る。この際、溶媒シグナルとの重なりを防ぐため、重ピリジン等の塩基性成分などを極少量添加してもよい。
本発明のPBTの固有粘度は0.7〜1.0dL/gであることが必要である。固有粘度が0.7dL/g未満の場合は成形品の機械的強度が不十分となり、1.0dL/gを超える場合は溶融粘度が高くなり、流動性が悪化して、成形性が悪化する傾向にある。固有粘度は、好ましくは0.7〜0.9dL/g、更に好ましくは0.8〜0.9dL/gである。上記の固有粘度は、フェノール/テトラクロルエタン(重量比1/1)の混合溶媒を使用し、30℃で測定した値である。
本発明のPBTの降温結晶化温度は、通常160〜200℃、好ましくは170〜195℃、更に好ましくは175〜190℃である。本発明における降温結晶化温度とは、示差走査熱量計を使用して樹脂が溶融した状態から降温速度20℃/minで冷却した際に現れる結晶化による発熱ピークの温度である。降温結晶化温度は、結晶化速度と対応し、降温結晶化温度が高いほど結晶化速度が速いため、射出成形に際して冷却時間を短縮し、生産性を高めることが出来る。降温結晶化温度が低い場合は、射出成形に際して結晶化に時間が掛かり、射出成形後の冷却時間を長くせざるを得なくなり、成形サイクルが伸びて生産性が低下する傾向にある。
本発明のPBTの溶液ヘイズは、特に制限されないが、フェノール/テトラクロロエタン混合溶媒(重量比3/2)20mLにPBT2.7gを溶解させて測定した際の溶液ヘイズとして、通常10%以下、好ましくは5%以下、更に好ましくは3%以下、特に好ましくは1%以下である。溶液ヘイズが高い場合は、透明性が悪化し、異物も増加する傾向があるため、フィルム、モノフィラメント、繊維など、特に透明性が要求される用途においては、商品価値を著しく落とす。溶液ヘイズは、チタン触媒の失活が大きい場合に上昇する傾向がある。
本発明のPBTにおける環状2量体の含有量は、PBTに対する重量比として、通常1500ppm以下、好ましくは1200ppm以下、更に好ましくは1000ppm以下、特に好ましくは600ppm以下であり、その下限値は通常10ppmである。また、環状3量体の含有量は、通常1000ppm以下、好ましくは800ppm以下、更に好ましくは600ppm以下、特に好ましくは300ppm以下であり、その下限値は通常10ppmである。環状2量体および環状3量体の含有量が上記の範囲を超える場合は、金型汚れやロール汚れが惹起され、フィルム表面にブリードアウトし、食品包装などの用途ではその溶出が問題となる。
次に、本発明のPBTの製造方法について説明する。PBTの製造方法は、原料面から、ジカルボン酸を主原料として使用するいわゆる直接重合法と、ジカルボン酸ジアルキルを主原料として使用するエステル交換法とに大別される。前者は初期のエステル化反応で主に水が生成し、後者は初期のエステル交換反応で主にアルコールが生成するという違いがある。
また、PBTの製造方法は、原料供給またはポリマーの払い出し形態から回分法と連続法に大別される。初期のエステル化反応またはエステル交換反応を連続操作で行って、それに続く重縮合を回分操作で行ったり、逆に、初期のエステル化反応またはエステル交換反応を回分操作で行って、それに続く重縮合を連続操作で行う方法もある。
本発明においては、原料の入手安定性、留出物の処理の容易さ、原料原単位の高さ、本発明による改良効果という観点から、直接重合法が好ましい。また、本発明においては、生産性や製品品質の安定性、本発明による改良効果の観点から、連続的に原料を供給し、連続的にエステル化反応またはエステル交換反応を行う方法を採用する。そして、本発明においては、エステル化反応またはエステル交換反応に続く重縮合反応も連続的に行ういわゆる連続法が好ましい。
本発明においては、エステル化反応槽(又はエステル交換反応槽)にて、好ましくはチタン触媒の存在下、少なくとも一部の1,4−ブタンジオールをテレフタル酸(又はテレフタル酸ジアルキル)とは独立にエステル化反応槽(又はエステル交換反応槽)に供給しながら、テレフタル酸(又はテレフタル酸ジアルキル)と1,4−ブタンジオールとを連続的にエステル化(又はエステル交換)する工程が好ましく採用される。以後、テレフタル酸(又はテレフタル酸ジアルキル)とは独立にエステル化反応槽(又はエステル交換反応槽)に供給される1,4−ブタンジオールを「別供給1,4−ブタンジオール」と称することがある。
上記の「別供給1,4−ブタンジオール」には、プロセスとは無関係の新鮮な1,4−ブタンジオールを当てることが出来る。また、「別供給1,4−ブタンジオール」は、エステル化反応槽またはエステル交換反応槽から留出した1,4−ブタンジオールをコンデンサ等で捕集し、そのまま、または、一時タンク等へ保持して反応槽に還流させたり、不純物を分離、精製して純度を高めた1,4−ブタンジオールとして供給することも出来る。以後、コンデンサ等で捕集された1,4−ブタンジオールから構成される「別供給1,4−ブタンジオール」を「再循環1,4−ブタンジオール」と称することがある。資源の有効活用、設備の単純さの観点からは、「再循環1,4−ブタンジオール」を「別供給1,4−ブタンジオール」に当てることが好ましい。
また、通常、エステル化反応槽またはエステル交換反応槽より留出した1,4−ブタンジオールは、1,4−ブタンジオール成分以外に、水、アルコール、THF、ジヒドロフラン等の成分を含んでいる。従って、上記の留出物した1,4−ブタンジオールは、コンデンサ等で捕集した後、または、捕集しながら、水、アルコール、テトラヒドロフラン等の成分と分離、精製し、反応槽に戻すことが好ましい。
また、本発明においては、触媒の失活を防ぐため、エステル化反応(又はエステル交換反応)に使用されるチタン触媒の内、10重量%以上をテレフタル酸(又はテレフタル酸ジアルキル)とは独立に反応液液相部に直接供給することが好ましい。ここで、反応液液相部とは、エステル化反応槽またはエステル交換反応槽中の気液界面の液相側を示し、反応液液相部に直接供給するとは、配管などを使用し、チタン触媒が反応器の気相部を経由せずに直接液相部分に供給されることを表す。反応液液相部に直接添加するチタン触媒の割合は、好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。
上記のチタン触媒は、溶媒などに溶解させたり又は溶解させずに直接エステル化反応槽またはエステル交換反応槽の反応液液相部に供給することも出来るが、供給量を安定化させ、反応器の熱媒ジャケット等からの熱による変性などの悪影響を軽減するためには、1,4−ブタンジオール等の溶媒で希釈することが好ましい。この際の濃度は、溶液全体に対するチタン触媒の濃度として、通常0.01〜20重量%、好ましくは0.05〜10重量%、更に好ましくは0.08〜8重量%である。また、異物低減の観点から、溶液中の水分濃度は、通常0.05〜1.0重量%である。溶液調製の際の温度は、失活や凝集を防ぐ観点から、通常20〜150℃、好ましくは30〜100℃、更に好ましくは40〜80℃である。また、触媒溶液は、劣化防止、析出防止、失活防止の点から、別供給1,4−ブタンジオールと配管などで混合してエステル化反応槽またはエステル交換反応槽に供給することが好ましい。
また、2A族金属触媒もエステル化反応槽またはエステル交換反応槽に供給してもよい。2A族金属触媒の供給位置に特に制限はなく、これら反応槽の反応液気相部から反応液上面へ供給してもよいし、反応液液相部に直接供給してもよい。また、この場合、テレフタル酸やチタン化合物と共に供給してもよいし、独立して供給してもよいが、触媒の安定性の観点からはテレフタル酸やチタン化合物とは独立に、反応液気相部から反応液上面に供給することが好ましい。
2A族金属触媒は、通常固体であり、そのまま供給することも出来るが、供給量を安定化させ、熱による変性などの悪影響を軽減するため、1,4−ブタンジオール等の溶媒で希釈して供給することが好ましい。この際の濃度は、溶液全体に対する2A族金属触媒の濃度として、通常0.01〜20重量%、好ましくは0.05〜10重量%、更に好ましくは0.08〜8重量%である。この溶液には、析出防止、熱安定性の向上などの目的で水を少量添加してもよい。
一方、2A族金属触媒は、エステル化反応槽またはエステル交換反応槽に続く重縮合反応槽へのオリゴマー配管や重縮合反応槽に添加することも出来る。この場合も、供給量を安定化させ、熱による変性などの悪影響を軽減するため、1,4−ブタンジオール等の溶媒やポリテトラメチレンエーテルグリコール等の共重合成分で2A族金属触媒を希釈することが好ましい。この際の濃度は、溶液全体に対する2A族金属触媒の濃度として、通常0.01〜20重量%、好ましくは0.05〜10重量%、更に好ましくは0.08〜8重量%である。この溶液には、析出防止、熱安定性の向上などの目的で水を少量添加してもよい。
直接重合法を採用した連続エステル化法の一例は、次の通りである。すなわち、テレフタル酸を主成分とする前記ジカルボン酸成分と1,4−ブタンジオールを主成分とする前記ジオール成分とを原料混合槽で混合してスラリーとし、単数または複数のエステル化反応槽内で、好ましくはチタン触媒および2A族金属触媒の存在下に、通常180〜260℃、好ましくは200〜245℃、更に好ましくは210〜235℃の温度、また、通常10〜133kPa、好ましくは13〜101kPa、更に好ましくは60〜90kPaの圧力(絶対圧力、以下同じ)下で、通常0.5〜10時間、好ましくは1〜6時間で、連続的にエステル化反応させる。
直接重合法の場合は、テレフタル酸と1,4−ブタンジオールとのモル比は、以下の式(2)を満たすことが好ましい。
Figure 0005121125
上記の「エステル化反応槽に外部から供給される1,4−ブタンジオール」とは、原料スラリー又は溶液として、テレフタル酸またはテレフタル酸ジアルキルエステルと共に供給される1,4−ブタンジオールの他、これらとは独立に供給する1,4−ブタンジオール(別供給1,4−ブタンジオール)、触媒の溶媒として使用される1,4−ブタンジオール等、反応槽外部から反応槽内に入る1,4−ブタンジオールの総和である。
上記のBM/TMの値が1.1より小さい場合は、転化率の低下や触媒失活を招き、5.0より大きい場合は、熱効率が低下するだけでなく、テトラヒドロフラン等の副生物が増大する傾向にある。BM/TMの値は、好ましくは1.5〜4.5、更に好ましくは2.5〜4.0、特に好ましくは3.1〜3.8である。
また、エステル交換法を採用した連続法の一例は、次の通りである。すなわち、単数または複数のエステル交換反応槽内で、チタン触媒および2A族金属触媒の存在下に、通常110〜260℃、好ましくは140〜245℃、更に好ましくは180〜220℃の温度、また、通常10〜133kPa、好ましくは13〜120kPa、更に好ましくは60〜101kPaの圧力下で、通常0.5〜5時間、好ましくは1〜3時間で、連続的にエステル交換反応させる。
エステル交換法の場合、テレフタル酸ジアルキルと1,4−ブタンジオールとのモル比は、次の式(3)を満たすことが好ましい。
Figure 0005121125
上記のBM/DMの値が1.1より小さい場合は、転化率の低下や触媒活性の低下を招き、2.5より大きい場合は、熱効率が低下するだけでなく、テトラヒドロフラン等の副生物が増大する傾向にある。BM/DMの値は、好ましくは1.1〜1.8、更に好ましくは1.2〜1.5である。
本発明において、エステル化反応またはエステル交換反応は、反応時間短縮のため、1,4−ブタンジオールの沸点以上の温度で行うことが好ましい。1,4−ブタンジオールの沸点は反応の圧力に依存するが、101.1kPa(大気圧)では230℃、50kPaでは205℃である。
エステル化反応槽またはエステル交換反応槽としては、公知のものが使用でき、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽などの何れの型式であってもよく、また、単数槽としても、同種もしくは異種の槽を直列または並列させた複数槽としてもよい。中でも、攪拌装置を有する反応槽が好ましく、攪拌装置としては、動力部、軸受、軸、攪拌翼から成る通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機などの高速回転するタイプも使用することが出来る。
攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部などから直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の外部に持ち出してラインミキサー等で攪拌し、反応液を循環させる方法も採ることが出来る。
攪拌翼の種類は、公知のものが選択でき、具体的には、プロペラ翼、スクリュー翼、タービン翼、ファンタービン翼、デイスクタービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼などが挙げられる。
次に、得られたエステル化反応生成物またはエステル交換反応生成物としてのオリゴマーは、重縮合反応槽に移される。この際のオリゴマーの数平均分子量は、通常300〜3000であり、好ましくは500〜1500である。
PBTの製造においては、通常、複数段、好ましくは2〜5段、特に好ましくは2〜3段の反応条件の異なる重縮合反応槽を使用し、順次分子量を上昇させていく。重縮合反応槽の形態は、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽などの何れの型式であってもよく、また、これらを組み合わせることも出来る。中でも、少なくとも1つの重縮合反応槽においては攪拌装置を有するタイプであることが好ましく、攪拌装置としては、動力部、軸受、軸、攪拌翼から成る通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機などの高速回転するタイプも使用することが出来る。
攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部などから直接攪拌する通常の攪拌方法の他、配管などで反応液の一部を反応器の外部に持ち出してラインミキサー等で攪拌し、反応液を循環させる方法も採ることが出来る。中でも、少なくとも重縮合反応槽の1つは、水平方向に回転軸を有する表面更新とセルフクリーニング性に優れた横型の反応器を使用することが推奨される。
重縮合反応は、触媒の存在下に、通常210〜280℃、好ましくは220〜250℃、更に好ましくは230〜245℃、特に好ましくは少なくとも一つの反応槽においては230〜240℃の温度で、好ましくは攪拌を行いながら、通常1〜12時間、好ましくは3〜10時間で、通常27kPa以下、好ましくは20kPa以下、特に好ましくは13kPa以下の減圧状態で行う。反応は、回分法でも連続法でも構わないが、ポリマーの品質の安定性や末端カルボキシル基低減等の観点からは、連続法が好ましい。また、着色や劣化を抑え、ビニル基などの末端の増加を抑制するため、少なくとも1つの反応槽において、通常1.3kPa以下、好ましくは0.5kPa以下、更に好ましくは0.3kPa以下の高真空下で行うのがよい。
重縮合反応により得られたポリマーは、通常、重縮合反応槽の底部からポリマー抜き出しダイに移送されてストランド状に抜き出され、水冷されながら又は水冷後、カッターで切断され、ペレット状、チップ状などの粒状体とされる。
更に、PBTの重縮合反応工程は、一旦、溶融重縮合で比較的分子量の小さい、例えば、固有粘度0.1〜0.9程度のPBTを製造した後、引き続き、PBTの融点以下の温度で固相重縮合(固相重合)させることも出来る。
本発明のPBTは、ポリマー前駆体やポリマーの流路にフィルターを設置することにより、更に品質の優れたポリマーとすることが出来る。
フィルターの設置位置が製造プロセスの余りにも上流側の場合は、下流側で発生する異物の除去が行えず、下流側の粘度が高い所ではフィルターの圧力損失が大きくなり、流量を維持するためには、フィルターの目開きを大きくしたり、フィルターの濾過面積や配管などの設備を過大にする必要があったり、また、流体通過時に高剪断を受けるため、剪断発熱によるPBTの劣化が不可避となる。従って、フィルターの設置位置は、PBT又はその前駆体の固有粘度が通常0.1〜0.9の位置が選択される。
フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布、多孔質金属板などの何れでもよいが、濾過精度の観点から、積層金属メッシュ又は金属不織布が好ましく、特に、その目開きが焼結処理により固定されているものが好ましい。フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプ、プリーツ型円筒タイプ等の何れの型式であってもよい。また、プラントの運転に影響を与えない様にするため、複数のフィルターを設置し、切り替えて使用できる構造にしたり、オートスクリーンチェンジャーを設置することが好ましい。
フィルターの絶対濾過精度は、特に制限されないが、通常0.5〜200μm、好ましくは1〜100μm、更に好ましくは5〜50μm、特に好ましくは10〜30μmである。絶対濾過精度が大きすぎる場合は製品中の異物低減効果がなくなり、小さすぎる場合は生産性の低下やフィルター交換頻度の増大を招く。ここに、絶対濾過精度とは、粒径が既知でかつ揃ったガラスビーズ等の標準粒径品を使用し濾過テストを行った場合に、完全に濾別除去される場合の最低粒径を示す。
以下、添付図面に基づき、PBTの製造方法の好ましい実施態様を説明する。図1は、本発明で採用するエステル化反応工程またはエステル交換化反応工程の一例の説明図、図2は、本発明で採用する重縮合工程の一例の説明図である。
図1において、原料のテレフタル酸は、通常、原料混合槽(図示せず)で1,4−ブタンジオールと混合され、原料供給ライン(1)からスラリー又は液体の形態で反応槽(A)に供給される。一方、原料がテレフタル酸ジアルキルの場合は通常溶融した液体として1,4−ブタンジオールと独立に反応槽(A)に供給される。また、チタン触媒は、好ましくは触媒調整槽(図示せず)で1,4−ブタンジオールの溶液とした後、チタン触媒供給ライン(3)から供給される。図1では再循環1,4−ブタンジオールの再循環ライン(2)に触媒供給ライン(3)を連結し、両者を混合した後、反応槽(A)の液相部に供給する態様を示した。また、2A族金属触媒は、好ましくは触媒調製槽(図示せず)で1,4−ブタンジオールの溶液とした後、2A族金属触媒供給ライン(15)から供給される。
反応槽(A)から留出するガスは、留出ライン(5)を経て精留塔(C)で高沸成分と低沸成分とに分離される。通常、高沸成分の主成分は1,4−ブタンジオールであり、低沸成分の主成分は、直接重合法の場合は水およびTHF、エステル交換法の場合は、アルコール、THF、水である。
精留塔(C)で分離された高沸成分は抜出ライン(6)から抜き出され、ポンプ(D)を経て、一部は再循環ライン(2)から反応槽(A)に循環され、一部は循環ライン(7)から精留塔(C)に戻される。また、余剰分は抜出ライン(8)から外部に抜き出される。一方、精留塔(C)で分離された軽沸成分はガス抜出ライン(9)から抜き出され、コンデンサ(G)で凝縮され、凝縮液ライン(10)を経てタンク(F)に一時溜められる。タンク(F)に集められた軽沸成分の一部は、抜出ライン(11)、ポンプ(E)及び循環ライン(12)を経て精留塔(C)に戻され、残部は、抜出ライン(13)を経て外部に抜き出される。コンデンサ(G)はベントライン(14)を経て排気装置(図示せず)に接続されている。反応槽(A)内で生成したオリゴマーは、抜出ポンプ(B)及び抜出ライン(4)を経て抜き出される。
図1に示す工程においては、再循環ライン(2)に触媒供給ライン(3)が連結されているが、両者は独立していてもよい。また、原料供給ライン(1)は反応槽(A)の液相部に接続されていてもよい。
図2において、前述の図1に示す抜出ライン(4)から供給されたオリゴマーは、第1重縮合反応槽(a)で減圧下に重縮合されてプレポリマーとなった後、抜出用ギヤポンプ(c)及び抜出ライン(L1)を経て第2重縮合反応槽(d)に供給される。第2重縮合反応槽(d)では、通常、第1重縮合反応槽(a)よりも低い圧力で更に重縮合が進みポリマーとなる。得られたポリマーは、抜出用ギヤポンプ(e)及び抜出ライン(L3)を経てダイスヘッド(g)から溶融したストランドの形態で抜き出され、水などで冷却された後、回転式カッター(h)で切断されてペレットとなる。符号(L2)は第1重縮合反応槽(a)のベントライン、符号(L4)は第2重縮合反応槽(d)のベントラインである。
本発明のPBTには、2,6−ジ−t−ブチル−4−オクチルフェノール、ペンタエリスリチル−テトラキス〔3−(3’,5’−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕等のフェノール化合物、ジラウリル−3,3’−チオジプロピオネート、ペンタエリスリチル−テトラキス(3−ラウリルチオジプロピオネート)等のチオエーテル化合物、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト等の燐化合物などの抗酸化剤、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステルに代表される長鎖脂肪酸およびそのエステル、シリコーンオイル等の離型剤などを添加してもよい。
本発明のPBTには、強化充填材を配合することが出来る。強化充填材としては、特に制限されないが、例えば、ガラス繊維、カーボン繊維、シリカ・アルミナ繊維、ジルコニア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケイ素チタン酸カリウム繊維、金属繊維などの無機繊維、芳香族ポリアミド繊維、フッ素樹脂繊維などの有機繊維などが挙げられる。これらの強化充填材は、2種以上を組み合わせて使用することが出来る。上記の強化充填材の中では、無機充填材、特にガラス繊維が好適に使用される。
強化充填材が無機繊維または有機繊維である場合、その平均繊維径は、特に制限されないが、通常1〜100μm、好ましくは2〜50μm、更に好ましくは3〜30μm、特に好ましくは5〜20μmである。また、平均繊維長は、特に制限されないが、通常0.1〜20mm、好ましくは1〜10mmである。
強化充填材は、PBTとの界面密着性を向上させるため、収束剤または表面処理剤で表面処理して使用することが好ましい。収束剤または表面処理剤としては、例えば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物が挙げられる。強化充填材は、収束剤または表面処理剤により予め表面処理しておくことが出来、または、PBT組成物の調製の際に、収束剤または表面処理剤を添加して表面処理することも出来る。強化充填材の添加量は、PBT樹脂100重量部に対し、通常150重量部以下、好ましくは5〜100重量部である。
本発明のPBTには、強化充填材と共に他の充填材を配合することが出来る。配合する他の充填材としては、例えば、板状無機充填材、セラミックビーズ、アスベスト、ワラストナイト、タルク、クレー、マイカ、ゼオライト、カオリン、チタン酸カリウム、硫酸バリウム、酸化チタン、酸化ケイ素、酸化アルミニウム、水酸化マグネシウム等が挙げられる。板状無機充填材を配合することにより、成形品の異方性およびソリを低減することが出来る。板状無機充填材としては、例えば、ガラスフレーク、雲母、金属箔どを挙げることが出来る。これらの中ではガラスフレークが好適に使用される。
本発明のPBTには、難燃性を付与するために難燃剤を配合することが出来る。難燃剤としては、特に制限されず、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、その他の有機難燃剤、無機難燃剤などが挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ポリペンタブロモベンジルアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等が挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、シアヌール酸などの窒素化合物などが挙げられる。その他の無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物などが挙げられる。
本発明のPBTには、必要に応じ、慣用の添加剤などを配合することが出来る。斯かる添加剤としては、特に制限されず、例えば、酸化防止剤、耐熱安定剤などの安定剤の他、滑剤、離型剤、触媒失活剤、結晶核剤、結晶化促進剤などが挙げられる。これらの添加剤は、重合途中または重合後に添加することが出来る。更に、PBTに、所望の性能を付与するため、紫外線吸収剤、耐候安定剤などの安定剤、染顔料などの着色剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤などを配合することが出来る。
本発明のPBTには、必要に応じて、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリメタクリル酸エステル、ABS樹脂、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、液晶ポリエステル、ポリアセタール、ポリフェニレンオキサイド等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂などの熱硬化性樹脂を配合することが出来る。これらの熱可塑性樹脂および熱硬化性樹脂は、2種以上を組み合わせて使用することも出来る。
前記の種々の添加剤や樹脂の配合方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。各成分は、付加的成分を含めて、混練機に一括して供給することが出来、あるいは、順次供給することも出来る。また、付加的成分を含めて、各成分から選ばれた2種以上の成分を予め混合しておくことも出来る。
本発明のPBTの成形加工方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形法、すなわち、射出成形、中空成形、押し出し成形、プレス成形などの成形法を適用することが出来る。
本発明のPBTは、色調、耐加水分解性、熱安定性、透明性、成形性に優れているため、電気、電子部品、自動車用部品などの射出成形部品として好適であるが、特に、異物が少なく、透明性に優れているため、フィルム、モノフィラメント、繊維などの用途において改良効果が顕著である。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例で採用した物性および評価項目の測定方法は次の通りである。
(1)エステル化率:
以下の計算式(4)によって酸価およびケン化価から算出した。酸価は、ジメチルホルムアミドにオリゴマーを溶解させ、0.1NのKOH/メタノール溶液を使用して滴定により求めた。ケン化価は0.5NのKOH/エタノール溶液でオリゴマーを加水分解し、0.5Nの塩酸で滴定し求めた。
Figure 0005121125
(2)末端カルボキシル基濃度:
ベンジルアルコール25mLにPBT又はオリゴマー0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定した。
(3)固有粘度(IV):
ウベローデ型粘度計を使用し次の要領で求めた。すなわち、フェノール/テトラクロロエタン(重量比1/1)の混合溶媒を使用し、30℃において、濃度1.0g/dLのポリマー溶液および溶媒のみの落下秒数を測定し、以下の式(5)より求めた。
Figure 0005121125
(4)PBT中のチタン及び周期表2A族金属濃度:
電子工業用高純度硫酸および硝酸でPBTを湿式分解し、高分解能ICP(Inductively Coupled Plasma)−MS(MassSpectrometer )(サーモクエスト社製)を使用して測定した。
(5)末端メトキシカルボニル基濃度および末端ビニル基濃度:
重クロロホルム/ヘキサフルオロイソプロパノール=7/3(体積比)の混合溶媒1mLにPBT約100mgを溶解させ、重ピリジン36μLを添加し、50℃で1H−NMRを測定し求めた。NMR装置には日本電子(株)製「α−400」又は「AL−400」を使用した
(6)降温結晶化温度(Tc):
示差走査熱量計[パーキンエルマー社、型式DSC7]を使用し、昇温速度20℃/minで室温から300℃まで昇温した後、降温速度20℃/minで80℃まで降温し、発熱ピークの温度を降温結晶化温度とした。Tcが高いほど結晶化速度が速く、成形サイクルが短くなる。
(7)溶液ヘイズ:
フェノール/テトラクロロエタン=3/2(重量比)の混合溶媒20mLにPBT2.70gを110℃で30分間溶解させた後、30℃の恒温水槽で15分間冷却し、日本電色(株)製濁度計(NDH−300A)を使用し、セル長10mmで測定した。値が低いほど透明性が良好であることを示す。
(8)加水分解反応以外の反応による末端カルボキシル基濃度の上昇(ΔAV(d)):
内径5mmのキャピラリーにPBTペレットを粉砕後に乾燥して充填して窒素置換し、窒素下で245℃にコントロールしたオイルバスに浸漬し、40分後に取り出し、液体窒素で急冷させた。内容物の温度が十分下がった後、内容物を取り出し、末端カルボキシル基濃度および末端水酸基濃度を測定し、前述の式(1)より求めた。
(9)PBT中の環状2量体および環状3量体含量:
ヘキサフルオロイソプロパノール/クロロホルム=2/3(体積比)3mLにPBT0.1gを溶解させた後、クロロホルム20mL、メタノール10mLを加えてポリマーを沈殿させる。続いて濾別した上澄み液を乾固した後、ジメチルホルムアミド2mLに溶解させ、2重量%の酢酸水/アセトニトリルの混合溶媒を溶離液とし、高速液体クロマトグラフィー(カラム:三菱化学(株)製「MCI−GEL ODS−1LU」)で測定して求めた。環状2量体や環状3量体が少ない方が成形時の金型汚染などが少ない。
(10)ペレット色調:
日本電色(株)製色差計(Z−300A型)を使用し、L、a、b表色系におけるb値で評価した。値が低いほど黄ばみが少なく色調が良好であることを示す。
(11)耐加水分解性(加水分解試験後のIV保持率):
PBTペレットを純水を張った圧力容器に直接水に触れない様に入れ、密閉した後、121℃の飽和水蒸気下で50時間処理し、固有粘度(IV ')の測定を行う。上述のIV及びIV'の値から以下の式(6)によりIV保持率を算出する。IV保持率が大きいほど耐加水分解性が良好なことを示す。
Figure 0005121125
(12)フィシュアイ数:
Film Quality Testing System[オプティカルコントロールシステムズ社 形式FS−5]を使用し、厚さ50μmのフィルムを成形し、1m2当たりの25μm以上のフィッシュアイ数を測定した。
実施例1:
図1に示すエステル化工程と図2に示す重縮合工程を通し、次の要領でPBTの製造を行った。先ず、テレフタル酸1.00モルに対して、1,4−ブタンジオール1.80モルの割合で混合した60℃のスラリーをスラリー調製槽から原料供給ライン(1)を通じ、予め、エステル化率99%のPBTオリゴマーを充填したスクリュー型攪拌機を有するエステル化のための反応槽(A)に、41kg/hとなる様に連続的に供給した。同時に、再循環ライン(2)から185℃の精留塔(C)の塔底成分(98重量%以上が1,4−ブタンジオール)を20kg/hで供給し、チタン触媒供給ライン(3)から触媒として65℃のテトラブチルチタネートの6.0重量%1,4−ブタンジオール溶液を99g/hで供給した(理論ポリマー収量に対し30ppm)。この触媒溶液中の水分は0.2重量%であった。2A族金属触媒供給ライン(15)から触媒として65℃の酢酸マグネシウム・4水塩の6.0重量%1,4−ブタンジオール溶液を62g/hで供給した(理論ポリマー収量に対し15ppm)。この触媒溶液中の水分は10.0重量%であった。
反応槽(A)の内温は230℃、圧力は78kPaとし、生成する水とテトラヒドロフラン及び余剰の1,4−ブタンジオールを、留出ライン(5)から留出させ、精留塔(C)で高沸成分と低沸成分とに分離した。系が安定した後の塔底の高沸成分は、98重量%以上が1,4−ブタンジオールであり、精留塔(C)の液面が一定になる様に、抜出ライン(8)を通じてその一部を外部に抜き出した。一方、低沸成分は塔頂よりガスの形態で抜き出し、コンデンサ(G)で凝縮させ、タンク(F)の液面が一定になる様に、抜出ライン(13)より外部に抜き出した。
反応槽(A)で生成したオリゴマーの一定量は、ポンプ(B)を使用し、抜出ライン(4)から抜き出し、反応槽(A)内液の平均滞留時間が2.5hrになる様に液面を制御した。抜出ライン4から抜き出したオリゴマーは、第1重縮合反応槽(a)に連続的に供給した。系が安定した後、反応槽(A)の出口で採取したオリゴマーのエステル化率は96.5%であった。
第1重縮合反応槽(a)の内温は240℃、圧力2.1kPaとし、滞留時間が120分になる様に液面制御を行った。減圧機(図示せず)に接続されたベントライン(L2)から、水、テトラヒドロフラン、1,4−ブタンジオールを抜き出しながら、初期重縮合反応を行った。抜き出した反応液は第2重縮合反応槽(d)に連続的に供給した。
第2重縮合反応槽(d)の内温は240℃、圧力130Paとし、滞留時間が60分になる様に液面制御を行い、減圧機(図示せず)に接続されたベントライン(L4)から、水、テトラヒドロフラン、1,4−ブタンジオールを抜き出しながら、更に重縮合反応を進めた。得られたポリマーは、抜出用ギヤポンプ(e)により抜出ライン(L3)を経由し、ダイスヘッド(g)からストランド状に連続的に抜き出し、回転式カッター(h)でカッティングした。
得られたポリマーの固有粘度は0.70dL/g、末端カルボキシル基濃度は10.5μeq/gであった。
更に、上記のポリマーチップをダブルコニカル型ブレンダー(内容量100L)にて195℃、減圧下(0.133kPa以下)、5時間の固相重合処理を実施した。固相重合処理されたポリマーの固有粘度は0.85dL/g、末端カルボキシル基濃度は5.1μeq/gであった。他の分析値はまとめて表1に示した。異物が少なく、色調に優れ、透明性が良好なPBTが得られた。
実施例2:
実施例1において、第2重縮合反応槽(d)の滞留時間を90分にし、固相重合工程を省略した以外は、実施例1と同様に行った。得られたPBTの分析値はまとめて表1に示した。
実施例3:
実施例2において、ポリマー中のチタン及びマグネシウム含有量が表1の通りとなる様にテトラブチルチタネート及び酢酸マグネシウム・4水塩の供給量を調節し、第2重縮合反応槽(d)での滞留時間を75分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表1に示した。
実施例4:
実施例2において、ポリマー中のチタン及びマグネシウム含有量が表1の通りとなる様にテトラブチルチタネート及び酢酸マグネシウム・4水塩の供給量を調節し、第2重縮合反応槽(d)の温度を243℃、滞留時間を75分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表1に示した。
実施例5:
実施例2において、ポリマー中のチタン及びマグネシウム含有量が表1の通りとなる様にテトラブチルチタネート及び酢酸マグネシウム・4水塩の供給量を調節し、第2重縮合反応槽(d)の滞留時間を75分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表1に示した。
実施例6:
実施例2において、ポリマー中のチタン及びカルシウム含有量が表1の通りとなる様にテトラブチルチタネート及び酢酸カルシウム・1水塩の供給量を調節し、第2重縮合反応槽(d)の温度を245℃、滞留時間を75分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表1に示した。
比較例1
実施例2において、ポリマー中のチタン含有量が表2の通りとなる様にテトラブチルチタネートの供給量を調節し、第2重縮合反応槽(d)の滞留時間を105分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表2に示した。表2に示す様に、末端カルボキシル基濃度、色調、重合性も悪化した。
比較例2:
実施例2において、ポリマー中のチタン含有量が表2の通りとなる様にテトラブチルチタネートの供給量を調節し、第2重縮合反応槽(d)の滞留時間を90分にした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表2に示した。表2に示す様に、末端カルボキシル基濃度、色調、ヘイズが悪化し、異物も多く、重合性も悪化した。
比較例3:
タービン型撹拌翼を具備した内容積200Lのステンレス製反応槽に、テレフタル酸ジメチル397.2重量部、1,4−ブタンジオール213.8重量部にテトラブチルチタネート0.144重量部(理論ポリマー収量に対し45ppm)を加え、150〜215℃で3時間エステル交換反応を行った後、酢酸マグネシウム・4水塩0.178重量部(理論ポリマー収量に対し45ppm)を1,4−ブタンンジオールに溶解して添加し、更に、テトラブチルチタネート0.144重量部(理論ポリマー収量に対し45ppm)を添加した。続いて、ベント管およびダブルヘリカル型撹拌翼を有する内容積200Lのステンレス反応槽に、上記で得られたオリゴマーを移送した後、重縮合反応を行った。重縮合反応は常圧から0.133kPaまで85分かけて徐徐に減圧し、同時に所定の重合温度240℃まで昇温し、以降、所定重合温度、0.133kPaで継続し、所定の撹拌トルクに到達した時点で反応を終了し、ポリマーを抜き出した。得られたPBTの分析値はまとめて表2に示した。表2に示す様に、末端カルボキシル基濃度が大幅に悪化した。
比較例4:
実施例2において、ポリマー中のチタン及びナトリウム含有量が表2の通りになる様にテトラブチルチタネート及び水酸化ナトリウムの供給量を調節し、第2重縮合反応(d)の滞留時間を100分とした以外は、実施例2と同様に行った。得られたPBTの分析値はまとめて表2に示した。表2に示すように、色調が悪化し、フィッシュアイも多かった。
Figure 0005121125
Figure 0005121125
本発明で採用するエステル化反応工程またはエステル交換化反応工程の一例の説明図 本発明で採用する重縮合工程の一例の説明図
符号の説明
1:原料供給ライン
2:再循環ライン
3:チタン触媒供給ライン
4:抜出ライン
5:留出ライン
6:抜出ライン
7:循環ライン
8:抜出ライン
9:ガス抜出ライン
10:凝縮液ライン
11:抜出ライン
12:循環ライン
13:抜出ライン
14:ベントライン
15:2A族金属触媒供給ライン
A:反応槽
B:抜出ポンプ
C:精留塔
D、E:ポンプ
F:タンク
G:コンデンサ
L1、L3:抜出ライン
L2、L4:ベントライン
a:第1重縮合反応槽
d:第2重縮合反応槽
c、e:抜出用ギヤポンプ
g:ダイスヘッド
h:回転式カッター

Claims (11)

  1. 直接重合法を採用した連続エステル化工程を含む製造方法で得られるポリブチレンテレフタレートであって、触媒としてチタン化合物と周期表2A族金属化合物を使用して得られ、チタンの含有量がチタン原子として80ppm以下で、固有粘度が0.7〜1.0dL/gであり、末端メトキシカルボニル基濃度が0.5μeq/g以下、末端カルボキシル基濃度が0.1〜18μeq/gであることを特徴とするポリブチレンテレフタレート。
  2. 示差走査熱量計で降温速度20℃/minにて測定した降温結晶化温度が170〜195℃である請求項1に記載のポリブチレンテレフタレート。
  3. 末端ビニル基濃度が10μeq/g以下である請求項1又は2に記載のポリブチレンテレフタレート。
  4. フェノール/テトラクロロエタン混合溶媒(重量比3/2)20mLにポリブチレンテレフタレート2.7gを溶解させて測定した際の溶液ヘイズが10%以下である請求項1〜3の何れかに記載のポリブチレンテレフタレート。
  5. 環状2量体の含有量が1500ppm以下である請求項1〜4の何れかに記載のポリブチレンテレフタレート。
  6. 環状3量体の含有量が1000ppm以下である請求項1〜5の何れかに記載のポリブチレンテレフタレート。
  7. 周期表2A族金属の含有量が周期表2A族金属原子として5ppm以上、50ppm以下である請求項1〜の何れかに記載のポリブチレンテレフタレート。
  8. 周期表2A族金属がマグネシウムである請求項1〜の何れかに記載のポリブチレンテレフタレート。
  9. 末端カルボキシル基濃度が1〜10μeq/gである請求項1〜の何れかに記載のポリブチレンテレフタレート。
  10. 固有粘度が0.8〜0.9dL/gである請求項1〜の何れかに記載のポリブチレンテレフタレート。
  11. 不活性ガス雰囲気下に245℃で40分間熱処理した際の加水分解反応を除く末端カルボキシル基濃度の上昇が0.1〜30μeq/gである請求項1〜10の何れかに記載のポリブチレンテレフタレート。
JP2005095033A 2004-04-01 2005-03-29 ポリブチレンテレフタレート Active JP5121125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095033A JP5121125B2 (ja) 2004-04-01 2005-03-29 ポリブチレンテレフタレート

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004108918 2004-04-01
JP2004108918 2004-04-01
JP2005095033A JP5121125B2 (ja) 2004-04-01 2005-03-29 ポリブチレンテレフタレート

Publications (2)

Publication Number Publication Date
JP2005314674A JP2005314674A (ja) 2005-11-10
JP5121125B2 true JP5121125B2 (ja) 2013-01-16

Family

ID=35442417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095033A Active JP5121125B2 (ja) 2004-04-01 2005-03-29 ポリブチレンテレフタレート

Country Status (1)

Country Link
JP (1) JP5121125B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026650A1 (ja) * 2005-08-29 2007-03-08 Mitsubishi Chemical Corporation ポリブチレンテレフタレート及びその製造方法
JP2007091978A (ja) * 2005-09-30 2007-04-12 Mitsubishi Chemicals Corp 熱可塑性ポリエステル樹脂組成物
JP2007138018A (ja) * 2005-11-18 2007-06-07 Mitsubishi Chemicals Corp 難燃性ポリブチレンテレフタレート樹脂組成物
JP2007138019A (ja) * 2005-11-18 2007-06-07 Mitsubishi Chemicals Corp 難燃性ポリブチレンテレフタレート樹脂組成物
JP2007161840A (ja) * 2005-12-13 2007-06-28 Mitsubishi Chemicals Corp ポリブチレンテレフタレート樹脂組成物およびその樹脂成形体並びに積層体
JP2007169366A (ja) * 2005-12-20 2007-07-05 Mitsubishi Chemicals Corp 強化ポリエステル樹脂組成物およびポリエステル樹脂構造体
JP2007169401A (ja) * 2005-12-21 2007-07-05 Mitsubishi Chemicals Corp ポリエステル樹脂組成物およびポリエステル樹脂構造体
JP4848822B2 (ja) * 2006-04-14 2011-12-28 三菱エンジニアリングプラスチックス株式会社 リサイクル特性に優れたポリブチレンテレフタレート樹脂組成物
JP2007291277A (ja) * 2006-04-26 2007-11-08 Mitsubishi Engineering Plastics Corp ポリブチレンテレフタレート樹脂組成物およびこれを成形してなる樹脂成形体
JP5729220B2 (ja) * 2011-08-30 2015-06-03 三菱化学株式会社 ポリエステルの製造方法
JP5906778B2 (ja) * 2012-02-08 2016-04-20 東レ株式会社 ポリブチレンテレフタレートの製造方法および製造装置
JP2017193687A (ja) * 2016-04-22 2017-10-26 三菱ケミカル株式会社 フィルム用ポリブチレンテレフタレートペレット
CN114835884B (zh) * 2022-04-11 2023-05-12 四川轻化工大学 聚丁二酸丁二醇酯及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116377A (ja) * 1992-10-02 1994-04-26 Kuraray Co Ltd ポリブチレンテレフタレート系ポリエステルの製造方法
JPH06234909A (ja) * 1993-02-08 1994-08-23 Kuraray Co Ltd ポリブチレンテレフタレート系樹脂組成物およびその製造法
JPH0820638A (ja) * 1994-07-06 1996-01-23 Mitsubishi Chem Corp ポリエステルの製造方法
JP3176551B2 (ja) * 1995-03-30 2001-06-18 ポリプラスチックス株式会社 熱可塑性ポリエステルの製造方法
JP2004018558A (ja) * 2002-06-12 2004-01-22 Mitsubishi Chemicals Corp ポリブチレンテレフタレート系樹脂及び熱可塑性樹脂組成物

Also Published As

Publication number Publication date
JP2005314674A (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5121125B2 (ja) ポリブチレンテレフタレート
WO2005095487A1 (ja) ポリブチレンテレフタレート
KR100869538B1 (ko) 폴리부틸렌 테레프탈레이트 펠릿, 그의 컴파운드 제품,그의 성형품 및 이들의 제조방법
JP5079226B2 (ja) ポリブチレンテレフタレート
US7550552B2 (en) Process for producing polybutylene terephthalate
TWI424000B (zh) 聚對苯二甲酸丁二酯之製造方法
JP3911251B2 (ja) ポリブチレンテレフタレート樹脂の製造方法
JP4725028B2 (ja) ポリブチレンテレフタレート
JP5127118B2 (ja) ポリブチレンテレフタレート製フィルム及びシート並びにそれらの製造方法
WO2005012391A1 (ja) ポリブチレンテレフタレート
JP4591187B2 (ja) ポリブチレンテレフタレートの製造方法
JP4725027B2 (ja) ポリブチレンテレフタレート
JP4725029B2 (ja) ポリブチレンテレフタレート
JP4626343B2 (ja) ポリブチレンテレフタレートペレット、そのコンパウンド製品および成形品ならびにそれらの製造方法
JP5691832B2 (ja) ポリブチレンテレフタレートの製造方法
JP4544127B2 (ja) ポリブチレンテレフタレート及びその製造方法
JP3904536B2 (ja) ポリブチレンテレフタレートの製造方法
JP4635481B2 (ja) ポリブチレンテレフタレート
WO2005095488A1 (ja) ポリブチレンテレフタレート製フィルム及びシート並びにそれらの製造方法
JP4544228B2 (ja) ポリブチレンテレフタレートの製造方法
JP4525411B2 (ja) ポリブチレンテレフタレートペレット
JP2022158961A (ja) ジブチレングリコール共重合ポリブチレンテレフタレート及びその製造方法、コンパウンド製品及びその製造方法、並びに成形品及びその製造方法
JP2005105262A (ja) ポリブチレンテレフタレート及びその製造方法
JP2022158960A (ja) ジブチレングリコール共重合ポリブチレンテレフタレートペレット及びその製造方法、並びに成形品及びその製造方法
JP6241380B2 (ja) 1,4−ブタンジオール、該1,4−ブタンジオールを用いたポリエステルの製造方法及び該1,4−ブタンジオールの貯蔵方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100720

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350