JP5098945B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP5098945B2
JP5098945B2 JP2008267381A JP2008267381A JP5098945B2 JP 5098945 B2 JP5098945 B2 JP 5098945B2 JP 2008267381 A JP2008267381 A JP 2008267381A JP 2008267381 A JP2008267381 A JP 2008267381A JP 5098945 B2 JP5098945 B2 JP 5098945B2
Authority
JP
Japan
Prior art keywords
air
turbine
fuel
exhaust
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008267381A
Other languages
English (en)
Other versions
JP2010096080A (ja
Inventor
孝寛 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008267381A priority Critical patent/JP5098945B2/ja
Publication of JP2010096080A publication Critical patent/JP2010096080A/ja
Application granted granted Critical
Publication of JP5098945B2 publication Critical patent/JP5098945B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関の制御装置に関する。
近年、内燃機関のエミッション性能や燃費性能の更なる改善を図るために、理論空燃比運転の領域を拡大することが求められている。理論空燃比運転の領域を拡大するためには、排気ガス温度を低減することにより、触媒保護のための燃料増量をなるべく実施せずに済むようにすることが必要である。排気ガス温度を低減するためには、点火時期を進角することが重要である。しかしながら、ノッキングが生ずると、ノッキング回避のために、点火時期を遅角しなければならない。よって、点火時期を進角するには、ノッキングが起こりにくいようにする必要がある。ノッキングが起こりにくくするには、燃焼室内の残留ガスを低減することが有効である。
ターボ過給機付き内燃機関における中高速回転域の残留ガスを低減するためには、その領域で排気弁が受ける背圧を低下させることが必要である。そのためには、タービンを大容量化することが望ましい。しかしながら、大容量のタービンを十分に回転させるためには、高い排気エネルギーが必要である。このため、大容量のタービンを搭載した場合には、排気エネルギーの低い低速域や、減速からの立ち上がりにおいて、タービンを十分に回転させることができず、過給が不十分となる。
特開2007−85198号公報には、吸気圧力が排気圧力より高くなったときにEGR弁を開き、EGR通路を通して空気を排気通路に流入させる過給圧制御システムが開示されている。同公報の段落0009には、これにより、排気中の未燃HCの燃焼が促進され、排気エネルギーが増加するので、速やかに過給圧を上昇させることができる、と記載されている。
特開2007−85198号公報 特開2004−245104号公報 特開2005−320940号公報
しかしながら、上記特開2007−85198号公報に記載された発明では、排気通路に空気を流入させることにより、排気ガスの空燃比が理論空燃比よりもリーンになってしまう。このため、触媒でのNOx浄化率が低下するという問題がある。
本発明は、上述のような課題を解決するためになされたもので、低速域や減速後の立ち上がりにおける排気エネルギーを増大させることができ、大容量タービンの使用を可能とするとともに、エミッションの悪化を確実に回避することのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
排気通路に設けられたタービンと吸気通路に設けられたコンプレッサとを有する過給機と、
前記タービンの上流側の排気通路と、前記コンプレッサの下流側の吸気通路とを接続する流路と、
前記流路の流量を調整する弁と、
前記コンプレッサの下流側の圧力が前記タービンの上流側の圧力より大きいときに前記弁を開くことにより、前記吸気通路内の空気を前記流路を通して前記タービンの上流側の排気通路に流入させる空気供給手段と、
前記空気供給手段により空気が前記タービンの上流側の排気通路に供給されるときに、その空気量に応じて、前記タービンの上流側の排気通路に燃料を供給する燃料供給手段と、
を備え、
前記燃料供給手段により供給される燃料を前記空気供給手段により供給される空気によって前記タービンの上流側の排気通路で燃焼させることを特徴とする。
また、第2の発明は、第1の発明において、
気筒内に直接に燃料を噴射する直接噴射インジェクタを備え、
前記燃料供給手段は、排気行程において前記直接噴射インジェクタから燃料を噴射することにより前記タービンの上流側の排気通路に燃料を供給することを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記燃料供給手段は、前記コンプレッサの下流側の圧力と前記タービンの上流側の圧力との差圧と、前記弁の開度とに基づいて、前記タービンの上流側に供給される空気量を推定する手段を含むことを特徴とする。
また、第4の発明は、第1乃至第3の発明の何れかにおいて、
前記タービンは、第1の気筒群からの排気ガスが流入する第1の入口と、第2の気筒群からの排気ガスが流入する第2の入口とを有するツインスクロール型のものであり、
前記流路は、前記第1の気筒群のうちの少なくとも一つの気筒の排気通路と、前記第2の気筒群のうちの少なくとも一つの気筒の排気通路とにそれぞれ接続されていることを特徴とする。
また、第5の発明は、第1乃至第4の発明の何れかにおいて、
前記燃料供給手段は、前記空気供給手段により前記タービンの上流側の排気通路に供給される空気量に対しほぼ理論空燃比となる量の燃料を供給することを特徴とする。
また、第6の発明は、第1乃至第5の発明の何れかにおいて、
前記コンプレッサの下流側の吸気通路に設けられたインタークーラを更に備え、
前記流路は、前記コンプレッサと前記インタークーラとの間の吸気通路に接続されていることを特徴とする。
第1の発明によれば、コンプレッサの下流側の圧力がタービンの上流側の圧力より大きいときに、吸気通路内の空気を流路を通してタービンの上流側の排気通路に流入させるとともに、その空気量に応じて、タービンの上流側の排気通路に燃料を供給することができる。これにより、低速域や減速後の立ち上がりにおいて、排気通路で後燃えを生じさせ、タービンに流入する排気エネルギーを増大させることができる。このため、大容量のタービンを用いた場合であっても、低速域や減速後の立ち上がりにおいてターボ回転数を迅速に上昇させることができ、十分な過給を行うことができる。また、排気通路に空気を供給したときに同時に燃料も供給するので、触媒に流入する排気ガスの空燃比がリーンに偏ることを防止することができる。このため、エミッションの悪化が防止され、良好なNOx浄化率を維持することができる。また、後燃えする燃料の量を十分に確保することができるので、タービンに流入する排気エネルギーを十分に増大させることができる。
第2の発明によれば、排気通路に空気が供給されたとき、排気行程において直接噴射インジェクタから燃料を噴射することによりタービンの上流側の排気通路に燃料を供給することができる。これにより、排気通路に供給される燃料の量を高精度に制御することができる。
第3の発明によれば、コンプレッサの下流側の圧力とタービンの上流側の圧力との差圧と、タービンの上流側の排気通路とコンプレッサの下流側の吸気通路とを接続する流路に設けられた弁の開度とに基づいて、タービンの上流側に供給される空気量を高精度に推定することができる。
第4の発明によれば、ツインスクロール型ターボ過給機を備えたシステムにおいて、両スクロール間に排気エネルギーの差が生ずることを確実に防止することができる。このため、ターボ過給機の作動特性を良好とすることができる。
第5の発明によれば、タービンの上流側の排気通路に供給される空気量に対しほぼ理論空燃比となる量の燃料を排気通路に供給することができる。これにより、排気通路に空気と燃料とが供給されたときに、触媒に流入する排気ガスの空燃比を理論空燃比の近傍に精度良く保持することができる。このため、触媒における各有害成分の浄化率の低下を確実に防止することができ、より優れた浄化性能が得られる。
第6の発明によれば、インタークーラにより冷却される前の高温の空気を取り出して排気通路に供給することができる。このため、空気が排気通路内の排気ガスに合流したときの温度低下幅を小さくすることができるので、タービンに流入する排気エネルギーを更に増大させることができる。また、低速域では、車速が低いので、走行風が弱く、インタークーラの冷却性能が低下する。この場合に、排気通路に供給される分の空気が取り出されることにより、インタークーラを通過する空気量は減少する。このため、インタークーラの負荷を軽減することができる。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すように、本発明の実施の形態1のシステムは、内燃機関10を備えている。本実施形態の内燃機関10は、火花点火式のものである。内燃機関10の気筒数および気筒配置は特に限定されない。図1には、一つの気筒のみが代表して描かれている。
内燃機関10の各気筒には、ピストン12と、吸気弁14と、排気弁16と、点火プラグ18と、気筒内(燃焼室内)に直接に燃料を噴射する直接噴射インジェクタ20とが設けられている。また、各気筒の吸気弁14には吸気通路22が連通し、排気弁16には排気通路24が連通している。
また、内燃機関10は、ターボ過給機26を有している。ターボ過給機26は、コンプレッサ26aとタービン26bとを有している。コンプレッサ26aは、吸気通路22の途中に配置されており、タービン26bは、排気通路24の途中に配置されている。
コンプレッサ26aより上流側の吸気通路22には、エアクリーナ28と、吸入空気量を検出するエアフローメータ30とが設置されている。コンプレッサ26aより下流側の吸気通路22には、インタークーラ32と、スロットル弁34と、サージタンク36とが設けられている。
タービン26bの近傍には、タービン26bの上流側と下流側とをバイパスするバイパス通路38が設けられている。バイパス通路38には、ウェイストゲート弁40が設置されている。ウェイストゲート弁40が開くと、排気ガスの一部は、タービン26bを通らずにバイパス通路38を通って流れる。
また、タービン26bより下流側の排気通路24には、排気ガスを浄化する触媒42が設置されている。触媒42は、例えば、HC、CO、およびNOxを同時に低減可能な三元触媒としての機能を有している。
本実施形態の内燃機関は、外部EGR装置44を備えている。外部EGR装置44は、タービン26bの上流側の排気通路24とコンプレッサ26aの下流側の吸気通路22とを接続するEGR通路46と、EGR通路46の途中に設けられたEGRクーラ48と、EGR通路46の流量を調整するEGR弁50とを有している。外部EGR装置44によれば、排気通路24の排気ガスの一部を吸気通路22に還流させる外部EGR(Exhaust Gas Recirculation)を行うことができる。
本実施形態では、EGR通路46の一端は、EGR弁50を介してサージタンク36に接続されており、EGR通路46の他端は、排気ポート58に接続されている。
本実施形態のシステムは、更に、コンプレッサ26aの下流側の吸気通路22内の圧力(過給圧)を検出する過給圧センサ52と、タービン26bの上流側の排気通路24内の圧力(背圧)を検出する背圧センサ54と、触媒42に流入する排気ガスの空燃比を検出する空燃比センサ56と、ECU(Electronic Control Unit)60とを備えている。ECU60には、上述した各種のセンサおよびアクチュエータが電気的に接続されている。
ECU60は、各センサからの信号に基づいて、各アクチュエータの作動を制御することにより、内燃機関10の各種のパラメータを制御することができる。例えば、ECU60は、空燃比センサ56の信号に基づいて燃料噴射量を制御することにより、触媒42に流入する排気ガスの空燃比を理論空燃比に一致させる空燃比フィードバック制御を実行することができる。
[実施の形態1の特徴]
前述したように、本実施形態の内燃機関10においては、外部EGR装置44により、外部EGRを行うことができる。すなわち、背圧がサージタンク36内の圧力より高いときにEGR弁50を開くことにより、排気通路24内の排気ガスの一部をEGR通路46を通して吸気通路22に還流させることができる。部分負荷領域においては、外部EGRを行うことにより、ポンプ損失が小さくなり、燃費を改善することができる。
一般に、ターボ過給機付き内燃機関においては、低速域や、減速からの立ち上がりにおいて、ターボ過給機26の回転数が十分に上昇せず、過給が不足する場合がある。特に、大容量のタービン26bを採用した場合には、ターボ過給機26の回転数の上昇が遅れ易い。本実施形態では、この問題を外部EGR装置44を流用して解決するべく、次のような制御を実行することとした。
内燃機関10の低速域においては、過給圧が背圧より高くなる場合がある。この場合に、本実施形態では、EGR弁50を開くとともに、通常の燃料噴射に加えて排気行程で燃料噴射を行う。過給圧が背圧より大きい場合にEGR弁50を開くと、サージタンク36内の新気の一部がEGR通路46を逆流し、排気ポート58に流入する。また、排気ポート58には、排気行程で噴射された燃料が排気弁16を通って流入する。排気ポート58にある排気弁16は、排気ガスに常に晒され、高温になっている。このため、上記のようにして、燃料と空気とが排気ポート58に供給されると、排気ポート58内で燃焼(後燃え)が生ずる。この後燃えにより、タービン26bに流入する排気エネルギーを増大させることができる。このため、大容量のタービン26bを採用した場合であっても、ターボ過給機26の回転数を迅速に上昇させることができる。よって、低速域や、減速からの立ち上がりにおいて、過給不足が生ずることを確実に防止することができる。
[実施の形態1における具体的処理]
図2は、上記の機能を実現するために本実施形態においてECU60が実行するルーチンのフローチャートである。なお、本ルーチンは、所定時間毎に、あるいはクランク角に同期してサイクル毎に、繰り返し実行されるものとする。
図2に示すルーチンによれば、まず、過給圧が背圧より高いか否かが判別される(ステップ100)。ここでの過給圧としては、過給圧センサ52で検出される過給圧をそのまま用いるか、あるいはその平均値を用いることができる。また、ここでの背圧としては、背圧センサ54で検出される背圧をそのまま用いるか、あるいはその平均値を用いることができる。また、このステップ100では、過給圧と背圧との差圧ΔPが所定の判定値より大きい場合に、過給圧が背圧より高いと判定してもよい。
上記ステップ100で、過給圧が背圧より高いと判定されていない場合には、以下の処理を実行する必要はないので、このルーチンの処理がそのまま終了される。一方、上記ステップ100で、過給圧が背圧より高いと判定された場合には、EGR弁50が開かれる(ステップ102)。これにより、吸気通路22内の空気が、EGR通路46を通って、排気ポート58に流入する。このステップ102において、EGR弁50の開度は、内燃機関10の運転状態(エンジン回転数、吸入空気量等)に基づいて、所定のマップにより算出される。
上記ステップ102の処理に続いて、EGR通路46を通って排気ポート58に流入する空気量が算出される(ステップ104)。図3は、排気ポート58に流入する空気量を算出するためのマップである。このマップに示すように、過給圧と背圧との差圧ΔPが大きいほど排気ポート58に流入する空気量は多くなり、また、EGR弁50の開度が大きいほど排気ポート58に流入する空気量は多くなる。上記ステップ104においては、図3に示すマップに従い、過給圧と背圧との差圧ΔPと、EGR弁50の開度とに基づいて、排気ポート58に流入する空気量が算出される。
上記ステップ104の処理に続いて、排気行程において直接噴射インジェクタ20から燃料を噴射する処理が実行される(ステップ106)。内燃機関10では、燃焼室内で燃焼させるための正規の燃料噴射は、吸気行程あるいは圧縮行程において実行される。この正規の燃料噴射とは別に、上記排気行程の燃料噴射が実行される。この排気行程での燃料噴射量は、上記ステップ104で算出された排気ポート58への空気流入量に対し、ほぼ理論空燃比となるように算出される。
排気行程で噴射された燃料は、燃焼せずに排気弁16を通り、排気ポート58へ排出される。この未燃燃料が、EGR通路46を通って排気ポート58に供給された空気と反応することにより、後燃えが生ずる。この後燃えにより、タービン26bに流入する排気エネルギーを増大させることができる。このため、大容量のタービン26bを採用した場合であっても、ターボ過給機26の回転数を迅速に上昇させることができるので、低速域や、減速からの立ち上がりにおいて、過給不足が生ずることを確実に防止することができる。
本発明によれば、上述したように、大容量のタービン26bを採用することが可能となるので、排気ガス量が多くなる中高速域においても、背圧の増大が抑制され、筒内の残留ガスを低減することができる。このため、出力性能を向上することができる。また、残留ガスが少ないことにより、ノッキングが起こりにくくなり、点火時期を十分に進角することができる。このため、燃費性能を改善することができる。また、ノッキング回避のための点火時期遅角を抑制することができるので、排気ガス温度を低減することができる。その結果、触媒保護のための燃料増量をなるべく実施せずに済むので、理論空燃比運転の領域を拡大することができる。よって、エミッション性能を十分に改善することができる。
また、本実施形態によれば、EGR通路46を通して排気ポート58に空気を供給した際、この空気と反応させるための燃料を正規の燃料噴射とは別に排気行程で噴射することができる。これにより、後燃えに供するための燃料量を十分に確保することができるので、タービン26bに流入する排気エネルギーを十分に増大させることができる。このため、ターボ過給機26の回転数を更に迅速に上昇させることができる。
また、本実施形態によれば、排気行程での燃料噴射量が、排気ポート58への空気流入量に対し、ほぼ理論空燃比となるように制御することができる。このため、EGR通路46を通して排気ポート58に空気が供給された場合であっても、触媒42に流入する排気ガスの空燃比がリーン側に大きくずれることを確実に防止し、理論空燃比の近傍に精度良く保持することができる。このため、触媒42における各有害成分の浄化率の低下を確実に防止することができ、より優れた浄化性能が得られる。
なお、触媒42に流入する排気ガスの空燃比の最終的な制御は、前述した空燃比フィードバック制御により、吸気行程あるいは圧縮行程で行われる正規の燃料噴射量が調整されることによって行われる。このため、排気行程での燃料噴射量は、排気ポート58への空気流入量に対し、必ずしも厳密に理論空燃比になっていなくてもよく、概ね理論空燃比になっていればよい。
上述した実施の形態1においては、EGR通路46が前記第1の発明における「流路」に、EGR弁50が前記第1の発明における「弁」に、それぞれ相当している。また、ECU60が、上記ステップ102の処理を実行することにより前記第1の発明における「空気供給手段」が、上記ステップ106の処理を実行することにより前記第1、第2、第3および第5の発明における「燃料供給手段」が、上記ステップ104の処理を実行することにより前記第3の発明における「空気量を推定する手段」が、それぞれ実現されている。
また、上述した実施の形態1では、外部EGR装置44を流用することによってタービン26bの上流側の排気通路24に空気を供給するシステムを例に説明したが、本発明は、外部EGR装置44を備えないシステムにも適用可能である。すなわち、本発明は、タービン26bの上流側の排気通路24と、コンプレッサ26aの下流側の吸気通路22とを接続するように設けられた流路を、吸気側から排気側に空気を供給することにのみ用い、EGRには用いないようなシステムであってもよい。図4は、EGRを用いない場合のシステム構成を示す図である。以下、この図4のシステムと、図1のシステムとの相違点のみを説明し、同様の事項の説明は省略する。
図4に示すシステムにおいては、過給圧が背圧より高い場合、新気の一部を流路62を通して排気ポート58に供給することができる。流路62は、弁64を介して、コンプレッサ26aとインタークーラ32との間の吸気通路22に接続されている。すなわち、図4に示すシステムでは、流路62を通って排気ポート58に供給される新気は、コンプレッサ26aとインタークーラ32との間の吸気通路22から取り出される。インタークーラ32は、コンプレッサ26aで圧縮されて高温となった吸入空気を、車両の走行風により冷却するように構成されている。
図4に示すシステムによれば、インタークーラ32により冷却される前の高温の空気を流路62に取り出して排気ポート58に供給することができる。このため、空気が排気ポート58内の排気ガスに合流したときの温度低下幅を小さくすることができるので、タービン26bに流入する排気エネルギーを更に増大させることができる。また、前述したように、流路62により空気が取り出されるのは、低速域である。低速域では、車速が低いので、走行風が弱く、インタークーラ32の冷却性能が低下する。この場合に、流路62により空気が取り出された分、インタークーラ32を通過する空気量は減少する。このため、インタークーラ32の負荷を軽減することができる。
実施の形態2.
次に、図5を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。図5は、本発明の実施の形態2のシステム構成を説明するための図である。なお、図5において、図1に示す構成要素と同様の構成要素には、同一の符号を付して、その説明を省略または簡略化する。
図5に示すように、本実施形態における内燃機関10は、#1〜#4の4つの気筒を有する直列4気筒型エンジンである。また、本実施形態におけるターボ過給機26は、ツインスクロール型ターボ過給機である。このターボ過給機26のタービン26bは、第1の入口261と、第2の入口262とを備えている。
#1〜#4気筒には、排気通路241〜244がそれぞれ接続されている。そして、#1気筒に接続された排気通路241と、#4気筒には接続された排気通路244とが合流して、排気通路245を構成している。この排気通路245は、タービン26bの第1の入口261に接続されている。また、#2気筒に接続された排気通路242と、#3気筒には接続された排気通路243とが合流して、排気通路246を構成している。この排気通路246は、タービン26bの第2の入口262に接続されている。
以上のように、本実施形態では、内燃機関10を第1の気筒群(#1気筒および#4気筒)と第2の気筒群(#2気筒および#3気筒)とに分け、第1の気筒群からの排気ガスをタービン26bの第1の入口261に流入させ、第2の気筒群からの排気ガスをタービン26bの第2の入口262に流入させるように構成されている。このような構成によれば、気筒間の排気脈動干渉を抑制することができ、優れた過給特性が得られる。
また、本実施形態におけるEGR通路46は、排気通路に接続される側が、第1EGR通路461と第2EGR通路462とに分岐している。そして、第1EGR通路461は、#1気筒の排気通路241に接続され、第2EGR通路462は、#2気筒の排気通路242に接続されている。
本実施形態の内燃機関10においては、実施の形態1と同様の効果が得られる。すなわち、過給圧が背圧より高くなったときにEGR弁50を開くことにより、吸気通路22内の空気をEGR通路46を逆流させて排気通路に流入させることができる。そして、その空気により、排気行程で噴射された燃料を後燃えさせることにより、ターボ過給機26の回転数を迅速に上昇させることができる。この際、EGR通路46からの空気は、#1気筒の排気通路241と、#2気筒の排気通路242とに流入する。これらのうち、#1気筒の排気ガスは、タービン26bの第1の入口261に流入し、#2気筒の排気ガスは、タービン26bの第2の入口262に流入する。従って、第1の入口261側のスクロールの排気エネルギーと、第2の入口262側のスクロールの排気エネルギーとをそれぞれ高めることができるので、両スクロール間に排気エネルギーの差が生ずることを確実に防止することができる。このため、ターボ過給機26の作動特性を良好とすることができる。
図5に示す例では、第1EGR通路461および第2EGR通路462を#1気筒および#2気筒にそれぞれ接続しているが、第1EGR通路461および第2EGR通路462は、第1の気筒群のうちの何れかの気筒と、第2の気筒群のうちの何れかの気筒とに接続されていればよい。すなわち、第1EGR通路461および第2EGR通路462の接続相手は、次の(1)〜(3)の何れかであっても、本実施形態と同様の効果が得られる。(1)#1気筒と#3気筒、(2)#2気筒と#4気筒、(3)#3気筒と#4気筒。
本発明の実施の形態1のシステム構成を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 排気ポートに流入する空気量を算出するためのマップである。 EGRを用いない場合のシステム構成を示す図である。 本発明の実施の形態2のシステム構成を説明するための図である。
符号の説明
10 内燃機関
12 ピストン
14 吸気弁
16 排気弁
18 点火プラグ
20 直接噴射インジェクタ
22 吸気通路
24 排気通路
26 ターボ過給機
26a 吸気圧縮機
26b 排気タービン
30 エアフローメータ
32 インタークーラ
34 スロットル弁
36 サージタンク
44 外部EGR装置
46 EGR通路
48 EGRクーラ
50 EGR弁
52 過給圧センサ
54 背圧センサ
56 空燃比センサ
58 排気ポート
60 ECU
62 流路
64 弁
241,242,243,244,245,246 排気通路
261 第1の入口
262 第2の入口
461 第1EGR通路
462 第2EGR通路

Claims (6)

  1. 排気通路に設けられたタービンと吸気通路に設けられたコンプレッサとを有する過給機と、
    前記タービンの下流側の排気通路に設けられ、排気ガスを浄化する触媒と、
    前記触媒に流入する排気ガスの空燃比を検出する空燃比センサと、
    前記空燃比センサの信号に基づいて、前記触媒に流入する排気ガスの空燃比を理論空燃比に一致させる空燃比フィードバック制御を実行する空燃比フィードバック制御手段と、
    前記タービンの上流側の排気通路と、前記コンプレッサの下流側の吸気通路とを接続する流路と、
    前記流路の流量を調整する弁と、
    前記コンプレッサの下流側の圧力が前記タービンの上流側の圧力より大きいときに前記弁を開くことにより、前記吸気通路内の空気を前記流路を通して前記タービンの上流側の排気通路に流入させる空気供給手段と、
    前記空気供給手段により空気が前記タービンの上流側の排気通路に供給されるときに、その空気量に応じて、前記タービンの上流側の排気通路に燃料を供給する燃料供給手段と、
    を備え、
    前記燃料供給手段は、前記空気供給手段により前記タービンの上流側の排気通路に供給される空気量に対しほぼ理論空燃比となる量の燃料を供給し、
    前記燃料供給手段により供給される燃料を前記空気供給手段により供給される空気によって前記タービンの上流側の排気通路で燃焼させることを特徴とする内燃機関の制御装置。
  2. 気筒内に直接に燃料を噴射する直接噴射インジェクタを備え、
    前記燃料供給手段は、排気行程において前記直接噴射インジェクタから燃料を噴射することにより前記タービンの上流側の排気通路に燃料を供給することを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記燃料供給手段は、前記コンプレッサの下流側の圧力と前記タービンの上流側の圧力との差圧と、前記弁の開度とに基づいて、前記タービンの上流側に供給される空気量を推定する手段を含むことを特徴とする請求項1または2記載の内燃機関の制御装置。
  4. 前記タービンは、第1の気筒群からの排気ガスが流入する第1の入口と、第2の気筒群からの排気ガスが流入する第2の入口とを有するツインスクロール型のものであり、
    前記流路は、前記第1の気筒群のうちの少なくとも一つの気筒の排気通路と、前記第2の気筒群のうちの少なくとも一つの気筒の排気通路とにそれぞれ接続されていることを特徴とする請求項1乃至3の何れか1項記載の内燃機関の制御装置。
  5. 前記燃料供給手段は、前記空気供給手段により前記タービンの上流側の排気通路に供給される空気量に対しほぼ理論空燃比となる量の燃料を供給することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の制御装置。
  6. 前記コンプレッサの下流側の吸気通路に設けられたインタークーラを更に備え、
    前記流路は、前記コンプレッサと前記インタークーラとの間の吸気通路に接続されていることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。
JP2008267381A 2008-10-16 2008-10-16 内燃機関の制御装置 Active JP5098945B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267381A JP5098945B2 (ja) 2008-10-16 2008-10-16 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267381A JP5098945B2 (ja) 2008-10-16 2008-10-16 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2010096080A JP2010096080A (ja) 2010-04-30
JP5098945B2 true JP5098945B2 (ja) 2012-12-12

Family

ID=42257939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267381A Active JP5098945B2 (ja) 2008-10-16 2008-10-16 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5098945B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824572B2 (ja) * 2016-10-26 2021-02-03 ダイハツ工業株式会社 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601700A1 (de) * 1986-01-22 1987-07-23 Bosch Gmbh Robert Mehrzylindrige brennkraftmaschine mit kraftstoffeinspritzung, insbesondere turbomotor
JPH0192532A (ja) * 1987-10-01 1989-04-11 Mazda Motor Corp 排気ターボ過給機付エンジン
JPH0681631A (ja) * 1992-08-28 1994-03-22 Isuzu Motors Ltd 内燃機関の排気ガス浄化装置
JP4164640B2 (ja) * 2002-04-16 2008-10-15 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP4232636B2 (ja) * 2004-01-13 2009-03-04 トヨタ自動車株式会社 内燃機関の制御装置
JP2005264735A (ja) * 2004-03-16 2005-09-29 Yamaha Marine Co Ltd 過給機付きエンジン
JP2006322398A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp 内燃機関

Also Published As

Publication number Publication date
JP2010096080A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
US7444804B2 (en) Exhaust gas control apparatus for internal combustion engine
JP5187123B2 (ja) 内燃機関の制御装置
JP5136654B2 (ja) 内燃機関の制御装置
JP2006233898A (ja) Egr装置
JP5397567B1 (ja) 内燃機関の制御装置
JP4905421B2 (ja) 内燃機関およびその制御装置
JP2011196196A (ja) 内燃機関の制御装置
JP2008303763A (ja) 内燃機関の排気浄化制御装置
JP2009085053A (ja) 圧縮着火内燃機関の制御装置
JP4736969B2 (ja) ディーゼルエンジンの制御装置
JP4635974B2 (ja) ディーゼル機関の制御装置
JP2008196377A (ja) 内燃機関の制御装置
JP2008063976A (ja) エンジンの排気ガス還流装置
JP6127906B2 (ja) 内燃機関の制御装置
JP5098945B2 (ja) 内燃機関の制御装置
JP5472082B2 (ja) 圧縮着火内燃機関の燃焼モード制御システム
JP2009191660A (ja) 内燃機関の制御装置
JP4031227B2 (ja) 過給機付筒内噴射エンジンの排気還流装置
JP5930288B2 (ja) 内燃機関
JP4710729B2 (ja) 内燃機関の制御装置
JP2008075545A (ja) エンジンの過給装置
JP5684041B2 (ja) 過給機付き内燃機関
JP2010133327A (ja) 内燃機関の排気浄化装置
JP2006105057A (ja) ディーゼルエンジンの排気浄化装置
JP2009047010A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3