JP5078205B2 - レーザ照射装置 - Google Patents

レーザ照射装置 Download PDF

Info

Publication number
JP5078205B2
JP5078205B2 JP2001244845A JP2001244845A JP5078205B2 JP 5078205 B2 JP5078205 B2 JP 5078205B2 JP 2001244845 A JP2001244845 A JP 2001244845A JP 2001244845 A JP2001244845 A JP 2001244845A JP 5078205 B2 JP5078205 B2 JP 5078205B2
Authority
JP
Japan
Prior art keywords
laser
film
substrate
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001244845A
Other languages
English (en)
Other versions
JP2003059859A5 (ja
JP2003059859A (ja
Inventor
幸一郎 田中
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001244845A priority Critical patent/JP5078205B2/ja
Priority to US10/214,352 priority patent/US6660609B2/en
Publication of JP2003059859A publication Critical patent/JP2003059859A/ja
Publication of JP2003059859A5 publication Critical patent/JP2003059859A5/ja
Application granted granted Critical
Publication of JP5078205B2 publication Critical patent/JP5078205B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレーザ光を用いた半導体膜のアニール(以下、レーザアニールという)の方法およびそれを行うためのレーザ照射装置(レーザと該レーザから出力されるレーザ光を被処理体まで導くための光学系を含む装置)に関する。また、前記レーザ光の照射を工程に含んで作製された半導体装置の作製方法に関する。なお、ここでいう半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、液晶表示装置や発光装置等の電気光学装置及び該電気光学装置を部品として含む電子装置も含まれるものとする。
【0002】
【従来の技術】
近年、ガラス等の絶縁基板上に形成された半導体膜に対し、レーザアニールを施して、結晶化させたり、結晶性を向上させる技術が広く研究されている。上記半導体膜には珪素がよく用いられる。本明細書中では、半導体膜をレーザ光で結晶化し、結晶質半導体膜を得る手段をレーザ結晶化という。
【0003】
ガラス基板は、従来よく使用されてきた合成石英ガラス基板と比較し、安価で加工性に富んでおり、大面積基板を容易に作製できる利点を持っている。これが上記研究の行われる理由である。また、結晶化に好んでレーザが使用されるのは、ガラス基板の融点が低いからである。レーザは基板の温度を余り上昇させずに、半導体膜のみ高いエネルギーを与えることが出来る。また、電熱炉を用いた加熱手段に比べて格段にスループットが高い。
【0004】
結晶質半導体は多くの結晶粒から出来ているため、多結晶半導体膜とも呼ばれる。レーザアニールを施して形成された結晶質半導体膜は、高い移動度を有するため、この結晶質半導体膜を用いて薄膜トランジスタ(TFT)を形成し、例えば、1枚のガラス基板上に、画素部用と駆動回路用のTFTを作製する、アクティブマトリクス型の液晶表示装置等に盛んに利用されている。
【0005】
【発明が解決しようとする課題】
例えば、代表的なレーザの1つであるYAGレーザを用いて半導体膜の結晶化を行うことができる。このとき、YAGレーザは非線形光学素子を用いて第2高調波に変換し、さらに光学系を用いて照射面に置ける形状が矩形状または楕円状であるレーザ光に成形するのが望ましい。しかしながら、YAGレーザは非常に高い干渉性を持つコヒーレントな光である。エキシマレーザのコヒーレント長が数μm〜数十μmであるのに対し、YAGレーザのコヒーレント長は10mm前後またはそれ以上である。そのため、照射面またはその近傍においてエネルギー分布が一様なレーザ光を形成するのが難しかった。
【0006】
また、レーザ光を高調波に変換するために用いる非線形光学素子は、レーザ光が透過するため、十分な耐熱性、耐久性が必要とされ、大出力のレーザであるほど、前記非線形光学素子に対する劣化は大きい。
【0007】
そこで本発明は、高い干渉性を持つレーザにおいても、照射面におけるレーザ光のエネルギー分布が一様であるレーザ照射方法およびそれを行うためのレーザ照射装置を提供することを課題とする。また、非線形光学素子の劣化を低減させながらも、高出力のレーザ光に相当するエネルギーを有するレーザ光の高調波を発生させることを課題とする。さらに、前記レーザ照射方法により、半導体膜の結晶化や不純物元素の活性化を行って得られた半導体膜を用いて半導体装置を作製する方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本明細書で開示するレーザ照射装置に関する発明の構成は、複数のレーザと、前記複数のレーザの発振を制御する手段と、前記複数のレーザから射出する複数のレーザ光を1つのレーザ光に合成する手段と、照射面またはその近傍において前記レーザ光を集光する手段と、前記レーザ光を少なくとも1方向に移動させる手段と、を有することを特徴としている。
【0009】
上記発明の構成において、前記レーザは、連続発振またはパルス発振の固体レーザ、エキシマレーザ、Arレーザ、Krレーザから選ばれた一種または複数種であることを特徴としている。前記固体レーザとして、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザなどが挙げられる。
【0010】
また、上記発明の構成において、前記複数のレーザ光のうち少なくとも1つのレーザ光は、非線形光学素子により、高調波に変換されていることを特徴としている。前記複数のレーザ光を1つのレーザ光に合成する前に、高調波に変換することは、前記非線形光学素子の劣化を低減し、コストダウンに繋がる。
【0011】
また、上記発明の構成において、前記複数のレーザから射出する複数のレーザ光を1つのレーザ光に合成する手段は、導波路またはTFPを有することを特徴としている。これにより、大出力のレーザから射出されたレーザ光に相当するエネルギー密度を有するレーザ光がつくられる。
【0012】
また、上記発明の構成において、前記レーザ光を移動させる手段は、ガルバノメータまたはポリゴンミラー、およびfθレンズを有することを特徴としている。これらを用いることより、前記照射面おいて前記レーザ光を移動させることができる。
【0013】
また、上記発明の構成において、前記照射面は、前記レーザ光に対して斜めに設置されているとき、前記レーザ光の前記照射面に対する入射角度φは、前記レーザ光のビーム幅W、基板の厚さdであるとき、
φ≧arcsin(W/2d)
を満たすことを特徴としている。この入射角度φでレーザ光が入射されれば、基板の表面での反射光と、前記基板の裏面での反射光が干渉せず、一様なレーザ光の照射を行うことが可能となる。
【0014】
また、本明細書で開示するレーザ照射方法に関する発明の構成は、複数のレーザ光を1つのレーザ光に合成し、照射面またはその近傍において前記レーザ光を集光し、前記レーザ光を移動させながら照射することを特徴としている。
【0015】
上記発明の構成において、前記レーザは、連続発振またはパルス発振の固体レーザ、エキシマレーザ、Arレーザ、Krレーザから選ばれた一種または複数種であることを特徴としている。前記固体レーザとして、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザなどが挙げられる。
【0016】
また、上記発明の構成において、前記複数のレーザ光のうち少なくとも1つのレーザ光は、非線形光学素子により、高調波に変換されていることを特徴としている。前記複数のレーザ光を1つのレーザ光に合成する前に、高調波に変換することは、前記非線形光学素子の劣化を低減し、コストダウンに繋がる。
【0017】
また、上記発明の構成において、前記複数のレーザから射出する複数のレーザ光を1つのレーザ光に合成する手段は、導波路またはTFPを有することを特徴としている。これにより、大出力のレーザから射出されたレーザ光に相当するエネルギー密度を有するレーザ光がつくられる。
【0018】
また、上記発明の構成において、前記レーザ光を移動させる手段は、ガルバノメータまたはポリゴンミラー、およびfθレンズを有することを特徴としている。これらを用いることより、前記照射面おいて前記レーザ光を移動させることができる。
【0019】
また、上記発明の構成において、前記照射面は、前記レーザ光に対して斜めに設置されているとき、前記レーザ光の前記照射面に対する入射角度φは、前記レーザ光のビーム幅W、基板の厚さdであるとき、
φ≧arcsin(W/2d)
を満たすことを特徴としている。この入射角度φでレーザ光が入射されれば、基板の表面での反射光と、前記基板の裏面での反射光が干渉せず、一様なレーザ光の照射を行うことが可能となる。
【0020】
また、本明細書で開示する半導体装置の作製方法に関する発明の構成は、複数のレーザ光を1つのレーザ光に合成し、照射面またはその近傍において前記レーザ光を集光し、前記レーザ光を移動させながら半導体膜に照射して結晶化を行うことを特徴としている。
【0021】
また、本明細書で開示する半導体装置の作製方法に関する発明の他の構成は、半導体膜に不純物元素を導入し、複数のレーザ光を1つのレーザ光に合成し、
照射面またはその近傍において前記レーザ光を集光し、前記レーザ光を移動させながら前記半導体膜に照射して、前記不純物元素の活性化および前記半導体膜の結晶性の回復を行うことを特徴としている。
【0022】
上記発明の構成において、前記レーザは、連続発振またはパルス発振の固体レーザ、エキシマレーザ、Arレーザ、Krレーザから選ばれた一種または複数種であることを特徴としている。前記固体レーザとして、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザなどが挙げられる。
【0023】
また、上記発明の構成において、前記複数のレーザ光のうち少なくとも1つのレーザ光は、非線形光学素子により、高調波に変換されていることを特徴としている。前記複数のレーザ光を1つのレーザ光に合成する前に、高調波に変換することは、前記非線形光学素子の劣化を低減し、コストダウンに繋がる。
【0024】
また、上記発明の構成において、前記複数のレーザから射出する複数のレーザ光を1つのレーザ光に合成する手段は、導波路またはTFPを有することを特徴としている。これにより、大出力のレーザから射出されたレーザ光に相当するエネルギー密度を有するレーザ光がつくられる。
【0025】
また、上記発明の構成において、前記レーザ光を移動させる手段は、ガルバノメータまたはポリゴンミラー、およびfθレンズを有することを特徴としている。これらを用いることより、前記照射面おいて前記レーザ光を移動させることができる。
【0026】
また、上記発明の構成において、前記照射面は、前記レーザ光に対して斜めに設置されているとき、前記レーザ光の前記照射面に対する入射角度φは、前記レーザ光のビーム幅W、基板の厚さdであるとき、
φ≧arcsin(W/2d)
を満たすことを特徴としている。この入射角度φでレーザ光が入射されれば、基板の表面での反射光と、前記基板の裏面での反射光が干渉せず、一様なレーザ光の照射を行うことが可能となる。そのため、前記半導体膜の結晶化、または、不純物元素の活性化および前記半導体膜の結晶性の回復を行うことが可能となる。
【0027】
【発明の実施の形態】
本発明の実施形態について図1を用いて説明する。
【0028】
複数のレーザ100を用い、前記複数のレーザ100から発振された複数のレーザ光を1つにまとめる。このとき、少なくとも1つのレーザ光は前記複数のレーザ光は非線形光学素子101により、第2高調波や、第3高調波、第4高調波に変換する。もちろん、前記複数のレーザ光を全て同じ波長に変換してもよい。また、前記複数のレーザ光を1つにまとめる方法としては、ファイバーアレイ103、薄膜偏光素子(TFP:Thin Film Polarizer)やその他の偏光子を用いればよい。なお、複数のレーザの発振は、制御装置102により自在に発振できる。
【0029】
1つにまとめられたレーザ光は、大出力レーザから発振されたレーザ光に相当するエネルギー密度を有している。また、同じレーザから発振されるレーザ光は干渉性が高いが、異なるレーザから発振されるレーザ光同士は干渉しないため、複数のレーザが1つにまとめられたレーザ光は、互いに補い合って干渉を低減することを可能とする。また、レーザ光を高調波に変換するために用いる非線形光学素子は、レーザ光が透過するため、十分な耐熱性、耐久性が必要とされ、大出力のレーザであるほど、前記非線形光学素子に対する劣化は大きい。そのため、透過するレーザ光のエネルギーが少しでも小さければ、非線形光学素子の寿命が延び、コストダウンに繋がる。そこで、複数のレーザ光を1つのレーザ光にまとめる前に、非線形光学素子により波長を変調しておくことは有効である。
【0030】
そして、このようなレーザ光を光ファイバ、ガルバノメータ、ポリゴンメータなどを用いて、半導体膜の全面に照射することで、前記半導体膜のアニールや、不純物元素の活性化などを行うことができる。
【0031】
また、照射面におけるレーザ光の形状は、レーザの種類によって異なるし、光学系により成形することもできる。例えば、ラムダ社製のXeClエキシマレーザ(波長308nm、パルス幅30ns)L3308から射出されたレーザ光の形状は、10mm×30mm(共にビームプロファイルにおける半値幅)の矩形状である。また、YAGレーザから射出されたレーザ光の形状は、ロッド形状が円筒形であれば円状となり、スラブ型であれば矩形状となる。このようなレーザ光を光学系により、さらに成形することにより、所望の大きさのレーザ光をつくることもできる。
【0032】
さらに、基板に対して垂直にレーザ光を入射させる場合は、前記基板の表面で前記レーザ光の一部が反射し、入射したときと同じ光路を戻る、いわゆる戻り光となるが、該戻り光はレーザの出力や周波数の変動や、ロッドの破壊などの悪影響を及ぼす。そのため、前記戻り光を取り除きレーザの発振を安定させるため、アイソレータを設置するのが好ましい。
【0033】
一方、戻り光を防ぐため、基板に対して斜めにレーザ光を入射させることもできる。しかしながら、レーザ光は指向性およびエネルギー密度の高い光であるため、反射光が不適切な箇所を照射するのを防ぐためダンパーを設置して、前記反射光を吸収させるのが好ましい。なお、ダンパーには冷却水が循環しており、反射光の吸収によりダンパーの温度が上昇するのを防いでいる。
【0034】
ここで、基板に対して斜めにレーザ光を入射させる場合について説明する。図5に示すように、レーザ光はビーム幅Wをもって、照射面に入射する。入射光と基板の裏面における反射光とが重ならなければ、これらの光による干渉は起こらない。つまり、基板の厚さをdとし、半導体膜の厚さは前記基板の厚さより大きいため前記半導体膜の厚さを無視すると、
sinφ=W/2d
∴φ=arcsin(W/2d)
を満たす入射角φより大きければ、干渉は起こらない。つまり、
φ≧arcsin(W/2d)
のとき、干渉は起こらない。そのため、レーザ光は入射角φより大きい角度で入射させるのが望ましい。
【0035】
なお、本実施形態において3つのレーザを用いているが、レーザの数は3つに限らず、2以上の複数であれば特に限定しない。
【0036】
以上の構成でなる本発明について、以下に示す実施例によりさらに詳細な説明を行うこととする。
【0037】
【実施例】
[実施例1]
本実施例では、複数のレーザを用いて、基板全面にレーザ光を照射するための装置および方法について説明する。
【0038】
複数のレーザ100から射出したレーザ光は、非線形光学素子101により高調波に変調する。レーザとしては、連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、エキシマレーザ、Arレーザ、Krレーザなどを用いることができる。本実施例では、3台のYVO4レーザを用い、第2高調波に変調する。ここでは、比較的小さな出力のレーザ光の変調を行っているため、非線形光学素子に与える劣化も小さくて済む。
【0039】
そして、ファイバーアレイ103にそれぞれのレーザから射出したレーザ光を入射させ、導波路104により1つのレーザ光にまとめられる。1つにまとめられたレーザ光は、大出力レーザから発振されたレーザ光に相当するエネルギー密度を有している。また、同じレーザから発振されるレーザ光は干渉性が高いが、異なるレーザから発振されるレーザ光同士は干渉しないため、複数のレーザが1つにまとめられたレーザ光は、互いに補い合って干渉を低減することを可能とする。
【0040】
前記導波路104を経たレーザ光を再び光ファイバ105へ入射させ、レーザ光が拡散するのを低減させる。前記光ファイバ105から射出したレーザ光は凸レンズ106により集光し、基板109へ到達する。前記光ファイバ105は柔軟性を有するため、自在に移動させることが可能である。そのため、前記光ファイバ105を移動させることにより、基板109の全面を照射する。
【0041】
このようにして、基板の全面に照射することできる。この照射方法を用い、半導体膜のアニールや、不純物元素の活性化などを行うことができる。
【0042】
[実施例2]
本実施例では、複数のレーザおよびガルバノメータを用い、レーザ光に対し斜めに設置された基板の全面に前記レーザ光を照射するための装置および方法について説明する。
【0043】
実施例1にしたがって、複数のレーザから発振されたレーザ光を非線形光学素子101により変調し、ファイバーアレイ103および導波路104により1つにまとめ、さらに光ファイバ105に入射させる。
【0044】
前記光ファイバ105から射出したレーザ光を凸レンズ106により集光させ、前記レーザ光は更にガルバノメータ107、fθレンズ108を経て基板109に達している。ガルバノメータ107が振動することにより、ガルバノメータのミラーの角度が時間変化し、基板上でのレーザ光の位置が111で示した矢印の方向へ移動する。ガルバノメータが半周期振動すると、基板の幅の端から端までレーザ光が移動するように調整されている。このとき、基板上でのレーザ光の位置が移動しても、レーザ光のエネルギー密度が基板上で常に一定になるようにfθレンズ108は調整されている。また、照射面におけるレーザ光の形状を一方向に拡大するためにシリンドリカルレンズ(図示せず)をfθレンズ108と基板109の間に設置してもよい。
【0045】
ガルバノメータが半周期振動すると、基板の幅の端から端までレーザ光が移動する。これにより、レーザ光の照射された部分がレーザアニールされる。レーザ光の照射領域が断続的にならないように、ガルバノメータの振動の速度を調整する。その後、ステージが112で示した矢印の方向に移動して、再び基板上で111で示した方向へのレーザ光の移動が始まる。これらの動作を繰り返させることにより、基板全面をレーザアニールすることができる。すなわち、ガルバノメータの回転による照射位置の移動とステージの移動とを繰り返すことで基板全面にレーザが照射される。
【0046】
また、ステージを109で示した矢印の方向に移動させながら、108で示した方向へレーザ光の照射を行って、基板全面にレーザ光を照射してもよい。レーザ光の照射位置の移動方向が基板の辺に対して斜めとなるが、ステージとレーザ光の移動方向が合成されるからである。ガルバノメータにより移動するレーザ光の照射位置は往復運動をするため、効率よくレーザ光を基板に照射するためには、この照射方法により行うことが好ましい。しかしながら、プロセスの都合でレーザ光の移動方向を一定としたいのであれば、ガルバノメータを半周期振動させた後、レーザ光を遮断し、これを繰り返せばよい。
【0047】
また、本実施例では、レーザ光に対し、基板を斜めに設置している。斜めに設置すれば、戻り光の影響を受けず、レーザの出力や周波数の変動や、ロッドの破壊などの恐れがない。さらに、半導体膜や基板を透過する波長のレーザ光を用いても、基板に入射するレーザ光と基板裏面からの反射光との干渉の影響を低減することができるので、より一様なレーザアニールを行うことができる。
【0048】
しかしながら、レーザ光は指向性およびエネルギー密度の高い光であるため、反射光が不適切な箇所を照射するのを防ぐためダンパー(図示せず)を設置して、前記反射光を吸収させるのが好ましい。なお、ダンパーには冷却水が循環しており、反射光の吸収によりダンパーの温度が上昇するのを防いでいる。
【0049】
[実施例3]
本実施例では、複数のレーザおよび2つのガルバノメータを用い、レーザ光に対し斜めに設置された基板の全面に前記レーザ光を照射するための装置および方法について説明する。
【0050】
実施例2にしたがって、複数のレーザから発振されたレーザ光を非線形光学素子101により変調し、ファイバーアレイ103および導波路104により1つにまとめ、さらに光ファイバ105に入射させる。
【0051】
前記光ファイバ105から射出したレーザ光を凸レンズ106により集光させ、前記レーザ光は更にガルバノメータ122a、122b、fθレンズ108を経て基板109に達している。ガルバノメータ122a、122bが振動することにより、ガルバノメータ122aのミラーの角度が時間変化し、基板上でのレーザ光の位置が移動する。ガルバノメータ122aが半周期振動すると、基板の幅の端から端までレーザ光が移動するように調整されている。このとき、基板上でのレーザ光の位置が移動しても、レーザ光のエネルギー密度が基板上で常に一定になるようにfθレンズ108は調整されている。また、照射面におけるレーザ光の形状を一方向に拡大するためにシリンドリカルレンズ121をfθレンズ108と基板109の間に設置している。
【0052】
ガルバノメータ122aが半周期振動すると、基板の幅の端から端までレーザ光が移動する。これにより、レーザ光の照射された部分がレーザアニールされる。レーザ光の照射領域が断続的にならないように、ガルバノメータ122aの振動の速度を調整する。その後、ガルバノメータ122bの角度を変化させ、ガルバノメータ122aが再び振動することで基板上で111でレーザ光の移動が始まる。これらの動作を繰り返させることにより、基板全面をレーザアニールすることができる。すなわち、ガルバノメータ122a、122bの回転による照射位置の移動を繰り返すことで基板全面にレーザ光が照射される。
【0053】
また、ガルバノメータ122bを徐々に回転させながら、ガルバノメータ122aを回転させて、基板全面にレーザ光を照射してもよい。レーザ光の照射位置の移動方向が基板の辺に対して斜めとなるが、2つの移動方向が合成されるからである。ガルバノメータ122aにより移動するレーザ光の照射位置は往復運動をするため、効率よくレーザ光を基板に照射するためには、この照射方法により行うことが好ましい。しかしながら、プロセスの都合でレーザ光の移動方向を一定としたいのであれば、ガルバノメータ122aを半周期振動させた後、レーザ光を遮断し、これを繰り返せばよい。
【0054】
[実施例4]
本実施例では、ポリゴンミラーを用い、基板全面にレーザ光を照射するための装置および方法について説明する。
【0055】
実施例2にしたがって、複数のレーザから発振されたレーザ光を非線形光学素子101により変調し、ファイバーアレイ103および導波路104により1つにまとめ、さらに光ファイバ105に入射させる。
【0056】
前記光ファイバ105から射出したレーザ光を凸レンズ106により集光させ、前記レーザ光は更にポリゴンミラー117、fθレンズ108を経て基板109に達している。ポリゴンミラー113は複数のミラーからなり、ポリゴンミラー117が回転することにより、ミラーの角度が時間変化し、基板上でのレーザ光の位置が118で示した矢印の方向へ移動する。ポリゴンミラー117が回転する間、レーザ光は所定の位置で振動するが、基板の幅の端から端までレーザ光が移動するように調整されている。このとき、基板上でのレーザ光の位置が移動しても、レーザ光のエネルギー密度が基板上で常に一定になるようにfθレンズ108は調整されている。また、照射面におけるレーザ光の形状を一方向に拡大するためにシリンドリカルレンズ(図示せず)をfθレンズ108と基板109の間に設置してもよい。
【0057】
ポリゴンミラー117が回転すると、ポリゴンミラー117を構成するうちの1つのミラーにレーザ光が照射される間に、基板の幅の端から端までレーザ光が移動する。これにより、レーザ光の照射された部分がレーザアニールされる。レーザ光によるレーザアニールが適当に行なわれるように、ポリゴンミラーの回転の速度を調整する。その後、基板が112で示した矢印の方向に移動して、再び基板上で118で示した方向へのレーザ光の移動が始まる。前記移動の距離は、レーザ光の大きさに依存し、レーザアニールが基板全体に一様に成されるように調整する。これらの動作を繰り返させることにより、基板全面をレーザアニールすることができる。このときの基板におけるレーザ光の照射の様子を図2(A)で示す。すなわち、ポリゴンミラーの回転による照射位置の移動と基板の移動とを繰り返すことで基板全面にレーザが照射される。
【0058】
また、基板を112で示した矢印の方向に移動させながら、118で示した方向へレーザ光の照射を行っても、ポリゴンミラーの回転による照射位置の移動と基板の移動とにより基板全面にレーザが照射される。
【0059】
ここで、基板の移動機構について説明する。不活性気体を噴射するステージ118に気体供給管(図示せず)から例えば窒素を供給し、窒素を噴射させる。噴射する気体の圧力により、基板109を浮上させる。不活性気体の噴射する流量を調節することにより、基板の移動を行うことが可能である。また、基板の保持機構119により、基板の位置を安定化させ、所望の位置に移動させることも可能である。
【0060】
[実施例5]
本実施例ではアクティブマトリクス基板の作製方法について図6〜図9を用いて説明する。本明細書ではCMOS回路、及び駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成された基板を、便宜上アクティブマトリクス基板と呼ぶ。
【0061】
まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板400を用いる。なお、基板400としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。
【0062】
次いで、基板400上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜401を形成する。本実施例では下地膜401として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。下地膜401の一層目としては、プラズマCVD法を用い、SiH4、NH3、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜401aを10〜200nm(好ましくは50〜100nm)形成する。本実施例では、膜厚50nmの酸化窒化珪素膜401a(組成比Si=32%、O=27%、N=24%、H=17%)を形成した。次いで、下地膜401のニ層目としては、プラズマCVD法を用い、SiH4、及びN2Oを反応ガスとして成膜される酸化窒化珪素膜401bを50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。本実施例では、膜厚100nmの酸化窒化珪素膜401b(組成比Si=32%、O=59%、N=7%、H=2%)を形成する。
【0063】
次いで、下地膜上に半導体層402〜406を形成する。半導体層402〜406は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により25〜80nm(好ましくは30〜60nm)の厚さで半導体膜を成膜し、レーザ結晶化法により結晶化させる。もちろん、レーザ結晶化法だけでなく、他の公知の結晶化法(RTAやファーネスアニール炉を用いた熱結晶化法、結晶化を助長する金属元素を用いた熱結晶化法等)と組み合わせて行ってもよい。そして、得られた結晶質半導体膜を所望の形状にパターニングして半導体層402〜406を形成する。前記半導体膜としては、非晶質半導体膜や微結晶半導体膜、結晶質半導体膜などがあり、非晶質珪素ゲルマニウム膜などの非晶質構造を有する化合物半導体膜を適用しても良い。
【0064】
レーザ結晶化法で結晶質半導体膜を作製するには、パルス発振型または連続発光型のエキシマレーザ、YAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、Ti:サファイアレーザ等から選ばれた複数のレーザを用いる。これらのレーザを用い、レーザから射出された複数のレーザ光を光学系により1つにまとめて半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣決定する。
【0065】
本実施例では、プラズマCVD法を用い、55nmの非晶質珪素膜を成膜する。そして、連続発振のYVO4レーザの第2高調波を用い、図2または図3に示すような光学系により結晶化を行って結晶質珪素膜を形成する。そして、フォトリソグラフィ法を用いたパターニング処理によって半導体層402〜406を形成する。
【0066】
また、半導体層402〜406を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
【0067】
次いで、半導体層402〜406を覆うゲート絶縁膜407を形成する。ゲート絶縁膜407はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0068】
また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。
【0069】
次いで、ゲート絶縁膜407上に膜厚20〜100nmの第1の導電膜408と、膜厚100〜400nmの第2の導電膜409とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜408と、膜厚370nmのW膜からなる第2の導電膜409を積層形成した。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタした。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W膜中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。従って、本実施例では、高純度のW(純度99.9999%)のターゲットを用いたスパッタ法で、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9〜20μΩcmを実現することができた。
【0070】
なお、本実施例では、第1の導電膜408をTaN、第2の導電膜409をWとしたが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶珪素膜に代表される半導体膜を用いてもよい。また、AgPdCu合金を用いてもよい。また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化チタン(TiN)膜で形成し、第2の導電膜をW膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をAl膜とする組み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜とする組み合わせとしてもよい。
【0071】
次に、フォトリソグラフィ法を用いてレジストからなるマスク410〜415を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。(図6(B))本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25/25/10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行った。ここでは、松下電器産業(株)製のICPを用いたドライエッチング装置(Model E645−□ICP)を用いた。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
【0072】
この後、レジストからなるマスク410〜415を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30/30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0073】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層417〜422(第1の導電層417a〜422aと第2の導電層417b〜422b)を形成する。416はゲート絶縁膜であり、第1の形状の導電層417〜422で覆われない領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
【0074】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う。(図6(C))ここでは、エッチングガスにCF4とCl2とO2とを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層428b〜433bを形成する。一方、第1の導電層417a〜422aは、ほとんどエッチングされず、第2の形状の導電層428〜433を形成する。
【0075】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を低濃度に添加する。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。本実施例ではドーズ量を1.5×1013/cm2とし、加速電圧を60keVとして行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いる。この場合、導電層428〜433がn型を付与する不純物元素に対するマスクとなり、自己整合的に不純物領域423〜427が形成される。不純物領域423〜427には1×1018〜1×1020/cm3の濃度範囲でn型を付与する不純物元素を添加する。
【0076】
レジストからなるマスクを除去した後、新たにレジストからなるマスク434a〜434cを形成して第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜120keVとして行う。ドーピング処理は第2の導電層428b〜432bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部の下方の半導体層に不純物元素が添加されるようにドーピングする。続いて、第2のドーピング処理より加速電圧を下げて第3のドーピング処理を行って図7(A)の状態を得る。イオンドープ法の条件はドーズ量を1×1015〜1×1017/cm2とし、加速電圧を50〜100keVとして行う。第2のドーピング処理および第3のドーピング処理により、第1の導電層と重なる低濃度不純物領域436、442、448には1×1018〜5×1019/cm3の濃度範囲でn型を付与する不純物元素を添加され、高濃度不純物領域435、438、441、444、447には1×1019〜5×1021/cm3の濃度範囲でn型を付与する不純物元素を添加される。
【0077】
もちろん、適当な加速電圧にすることで、第2のドーピング処理および第3のドーピング処理は1回のドーピング処理で、低濃度不純物領域および高濃度不純物領域を形成することも可能である。
【0078】
次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク450a〜450cを形成して第4のドーピング処理を行う。この第4のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域453〜456、459、460を形成する。第2の導電層428a〜432aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域453〜456、459、460はジボラン(B26)を用いたイオンドープ法で形成する。(図7(B))この第4のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク450a〜450cで覆われている。第1乃至3のドーピング処理によって、不純物領域438、439にはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を1×1019〜5×1021atoms/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0079】
以上までの工程で、それぞれの半導体層に不純物領域が形成される。
【0080】
次いで、レジストからなるマスク450a〜450cを除去して第1の層間絶縁膜461を形成する。この第1の層間絶縁膜461としては、プラズマCVD法またはスパッタ法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚150nmの酸化窒化珪素膜を形成した。勿論、第1の層間絶縁膜461は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0081】
次いで、図7(C)に示すように、活性化処理としてレーザ照射方法を用いる。このとき本発明にしたがって連続発振やパルス発振のエキシマレーザ、YAGレーザ等を用いて行えばよい。また、ファーネスアニール炉を用いる熱アニール法や、ラピッドサーマルアニール法(RTA法)を適用することもできる。
【0082】
また、第1の層間絶縁膜を形成する前に活性化処理を行っても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(珪素を主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行うことが好ましい。
【0083】
そして、加熱処理(300〜550℃で1〜12時間の熱処理)を行うと水素化を行うことができる。この工程は第1の層間絶縁膜461に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)や、3〜100%の水素を含む雰囲気中で300〜450℃で1〜12時間の加熱処理を行っても良い。
【0084】
次いで、第1の層間絶縁膜461上に無機絶縁膜材料または有機絶縁物材料から成る第2の層間絶縁膜462を形成する。本実施例では、膜厚1.6μmのアクリル樹脂膜を形成したが、粘度が10〜1000cp、好ましくは40〜200cpのものを用い、表面に凸凹が形成されるものを用いる。
【0085】
本実施例では、鏡面反射を防ぐため、表面に凸凹が形成される第2の層間絶縁膜を形成することによって画素電極の表面に凸凹を形成した。また、画素電極の表面に凹凸を持たせて光散乱性を図るため、画素電極の下方の領域に凸部を形成してもよい。その場合、凸部の形成は、TFTの形成と同じフォトマスクで行うことができるため、工程数の増加なく形成することができる。なお、この凸部は配線及びTFT部以外の画素部領域の基板上に適宜設ければよい。こうして、凸部を覆う絶縁膜の表面に形成された凸凹に沿って画素電極の表面に凸凹が形成される。
【0086】
また、第2の層間絶縁膜462として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。
【0087】
そして、駆動回路506において、各不純物領域とそれぞれ電気的に接続する配線464〜468を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。もちろん、二層構造に限らず、単層構造でもよいし、三層以上の積層構造にしてもよい。また、配線の材料としては、AlとTiに限らない。例えば、TaN膜上にAlやCuを形成し、さらにTi膜を形成した積層膜をパターニングして配線を形成してもよい。(図8)
【0088】
また、画素部507においては、画素電極470、ゲート配線469、接続電極468を形成する。この接続電極468によりソース配線(443aと443bの積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線469は、画素TFTのゲート電極と電気的な接続が形成される。また、画素電極470は、画素TFTのドレイン領域442と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層458と電気的な接続が形成される。また、画素電極471としては、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いることが望ましい。
【0089】
以上の様にして、nチャネル型TFT501とpチャネル型TFT502からなるCMOS回路、及びnチャネル型TFT503を有する駆動回路506と、画素TFT504、保持容量505とを有する画素部507を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。
【0090】
駆動回路506のnチャネル型TFT501はチャネル形成領域437、ゲート電極の一部を構成する第1の導電層428aと重なる低濃度不純物領域436(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域452と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域451を有している。このnチャネル型TFT501と電極466で接続してCMOS回路を形成するpチャネル型TFT502にはチャネル形成領域440、ソース領域またはドレイン領域として機能する高濃度不純物領域454と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域453を有している。また、nチャネル型TFT503にはチャネル形成領域443、ゲート電極の一部を構成する第1の導電層430aと重なる低濃度不純物領域442(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域456と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域455を有している。
【0091】
画素部の画素TFT504にはチャネル形成領域446、ゲート電極の外側に形成される低濃度不純物領域445(LDD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域458と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域457を有している。また、保持容量505の一方の電極として機能する半導体層には、n型を付与する不純物元素およびp型を付与する不純物元素が添加されている。保持容量505は、絶縁膜416を誘電体として、電極(432aと432bの積層)と、半導体層とで形成している。
【0092】
本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。
【0093】
また、本実施例で作製するアクティブマトリクス基板の画素部の上面図を図9に示す。なお、図6〜図9に対応する部分には同じ符号を用いている。図8中の鎖線A−A’は図9中の鎖線A―A’で切断した断面図に対応している。また、図8中の鎖線B−B’は図9中の鎖線B―B’で切断した断面図に対応している。
【0094】
なお、本実施例は実施例1乃至4のいずれか一と自由に組み合わせることが可能である。
【0095】
[実施例6]
本実施例では、実施例5で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図10を用いる。
【0096】
まず、実施例5に従い、図8の状態のアクティブマトリクス基板を得た後、図8のアクティブマトリクス基板上、少なくとも画素電極470上に配向膜567を形成しラビング処理を行う。なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0097】
次いで、対向基板569を用意する。次いで、対向基板569上に着色層570、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層571とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。
【0098】
本実施例では、実施例5に示す基板を用いている。従って、実施例5の画素部の上面図を示す図9では、少なくともゲート配線469と画素電極470の間隙と、ゲート配線469と接続電極468の間隙と、接続電極468と画素電極470の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。
【0099】
このように、ブラックマスク等の遮光層を形成することなく、各画素間の隙間を着色層の積層からなる遮光部で遮光することによって工程数の低減を可能とした。
【0100】
次いで、平坦化膜573上に透明導電膜からなる対向電極576を少なくとも画素部に形成し、対向基板の全面に配向膜574を形成し、ラビング処理を施した。
【0101】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材568で貼り合わせる。シール材568にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料575を注入し、封止剤(図示せず)によって完全に封止する。液晶材料575には公知の液晶材料を用いれば良い。このようにして図10に示す反射型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、対向基板のみに偏光板(図示しない)を貼りつけた。そして、公知の技術を用いてFPCを貼りつけた。
【0102】
以上のようにして作製される液晶表示装置は干渉性の低減されたレーザ光が照射された半導体膜を用いて作製されており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0103】
なお、本実施例は実施例1乃至5と自由に組み合わせることが可能である。
【0104】
[実施例7]
本実施例では、実施例5で作製したアクティブマトリクス基板から、実施例5とは異なるアクティブマトリクス型液晶表示装置を作製する工程を以下に説明する。説明には図10を用いる。
【0105】
まず、実施例5に従い、図8の状態のアクティブマトリクス基板を得た後、図8のアクティブマトリクス基板上に配向膜1067を形成しラビング処理を行う。なお、本実施例では配向膜1067を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサを所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0106】
次いで、対向基板1068を用意する。この対向基板には、着色層1074、遮光層1075が各画素に対応して配置されたカラーフィルタが設けられている。また、駆動回路の部分にも遮光層1077を設けた。このカラーフィルタと遮光層1077とを覆う平坦化膜1076を設けた。次いで、平坦化膜1076上に透明導電膜からなる対向電極1069を画素部に形成し、対向基板の全面に配向膜1070を形成し、ラビング処理を施した。
【0107】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材1071で貼り合わせる。シール材1071にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料1073を注入し、封止剤(図示せず)によって完全に封止する。液晶材料1073には公知の液晶材料を用いれば良い。このようにして図11に示すアクティブマトリクス型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、公知の技術を用いて偏光板等を適宜設けた。そして、公知の技術を用いてFPCを貼りつけた。
【0108】
以上のようにして作製される液晶表示装置は干渉性の低減されたレーザ光が照射された半導体膜を用いて作製されており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0109】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
【0110】
[実施例8]
本実施例では、本発明を用いて発光装置を作製した例について説明する。本明細書において、発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにICを実装した表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(発光層)と陽極層と、陰極層とを有する。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。
【0111】
なお、本明細書中では、発光素子において陽極と陰極の間に形成された全ての層を有機発光層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層や、陽極層、正孔注入層、発光層、電子輸送層、陰極層等の順に積層した構造を有していることもある。
【0112】
図12は本実施例の発光装置の断面図である。図12において、基板700上に設けられたスイッチングTFT603は図8のnチャネル型TFT503を用いて形成される。したがって、構造の説明はnチャネル型TFT503の説明を参照すれば良い。
【0113】
なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0114】
基板700上に設けられた駆動回路は図8のCMOS回路を用いて形成される。従って、構造の説明はnチャネル型TFT501とpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0115】
また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線709とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。
【0116】
なお、電流制御TFT604は図8のpチャネル型TFT502を用いて形成される。従って、構造の説明はpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0117】
また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTの画素電極711上に重ねることで画素電極711と電気的に接続する電極である。
【0118】
なお、711は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極711は、上記配線を形成する前に平坦な層間絶縁膜710上に形成する。本実施例においては、樹脂からなる平坦化膜710を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0119】
配線701〜707を形成後、図12に示すようにバンク712を形成する。バンク712は100〜400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。
【0120】
なお、バンク712は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク712の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。
【0121】
画素電極711の上には発光層713が形成される。なお、図12では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を添加することで発光色を制御することができる。
【0122】
但し、以上の例は発光層として用いることのできる有機発光材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて発光層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。なお、本明細書中において、昇華性を有さず、かつ、分子数が20以下または連鎖する分子の長さが10μm以下の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。なお、PPVのπ共役系高分子を用いると、赤色から青色まで発光波長を選択できる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0123】
次に、発光層713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0124】
この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)711、発光層713及び陰極714で形成されたダイオードを指す。
【0125】
発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0126】
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層713が酸化するといった問題を防止できる。
【0127】
さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0128】
こうして図12に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。
【0129】
こうして、基板700上にnチャネル型TFT601、602、スイッチングTFT(nチャネル型TFT)603および電流制御TFT(nチャネル型TFT)604が形成される。
【0130】
さらに、図12を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強いnチャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。
【0131】
また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0132】
さらに、発光素子を保護するための封止(または封入)工程まで行った後の本実施例の発光装置について図13を用いて説明する。なお、必要に応じて図12で用いた符号を引用する。
【0133】
図13(A)は、発光素子の封止までを行った状態を示す上面図、図13(B)は図13(A)をC−C’で切断した断面図である。点線で示された801はソース側駆動回路、806は画素部、807はゲート側駆動回路である。また、901はカバー材、902は第1シール材、903は第2シール材であり、第1シール材902で囲まれた内側には封止材907が設けられる。
【0134】
なお、904はソース側駆動回路801及びゲート側駆動回路807に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)905からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
【0135】
次に、断面構造について図13(B)を用いて説明する。基板700の上方には画素部806、ゲート側駆動回路807が形成されており、画素部806は電流制御TFT604とそのドレインに電気的に接続された画素電極711を含む複数の画素により形成される。また、ゲート側駆動回路807はnチャネル型TFT601とpチャネル型TFT602とを組み合わせたCMOS回路(図14参照)を用いて形成される。
【0136】
画素電極711は発光素子の陽極として機能する。また、画素電極711の両端にはバンク712が形成され、画素電極711上には発光層713および発光素子の陰極714が形成される。
【0137】
陰極714は全画素に共通の配線としても機能し、接続配線904を経由してFPC905に電気的に接続されている。さらに、画素部806及びゲート側駆動回路807に含まれる素子は全て陰極714およびパッシベーション膜567で覆われている。
【0138】
また、第1シール材902によりカバー材901が貼り合わされている。なお、カバー材901と発光素子との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、第1シール材902の内側には封止材907が充填されている。なお、第1シール材902、封止材907としてはエポキシ系樹脂を用いるのが好ましい。また、第1シール材902はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、封止材907の内部に吸湿効果をもつ物質や酸化防止効果をもつ物質を含有させても良い。
【0139】
発光素子を覆うようにして設けられた封止材907はカバー材901を接着するための接着剤としても機能する。また、本実施例ではカバー材901を構成するプラスチック基板901aの材料としてFRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリルを用いることができる。
【0140】
また、封止材907を用いてカバー材901を接着した後、封止材907の側面(露呈面)を覆うように第2シール材903を設ける。第2シール材903は第1シール材902と同じ材料を用いることができる。
【0141】
以上のような構造で発光素子を封止材907に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素等の発光層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置が得られる。
【0142】
以上のようにして作製される発光装置は干渉性の低減されたレーザ光を照射した半導体膜を用いて作製されており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0143】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
【0144】
[実施例9]
本実施例では、実施例8とは異なる画素構造を有した発光装置について説明する。説明には図14を用いる。
【0145】
図14では電流制御用TFT4501として図8のnチャネル型TFT501と同一構造のTFTを用いる。勿論、電流制御用TFT4501のゲート電極はスイッチング用TFT4402のドレイン配線に電気的に接続されている。また、電流制御用TFT4501のドレイン配線は画素電極4504に電気的に接続されている。
【0146】
本実施例では、導電膜からなる画素電極4504が発光素子の陰極として機能する。具体的には、アルミニウムとリチウムとの合金膜を用いるが、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0147】
画素電極4504の上には発光層4505が形成される。なお、図14では一画素しか図示していないが、本実施例ではG(緑)に対応した発光層を蒸着法及び塗布法(好ましくはスピンコーティング法)により形成している。具体的には、電子注入層として20nm厚のフッ化リチウム(LiF)膜を設け、その上に発光層として70nm厚のPPV(ポリパラフェニレンビニレン)膜を設けた積層構造としている。
【0148】
次に、発光層4505の上には透明導電膜からなる陽極4506が設けられる。本実施例の場合、透明導電膜として酸化インジウムと酸化スズとの化合物もしくは酸化インジウムと酸化亜鉛との化合物からなる導電膜を用いる。
【0149】
この陽極4506まで形成された時点で発光素子4507が完成する。なお、ここでいう発光素子4507は、画素電極(陰極)4504、発光層4505及び陽極4506で形成されたダイオードを指す。
【0150】
発光素子4507を完全に覆うようにしてパッシベーション膜4508を設けることは有効である。パッシベーション膜4508としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0151】
さらに、パッシベーション膜4508上に封止材4509を設け、カバー材4510を貼り合わせる。封止材4509としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材4510はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0152】
以上のようにして作製される発光装置は干渉性の低減されたレーザ光が照射された半導体膜を用いて作製されており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0153】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
【0154】
[実施例10]
本実施例では、実施例5で作製したアクティブマトリクス基板とはTFT構造が異なる例を挙げ、液晶表示装置を作製した例について説明する。
【0155】
図15(A)に示すアクティブマトリクス基板は、nチャネル型TFT583とpチャネル型TFT582を有する駆動回路586と、画素TFT584と保持容量585を有する画素部587とが形成されている。
【0156】
これらのTFTは基板510にゲート配線512〜517を形成したのち、前記ゲート配線上に絶縁膜511を形成し、前記絶縁膜上の半導体層にチャネル形成領域やソース領域、ドレイン領域及びLDD領域などを設けて形成する。半導体層は実施例1〜実施例4のいずれか一と同様に本発明を用いて形成する。
【0157】
ゲート配線512〜517は、その厚さを200〜400nm、好ましくは250nmの厚さで形成し、その上層に形成する被膜の被覆性(ステップカバレージ)を向上させるために、端部をテーパー形状となるように形成する。テーパー部の角度は5〜30度、好ましくは15〜25度で形成する。テーパー部はドライエッチング法で形成され、エッチングガスと基板側に印加するバイアス電圧により、その角度を制御する。
【0158】
また、不純物領域は、第1〜第3のドーピング工程によって形成する。まず、第1のドーピング工程を行って、nチャネル型TFTのLDD(Lightly Doped Drain)領域を形成する。ドーピングの方法はイオンドープ法若しくはイオン注入法で行えば良い。n型を付与する不純物元素(ドナー)としてリン(P)を添加し、マスクにより第1の不純物領域が形成される。そして、新たにnチャネル型TFTのLDD領域を覆うマスクを形成して、第2のドーピング工程はnチャネル型TFTのソース領域及びドレイン領域を形成して行う。
【0159】
第3のドーピング処理により、pチャネル型TFTのソース領域及びドレイン領域を形成する。ドーピングの方法はイオンドープ法やイオン注入法でp型を付与する不純物元素(アクセプタ)を添加すればよい。このとき、nチャネル型TFTを形成する半導体層にはマスクを形成するため、p型を付与する不純物元素が添加されない。本実施例では、pチャネル型TFTにおいてLDD領域を作製していないが、もちろん、作製してもよい。
【0160】
このようにして、nチャネル型TFT583にはチャネル形成領域529の外側にLDD領域530、ソース領域またはドレイン領域531が形成される。pチャネル型TFT582も同様な構成とし、チャネル形成領域527、ソース領域またはドレイン領域528から成っている。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0161】
画素部587において、nチャネル型TFTで形成される画素TFT584はオフ電流の低減を目的としてマルチゲート構造で形成され、チャネル形成領域532の外側にLDD領域533、ソース領域またはドレイン領域534が設けられている。
【0162】
層間絶縁膜は酸化珪素、窒化珪素、または酸化窒化珪素などの無機材料から成り、50〜500nmの厚さの第1の層間絶縁膜540と、ポリイミド、アクリル、ポリイミドアミド、BCB(ベンゾシクロブテン)などの有機絶縁物材料から成る第2の層間絶縁膜541とで形成する。このように、第2の層間絶縁膜を有機絶縁物材料で形成することにより、表面を良好に平坦化させることができる。また、有機樹脂材料は一般に誘電率が低いので、寄生容量を低減することができる。しかし、吸湿性があり保護膜としては適さないので、第1の層間絶縁膜540と組み合わせて形成することが好ましい。
【0163】
その後、所定のパターンのレジストマスクを形成し、それぞれの半導体層に形成されたソース領域またはドレイン領域に達するコンタクトホールを形成する。コンタクトホールの形成はドライエッチング法により行う。この場合、エッチングガスにCF4、O2、Heの混合ガスを用い有機樹脂材料から成る第2の層間絶縁膜541をまずエッチングし、その後、続いてエッチングガスをCF4、O2として第1の層間絶縁膜540をエッチングする。
【0164】
そして、導電性の金属膜をスパッタ法や真空蒸着法で形成し、レジストマスクパターンを形成し、エッチングによって配線543〜549を形成する。このようにして、アクティブマトリクス基板を形成することができる。
【0165】
図15(A)のアクティブマトリクス基板を用いて、アクティブマトリクス型液晶表示装置を作製する工程を説明する。図15(B)はアクティブマトリクス基板と対向基板554とをシール材558で貼り合わせた状態を示している。最初に、図15(A)の状態のアクティブマトリクス基板上に柱状のスペーサ551、552を形成する。画素部に設けるスペーサ551は画素電極上のコンタクト部に重ねて設ける。スペーサは用いる液晶材料にも依存するが、3〜10μmの高さとする。コンタクト部では、コンタクトホールに対応した凹部が形成されるので、この部分に合わせてスペーサを形成することにより液晶の配向の乱れを防ぐことができる。その後、配向膜553を形成しラビング処理を行う。対向基板554には透明導電膜555、配向膜556を形成する。その後、アクティブマトリクス基板と対向基板とを貼り合わせ液晶を注入する。
【0166】
以上のようにして作製される液晶表示装置は干渉性の低減されたレーザ光が照射された半導体膜を用いて作製されており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0167】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
【0168】
[実施例11]
本実施例では、実施例10で示したアクティブマトリクス基板を用いて、発光装置を作製した例について説明する。
【0169】
図16では電流制御用TFT4501として図15のnチャネル型TFT583と同一構造のTFTを用いる。勿論、電流制御用TFT4501のゲート電極はスイッチング用TFT4402のドレイン配線に電気的に接続されている。また、電流制御用TFT4501のドレイン配線は画素電極4504に電気的に接続されている。
【0170】
本実施例では、導電膜からなる画素電極4504が発光素子の陰極として機能する。具体的には、アルミニウムとリチウムとの合金膜を用いるが、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0171】
画素電極4504の上には発光層4505が形成される。なお、図16では一画素しか図示していないが、本実施例ではG(緑)に対応した発光層を蒸着法及び塗布法(好ましくはスピンコーティング法)により形成している。具体的には、電子注入層として20nm厚のフッ化リチウム(LiF)膜を設け、その上に発光層として70nm厚のPPV(ポリパラフェニレンビニレン)膜を設けた積層構造としている。
【0172】
次に、発光層4505の上には透明導電膜からなる陽極4506が設けられる。本実施例の場合、透明導電膜として酸化インジウムと酸化スズとの化合物もしくは酸化インジウムと酸化亜鉛との化合物からなる導電膜を用いる。
【0173】
この陽極4506まで形成された時点で発光素子4507が完成する。なお、ここでいう発光素子4507は、画素電極(陰極)4504、発光層4505及び陽極4506で形成されたダイオードを指す。
【0174】
発光素子4507を完全に覆うようにしてパッシベーション膜4508を設けることは有効である。パッシベーション膜4508としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0175】
さらに、パッシベーション膜4508上に封止材4509を設け、カバー材4510を貼り合わせる。封止材4509としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材4510はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0176】
以上のようにして作製される発光装置は干渉性の低減されたレーザ光が照射された半導体膜を用いて作製されており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0177】
なお、本実施例は実施例1乃至5のいずれか一と自由に組み合わせることが可能である。
【0178】
[実施例12]
本発明を適用して、様々な電気光学装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型発光装置、アクティブマトリクス型EC表示装置)を作製することができる。即ち、それら電気光学装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
【0179】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの例を図17、図18及び図19に示す。
【0180】
図17(A)はパーソナルコンピュータであり、本体3001、画像入力部3002、表示部3003、キーボード3004等を含む。本発明を表示部3003に適用することができる。
【0181】
図17(B)はビデオカメラであり、本体3101、表示部3102、音声入力部3103、操作スイッチ3104、バッテリー3105、受像部3106等を含む。本発明を表示部3102に適用することができる。
【0182】
図17(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体3201、カメラ部3202、受像部3203、操作スイッチ3204、表示部3205等を含む。本発明は表示部3205に適用できる。
【0183】
図17(D)はゴーグル型ディスプレイであり、本体3301、表示部3302、アーム部3303等を含む。本発明は表示部3302に適用することができる。
【0184】
図17(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体3401、表示部3402、スピーカ部3403、記録媒体3404、操作スイッチ3405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明は表示部3402に適用することができる。
【0185】
図17(F)はデジタルカメラであり、本体3501、表示部3502、接眼部3503、操作スイッチ3504、受像部(図示しない)等を含む。本発明を表示部3502に適用することができる。
【0186】
図18(A)はフロント型プロジェクターであり、投射装置3601、スクリーン3602等を含む。本発明は投射装置3601の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0187】
図18(B)はリア型プロジェクターであり、本体3701、投射装置3702、ミラー3703、スクリーン3704等を含む。本発明は投射装置3702の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0188】
なお、図18(C)は、図18(A)及び図18(B)中における投射装置3601、3702の構造の一例を示した図である。投射装置3601、3702は、光源光学系3801、ミラー3802、3804〜3806、ダイクロイックミラー3803、プリズム3807、液晶表示装置3808、位相差板3809、投射光学系3810で構成される。投射光学系3810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図18(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0189】
また、図18(D)は、図18(C)中における光源光学系3801の構造の一例を示した図である。本実施例では、光源光学系3801は、リフレクター3811、光源3812、レンズアレイ3813、3814、偏光変換素子3815、集光レンズ3816で構成される。なお、図18(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0190】
ただし、図18に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及び発光装置での適用例は図示していない。
【0191】
図19(A)は携帯電話であり、本体3901、音声出力部3902、音声入力部3903、表示部3904、操作スイッチ3905、アンテナ3906等を含む。本発明を表示部3904に適用することができる。
【0192】
図19(B)は携帯書籍(電子書籍)であり、本体4001、表示部4002、4003、記憶媒体4004、操作スイッチ4005、アンテナ4006等を含む。本発明は表示部4002、4003に適用することができる。
【0193】
図19(C)はディスプレイであり、本体4101、支持台4102、表示部4103等を含む。本発明は表示部4103に適用することができる。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。
【0194】
以上の様に、本発明の適用範囲は極めて広く、さまざま分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜6または7、1〜5および8または9、10または11の組み合わせからなる構成を用いても実現することができる。
【0195】
【発明の効果】
本発明の構成を採用することにより、以下に示すような基本的有意性を得ることが出来る。
(a)レーザ光の高い干渉性を低減できる。
(b)大出力レーザから射出されたレーザ光に相当するエネルギーを有するレーザ光を作ることができる。
(c)非線形光学素子の劣化を低減できる。
(d)基板に対してレーザ光を斜めに入射すれば、戻り光の影響がなく、特に固体レーザを用いる場合に有効である。
(e)以上の利点を満たした上で、レーザ照射方法およびそれを行うレーザ照射装置において効率よくレーザ光の照射を行うことができ、さらに、コストダウンを実現することができる。また、アクティブマトリクス型の液晶表示装置に代表される半導体装置において、半導体装置の動作特性および信頼性の向上を実現することができる。さらに、半導体装置の製造コストの低減を実現することができる。
スループットを向上させることを可能とする。
【図面の簡単な説明】
【図1】 本発明が開示するレーザ照射装置の例を示す図。
【図2】 本発明が開示するレーザ照射装置の例を示す図。
【図3】 本発明が開示するレーザ照射装置の例を示す図。
【図4】 本発明が開示するレーザ照射装置の例を示す図。
【図5】 レーザ光を基板に対して斜めに照射するときの条件について説明する図。
【図6】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図7】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図8】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図9】 画素TFTの構成を示す上面図。
【図10】 アクティブマトリクス型液晶表示装置の断面図。
【図11】 アクティブマトリクス型液晶表示装置の断面図。
【図12】 発光装置の駆動回路及び画素部の断面構造図。
【図13】(A)発光装置の上面図。
(B)発光装置の駆動回路及び画素部の断面構造図。
【図14】 発光装置の画素部の断面構造図。
【図15】 アクティブマトリクス型液晶表示装置の断面図。
【図16】 発光装置の画素部の断面構造図。
【図17】 半導体装置の例を示す図。
【図18】 半導体装置の例を示す図。
【図19】 半導体装置の例を示す図。

Claims (4)

  1. 複数のレーザと、
    前記複数のレーザの発振を制御する手段と、
    前記複数のレーザから射出する複数のレーザ光を1つのレーザ光に合成する導波路と、
    前記合成された1つのレーザ光が入射される光ファイバと、
    を有するレーザ照射装置であって、
    前記複数のレーザから射出する複数のレーザ光のうち少なくとも1つのレーザ光は、非線形光学素子により高調波に変換され、
    前記複数のレーザ、前記発振を制御する手段、及び前記導波路は移動させず、前記光ファイバを移動させることにより、前記合成された1つのレーザ光を照射面に照射することを特徴とするレーザ照射装置。
  2. 請求項1において、
    前記複数のレーザは、連続発振またはパルス発振のYAGレーザ、YVOレーザ、YLFレーザ、YAlOレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザから選ばれた一種または複数種であることを特徴とするレーザ照射装置。
  3. 請求項1において、
    前記複数のレーザは、連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザから選ばれた一種または複数種であることを特徴とするレーザ照射装置。
  4. 請求項1乃至3のいずれか一項において、
    前記照射面は、前記合成された1つのレーザ光に対して斜めに設置されており、前記合成された1つのレーザ光の前記照射面に対する入射角度φはそれぞれ、前記合成された1つのレーザ光のビーム幅W、前期照射面を有する基板の厚さdであるとき、
    φ≧arcsin(W/2d)
    を満たすことを特徴とするレーザ照射装置。
JP2001244845A 2001-08-10 2001-08-10 レーザ照射装置 Expired - Fee Related JP5078205B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001244845A JP5078205B2 (ja) 2001-08-10 2001-08-10 レーザ照射装置
US10/214,352 US6660609B2 (en) 2001-08-10 2002-08-08 Method of manufacturing a semiconductor device using laser irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244845A JP5078205B2 (ja) 2001-08-10 2001-08-10 レーザ照射装置

Publications (3)

Publication Number Publication Date
JP2003059859A JP2003059859A (ja) 2003-02-28
JP2003059859A5 JP2003059859A5 (ja) 2008-09-18
JP5078205B2 true JP5078205B2 (ja) 2012-11-21

Family

ID=19074709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244845A Expired - Fee Related JP5078205B2 (ja) 2001-08-10 2001-08-10 レーザ照射装置

Country Status (2)

Country Link
US (1) US6660609B2 (ja)
JP (1) JP5078205B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW552645B (en) 2001-08-03 2003-09-11 Semiconductor Energy Lab Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device
KR100885904B1 (ko) * 2001-08-10 2009-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 어닐링장치 및 반도체장치의 제작방법
US7026227B2 (en) * 2001-11-16 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Method of irradiating a laser beam, and method of fabricating semiconductor devices
US6849825B2 (en) * 2001-11-30 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7232715B2 (en) * 2002-11-15 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor film and semiconductor device and laser processing apparatus
US7064089B2 (en) * 2002-12-10 2006-06-20 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus and method for plasma treatment
JP4593073B2 (ja) * 2002-12-26 2010-12-08 株式会社半導体エネルギー研究所 レーザ照射装置
US7397592B2 (en) 2003-04-21 2008-07-08 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing a thin film transistor
JP4503344B2 (ja) * 2003-04-21 2010-07-14 株式会社半導体エネルギー研究所 ビーム照射装置および半導体装置の作製方法
JP4515136B2 (ja) * 2003-04-21 2010-07-28 株式会社半導体エネルギー研究所 レーザビーム照射装置、薄膜トランジスタの作製方法
JP4152806B2 (ja) * 2003-05-28 2008-09-17 株式会社半導体エネルギー研究所 レーザ光照射装置
US7294874B2 (en) * 2003-08-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, method for manufacturing a semiconductor device, and a semiconductor device
US7115488B2 (en) * 2003-08-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR101188356B1 (ko) 2003-12-02 2012-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사장치, 레이저 조사방법 및 반도체장치의제조방법
EP1547719A3 (en) * 2003-12-26 2009-01-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing crystalline semiconductor film
EP1553643A3 (en) * 2003-12-26 2009-01-21 Sel Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing crystalline semiconductor film
US7199330B2 (en) * 2004-01-20 2007-04-03 Coherent, Inc. Systems and methods for forming a laser beam having a flat top
JP2006134986A (ja) * 2004-11-04 2006-05-25 Sony Corp レーザ処理装置
JP2007027612A (ja) * 2005-07-21 2007-02-01 Sony Corp 照射装置および照射方法
JP5520431B2 (ja) * 2005-09-02 2014-06-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2007069516A1 (en) * 2005-12-16 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP4698460B2 (ja) 2006-03-27 2011-06-08 オムロンレーザーフロント株式会社 レーザアニーリング装置
DE102007001639A1 (de) * 2006-09-19 2008-04-03 Rofin-Sinar Laser Gmbh Laseranordnung für die Bearbeitung eines Werkstückes
KR20240068746A (ko) 2013-12-02 2024-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
CN109686686B (zh) * 2019-01-30 2024-06-14 北京华卓精科科技股份有限公司 激光热处理装置及激光热处理方法
US20210305763A1 (en) * 2020-03-24 2021-09-30 David Stucker Composite fiber laser assembly

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890723A (ja) * 1981-11-25 1983-05-30 Mitsubishi Electric Corp レ−ザビ−ム照射による物性変化方法
JPH02119128A (ja) * 1988-10-28 1990-05-07 Nec Corp レーザアニーリング装置
JPH04142030A (ja) * 1990-09-12 1992-05-15 Ricoh Co Ltd 半導体膜の製造方法
JP2919145B2 (ja) * 1992-01-07 1999-07-12 菱電セミコンダクタシステムエンジニアリング株式会社 レーザ光照射装置
JPH0645272A (ja) * 1992-07-21 1994-02-18 Hitachi Ltd レーザアニール装置
JPH08213299A (ja) * 1995-01-31 1996-08-20 Sony Corp パターン露光装置
JPH09179309A (ja) * 1995-12-26 1997-07-11 Sony Corp 露光照明装置
JP3276284B2 (ja) 1996-01-12 2002-04-22 旭光学工業株式会社 マルチビーム光走査装置
JPH10256178A (ja) * 1997-03-07 1998-09-25 Toshiba Corp レーザ熱処理方法及びその装置
JPH10301153A (ja) * 1997-04-23 1998-11-13 Sony Corp 光源装置とこれを用いた光学測定装置および露光装置
JP4403599B2 (ja) * 1999-04-19 2010-01-27 ソニー株式会社 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法

Also Published As

Publication number Publication date
US20030031214A1 (en) 2003-02-13
US6660609B2 (en) 2003-12-09
JP2003059859A (ja) 2003-02-28

Similar Documents

Publication Publication Date Title
JP5078205B2 (ja) レーザ照射装置
JP5227900B2 (ja) 半導体装置の作製方法
JP5331778B2 (ja) 半導体装置の作製方法
US6897889B2 (en) Laser beam irradiating apparatus, laser beam irradiating method, and method of manufacturing a semiconductor device
US7618904B2 (en) Method of manufacturing a semiconductor device
US7459354B2 (en) Method for manufacturing a semiconductor device including top gate thin film transistor and method for manufacturing an active matrix device including top gate thin film transistor
JP2004179389A6 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4869509B2 (ja) 半導体装置の作製方法
JP2003045820A (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4827305B2 (ja) 半導体装置の作製方法
JP3910524B2 (ja) レーザ照射方法および半導体装置の作製方法
JP4748873B2 (ja) 半導体装置の作製方法
JP4593073B2 (ja) レーザ照射装置
JP2003151916A (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4968996B2 (ja) 半導体装置の作製方法
JP3910523B2 (ja) レーザ照射装置
JP4255639B2 (ja) 半導体装置の作製方法
JP4397582B2 (ja) 半導体装置の作製方法
JP2002261007A (ja) 半導体装置の作製方法
JP4637816B2 (ja) レーザ照射装置および半導体装置の作製方法
JP3949709B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4968982B2 (ja) 半導体装置の作製方法
JP4566504B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4131792B2 (ja) レーザ照射装置およびレーザ照射方法、並びに結晶性半導体膜の作製方法
JP2003115456A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees