EP1553643A3 - Laser irradiation method and method for manufacturing crystalline semiconductor film - Google Patents

Laser irradiation method and method for manufacturing crystalline semiconductor film Download PDF

Info

Publication number
EP1553643A3
EP1553643A3 EP04029713A EP04029713A EP1553643A3 EP 1553643 A3 EP1553643 A3 EP 1553643A3 EP 04029713 A EP04029713 A EP 04029713A EP 04029713 A EP04029713 A EP 04029713A EP 1553643 A3 EP1553643 A3 EP 1553643A3
Authority
EP
European Patent Office
Prior art keywords
semiconductor film
laser irradiation
crystalline semiconductor
film
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04029713A
Other languages
German (de)
French (fr)
Other versions
EP1553643A2 (en
Inventor
Koichiro Tanaka
Yoshiaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of EP1553643A2 publication Critical patent/EP1553643A2/en
Publication of EP1553643A3 publication Critical patent/EP1553643A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Even when the laser irradiation is performed under the same condition with the energy distribution of the beam spot shaped as appropriate, the energy given to the irradiated surface is not yet homogeneous. When a semiconductor film is crystallized to form a crystalline semiconductor film using such inhomogeneous irradiation energy, the crystallinity becomes inhomogeneous in this film, and the characteristic of semiconductor elements manufactured using this film varies.
In the present invention, an irradiated object formed over a substrate is irradiated with a laser beam having the pulse width that is an order of picosecond (10-12 second) or less.
EP04029713A 2003-12-26 2004-12-15 Laser irradiation method and method for manufacturing crystalline semiconductor film Withdrawn EP1553643A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003432504 2003-12-26
JP2003432504 2003-12-26

Publications (2)

Publication Number Publication Date
EP1553643A2 EP1553643A2 (en) 2005-07-13
EP1553643A3 true EP1553643A3 (en) 2009-01-21

Family

ID=34587655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04029713A Withdrawn EP1553643A3 (en) 2003-12-26 2004-12-15 Laser irradiation method and method for manufacturing crystalline semiconductor film

Country Status (5)

Country Link
US (1) US7608527B2 (en)
EP (1) EP1553643A3 (en)
KR (1) KR101110169B1 (en)
CN (1) CN100557771C (en)
TW (1) TWI390811B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730808B1 (en) * 2001-08-11 2007-06-20 더 유니버시티 코트 오브 더 유니버시티 오브 던디 Field emission backplate, method of forming the backplate, and field emission device
KR101188356B1 (en) 2003-12-02 2012-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
EP1553643A3 (en) 2003-12-26 2009-01-21 Sel Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing crystalline semiconductor film
EP1547719A3 (en) * 2003-12-26 2009-01-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing crystalline semiconductor film
US7902002B2 (en) * 2004-07-30 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7439111B2 (en) * 2004-09-29 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7292616B2 (en) * 2005-02-09 2007-11-06 Ultratech, Inc. CO2 laser stabilization systems and methods
DE602006004913D1 (en) * 2005-04-28 2009-03-12 Semiconductor Energy Lab Method and device for producing semiconductors by means of laser radiation
US7608490B2 (en) * 2005-06-02 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2007046290A1 (en) * 2005-10-18 2007-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7563661B2 (en) * 2006-02-02 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Crystallization method for semiconductor film, manufacturing method for semiconductor device, and laser irradiation apparatus
US8278739B2 (en) * 2006-03-20 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, semiconductor device, and method for manufacturing thereof
US7790636B2 (en) * 2006-06-29 2010-09-07 International Business Machines Corporation Simultaneous irradiation of a substrate by multiple radiation sources
US7635656B2 (en) 2006-06-29 2009-12-22 International Business Machines Corporation Serial irradiation of a substrate by multiple radiation sources
US8034724B2 (en) 2006-07-21 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI438823B (en) * 2006-08-31 2014-05-21 Semiconductor Energy Lab Method for manufacturing crystalline semiconductor film and semiconductor device
US7662703B2 (en) * 2006-08-31 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and semiconductor device
US20080090396A1 (en) * 2006-10-06 2008-04-17 Semiconductor Energy Laboratory Co., Ltd. Light exposure apparatus and method for making semiconductor device formed using the same
US7972943B2 (en) * 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
GB0722120D0 (en) * 2007-11-10 2007-12-19 Quantum Filament Technologies Improved field emission backplate
KR20100110996A (en) * 2009-04-06 2010-10-14 주식회사 프로텍 Method for adjusting laser beam pitch by controlling of movement for both grid image and a tilting angle of a stage
KR101243920B1 (en) * 2010-01-07 2013-03-14 삼성디스플레이 주식회사 Laser beam irradiation apparatus for substrate sealing, substrate sealing method, and manufacturing method of organic light emitting display device using the same
US8797512B2 (en) * 2011-09-15 2014-08-05 Advanced Scientific Concepts, Inc. Automatic range corrected flash ladar camera
KR20140091203A (en) * 2013-01-10 2014-07-21 삼성전자주식회사 An apparatus and method to reduce the residual stress of semiconductor
JP2015202594A (en) * 2014-04-11 2015-11-16 セイコーエプソン株式会社 Molding device and molding method
KR101881708B1 (en) * 2014-07-03 2018-07-24 신닛테츠스미킨 카부시키카이샤 Laser machining device
CN105499790A (en) * 2015-12-30 2016-04-20 武汉嘉铭激光有限公司 Laser processing head
EP3642384A4 (en) * 2017-07-31 2021-03-31 IPG Photonics Corporation Laser apparatus and method of processing thin films
WO2019028082A1 (en) * 2017-07-31 2019-02-07 Ipg Photonics Corporation Laser apparatus and method of processing thin films
CN114465086B (en) * 2022-01-19 2024-03-15 河南仕佳光子科技股份有限公司 Preparation method of DFB laser optical film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537938A2 (en) * 2003-12-02 2005-06-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795538B2 (en) 1986-05-02 1995-10-11 旭硝子株式会社 Laser annealing device
US4845354A (en) * 1988-03-08 1989-07-04 International Business Machines Corporation Process control for laser wire bonding
JPH05107514A (en) * 1991-10-18 1993-04-30 Minolta Camera Co Ltd Optical shutter array
GB9219450D0 (en) 1992-09-15 1992-10-28 Glaverbel Thin film thickness monitoring and control
US5272708A (en) * 1992-10-30 1993-12-21 The United States Of America As Represented By The Secretary Of The Navy Two-micron modelocked laser system
JPH06320292A (en) 1993-04-28 1994-11-22 Nippon Steel Corp Device and method for laser annealing
GB9308981D0 (en) * 1993-04-30 1993-06-16 Science And Engineering Resear Laser-excited x-ray source
JP3469337B2 (en) * 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100245805B1 (en) * 1995-03-10 2000-04-01 가나이 쓰도무 Inspection method, inspection apparatus and method of production of semiconductor device using them
DE19628067C2 (en) 1996-07-11 1998-04-30 Heinz Dr Rinder Detection of microsporidia and microsporidia infections
JP3191702B2 (en) 1996-11-25 2001-07-23 住友重機械工業株式会社 Beam homogenizer
US6037967A (en) * 1996-12-18 2000-03-14 Etec Systems, Inc. Short wavelength pulsed laser scanner
US6218219B1 (en) * 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6154310A (en) * 1997-11-21 2000-11-28 Imra America, Inc. Ultrashort-pulse source with controllable multiple-wavelength output
WO2000072412A1 (en) * 1999-05-21 2000-11-30 Gigaoptics Gmbh Passively mode-coupled femtosecond laser
GB2355309B (en) 1999-09-27 2002-01-09 Toshiba Res Europ Ltd A radiation source
US6483858B1 (en) * 1999-11-23 2002-11-19 Southeastern University Research Assn. Injection mode-locking Ti-sapphire laser system
CA2395960A1 (en) * 2000-01-10 2001-07-19 Electro Scientific Industries, Inc. Laser system and method for processing a memory link with a burst of laser pulses having ultrashort pulsewidths
US6368945B1 (en) * 2000-03-16 2002-04-09 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification
JP2001326190A (en) * 2000-05-17 2001-11-22 Nec Corp Method and apparatus for processing thin film
SG113399A1 (en) * 2000-12-27 2005-08-29 Semiconductor Energy Lab Laser annealing method and semiconductor device fabricating method
US6528758B2 (en) * 2001-02-12 2003-03-04 Icon Laser Technologies, Inc. Method and apparatus for fading a dyed textile material
JP5078205B2 (en) * 2001-08-10 2012-11-21 株式会社半導体エネルギー研究所 Laser irradiation device
JP4974425B2 (en) 2001-09-10 2012-07-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US20030058904A1 (en) * 2001-09-24 2003-03-27 Gigatera Ag Pulse-generating laser
WO2003028177A1 (en) 2001-09-24 2003-04-03 Giga Tera Ag Pulse-generating laser
US6979605B2 (en) * 2001-11-30 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for a semiconductor device using a marker on an amorphous semiconductor film to selectively crystallize a region with a laser light
EP1329946A3 (en) * 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
US6760356B2 (en) * 2002-04-08 2004-07-06 The Regents Of The University Of California Application of Yb:YAG short pulse laser system
KR20030095313A (en) * 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 Laser annealer and laser thin-film forming apparatus
US6908797B2 (en) * 2002-07-09 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6952269B2 (en) * 2002-09-24 2005-10-04 Intel Corporation Apparatus and method for adiabatically heating a semiconductor surface
JP2004128421A (en) 2002-10-07 2004-04-22 Semiconductor Energy Lab Co Ltd Laser irradiation method, laser irradiation device, and method for manufacturing semiconductor device
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7220627B2 (en) * 2003-04-21 2007-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device where the scanning direction changes between regions during crystallization and process
US7397592B2 (en) * 2003-04-21 2008-07-08 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing a thin film transistor
US7476629B2 (en) * 2003-04-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
EP1547719A3 (en) * 2003-12-26 2009-01-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing crystalline semiconductor film
EP1553643A3 (en) 2003-12-26 2009-01-21 Sel Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing crystalline semiconductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537938A2 (en) * 2003-12-02 2005-06-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; March 1997 (1997-03-01), OHYAMA H ET AL: "Free electron laser annealing of silicon carbide", XP002505532, Database accession no. 5581060 *
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; November 2003 (2003-11-01), CHOI T Y ET AL: "Ultrafast laser-induced crystallization of amorphous silicon films", XP002507303, Database accession no. 7779675 *
OPTICAL ENGINEERING SPIE USA, vol. 42, no. 11, November 2003 (2003-11-01), pages 3383 - 3388, ISSN: 0091-3286 *
PROCEEDINGS OF THE 38TH ELECTRONIC MATERIALS CONFERENCE 26-28 JUNE 1996 SANTA BARBARA, CA, USA, vol. 26, no. 3, March 1997 (1997-03-01), Journal of Electronic Materials TMS USA, pages 183 - 186, ISSN: 0361-5235 *

Also Published As

Publication number Publication date
TW200525844A (en) 2005-08-01
CN100557771C (en) 2009-11-04
EP1553643A2 (en) 2005-07-13
CN1638040A (en) 2005-07-13
KR101110169B1 (en) 2012-01-31
KR20050067015A (en) 2005-06-30
TWI390811B (en) 2013-03-21
US7608527B2 (en) 2009-10-27
US20050139786A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP1553643A3 (en) Laser irradiation method and method for manufacturing crystalline semiconductor film
DE102006053898B4 (en) Laser processing device and laser processing method
DE112006002027B4 (en) Method for manufacturing semiconductor devices and system for manufacturing semiconductor devices
EP3207772B1 (en) Lift printing of conductive traces onto a semiconductor substrate
US8603902B2 (en) Engineering flat surfaces on materials doped via pulsed laser irradiation
EP1166358B1 (en) Method for removing thin layers on a support material
CN1938837B (en) Method of forming a scribe line on a ceramic substrate
DE102014106472B4 (en) Method for radiation scratching a semiconductor substrate
WO2005029549A3 (en) Method and system for facilitating bi-directional growth
KR101613136B1 (en) Laser annealing device and laser annealing method
DE102009024585B4 (en) A system for manufacturing a semiconductor device wafer, semiconductor device and method for straightening a distorted surface
WO2001097266A9 (en) Method of manufacturing thin-film semiconductor device
EP1470573A2 (en) Method for producing a semiconductor element
WO2005038995A3 (en) Memory link processing with picosecond lasers
DE102009018112B3 (en) Method for producing a semiconductor component, in particular a solar cell, with a locally opened dielectric layer and corresponding semiconductor component
CN101689585A (en) Semiconductor light-emitting device and method for manufacturing the same
DE102012214254A1 (en) Laser-based method and processing table for local contacting of a semiconductor device
TW200503065A (en) Method and apparatus for forming crystallized semiconductor layer, and method for manufacturing semiconductor apparatus
DE102009059193B4 (en) Process for doping semiconductor materials
DE102011103481B4 (en) Selective removal of thin layers by means of pulsed laser radiation for thin-film structuring
DE102016123714A1 (en) Performance and method for ion implantation
DE10326505B4 (en) Laser scribing of thin-film semiconductor devices
CA2434969A1 (en) Resistor trimming with small uniform spot from solid-state uv laser
KR101526616B1 (en) Photovoltaic module comprising layer with conducting spots
WO2014023798A2 (en) Method for ablating a layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20090708

AKX Designation fees paid

Designated state(s): DE FI FR GB NL

17Q First examination report despatched

Effective date: 20100202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703