JP4884604B2 - 燃料電池の冷却装置 - Google Patents

燃料電池の冷却装置 Download PDF

Info

Publication number
JP4884604B2
JP4884604B2 JP2001203938A JP2001203938A JP4884604B2 JP 4884604 B2 JP4884604 B2 JP 4884604B2 JP 2001203938 A JP2001203938 A JP 2001203938A JP 2001203938 A JP2001203938 A JP 2001203938A JP 4884604 B2 JP4884604 B2 JP 4884604B2
Authority
JP
Japan
Prior art keywords
fuel cell
coolant
temperature
gas
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203938A
Other languages
English (en)
Other versions
JP2003017105A (ja
Inventor
健 牛尾
光晴 今関
義郎 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001203938A priority Critical patent/JP4884604B2/ja
Publication of JP2003017105A publication Critical patent/JP2003017105A/ja
Application granted granted Critical
Publication of JP4884604B2 publication Critical patent/JP4884604B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池の冷却装置に関するものであり、特に、液冷式の冷却装置に関するものである。
【0002】
【従来の技術】
燃料電池自動車等に搭載される燃料電池には、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノードとカソードとで両側から挟み込んで形成されたセルを複数積層して構成されたスタックからなり、燃料ガスとして水素ガスが供給される水素ガス通路と、酸化剤ガスとして酸素を含む空気が供給される空気通路と、冷却液が供給される冷却液通路とを備えたものがある。以下、燃料ガスと酸化剤ガスを総称して反応ガスという。この燃料電池においては、アノードで触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソードまで移動して、カソードで酸素と電気化学反応を起こして発電し、その際に水が生成される。
【0003】
ところで、燃料電池の発電には発熱を伴うが、燃料電池には作動温度範囲があるため燃料電池が上限温度以上に昇温しないように冷却する必要がある。そのため、燃料電池の前記冷却液通路に冷媒を流して熱を奪い燃料電池を冷却する冷却装置が設けられている。
この燃料電池の冷却装置には、特開平10−340734号公報に開示されているように、冷媒としての冷却液を循環ポンプにより燃料電池と放熱器(ラジエータ)との間で循環させるようにしたものがある。この冷却装置では、燃料電池から熱を奪って熱せられた冷却液が放熱器を流れる際に、冷却液の熱を外気に放熱して冷却液を冷却している。
【0004】
前記公報にも開示されているように、従来は燃料電池の内部温度が均一になるように冷却するのがシステム上、好ましいとされており、そのため、燃料電池の冷却液出口温度と冷却液入口温度との温度差を極力少なくなるように、冷却液の循環量を制御していた。
【0005】
【発明が解決しようとする課題】
しかしながら、このように燃料電池の冷却液出口温度と冷却液入口温度との温度差を少なくするということは、冷却液出口温度を下げる方向にすることであり、したがって、冷却液の循環量を増大することとなり、循環ポンプの消費電力が増大するので、エネルギーマネージメント上、不利であった。
【0006】
また、前述したように、燃料電池は発電に際して水が生成されるが、この水は未反応の反応ガス、すなわちオフガス中に水蒸気として気相で存在するものもあれば、液体となってオフガスから分離し液相で存在するものもある。水蒸気としてオフガス中に存在する水分はオフガスとともに燃料電池から排出されるので問題となることはないが、液状のものは場合によっては反応ガス路の一部を塞ぐ虞があり好ましい形態とは言えない。そこで、生成水等の水分の排出という観点からすると、燃料電池の内部温度が高い方が露点を上げることができ、水分を気相(水蒸気)でオフガス中に多く含ませることができ、オフガスとともに排出できる水分量を増大できるので好ましい。しかしながら、従来は、前述したように、燃料電池の冷却液出口温度と冷却液入口温度との温度差を少なくして冷却液出口温度を下げる方向に制御しているので、オフガス中の水分が液相になり易く、水分の排出性という点では改良の余地があった。
【0007】
一方で、固体高分子電解質膜を用いた燃料電池では、固体高分子電解質膜のイオン導電性を所定の状態に確保して良好な発電状態を維持するために、燃料電池に供給される反応ガス(水素ガスおよび空気)を加湿器で加湿しており、この加湿された反応ガスが燃料電池内で凝縮して固体高分子電解質膜に付着することにより、固体高分子電解質膜のイオン導電性を向上させている。このように燃料電池に対する加湿という観点からすると、燃料電池の内部温度は低い方が反応ガス中の水蒸気が凝結し易く好ましいこととなる。
このような事情から、燃料電池に対する加湿性と前述した水分の排出性を両立させて燃料電池の内部温度を制御するのは、極めて困難であった。
【0008】
そこで、この発明は、反応ガスと冷却液の流れ方向が略同一方向にされた構造の燃料電池における内部温度分布に積極的に温度差を確保することにより、燃料電池における水分の排出性に優れた燃料電池の冷却装置を提供するものである。
また、この発明は、反応ガスと冷却液の流れ方向が略同一方向にされた構造の燃料電池における内部温度分布に積極的に温度差を確保することにより、燃料電池における水分の排水性の向上と固体高分子電解質膜に対する加湿性の向上の両立を図ることができる燃料電池の冷却装置を提供するものである。
【0011】
請求項に記載した発明は、燃料ガス(例えば、後述する各実施の形態における水素ガス)と酸化剤ガス(例えば、後述する各実施の形態における空気)を反応ガスとして発電を行う燃料電池(例えば、後述する各実施の形態における燃料電池1)と、前記燃料電池に供給される前記反応ガスを、前記燃料電池から排出される反応オフガスに含まれている水分により水蒸気透過膜を介して加湿する加湿器(例えば、後述する各実施の形態におけるカソード加湿器3およびアノード加湿器7)と、循環ポンプ(例えば、後述する各実施の形態におけるウォーターポンプ15)により冷却液を前記燃料電池と放熱器(例えば、後述する各実施の形態におけるラジエータ11)との間で循環させ、前記燃料電池内で冷却液を前記反応ガスと略同一方向となる一方向に流して該燃料電池を冷却し、前記放熱器で冷却液から熱を外部に放熱する冷却手段(例えば、後述する各実施の形態における冷却液回路12)と、前記燃料電池から排出された前記冷却液によって前記加湿器を加熱する加熱手段(例えば、後述する第1,第2の実施の形態における第2室3d,7d、および、第3の実施の形態におけるウォータージャケット3e,7e)と、前記燃料電池の冷却液入口温度が予め設定された上限温度を下回っている場合に、前記燃料電池の冷却液出口温度と冷却液入口温度との間に所定の温度差が確保されるように前記循環ポンプの出力を制御する制御手段(例えば、後述する第1の実施の形態におけるステップS103,105,106、および、第2の実施の形態におけるステップS208,209,210、および、第4の実施の形態におけるステップS305,307,308)と、を備えることを特徴とする燃料電池の冷却装置である。
【0012】
このように構成することにより、前記制御手段による循環ポンプの制御で、燃料電池の冷却液出口温度と冷却液入口温度との間に所定の温度差が確保されるので、冷却液出口温度が高めに制御されることとなり、さらに、燃料電池内では反応ガスと冷却液が略同一方向に流れることから、オフガスの燃料電池出口温度を高くすることができ、その結果、オフガスの露点を高くすることができ、オフガス中に気相(水蒸気)で存在する水分量を増大させることが可能になる。
【0013】
また、加熱手段が冷却液で加湿器を加熱しているので、燃料電池に供給される反応ガスの温度が高まり、加湿器における反応ガスに対する加湿が促進される。しかも、燃料電池の冷却液出口温度と冷却液入口温度との間に所定の温度差が確保され、燃料電池内では反応ガスと冷却液が略同一方向に流れることから、前記加湿器で加熱・加湿された反応ガスは燃料電池に供給された直後に冷却液によって冷却され、反応ガス中の蒸気が凝結して液状になり易くなり、燃料電池を加湿し易くなる。
さらに、冷却液出口温度を高めに制御するようになることから、冷却液の循環量を減少させることができる。
【0014】
請求項に記載した発明は、請求項1記載の発明において、前記燃料電池の高出力領域における前記温度差の目標値を、低出力領域における前記温度差の目標値よりも大きく設定したことを特徴とする。
このように構成することにより、燃料電池が低出力のときには、冷却液出口温度と冷却液入口温度との温度差を小さく設定して、燃料電池を流れる冷却液流量を増加させることが可能になり、一方、燃料電池が高出力のときには、冷却液出口温度と冷却液入口温度との温度差を大きく設定して、燃料電池を流れる冷却液流量を減少させることが可能になる。
【0015】
【発明の実施の形態】
以下、この発明に係る燃料電池の冷却装置(単に冷却装置ということもある)の実施の形態を図1から図10の図面を参照して説明する。なお、以下に説明する実施の形態は、燃料電池自動車に搭載される燃料電池の冷却装置に適用した態様である。
【0016】
〔第1参考形態〕
この発明に係る燃料電池の冷却装置の第1参考形態を図1から図5の図面を参照して説明する。
図1は冷却装置の概略構成図である。初めに、冷却対象となる燃料電池1について説明する。燃料電池1は固体高分子電解質膜型の燃料電池であり、図2に示すように、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜51をアノード52とカソード53とで両側から挟み込み、さらにその外側を一対のセパレータ54,54で挟持して形成されたセル55を複数積層して構成されたスタックからなり、燃料ガスとして水素ガスが供給される水素ガス通路56と、酸化剤ガスとして酸素を含む空気が供給される空気通路57と、冷却液が供給される冷却液通路58とを備えている。そして、アノード52で触媒反応により発生した水素イオンが、固体高分子電解質膜51を通過してカソード53まで移動して、カソード53で酸素と電気化学反応を起こして発電し、その際に水が生成される。また、この発電に伴う発熱により燃料電池1が上限温度を越えないように、前記冷却液通路58を流れる冷却液で熱を奪い冷却するようになっている。
【0017】
また、この燃料電池1においては、水素ガス通路56と空気通路57と冷却液通路58が互いに平行して設けられている。図3は、これら通路56,57,58を模式的に示した斜視図であり、これら通路56,57,58はいずれも、セル55の左上部の入口から右下部の出口まで同一形態に蛇行して設けられている。したがって、この参考形態では、水素ガス通路56と空気通路57と冷却液通路58はその全長に亘ってそれぞれの流体の流れ方向を同一方向にされている。
【0018】
次に、冷却装置を各流体の流れに沿って説明する。
外気はエアコンプレッサ2によって加圧され、カソード加湿器3で加湿されて燃料電池1の空気通路57に供給され、この空気中の酸素が酸化剤として発電に供された後、燃料電池1から空気オフガスとして排出され、圧力制御弁4を介して大気に放出される。エアコンプレッサ2は、燃料電池1に要求されている出力に応じた質量の空気が燃料電池1に供給されるように回転数制御され、また、圧力制御弁4は、燃料電池1への空気の供給圧が燃料電池1の運転状態に応じた圧力値となるように開度制御される。
【0019】
カソード加湿器3は、ケーシング3aの内部が水蒸気透過膜3bによって上下二室に離隔されており、上側の第1室3cにエアコンプレッサ2および燃料電池1の空気通路57入口が接続され、下側の第2室3dには後述するように燃料電池1から排出された冷却液が循環するようになっている。水蒸気透過膜3bは、該水蒸気透過膜3bを境にして水蒸気圧の高い方から水蒸気圧の低い方へ水蒸気だけを透過させる機能を有するものである。
【0020】
一方、図示しない高圧水素タンクから放出された水素ガスは燃料供給制御弁5により減圧された後、エゼクタ6を通り、アノード加湿器7で加湿されて燃料電池1の水素ガス通路56に供給される。この水素ガスは発電に供された後、未反応の水素ガスは燃料電池1から水素オフガスとして排出され、水素オフガス回収路8を通ってエゼクタ6に吸引され、前記高圧水素タンクから供給される水素ガスと合流し再び燃料電池1に供給されるようになっている。
【0021】
燃料供給制御弁5は、例えば空気式の比例圧力制御弁からなり、エアコンプレッサ2から供給される空気の圧力を信号圧として空気信号導入路9を介して入力され、燃料供給制御弁5出口の水素ガスの圧力が前記信号圧に応じた所定圧力範囲となるように減圧制御する。
水素オフガス回収路8はパージ弁10を備えており、パージ弁10は所定条件が満たされたときに開弁制御されて、燃料電池1の水素ガス通路56に水が溜まらないように外部へ排水する。
【0022】
アノード加湿器7は、カソード加湿器3と同様の構造をなしており、ケーシング7aの内部が水蒸気透過膜7bによって上下二室に離隔されており、上側の第1室7cにエゼクタ6およびおよび燃料電池1の水素ガス通路56入口が接続され、下側の第2室7dには後述するように燃料電池1から排出された冷却液が循環するようになっている。
ここで、前記カソード加湿器3は水蒸気透過膜3bを透過した冷却液の蒸気により空気を加湿し、加湿した空気を燃料電池1に供給し、また、アノード加湿器7は水蒸気透過膜7bを透過した冷却液の蒸気により水素ガスを加湿し、加湿した水素ガスを燃料電池1に供給する。これにより、燃料電池1の固体高分子電解質膜のイオン導電性が所定の状態に確保される。
【0023】
また、燃料電池1を冷却するための冷却液は、循環ポンプであるウォーターポンプ(WP)15によって昇圧されてラジエータ(放熱器)11に供給され、ラジエータ11において外部に放熱することにより冷却液は冷却され、その後、燃料電池1に供給され、燃料電池1内の冷却液通路58を通る際に燃料電池1から熱を奪って燃料電池1を冷却し、これにより熱せられた冷却液はウォーターポンプ15を介して再びラジエータ11に戻り冷却されるようになっている。すなわち、冷却液は、燃料電池1とウォーターポンプ15とラジエータ11とを閉回路に接続する冷却液回路(冷却手段)12を循環するようになっている。
【0024】
冷却液回路12において燃料電池1からウォーターポンプ15に向かう冷却液主流路(すなわち、燃料電池1の下流であってウォーターポンプ15の上流に位置する冷却液流路)12aには制限オリフィス13が設けられている。冷却液主流路12aにおいてオリフィス13の上流(すなわち、燃料電池1寄り)および下流(すなわち、ラジエータ11寄り)はそれぞれ冷却液副流路14a,14bによってカソード加湿器3の第2室3dに接続されるとともに、冷却液副流路14c,14dによってアノード加湿器7の第2室7dに接続されている。これにより、冷却液主流路12aを流れる冷却液の一部は冷却液副流路14a,14cを通ってカソード加湿器3の第2室3dおよびアノード加湿器7の第2室7dに導入され、冷却液副流路14b,14dを通って冷却液主流路12aに戻るようになっている。なお、この第1参考形態においてカソード加湿器3の第2室3dとアノード加湿器7の第2室7dは加熱手段を構成する。
【0025】
また、冷却液回路12において燃料電池1の入口側には、燃料電池1に供給される冷却液の温度(以下、冷却液入口温度という)を検出する入口温度センサ(TI)16が設けられており、冷却液回路12において燃料電池1の出口側には、燃料電池1から排出される冷却液の温度(以下、冷却液出口温度という)を検出する出口温度センサ(TI)17が設けられている。電子制御ユニット(以下、ECUと略す)20は、これら温度センサ16,17の出力信号に基づいてウォーターポンプ15の出力を制御する。
【0026】
燃料電池1から取り出される発電電流は、発電電流を計測する発電電流計測装置18を介して、走行用モータやエアコンプレッサ2を駆動するモータ等の電気負荷19に接続されている。
【0027】
次に、この第1参考形態における燃料電池の冷却装置の作用を説明する。
この参考形態における冷却装置では、燃料電池1の冷却液出口温度が冷却液入口温度よりも所定温度だけ高くなるように、換言すれば、冷却液出口温度と冷却液入口温度との間に所定温度差が確保されるように、ウォーターポンプ15の出力を制御する。
図4は、冷却液入口温度の上限温度を80゜Cとし、冷却液出口温度と冷却液入口温度との目標温度差を10degree(以下、「deg」と略す)とした場合における冷却液の温度制御フローチャートを示しており、これに従って温度制御処理を説明する。
【0028】
まず、入口温度センサ16と出口温度センサ17で検出した冷却液入口温度T1と冷却液出口温度T2を読み込み(ステップS101)、冷却液入口温度T1が上限温度(80゜C)よりも低いか否かを判定する(ステップS102)。判定結果が「NO」(冷却液入口温度T1が80゜C以上)である場合は、ウォーターポンプ15の出力を増大して(ステップS103)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が増大し、冷却液入口温度T1は下げる方向に制御されることとなる。
【0029】
ステップS102における判定結果が「YES」(冷却液入口温度T1が80゜C未満)である場合は、冷却液出口温度T2と冷却液入口温度T1の温度差ΔTを算出し(ステップS104)、算出された温度差ΔTが目標温度差(10deg)よりも小さいか否か判定する(ステップS105)。
判定結果が「NO」(温度差ΔTが10deg以上)である場合は、ウォーターポンプ15の出力を増大して(ステップS103)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が増大し、温度差ΔTは小さくなる方向に制御されることとなる。
【0030】
ステップS105における判定結果が「YES」(温度差ΔTが10deg未満)である場合は、ウォーターポンプ15の出力を低減して(ステップS106)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が減少し、温度差ΔTは大きくなる方向に制御されることとなる。
以上の温度制御処理を実行することにより、冷却液入口温度T1は80゜C以下に収束するようになり、且つ、温度差ΔTは目標温度差(10deg)に収束するようになる。また、このように冷却液温度を制御すると、冷却液入口温度T1が上限温度を超えない範囲で冷却液出口温度T2が高めに制御されることとなる。
【0031】
そして、この冷却装置では、燃料電池1から熱を奪って温度上昇した冷却液がカソード加湿器3の第2室3dに供給されるので、カソード加湿器3の第1室3c内の空気が加熱され、該空気の相対湿度が下がり、該空気の露点を上げることができる。その結果、第2室3d内の冷却液の一部が水蒸気となって水蒸気透過膜3bを透過し、第1室3c内の空気に対する加湿を促進する。
【0032】
しかも、燃料電池1の冷却液出口温度T2と冷却液入口温度T1との間に所定の温度差(目標温度差10deg)が確保されるように温度制御されており、燃料電池1における冷却液入口位置と空気入口位置が同一でその流れ方向が同一方向であるので、カソード加湿器3で加熱・加湿された空気は燃料電池1に供給された直後に冷却液によって冷却されることとなり、該空気中の蒸気が凝結して液状になり易くなる。その結果、燃料電池1の固体高分子電解質膜51を加湿し易くなる。
【0033】
アノード加湿器7についても同様であり、燃料電池1から排出された冷却液がアノード加湿器7の第2室7dに供給されることにより、第1室7c内の空気に対する加湿が促進される。そして、アノード加湿器7で加熱・加湿された水素ガスは燃料電池1に供給された直後に冷却液によって冷却されるので、水素ガス中の蒸気が凝結して液状になり易くなり、固体高分子電解質膜51を加湿し易くなる。
したがって、固体高分子電解質膜51のイオン導電性が所定の状態に確実に確保されるようになり、燃料電池1に対する加湿性が向上する。
【0034】
また、冷却液入口温度T1が上限温度を超えない範囲で冷却液出口温度T2が高めに制御され、さらに、燃料電池1内では水素ガス及び空気と冷却液が同一方向に流れながら熱交換が行われるので、水素オフガスおよび空気オフガスの燃料電池1出口での温度を高くすることができる。その結果、これらオフガスの露点を高くすることができ、オフガス中に気相(水蒸気)で存在する水分量を増大させることができる。したがって、燃料電池1における水分の排出性が向上し、水素ガス通路56および空気通路57において水閉塞が起こり難くなる。
【0035】
また、冷却液出口温度T2を高めに制御していることから、冷却液の循環量を減少させることができ、ウォーターポンプ15の消費電力を減少させることができる。
【0036】
なお、燃料電池1における水素ガス通路56、空気通路57、冷却液通路58の配置は図3に示す形態に限るものではない。例えば、図5に示すように、水素ガス通路56はセル55の左上部の入口から右下部の出口に向かって蛇行して設けられ、空気通路57はセル55の右上部の入口から左下部の出口に向かって蛇行して設けられ、冷却液通路58はセル55の上部から下部に向かって直線的に設けられていてもよい。この場合、水素ガスと空気は蛇行しながらもセル55の上位から下位に向かって流れているので、その流れ方向は、上から下に向かって流れる冷却液の流れ方向と略同一方向であると言うことができる。
【0037】
〔第2参考形態〕
次に、この発明に係る燃料電池の冷却装置の第2参考形態を図6および図7の図面を参照して説明する。第2参考形態における冷却装置が第1参考形態のものと相違する点は以下の通りである。
冷却液回路12には、ラジエータ11の下流であって入口温度センサ16の上流に、流量制御弁V1が設けられている。また、冷却液回路12には、ウォーターポンプ15の下流と入口温度センサ16の上流とを接続しラジエータ11および流量制御弁V1を迂回するバイパス通路21が設けられており、バイパス通路21には流量制御弁V2が設けられている。その他の構成については第1参考形態のものと同じであるので、同一態様部分に同一符号を付して説明を省略する。
【0038】
この第2参考形態の冷却装置では、ECU20は、入口温度センサ16と出口温度センサ17の出力信号に基づいて、ウォーターポンプ15の出力と、流量制御弁V1,V2の開度を制御する。
図7は、冷却液入口温度の上限温度を80゜Cとし、冷却液入口温度の目標温度(以下、目標冷却液入口温度という)を65゜Cとし、冷却液出口温度と冷却液入口温度との目標温度差を10degとした場合における冷却液の温度制御フローチャートを示している。
【0039】
この場合の温度制御処理では、まず、入口温度センサ16と出口温度センサ17で検出した冷却液入口温度T1と冷却液出口温度T2を読み込み(ステップS201)、冷却液入口温度T1が上限温度(80゜C)よりも低いか否かを判定する(ステップS202)。判定結果が「NO」(冷却液入口温度T1が80゜C以上)である場合は、ウォーターポンプ15の出力を増大し、流量制御弁V1の開度を増大し、流量制御弁V2の開度を減少させて(ステップS203)、本ルーチンの実行を一旦終了する。このようにすると、燃料電池1を循環する冷却液の流量が増大し、ラジエータ11を通過する冷却液の流量が増大し、バイパス通路21を通過する冷却液の流量が減少するので、冷却液入口温度T1は急速に下がる方向に制御されることとなる。
【0040】
ステップS202における判定結果が「YES」(冷却液入口温度T1が80゜C未満)である場合は、冷却液入口温度T1が目標冷却液入口温度(65゜C)よりも大きいか否かを判定する(ステップS204)。
判定結果が「NO」(冷却液入口温度T1が65゜C以下)である場合は、流量制御弁V1の開度を減少し、流量制御弁V2の開度を増大させる(ステップS205)。このようにすると、ラジエータ11を通過する冷却液の流量が減少し、バイパス通路21を通過する冷却液の流量が増大するので、冷却液入口温度T1は上がる方向に制御されることとなる。
【0041】
ステップS204における判定結果が「YES」(冷却液入口温度T1が65゜Cより高い)である場合は、流量制御弁V1の開度を増大し、流量制御弁V2の開度を減少させる(ステップS206)。このようにすると、ラジエータ11を通過する冷却液の流量が増大し、バイパス通路21を通過する冷却液の流量が減少するので、冷却液入口温度T1は下がる方向に制御されることとなる。
すなわち、ステップS205あるいはステップS206の処理を実行することにより、冷却液入口温度T1は目標冷却液入口温度(65゜C)に収束すべく制御されることとなる。
【0042】
ステップS205あるいはステップS206の後、ステップS207に進み、冷却液出口温度T2と冷却液入口温度T1の温度差ΔTを算出し、算出された温度差ΔTが目標温度差(10deg)よりも小さいか否か判定する(ステップS208)。
判定結果が「NO」(温度差ΔTが10deg以上)である場合は、ウォーターポンプ15の出力を増大して(ステップS209)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が増大し、温度差ΔTは小さくなる方向に制御されることとなる。
【0043】
ステップS208における判定結果が「YES」(温度差ΔTが10deg未満)である場合は、ウォーターポンプ15の出力を低減して(ステップS210)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が減少し、温度差ΔTは大きくなる方向に制御されることとなる。
以上の温度制御処理を実行することにより、冷却液入口温度T1は65゜Cに収束するようになり、且つ、温度差ΔTは目標温度差(10deg)に収束するようになる。
この第2参考形態の冷却装置においても、第1参考形態と同様の作用があり、したがって、燃料電池1に対する加湿性の向上、燃料電池1における水分排出性の向上、ウォーターポンプ15の消費電力の減少を実現することができる。
【0044】
〔第の実施の形態〕
次に、この発明に係る燃料電池の冷却装置の第の実施の形態を図8の図面を参照して説明する。なお、以下の説明は、第の実施の形態と第1参考形態との相違点だけに留め、第1参考形態のものと同一構成部分については図中、同一態様部分に同一符号を付して説明を省略する。
の実施の形態では、カソード加湿器3が空気供給経路と空気オフガス経路に跨って設けられており、アノード加湿器7が水素ガス供給経路と水素オフガス経路に跨って設けられている。詳述すると、カソード加湿器3は、空気供給経路においてはエアコンプレッサ2の下流であり、空気オフガス経路においては圧力制御弁4の上流に設けられている。アノード加湿器7は、水素ガス供給経路においてはエゼクタ6の下流であり、水素オフガス経路においてはパージ弁10の上流に設けられている。
【0045】
カソード加湿器3は、ケーシング3aの内部が水蒸気透過膜3bによって上下二室に離隔されている点において第1参考形態のカソード加湿器3と同一構成であるが、第の実施の形態では、下側の第2室3dにエアコンプレッサ2および燃料電池1の空気通路57入口が接続され、上側の第1室3cに燃料電池1の空気通路57出口および圧力制御弁4が接続されている。したがって、エアコンプレッサ2から供給された空気はカソード加湿器3の第2室3dを通って燃料電池1の空気通路57に供給され、燃料電池1から排出された空気オフガスはカソード加湿器3の第1室3cを通って圧力制御弁4から大気に排出されることとなる。また、第の実施の形態のカソード加湿器3は、ケーシング3aの外側にウォータージャケット3eを形成するアウターケーシング3fを備えている。そして、このウォータージャケット3eに冷却液副流路14a,14bが接続されており、燃料電池1から排出された冷却液がウォータージャケット3eを循環可能になっている。
【0046】
したがって、この第1の実施の形態のカソード加湿器3においては、燃料電池1から熱を奪って温度上昇した冷却液がウォータージャケット3eを循環することにより、第2室3d内の空気と第1室3c内の空気オフガスが加熱される。第2室3d内の空気が加熱されると、該空気の相対湿度が下がり、該空気の露点を上げることができ、第2室3d内の空気は加湿され易い状態となる。一方、第1室3c内の空気オフガスが加熱されると、空気オフガスに含まれている液状の水の蒸発を促進することができ、この蒸発によって発生した蒸気と空気オフガスに元々気相として含まれていた水蒸気が水蒸気透過膜3bを透過して第2室3d内に移動し、第2室3d内の空気を加湿する。すなわち、ウォータージャケット3eに温度の高い冷却液を循環することにより、第2室3d内の空気に対する加湿を促進することができる。
【0047】
また、アノード加湿器7もカソード加湿器3と同様に構成されており、下側の第2室7dにエゼクタ6および燃料電池1の水素ガス通路56入口が接続され、上側の第1室7cに燃料電池1の水素ガス通路56出口および水素オフガス回収路8が接続されている。したがって、エゼクタ6から供給された水素ガスはアノード加湿器7の第2室7dを通って燃料電池1の水素オフガス通路56に供給され、燃料電池1から排出された水素オフガスはアノード加湿器7の第1室7cを通って水素オフガス回収路8に排出されることとなる。そして、ケーシング7aとアウターケーシング7fの間に設けられたウォータージャケット7eに冷却液副流路14c,14dが接続され、燃料電池1から排出された冷却液がウォータージャケット7eを循環可能になっている。
【0048】
したがって、この第の実施の形態のアノード加湿器7においては、燃料電池1から熱を奪って温度上昇した冷却液がウォータージャケット7eを循環することにより、第2室7d内の水素ガスと第1室7c内の水素オフガスが加熱される。第2室7d内の水素ガスが加熱されると、該水素ガスの相対湿度が下がり、該水素ガスの露点を上げることができ、第2室7d内の水素ガスは加湿され易い状態となる。一方、第1室7c内の水素オフガスが加熱されると、水素オフガスに含まれている液状の水の蒸発を促進することができ、この蒸発によって発生した蒸気と水素オフガスに元々気相として含まれていた水蒸気が水蒸気透過膜7bを透過して第2室7d内に移動し、第2室7d内の空気を加湿する。すなわち、ウォータージャケット7eに温度の高い冷却液を循環することにより、第2室7d内の水素ガスに対する加湿を促進することができる。
なお、この第の実施の形態においてカソード加湿器3のウォータージャケット3eとアノード加湿器7のウォータージャケット7eは加熱手段を構成する。
【0049】
そして、この第の実施の形態の冷却装置においても、第1参考形態の場合と同様に、燃料電池1の冷却液出口温度T2と冷却液入口温度T1との間に所定の温度差(例えば、目標温度差10deg)が確保されるように温度制御する。このようにすると第の実施の形態の冷却装置によっても第1参考形態の冷却装置と同様の作用・効果を得ることができる。
【0050】
すなわち、燃料電池1の冷却液出口温度T2と冷却液入口温度T1との間に所定の温度差(目標温度差10deg)が確保されるように温度制御されており、燃料電池1における冷却液入口位置と反応ガス入口位置が同一でその流れ方向が同一方向であるので、カソード加湿器3およびアノード加湿器7で加熱・加湿された反応ガスは燃料電池1に供給された直後に冷却液によって冷却されることとなり、該反応ガス中の蒸気が凝結して液状になり易くなる。その結果、燃料電池1の固体高分子電解質膜51を加湿し易くなる。
【0051】
また、冷却液入口温度T1が上限温度を超えない範囲で冷却液出口温度T2が高めに制御され、さらに、燃料電池1内では水素ガス及び空気と冷却液が同一方向に流れながら熱交換が行われるので、水素オフガスおよび空気オフガスの燃料電池1出口での温度を高くすることができる。その結果、これらオフガスの露点を高くすることができ、オフガス中に気相(水蒸気)で存在する水分量を増大させることができる。したがって、燃料電池1における水分の排出性が向上し、水素ガス通路56および空気通路57において水閉塞が起こり難くなる。
【0052】
さらに、冷却液出口温度T2を高めに制御していることから、冷却液の循環量を減少させることができ、ウォーターポンプ15の消費電力を減少させることができる。
【0053】
〔第の実施の形態〕
次に、この発明に係る燃料電池の冷却装置の第の実施の形態を図9および図10の図面を参照して説明する。
前述した各参考形態、及び第1の実施の形態の冷却装置では、冷却液出口温度T2と冷却液入口温度T1の温度差ΔTの目標温度差(目標値)を一定(例えば、10deg)にしているが、第の実施の形態の冷却装置では、温度差ΔTの目標温度差を可変にし、燃料電池1の出力(発電量)に応じて目標温度差を変化させるようにする。
【0054】
初めに、目標温度差を可変にする理由について説明する。
燃料電池1の発熱量は燃料電池1の出力(発電電流)に応じて異なり、低出力(発電電流が小さい)領域では発熱量が小さく、高出力(発電電流が大きい)領域では発熱量が大きい。そのため、低出力領域では燃料電池1を冷却する冷却液の流量は少なくて済み、高出力領域では冷却液の流量が多く必要になる。
【0055】
ここで、低出力領域において冷却液の流量が少なくなると、燃料電池1における冷却液流路構造のばらつきや燃料電池1におけるセル位置の関係により、全セルに対して均一な冷却状態の確保が困難になり、セル間あるいはセル位置に対する温度ばらつきが発生し、部分的に高温領域(ヒートポイント)が生じ、固体高分子電解質膜51などを痛める虞がある。
したがって、燃料電池1の低出力領域においては、冷却液出口温度T2と冷却液入口温度T1との温度差ΔTを小さく設定して冷却液流量を増加させた方が、ヒートポイントを生じにくくなり、燃料電池1にとって好ましい。
【0056】
一方、高出力領域において冷却液の流量が多くなると、燃料電池1における冷却液流路構造のばらつきがあっても、各セルでほぼ均一な冷却状態が確保できるのでヒートポイントが発生することはない。しかしながら、冷却液出口温度T2と冷却液入口温度T1との温度差ΔTを燃料電池1の低・中出力領域のときと同じ温度差ΔTに確保しようとすると、冷却液流量が大きくなるためウォーターポンプ15の出力が大きくなって、ウォーターポンプ15の消費電力が大きくなってしまう。ここで、ウォーターポンプ15の電力は燃料電池1の発電によって賄われることから、結果的に発電効率が低下することとなる。
したがって、燃料電池1の高出力領域においては、冷却液出口温度T2と冷却液入口温度T1との温度差ΔTを大きく設定して冷却液流量を減少させた方が、ウォーターポンプ15の消費電力を減少させることができ、エネルギーマネージメント上、好ましい。
そこで、この第の実施の形態の冷却装置では、燃料電池1の出力に応じて目標温度差を変化させて、冷却液の温度制御を実行することにした。
【0057】
次に、第の実施の形態の冷却装置について具体的に説明する。以下の説明では、冷却装置の構成については図1に示すものと同じとしてその説明は省略する。
図9は、冷却液入口温度の上限温度を80゜Cとし、冷却液出口温度と冷却液入口温度との目標温度差を燃料電池1の出力に応じた目標温度差ΔTαにする場合における冷却液の温度制御フローチャートを示しており、これに従って温度制御処理を説明する。
【0058】
まず、燃料電池1の出力(発電量)を知るために、発電電流計測装置18で検出した燃料電池1の発電電流を読み込む(ステップS301)。
次に、冷却液出口温度T2と冷却液入口温度T1との目標温度差ΔTαを燃料電池1の発電電流に応じて算出する(ステップS302)。目標温度差ΔTαは、例えば図10に示すような目標温度差マップを参照して算出してもよいし、あるいは、発電電流と目標温度差ΔTαとの関係式に基づいて計算により算出してもよい。
【0059】
ここで、図10の目標温度差マップについて説明すると、発電電流がIA1以下では目標温度差ΔTαはΔT1で一定であり、発電電流がIA1を越えてIA2以下では目標温度差ΔTαはΔT1からΔT2まで漸次大きくなり、発電電流がIA2を越えてIA3未満では目標温度差ΔTαはΔT2からΔT3まで漸次大きくなり、発電電流がIA3以上では目標温度差ΔTαはΔT3で一定になっている。なお、発電電流がIA1〜IA2における目標温度差ΔTαの上昇率は、発電電流がIA2〜IA3における目標温度差ΔTαの上昇率よりも大きく設定されている。
【0060】
このようにして燃料電池1の発電電流に応じた目標温度差ΔTαを算出した後、入口温度センサ16と出口温度センサ17で検出した冷却液入口温度T1と冷却液出口温度T2を読み込み(ステップS303)、冷却液入口温度T1が上限温度(80゜C)よりも低いか否かを判定する(ステップS304)。判定結果が「NO」(冷却液入口温度T1が80゜C以上)である場合は、ウォーターポンプ15の出力を増大して(ステップS305)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が増大し、冷却液入口温度T1は下げる方向に制御されることとなる。
【0061】
ステップS304における判定結果が「YES」(冷却液入口温度T1が80゜C未満)である場合は、冷却液出口温度T2と冷却液入口温度T1の温度差ΔTを算出し(ステップS306)、算出された温度差ΔTが目標温度差ΔTαよりも小さいか否か判定する(ステップS307)。
判定結果が「NO」(温度差ΔTが目標温度差ΔTα以上)である場合は、ウォーターポンプ15の出力を増大して(ステップS305)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が増大し、温度差ΔTは小さくなる方向に制御されることとなる。
【0062】
ステップS307における判定結果が「YES」(温度差ΔTが目標温度差ΔTα未満)である場合は、ウォーターポンプ15の出力を低減して(ステップS308)、本ルーチンの実行を一旦終了する。これにより、冷却液の循環量が減少し、温度差ΔTは大きくなる方向に制御されることとなる。
以上の温度制御処理を実行することにより、冷却液入口温度T1は80゜C以下に収束するようになり、且つ、温度差ΔTは燃料電池1の出力に応じた目標温度差ΔTαに収束するようになる。
【0063】
したがって、燃料電池1の出力が低いときには、冷却液出口温度T2と冷却液入口温度T1との温度差ΔTが小さい温度差に制御されるようになり、その結果、燃料電池1に流れる冷却液流量を比較的に大きくすることができるようになって、ヒートポイントを生じにくくすることができ、燃料電池1の損傷を防止することができる。
一方、燃料電池1の出力が高いときには、冷却液出口温度T2と冷却液入口温度T1との温度差ΔTが大きい温度差に制御されるようになり、その結果、燃料電池1に流れる冷却液流量を比較的に小さくすることができるようになって、ウォーターポンプ15の消費電力を減少させることができ、燃料電池1の発電効率が向上する。
【0064】
なお、この第の実施の形態の冷却装置においても、第1参考形態と同様の作用があり、したがって、燃料電池1に対する加湿性の向上、燃料電池1における水分排出性の向上、ウォーターポンプ15の消費電力の減少を実現することができる。
また、上述のように燃料電池1の出力に応じて目標温度差を変えて実行する冷却液の温度制御は、図6あるいは図8に示される構成の冷却装置にも適用可能である。
【0066】
【発明の効果】
また、請求項に記載した発明によれば、オフガスの燃料電池出口温度を高くすることができ、その結果、オフガスの露点を高くすることができ、オフガス中に気相(水蒸気)で存在する水分量を増大させて、これをオフガスとともに燃料電池から排出することができるので、燃料電池における水分の排出性が向上するという優れた効果が奏される。
【0067】
また、請求項に記載した発明によれば、加熱手段が冷却液で加湿器を加熱しているので、燃料電池に供給される反応ガスの温度が高まり、加湿器における反応ガスに対する加湿が促進され、しかも、加熱・加湿された反応ガスは燃料電池に供給された直後に冷却液によって冷却され、反応ガス中の蒸気が凝結して液状になり易くなり、燃料電池を加湿し易くなるので、燃料電池に対する加湿性が向上するという優れた効果が奏される。
【0068】
さらに、請求項に記載した発明によれば、冷却液出口温度を高めに制御するようになることから、冷却液の循環量を減少させることができるので、循環ポンプの消費電力を減少させることができるという効果もある。
【0069】
請求項に記載した発明によれば、燃料電池が低出力のときには、冷却液出口温度と冷却液入口温度との温度差を小さく設定して、燃料電池を流れる冷却液流量を増加させることができるので、燃料電池内にヒートポイントを生じにくくすることができ、燃料電池の損傷を防止することができ、一方、燃料電池が高出力のときには、冷却液出口温度と冷却液入口温度との温度差を大きく設定して、燃料電池を流れる冷却液流量を減少させることができるので、循環ポンプの消費電力を減少させることができ、燃料電池の発電効率が向上するという優れた効果が奏される。
【図面の簡単な説明】
【図1】 この発明に係る燃料電池の冷却装置における第1参考形態の概略構成図である。
【図2】 第1参考形態における燃料電池の概略断面図である。
【図3】 第1参考形態における燃料電池の反応ガス通路および冷却液通路の模式図である。
【図4】 第1参考形態における冷却液の温度制御フローチャートである。
【図5】 燃料電池の反応ガス通路および冷却液通路の他の例を示す模式図である。
【図6】 この発明に係る燃料電池の冷却装置における第2参考形態の概略構成図である。
【図7】 第2参考形態における冷却液の温度制御フローチャートである。
【図8】 この発明に係る燃料電池の冷却装置における第の実施の形態の概略構成図である。
【図9】 この発明に係る燃料電池の冷却装置における第の実施の形態の冷却液温度制御フローチャートである。
【図10】 第の実施の形態における目標温度差マップの一例である。

Claims (2)

  1. 燃料ガスと酸化剤ガスを反応ガスとして発電を行う燃料電池と、
    前記燃料電池に供給される前記反応ガスを、前記燃料電池から排出される反応オフガスに含まれている水分により水蒸気透過膜を介して加湿する加湿器と、
    循環ポンプにより冷却液を前記燃料電池と放熱器との間で循環させ、前記燃料電池内で冷却液を前記反応ガスと略同一方向となる一方向に流して該燃料電池を冷却し、前記放熱器で冷却液から熱を外部に放熱する冷却手段と、
    前記燃料電池から排出された前記冷却液によって前記加湿器を加熱する加熱手段と、
    前記燃料電池の冷却液入口温度が予め設定された上限温度を下回っている場合に、前記燃料電池の冷却液出口温度と冷却液入口温度との間に所定の温度差が確保されるように前記循環ポンプの出力を制御する制御手段と、
    を備えることを特徴とする燃料電池の冷却装置。
  2. 前記燃料電池の高出力領域における前記温度差の目標値を、低出力領域における前記温度差の目標値よりも大きく設定したことを特徴とする請求項1記載の燃料電池の冷却装置。
JP2001203938A 2001-07-04 2001-07-04 燃料電池の冷却装置 Expired - Fee Related JP4884604B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203938A JP4884604B2 (ja) 2001-07-04 2001-07-04 燃料電池の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203938A JP4884604B2 (ja) 2001-07-04 2001-07-04 燃料電池の冷却装置

Publications (2)

Publication Number Publication Date
JP2003017105A JP2003017105A (ja) 2003-01-17
JP4884604B2 true JP4884604B2 (ja) 2012-02-29

Family

ID=19040490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203938A Expired - Fee Related JP4884604B2 (ja) 2001-07-04 2001-07-04 燃料電池の冷却装置

Country Status (1)

Country Link
JP (1) JP4884604B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303446A (ja) * 2003-03-28 2004-10-28 Nissan Motor Co Ltd 燃料電池システム
US6986959B2 (en) * 2003-07-22 2006-01-17 Utc Fuel Cells, Llc Low temperature fuel cell power plant operation
JP4561058B2 (ja) 2003-07-22 2010-10-13 日産自動車株式会社 燃料電池システム
DE10349630A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Brennstoffzelle mit Heiz- und/oder Kühlkreislauf
JP4617661B2 (ja) * 2003-11-13 2011-01-26 日産自動車株式会社 燃料電池スタック
JP4698154B2 (ja) * 2004-02-16 2011-06-08 大阪瓦斯株式会社 燃料電池システム
JP4613028B2 (ja) * 2004-03-30 2011-01-12 アイシン精機株式会社 燃料電池システム
JP4687867B2 (ja) * 2004-06-17 2011-05-25 株式会社Eneosセルテック 固体高分子形燃料電池の冷却装置
JP4602056B2 (ja) * 2004-11-26 2010-12-22 本田技研工業株式会社 燃料電池の冷却装置
JP4601406B2 (ja) * 2004-11-30 2010-12-22 三洋電機株式会社 燃料電池システム
JP4034804B2 (ja) * 2004-12-28 2008-01-16 松下電器産業株式会社 高分子電解質型燃料電池発電システム
CN101080838B (zh) 2004-12-28 2010-05-26 松下电器产业株式会社 高分子电解质型燃料电池发电系统
JP4734963B2 (ja) * 2005-03-01 2011-07-27 株式会社デンソー 燃料電池システム
JP4839698B2 (ja) * 2005-06-30 2011-12-21 株式会社エクォス・リサーチ 燃料電池システム
US20070077474A1 (en) * 2005-10-04 2007-04-05 Goebel Steven G Fuel cell system water mass balancing scheme
JP5089884B2 (ja) * 2005-12-28 2012-12-05 パナソニック株式会社 高分子電解質型燃料電池システム
JP5009168B2 (ja) * 2006-01-13 2012-08-22 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
KR100725253B1 (ko) 2006-08-02 2007-06-04 (주)퓨얼셀 파워 연료전지 시스템 및 그 냉각 제어방법
JP5249501B2 (ja) * 2006-08-08 2013-07-31 三菱重工業株式会社 固体高分子型燃料電池
DE102008032156B4 (de) * 2008-07-08 2014-02-13 Howaldtswerke-Deutsche Werft Gmbh Verfahren zur Temperaturregelung in einer Brennstoffzellenanlage und Brennstoffzellenanlage
JP5380932B2 (ja) * 2008-07-17 2014-01-08 トヨタ自動車株式会社 燃料電池システム
JP5380935B2 (ja) * 2008-07-24 2014-01-08 トヨタ自動車株式会社 燃料電池システム
JP5310503B2 (ja) * 2009-11-24 2013-10-09 トヨタ自動車株式会社 燃料電池システム
KR101583832B1 (ko) * 2009-11-30 2016-01-21 현대자동차주식회사 연료전지 차량의 냉각시스템 제어 방법
JP5848895B2 (ja) * 2011-06-13 2016-01-27 日鉄住金テックスエンジ株式会社 燃料電池を流れる冷却水の制御方法及び制御装置
KR101575431B1 (ko) * 2013-12-19 2015-12-21 현대자동차주식회사 냉각수 기포 제거 장치 및 방법
JP6335559B2 (ja) * 2014-03-14 2018-05-30 大阪瓦斯株式会社 固体高分子形燃料電池
JP6859177B2 (ja) * 2017-04-28 2021-04-14 株式会社Soken 燃料電池システム
CN111769310A (zh) * 2020-06-16 2020-10-13 广东国鸿氢能科技有限公司 一种燃料电池系统
CN113745570B (zh) * 2021-09-09 2023-04-25 南京氢创能源科技有限公司 电堆入口温度调节系统及其调节方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144451A (ja) * 1991-11-20 1993-06-11 Fuji Electric Co Ltd 固体高分子電解質型燃料電池の反応ガス・冷却媒体通流構造
JP3111697B2 (ja) * 1992-10-20 2000-11-27 富士電機株式会社 固体高分子電解質型燃料電池
JP3337295B2 (ja) * 1993-12-21 2002-10-21 三菱重工業株式会社 燃料電池システム
JPH07320760A (ja) * 1994-05-27 1995-12-08 Toshiba Corp 燃料電池発電プラント
JPH0878033A (ja) * 1994-09-08 1996-03-22 Fuji Electric Co Ltd 固体高分子型燃料電池とその運転方法
JPH0922718A (ja) * 1995-07-05 1997-01-21 Tokyo Gas Co Ltd 燃料電池装置
JP3769882B2 (ja) * 1997-06-06 2006-04-26 トヨタ自動車株式会社 燃料電池装置および燃料電池装置の温度調整方法
JP2000315513A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 燃料電池自動車用ラジエータシステム
JP2001167779A (ja) * 1999-12-14 2001-06-22 Isuzu Motors Ltd 車両用燃料電池システム

Also Published As

Publication number Publication date
JP2003017105A (ja) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4884604B2 (ja) 燃料電池の冷却装置
JP4871219B2 (ja) スタック入口のrhを増大させるためのシステムレベル調整
US8298713B2 (en) Thermally integrated fuel cell humidifier for rapid warm-up
US8053126B2 (en) Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
JP5324756B2 (ja) 過渡の間にrh偏位を最小にするための多圧力支配制御
JP2003036874A (ja) 燃料電池システム
US7556879B2 (en) Polymer electrolyte fuel cell
US8920987B2 (en) Fuel cell system with improved humidification performance
JP2006519469A (ja) 部分空気加湿を用いる常圧燃料電池システム
JP5397387B2 (ja) 燃料電池システム
US20180226667A1 (en) Method for operating a fuel cell system and adjusting a relative humidity of a cathode operating gas during a heating phase
WO2010073380A1 (ja) 燃料電池の水分量推定装置及び燃料電池システム
JP5459223B2 (ja) 燃料電池システム
JP4603920B2 (ja) 燃料電池用加湿装置及びこれを備えた燃料電池システム
JP4098484B2 (ja) 燃料電池システム
WO2011024581A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP4682386B2 (ja) 燃料電池システム
JP2003223909A (ja) 燃料電池システム
JP2008053144A (ja) 燃料電池システム
JP5310739B2 (ja) 燃料電池システム
JP2006339103A (ja) 燃料電池システム
JP5310740B2 (ja) 燃料電池システム
JP2006032094A (ja) 燃料電池システム
JP3627716B2 (ja) 燃料電池システム
JP2006032092A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees