JP4734963B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP4734963B2
JP4734963B2 JP2005055893A JP2005055893A JP4734963B2 JP 4734963 B2 JP4734963 B2 JP 4734963B2 JP 2005055893 A JP2005055893 A JP 2005055893A JP 2005055893 A JP2005055893 A JP 2005055893A JP 4734963 B2 JP4734963 B2 JP 4734963B2
Authority
JP
Japan
Prior art keywords
fuel cell
local current
cooling
fuel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005055893A
Other languages
English (en)
Other versions
JP2006244758A (ja
Inventor
信也 坂口
工藤  弘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005055893A priority Critical patent/JP4734963B2/ja
Publication of JP2006244758A publication Critical patent/JP2006244758A/ja
Application granted granted Critical
Publication of JP4734963B2 publication Critical patent/JP4734963B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、水素と酸素との電気化学反応により電気エネルギを発生させる燃料電池を備える燃料電池システムに関するもので、車両、船舶およびポータブル発電機等の移動体用発電機、あるいは家庭用発電機に適用して有効である。
従来より、燃料電池の発電効率を向上させるために、冷却水の温度を制御して燃料電池の温度を均一化する燃料電池システムが提案されている(例えば、特許文献1参照)。
特開平10−340734号公報
ところで、燃料電池は出力状態によって生成水の量が異なり、内部の水分状態が変化する。しかしながら、上記特許文献1に記載の発明では、燃料電池の出力に関係なく燃料電池内が常に一定の温度で均一になるように構成されているため、燃料電池の出力状態によっては燃料電池の温度が適切でなく、発電効率の向上を図れていない場合もあった。
本発明は、上記点に鑑み、燃料電池の出力に応じて、燃料電池の適切な冷却温度制御をすることで、発電効率を向上させることができる燃料電池システムを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させる燃料電池(10)と、燃料電池(10)を冷却する冷却手段(40〜46)と、燃料電池(10)が目標冷却温度になるように、冷却手段(40〜46)による冷却量を調整する冷却量調整手段(41、42、45)と、燃料電池(10)の出力を検出する出力検出手段(11、12)と、燃料電池(10)の目標冷却温度を設定する目標冷却温度決定手段(50)と、燃料電池(10)内における水分が滞留しやすい部位および燃料電池(10)内における乾燥しやすい部位の少なくとも一方の局所電流を測定する局所電流測定手段(60)とを備え、目標冷却温度決定手段(50)は、局所電流測定手段(60)が燃料電池(10)内における水分が滞留しやすい部位の局所電流を測定するものである場合において、局所電流測定手段(60)により測定された電流値が第1所定値を下回ったときに、目標冷却温度を高くするまたは、局所電流測定手段(60)が燃料電池(10)内における乾燥しやすい部位の局所電流を測定するものである場合において、局所電流測定手段(60)により測定された電流値が第2所定値を下回ったときに、目標冷却温度を低くすることを特徴としている。
燃料電池(10)の出力が高いときは生成水が大量に発生しているため、冷却水の温度を高くしても電解質膜の湿潤を保つことができる。よって、燃料電池(10)の出力が高いときに燃料電池(10)の温度を高くすることで、電解質膜の湿潤を保ちながら触媒活性を上げることができるため、燃料電池(10)の発電効率を向上させることが可能となる。また、燃料電池(10)内における水分が滞留しやすい部位の局所電流を検出し、検出された局所電流値が所定値を下回っている場合、すなわち燃料電池(10)内に水分が滞留している場合は、冷却水の目標温度を上げて生成水を蒸発させることができる。このため、フラッディングを防止することが可能となる。また、燃料電池(10)内における乾燥しやすい部位の局所電流を検出し、検出された局所電流値が所定値を下回っている場合、すなわち燃料電池(10)内の水分が不足している場合は、目標冷却温度を下げて生成水を凝縮させることができる。このため、電解質膜の乾燥(ドライアップ)を防止することが可能となる。
また、請求項に記載の発明では、燃料電池(10)は、酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させるセル(100)が複数個積層されて構成されており、燃料電池(10)内における水分が滞留しやすい部位は、セル(100)における酸化剤ガスが流出する酸化剤ガス出口部(112)であることを特徴としている。
また、請求項に記載の発明では、燃料電池(10)は、酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させるセル(100)が複数個積層されて構成されており、燃料電池(10)内における乾燥しやすい部位は、セル(100)における酸化剤ガスが流入する酸化剤ガス入口部(111)であることを特徴としている。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態について図1〜図3に基づいて説明する。図1は本第1実施形態に係る燃料電池システムを示す模式図で、この燃料電池システムは例えば電気自動車に適用される。
図1に示すように、本第1実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。この燃料電池10は、電気負荷(図示せず)等の電気機器に電力を供給するものである。因みに、電気自動車の場合、車両走行駆動源としての電動モータが電気負荷に相当している。
本第1実施形態では燃料電池10として固体高分子電解質型燃料電池を用いており、基本単位となる燃料電池セル100が複数個積層され、且つ電気的に直列接続されている。燃料電池10では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。
(負極側)H→2H+2e
(正極側)2H+1/2O+2e→H
そして、各セル100毎の出力電圧を検出する電圧センサ11と出力電流値を検出する電流センサ12が設けられている。電圧センサ11および電流センサ12は、それぞれのセンサ信号を後述する燃料電池制御部50に出力する。
燃料電池システムには、燃料電池10の空気極(正極)側に空気(酸素)を供給するための空気流路20と、燃料電池10の水素極(負極)側に水素を供給するための水素流路30が設けられている。ここで、空気流路20における燃料電池10より上流側を空気供給流路20aといい、下流側を空気排出流路20bという。また、水素流路30における燃料電池10より上流側を水素供給流路30aといい、下流側を水素循環流路30bという。なお、空気は本発明の酸化ガスに相当し、水素は本発明の燃料ガスに相当している。
空気供給流路20aの最上流部には、大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ21が設けられ、空気供給流路20aにおける空気ポンプ21と燃料電池10との間には、空気への加湿を行う加湿器22が設けられている。空気排出流路20bには、燃料電池10内の空気の圧力を調整するための空気調圧弁23が設けられている。
水素供給流路30aの最上流部には、水素が充填された高圧水素タンク31が設けられ、水素供給流路30aにおける高圧水素タンク31と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整するための水素調圧弁32が設けられている。
水素循環流路30bは、水素供給流路30aにおける水素調圧弁32の下流側に接続されて閉ループに構成されており、これにより水素流路30内で水素を循環させて、未反応の水素を燃料電池10に再供給するようにしている。そして、水素循環流路30bには、水素流路30内で水素を循環させるための水素ポンプ33と、燃料電池10から排出される窒素や水蒸気を含む未反応水素を外部に排出する排気バルブ34が設けられている。
燃料電池10は発電に伴い熱を生じる。このため、燃料電池システムには、燃料電池10を冷却して作動温度が電気化学反応に適した温度(例えば80℃程度)となるようにする冷却システム(冷却手段)40〜46が設けられている。
冷却システムには、燃料電池10に冷却水を循環させる冷却水循環経路40、冷却水を循環させるウォータポンプ41、ファン42を備えたラジエータ43が設けられている。燃料電池10で発生した熱は、冷却水を介してラジエータ43で系外に排出される。冷却水循環経路40には、冷却水をラジエータ43をバイパスさせるバイパス経路44が設けられている。冷却水循環経路40とバイパス経路44との合流点には、ラジエータ43に流れる冷却水とバイパス経路44に流れる冷却水の流量比を調整する流量調整弁45が設けられている。冷却水循環経路40におけるラジエータ43の上流側には、燃料電池10の出口側の冷却水温度を検出するための温度センサ46が設けられている。
ウォータポンプ41、ラジエータファン42、流量調整弁45は後述する燃料電池制御部50からの制御信号に基づいて作動するように構成されており、ウォータポンプ41、ラジエータファン42、流量調整弁45が本発明の冷却量調整手段に相当している。
燃料電池制御部(FC−ECU)50は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。そして、燃料電池制御部50には、電圧センサ11、電流センサ12、温度センサ46からのセンサ信号が入力される。また、燃料電池制御部50は、演算結果に基づいて、空気ポンプ21、加湿器22、空気調圧弁23、水素調圧弁32、水素ポンプ33、排気バルブ34、ウォータポンプ41、ラジエータファン42、流量調整弁45に制御信号を出力する。なお、燃料電池制御部50が、本発明の目標冷却温度決定手段に相当している。
図2は、本第1実施形態おける燃料電池10の出力と冷却水の目標温度との関係を示す特性図である。燃料電池制御部50のROMには、図2で示す燃料電池10の出力と冷却水の目標温度とが関連づけられたマップがあらかじめ記憶されている。図2に示すように、燃料電池10の出力と冷却水の目標温度は比例関係になっており、出力が高いときには冷却水の目標温度を高くして、出力が低いときには目標温度を低くするようになっている。
次に、本第1実施形態の燃料電池システムの温度制御について図3に基づいて説明する。図3は、本第1実施形態における燃料電池システムの制御部50がROMに格納されたプログラムに従って行う燃料電池10の冷却制御を示すフローチャートである。
まず、燃料電池10の出力を検出する(ステップS100)。本第1実施形態では、電圧センサ11および電流センサ12から直接出力を検出するようになっている。
次に、ROMから燃料電池10の出力と冷却水の目標温度とが関連づけられたマップを読み出して、ステップS100で検出された燃料電池10の出力から冷却水の目標温度を決定する(ステップS110)。
次に、冷却水の温度がステップ110において決定された目標温度になるように、燃料電池10の冷却量を制御する(ステップS120)。すなわち、冷却水の目標温度に基づいて、ウォータポンプ41の回転数、ラジエータファン42の回転数、流量調整弁45のバルブ開度を制御する。具体的には、ウォータポンプ41の回転数、ラジエータファン42の回転数、流量調整弁45のバルブ開度のうち少なくともひとつを調整することで、冷却水温度を調整する。
例えば、ウォータポンプ41の回転数を調整することで、冷却水の循環量を調整することができ、これにより冷却水温度を調整することができる。また、ラジエータファン42の回転数を調整することで、ラジエータ43への送風量を調整することができ、これによりラジエータ43の放熱量を調整し、冷却水温度を調整することができる。また、流量調整弁45のバルブ開度を調整することで、ラジエータ43に流れる冷却水とバイパス経路44に流れる冷却水の流量比を調整することができ、これにより冷却水温度を調整することができ、燃料電池10の温度を調整することができる。
燃料電池10の温度が高いと燃料電池10内の水分の蒸発が進むが、燃料電池10の出力が高いときは生成水が大量に発生しているため、本第1実施形態のように、燃料電池10の出力が大きいときに燃料電池10の冷却量を小さくし、燃料電池10の温度を高くすることで、電解質膜の湿潤を保つことができる。燃料電池10は、温度が高い方が触媒活性がよいため、電解質膜の湿潤を保ちながら触媒活性を上げることができ、燃料電池10の発電効率を向上させることが可能となる。
(第2実施形態)
次に、本発明の第2実施形態について図4に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
図4は、本第2実施形態おける燃料電池10の出力と冷却水の目標温度との関係を示す特性図である。上記第1実施形態では、燃料電池10の出力が高くなるに応じて冷却水の目標温度を直線的に高くするように制御していたが、本第2実施形態では、図4に示すように、冷却水の目標温度を段階的に高くするように制御している。こうすることで、燃料電池10の出力が所定の範囲内の場合は冷却水の目標温度を変更する必要がないため、温度制御を簡略化することができる。
(第3実施形態)
次に、本発明の第3実施形態について図5〜図10に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、局所電流値に基づいて冷却水の目標温度を決定する点が異なるものである。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
図5は本第3実施形態に係る電流測定装置60を装着した燃料電池10の斜視図、図6は図5の燃料電池10の側面図である。
図6に示すように、セル100は、電解質膜の両側面に電極が配置されたMEA(Membrane Electrode Assembly:電解質・電極接合体)101と、このMEA101を挟持する空気側セパレータ110および水素側セパレータ120で構成されている。セパレータ110、120は、カーボン材または導電性金属よりなる板状部材からなる。
図6に実線で示すように、空気側セパレータ110には、空気を流すための空気流路Aが形成されており、空気流路Aを介して酸素が各セル100に対して並列に供給される。また、図6に一点鎖線で示すように、水素側セパレータ120には、水素を流すための水素流路Bが形成されており、水素流路Bを介して水素が各セル100に対して並列に供給される。
図5に示すように、積層されたセル100の両端には端子板11が配置されている。図5中の斜線で示すように、ある2つのセル100の間に電流測定装置60が配置されている。
図7は電流測定装置60の斜視図であり、図8は図7の電流測定装置60の要部の正面図である。図7に示すように、電流測定装置60は板状部材600を備えている。板状部材600には、空気入口側通路600a、空気出口側通路600b、水素入口側通路600c、水素出口側通路600dが形成されている。
図7、図8に示すように、板状部材600の紙面右上には、ロの字状の溝601によって囲まれた直方体の柱状部602が形成され、この柱状部602の端部は隣り合うセル100に接触するようになっている。なお、図7、図8に示す例では溝601をロの字状とし、柱状部602を直方体状としたが、これに限らず、例えば溝601を円状、柱状部602を円柱状のような他の形状にすることもできる。
図8に示すように、溝601には、柱状部602を囲むようにして鉄心603が配置され、鉄心603の両端部間に磁気センサとしてのホール素子604が配置されている。鉄心603とホール素子604は、局所電流センサを構成している。なお、鉄心603とホール素子604とが、本発明の局所電流測定手段に相当している。また、磁気センサとしてホール素子の他にMR素子、MI素子、フラックスゲート等を用いることができる。さらに、シャント抵抗を用いた電流センサ等を用いることもできる。
上記構成において、セル100における柱状部602に対向する部位から放電される局所電流が柱状部602に流れると、その電流に比例した磁界が柱状部602の周囲に発生する。ホール素子604は、局所電流によって発生した磁界を検出し、電圧に変換する。したがって、鉄心603部の磁界の強さをホール素子604にて測定することにより、柱状部602を流れる電流、ひいてはセル100の局所電流を検出することができる。
図9は、図6の右側から見た空気側セパレータ110の透視図である。図9に示すように、空気側セパレータ110は、空気流路Aに接続される空気入口部111および空気出口部112と、空気入口部111から空気出口部112に向かって空気を流すための空気流路溝113とを備えている。
上述の図7で示した電流測定装置60の柱状部602は、空気出口部112の近傍(図9において符号Cで示す領域)に対応する部位に設けられており、図8で示した局所電流センサ603、604は空気出口部112近傍C(以下、空気出口部分Cという)における局所電流を測定できるように構成されている。なお、空気出口部分Cが、本発明の水分が滞留しやすい部位に相当している。
次に、本第3実施形態の燃料電池システムの温度制御について図10に基づいて説明する。図10は、本第3実施形態における燃料電池システムの制御部50がROMに格納されたプログラムに従って行う燃料電池10の冷却制御を示すフローチャートである。
まず、空気出口部分Cの局所電流を検出する(ステップS200)。そして、ステップS200で検出した局所電流値が所定値を下回っているか否かを判定する(ステップS210)。この結果、空気出口部分Cの局所電流値が所定値を下回っている場合は(S210:YES)、空気出口部分Cに水分が滞留していると診断し、冷却水の目標温度を上げる(ステップS220)。これにより、セル100内に滞留した水分を蒸発させることができる。
一方、空気出口部分Cの局所電流値が所定値を下回っていない場合は(S210:NO)、空気出口部分Cに水分は滞留していないと診断し、冷却水の目標温度をそのまま保持する(ステップS230)。
次に、冷却水の温度がステップS220もしくはS230において決定された目標温度になるように、冷却量を制御する(ステップS240)。
以上説明したように、セル100内における水分が滞留しやすい部位である空気出口部分Cの局所電流を検出し、その局所電流値が所定値を下回っている場合、すなわちセル100内に水分が滞留している場合は、冷却水の目標温度を上げて生成水を蒸発させることができる。これにより、フラッディングを防止することができる。
(第4実施形態)
次に、本発明の第4実施形態について図9および図11に基づいて説明する。本第4実施形態は、上記第3実施形態と比較して、セル100内における乾燥しやすい部位の局所電流値に基づいて冷却水の目標温度を決定する点が異なるものである。上記第3実施形態と同様の部分については同一の符号を付して説明を省略する。
本第4実施形態では、上述の図7で示した電流測定装置60の柱状部602が、空気入口部111の近傍(図9において符号Dで示す領域)に対応する部位に設けられており、図8で示した局所電流センサ603、604は空気入口部111近傍D(以下、空気入口部分Dという)における局所電流を測定できるように構成されている。なお、空気入口部分Dが、本発明の乾燥しやすい部位に相当している。
次に、本第4実施形態の燃料電池システムの温度制御について図11に基づいて説明する。図11は、本第4実施形態における燃料電池システムの制御部50がROMに格納されたプログラムに従って行う燃料電池10の冷却制御を示すフローチャートである。
まず、空気入口部分Dの局所電流を検出する(ステップS300)。そして、ステップS300で検出した局所電流値が所定値を下回っているか否かを判定する(ステップS310)。この結果、空気入口部分Dの局所電流値が所定値を下回っている場合は(S310:YES)、空気入口部分Dが乾燥していると診断し、冷却水の目標温度を下げる(ステップS320)。これにより、生成水を凝縮させて、セル100内の乾燥状態を改善することができる。
一方、空気入口部分Dの局所電流値が所定値を下回っていない場合は(S310:NO)、空気入口部分Dに水分は滞留していないと診断し、冷却水の目標温度をそのまま保持する(ステップS330)。
次に、冷却水の温度がステップS320もしくはS330において決定された目標温度になるように、冷却量を制御する(ステップS340)。
以上説明したように、セル100内における乾燥しやすい部位である空気入口部分Dの局所電流を検出し、その局所電流値が所定値を下回っている場合、すなわちセル100内の水分が不足している場合は、冷却水の目標温度を下げて生成水を凝縮させることができる。これにより、電解質膜のドライアップを防止することができる。
(他の実施形態)
なお、上記第1および第2実施形態では、燃料電池10の出力を電圧センサ11および電流センサ12により直接検出していたが、他の手段により燃料電池10の出力を検出するように構成してもよい。
燃料電池10の出力が運転者によるアクセルの操作量に応じて変化するように構成されている場合には、アクセルの開度(操作量)を検出してアクセル開度信号を出力するアクセル開度センサを設け、検出されたアクセル開度から燃料電池10の出力を間接的に検出してもよい。このとき、燃料電池10の電圧値および電流値から直接出力を検出する場合よりも早く温度制御を行うことができるため、燃料電池10の発電効率の向上に寄与できる。なお、アクセル開度センサとともに、車速を検出して車速信号を出力する車速センサを用いてもよい。
または、車両用ナビゲーション装置の道路勾配情報から燃料電池10の出力を間接的に検出してもよい。このとき、アクセル開度から出力を検出する場合よりも早く温度制御を行うことができるため、さらに燃料電池10の発電効率の向上に寄与できる。
第1実施形態に係る燃料電池システムを示す模式図である。 第1実施形態おける燃料電池10の出力と冷却水の目標温度との関係を示す特性図である。 第1実施形態における燃料電池10の冷却制御を示すフローチャートである。 第2実施形態おける燃料電池10の出力と冷却水の目標温度との関係を示す特性図である。 第3実施形態に係る電流測定装置60を装着した燃料電池10の斜視図である。 図5の燃料電池10の側面図である。 第3実施形態に係る電流測定装置60の斜視図である。 図7の電流測定装置60の要部の正面図である。 図6の右側から見た空気側セパレータ110の透視図である。 本第3実施形態における燃料電池10の冷却制御を示すフローチャートである。 第4実施形態における燃料電池10の冷却制御を示すフローチャートである。
符号の説明
10…燃料電池、11…電圧センサ(出力検出手段)、12…電流センサ(出力検出手段)、40〜46…冷却システム(冷却手段)、50…燃料電池制御部(目標冷却温度決定手段)、60…局所電流測定装置。

Claims (3)

  1. 酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させる燃料電池(10)と、
    前記燃料電池(10)を冷却する冷却手段(40〜46)と、
    前記燃料電池(10)が目標冷却温度になるように、前記冷却手段(40〜46)による冷却量を調整する冷却量調整手段(41、42、45)と、
    前記燃料電池(10)の出力を検出する出力検出手段(11、12)と、
    前記燃料電池(10)の前記目標冷却温度を設定する目標冷却温度決定手段(50)と、
    前記燃料電池(10)内における水分が滞留しやすい部位および前記燃料電池(10)内における乾燥しやすい部位の少なくとも一方の局所電流を測定する局所電流測定手段(60)とを備え、
    前記目標冷却温度決定手段(50)は、
    前記局所電流測定手段(60)が前記燃料電池(10)内における水分が滞留しやすい部位の局所電流を測定するものである場合において、前記局所電流測定手段(60)により測定された電流値が第1所定値を下回ったときに、前記目標冷却温度を高くするまたは、
    前記局所電流測定手段(60)が前記燃料電池(10)内における乾燥しやすい部位の局所電流を測定するものである場合において、前記局所電流測定手段(60)により測定された電流値が第2所定値を下回ったときに、前記目標冷却温度を低くすることを特徴とする燃料電池システム。
  2. 前記燃料電池(10)は、酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させるセル(100)が複数個積層されて構成されており、
    前記燃料電池(10)内における水分が滞留しやすい部位は、前記セル(100)における酸化剤ガスが流出する酸化剤ガス出口部(112)であることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記燃料電池(10)は、酸化剤ガスと燃料ガスとの電気化学反応により電気エネルギを発生させるセル(100)が複数個積層されて構成されており、
    前記燃料電池(10)内における乾燥しやすい部位は、前記セル(100)における酸化剤ガスが流入する酸化剤ガス入口部(111)であることを特徴とする請求項1または2に記載の燃料電池システム。
JP2005055893A 2005-03-01 2005-03-01 燃料電池システム Expired - Fee Related JP4734963B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055893A JP4734963B2 (ja) 2005-03-01 2005-03-01 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055893A JP4734963B2 (ja) 2005-03-01 2005-03-01 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006244758A JP2006244758A (ja) 2006-09-14
JP4734963B2 true JP4734963B2 (ja) 2011-07-27

Family

ID=37050975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055893A Expired - Fee Related JP4734963B2 (ja) 2005-03-01 2005-03-01 燃料電池システム

Country Status (1)

Country Link
JP (1) JP4734963B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984534B2 (ja) * 2006-01-11 2012-07-25 日産自動車株式会社 燃料電池システム
JP5267835B2 (ja) * 2007-06-25 2013-08-21 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムのインピーダンス測定方法
JP5326423B2 (ja) 2008-08-20 2013-10-30 トヨタ自動車株式会社 燃料電池システム、および、燃料電池の状態検知方法
JP5598019B2 (ja) * 2010-02-26 2014-10-01 パナソニック株式会社 燃料電池発電システム
JP6136185B2 (ja) * 2012-10-16 2017-05-31 日産自動車株式会社 燃料電池システム
JP7382184B2 (ja) 2019-09-06 2023-11-16 株式会社Subaru 燃料電池システム、制御装置および制御方法
CN112687908B (zh) * 2020-12-25 2022-03-15 上海汉测智能科技有限公司 氢燃料电池散热系统及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884604B2 (ja) * 2001-07-04 2012-02-29 本田技研工業株式会社 燃料電池の冷却装置
JP2005044749A (ja) * 2003-07-25 2005-02-17 Nissan Motor Co Ltd 燃料電池自動車

Also Published As

Publication number Publication date
JP2006244758A (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4877656B2 (ja) 燃料電池システムおよびその電流制御方法
JP4734963B2 (ja) 燃料電池システム
EP1132986A2 (en) Fuel cell system and method for operating fuel cell
JP4639680B2 (ja) 燃料電池システム
JP4457942B2 (ja) 燃料電池システム
JP4835001B2 (ja) 燃料電池システム
JP4654687B2 (ja) 燃料電池システム
JPWO2013105590A1 (ja) 燃料電池システム
JP4973138B2 (ja) 燃料電池システム
JP7029268B2 (ja) 燃料電池システム
JP2007220322A (ja) 燃料電池システム
JP2018125189A (ja) 燃料電池システム
JP2009193900A (ja) 燃料電池システム
JP4862264B2 (ja) 燃料電池システム
JP4788126B2 (ja) 燃料電池システム
JP4997697B2 (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP4734829B2 (ja) 燃料電池システム
JP2007141721A (ja) 電流測定装置
JP5512387B2 (ja) 燃料電池の運転方法
JP2008218265A (ja) 燃料電池システム
JP4935446B2 (ja) 燃料電池システム
JP4752236B2 (ja) 燃料電池システム
JP3991047B2 (ja) 燃料電池用加湿装置
JP2005340006A (ja) 燃料電池システムおよび燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R151 Written notification of patent or utility model registration

Ref document number: 4734963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees