JP2005340006A - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
JP2005340006A
JP2005340006A JP2004157696A JP2004157696A JP2005340006A JP 2005340006 A JP2005340006 A JP 2005340006A JP 2004157696 A JP2004157696 A JP 2004157696A JP 2004157696 A JP2004157696 A JP 2004157696A JP 2005340006 A JP2005340006 A JP 2005340006A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
reaction
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004157696A
Other languages
English (en)
Inventor
Toshikatsu Katagiri
敏勝 片桐
Mikihiro Suzuki
幹浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004157696A priority Critical patent/JP2005340006A/ja
Publication of JP2005340006A publication Critical patent/JP2005340006A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 信頼性や耐久性を確保しつつ、燃料電池に供給される反応ガスの湿度を適正化することができる燃料電池システムおよび燃料電池システムの制御方法を提供する。
【解決手段】 燃料電池スタック2の反応に使用される反応ガスを、反応後に排出される反応オフガス内の水分により加湿する加湿流路3に流通させるとともに、前記反応ガスまたは前記反応オフガスを加湿させずに流通させるバイパス流路6の流量を調整する。前記燃料電池スタック2の温度と、前記加湿流路3下流側の温度とを測定する。前記測定された前記燃料電池スタック温度に基づいて、前記加湿流路3下流側の温度が所定の温度になるように前記バイパス流路6の流量を設定する。
【選択図】 図1

Description

本発明は、燃料電池に供給される反応ガスを加湿する加湿手段を備える燃料電池システムおよび燃料電池システムの制御方法に関するものである。
燃料電池自動車等に搭載されるPEM(Polymer Electrolytic Membrane)型の燃料電池には、固体高分子電解質膜の両側にアノード極とカソード極とを備えた膜電極構造体と、この膜電極構造体の両側にそれぞれ反応ガスを供給するためのガス通路を形成するとともに膜電極構造体を両側から支持するセパレータと、を積層して構成したものがある。
この燃料電池では、アノード極に燃料ガスとして水素ガスを供給し、カソード極に酸化剤ガスとして空気を供給して、燃料ガスの酸化還元反応にかかる化学エネルギを直接電気エネルギとして抽出する。
つまり、アノード極側で水素ガスがイオン化して固体高分子電解質中を移動し、電子は、外部負荷を通ってカソード極側に移動し、酸素と反応して水を生成する一連の電気化学反応による電気エネルギを取り出すことができる。
ところで、この燃料電池にあっては、固体高分子電解質膜が乾燥してしまうと、イオン伝導率が低下し、エネルギ変換効率が低下してしまう。したがって、良好なイオン伝導を保つために固体高分子電解質膜に水分を供給する必要がある。
このため、この種の燃料電池には、燃料ガスおよび酸化剤ガスを加湿して固体高分子電解質膜に水分を供給し、良好な反応を維持させる加湿装置が設けられている。
例えば、特許文献1には、燃料電池の反応ガス流路に加湿装置を接続するとともに、加湿装置をバイパスするバイパス流路を備え、バイパス流路への流量を調整する流量調整弁を設けてなる燃料電池用加湿装置が提案されている。この燃料電池用加湿装置には、反応ガス流路の燃料電池の入口側に露点計が設けられるとともに、燃料電池を構成するセルの電圧を検出する電圧計が設けられている。この技術によれば、露点計により検出される露点の検出値と、セルの電圧から算出される露点の算出値とを比較して、バイパス流路の流量調整弁の開度を決定することで、燃料電池に供給される反応ガスの湿度の適正化を図っている。
特開2001−216984号公報
しかしながら、露点計は構造が複雑であり、生産性が低いため高コストになってしまう。加えて、露点計は、その構造上耐水性が制限されてしまい、発電により水が生成される燃料電池に適用するにあたっては、信頼性や耐久性の点で好ましくない。
従って、本発明は、信頼性や耐久性を確保しつつ、燃料電池に供給される反応ガスの湿度を適正化することができる燃料電池システムおよび燃料電池システムの制御方法を提供することを目的とする。
請求項1に係る発明は、電解質膜と、これを挟持するカソード極およびアノード極とを備える燃料電池スタック(例えば、実施の形態における燃料電池スタック2)と、前記燃料電池スタックの反応に使用される反応ガスを、反応後に排出される反応オフガス内の水分により加湿する加湿器(例えば、実施の形態における加湿器5)と、前記反応ガスまたは反応オフガスを流通させる流路であって前記加湿器をバイパスするバイパス流路(例えば、実施の形態におけるバイパス流路6、21)と、前記バイパス流路に設けられるバイパス流量調整手段(例えば、実施の形態におけるバイパスバルブ7、22)と、前記燃料電池スタックの温度を検出するスタック温度測定手段(例えば、実施の形態における温度センサ10、23)と、前記加湿器を通る反応ガス流路(例えば、実施の形態における反応ガス流路3)または反応オフガス流路(例えば、実施の形態における反応オフガス流路4)における前記加湿器出口側に設けられる加湿器出口温度測定手段(例えば、実施の形態における温度センサ9、24)と、前記スタック温度測定手段で測定されたスタック温度に基づいて、前記加湿器出口温度測定手段で測定する出口温度が所定の温度となるように前記バイパス流量調整手段によるバイパス流量を設定するバイパス流量設定手段(例えば、実施の形態における制御部12)と、を備えることを特徴とする。
この発明によれば、前記スタック温度測定手段で測定されたスタック温度に基づいて、燃料電池に供給される反応ガスが発電状態に応じた好適な加湿量、湿度に調整されるように、前記加湿器の出口温度を算出している。そして、前記バイパス流量設定手段により前記バイパス流量を設定することにより、燃料電池に供給される反応ガスまたは燃料電池から排出される反応オフガスの流量から、前記バイパス流量設定手段により設定されたバイパス流量を除いたものを、前記加湿器を通る反応ガスの流量または反応オフガスの流量として一意的に設定することができる。従って、前記加湿器の出口温度が前記所定の温度になるように、前記反応ガスの流量または前記反応オフガスの流量を制御することで、前記反応ガスを発電状態に応じた好適な湿度となるように制御することができる。また、燃料電池は発電により水を生成するが、耐水性の高い温度計を用いて制御することができるので、耐水性や信頼性を向上することができる。
請求項2に係る発明は、請求項1に記載のものであって、前記スタック温度測定手段で測定される前記燃料電池スタックの温度に基づいて算出される前記加湿器出口温度の目標値と、前記加湿器出口温度測定手段で測定される実際の加湿器出口温度との差分に基づいて、前記バイパス流量調整手段によりバイパス流量を制御することを特徴とする。
この発明によれば、前記加湿器出口温度の目標値と前記実際の加湿器出口温度との差分に基づいて、前記出口温度が前記目標値になるように前記バイパス流量を制御することにより、加湿量を迅速に適正化することができる。
請求項3に係る発明は、燃料電池スタックの反応に使用される反応ガスを、反応後に排出される反応オフガス内の水分により加湿する加湿流路(例えば、実施の形態における反応ガス流路3)に流通させるとともに、前記反応ガスまたは前記反応オフガスを加湿させずに流通させるバイパス流路の流量を調整し、前記燃料電池スタックの温度と、前記加湿流路下流側の温度とを測定して、前記測定された前記燃料電池スタック温度に基づいて、前記加湿流路下流側の温度が所定の温度になるように前記バイパス流路の流量を設定することを特徴とする。
この発明によれば、スタック温度に基づいて、燃料電池に供給される反応ガスが発電状態に応じた好適な湿度に調整されるように、前記加湿器の出口温度を算出している。そして、前記バイパス流量を設定することにより、燃料電池に供給される反応ガスまたは燃料電池から排出される反応オフガスの流量からバイパス流量を除いたものを、前記加湿器を通る反応ガスの流量または反応オフガスの流量として一意的に設定することができる。従って、前記加湿器の出口温度が前記所定の温度になるように前記反応ガスの流量または前記反応オフガスの流量を制御することで、前記反応ガスを発電状態に応じた好適な湿度となるように制御することができる。また、燃料電池は発電により水を生成するが、耐水性の高い温度計を用いて制御することができるので、耐水性や信頼性を向上することができる。
請求項4に係る発明は、請求項3に記載のものであって、前記測定された燃料電池スタックの温度に基づいて前記加湿流路下流側の温度の目標値を算出し、前記目標値と測定された加湿流路下流側の温度との差分に基づいて、前記バイパス流路の流量流量を制御することを特徴とする。
この発明によれば、前記加湿器出口温度の目標値と前記実際の加湿器出口温度との差分に基づいて、前記出口温度が前記目標値になるように前記バイパス流量を制御することにより、加湿量を迅速に適正化することができる。
請求項1、請求項3に係る発明によれば、前記反応ガスを発電状態に応じた好適な湿度となるように制御することができ、耐水性や信頼性を向上することができる。
請求項2、請求項4に係る発明によれば、燃料電池に供給される反応ガスの加湿量を迅速に適正化することができる。
以下、この発明の実施の形態における燃料電池システムを図面と共に説明する。図1は、本発明の実施の形態における燃料電池システムの概略構成図である。
燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノード極とカソード極とで両側から挟み込んで形成されたセルを複数積層して構成されたスタックからなる。
前記燃料電池1には、反応ガス(水素、エア)を供給する供給手段(図示せず)が、反応ガス流路3を介して接続されている。なお、実際には、水素ガス供給流路とエア供給流路とは別々に設けられ、水素ガス供給流路は燃料電池1のアノード極に、エア供給流路は燃料電池1のカソード極にそれぞれ接続されている。図1には、簡略化のため、水素ガスとエアの供給流路を共通化して反応ガス流路3として示している。
前記燃料電池1は、アノード極に燃料として水素ガスを供給され、カソード極に酸化剤として酸素を含む空気を供給されると、アノード極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過してカソード極まで移動して、カソード極で酸素と電気化学反応を起こして発電し、水が生成される。
これらの反応ガスは発電に供された後、燃料電池1のアノード極、カソード極からそれぞれオフガスとして反応オフガス流路4から排出される。なお、上述した反応ガス流路3と同様に、実際には水素ガス排出流路とエア排出流路とが別々に設けられているが、図1においては、簡略化のため、水素ガス排出流路とエア排出流路とを共通化して反応オフガス流路4として示している。
前記反応ガス流路3と前記反応オフガス流路4には、それぞれの流路3、4に跨るように加湿器5が設けられている。図2は加湿器の要部を示す概略構成図である。加湿器5は、内部に中空糸状の水透過膜(中空糸膜)11を多数束ねた状態でハウジング(図示せず)に収容して構成されている。そして、同図に示すように、中空糸膜11の内側と外側にそれぞれ水分含量の異なるガスを供給すると、水分含量の多いガス中の水分が中空糸膜11を透過して水分含量の少ないガスへと移動する。
図2には、中空糸膜11の内側に反応ガスである燃料ガスを流し、中空糸膜11の外側に反応オフガスである燃料オフガスを流す場合を示しており、酸化剤ガスについても同様に構成されている。上述のように、反応オフガス中には、発電により生成された水が含まれているので、反応オフガスの湿度は反応ガスよりも高くなっている。その結果、反応オフガス中に含まれる水蒸気が加湿器5の中空糸膜11を透過して反応ガス中に移動する。これにより、加湿器5中を通る反応ガスは反応オフガスにより加湿される。
また、燃料電池スタック2での発電は発熱を伴うため、反応オフガスは加温された状態で燃料電池スタック2から排出される。従って、反応オフガスの温度は反応ガスよりも高くなっているので、加湿器5中を通る反応オフガスにより反応ガスは加温される。このとき、反応オフガス中に含まれている水蒸気の一部が凝縮して加湿器5の中空糸膜11外周面に付着する。また、燃料電池スタック2において生成した凝縮水も加湿器5に流入する。
また、反応ガス流路3には、加湿器5をバイパスするバイパス流路6が接続されている。バイパス流路6にはバイパスバルブ7が設けられ、バイパスバルブ7の開度を調整することで、バイパス流路6内の流量を調整することができる。加えて、燃料電池スタック2に供給する反応ガスのうち、バイパス流路6を通るものを除くと、加湿器5を通るものとなるので、バイパス流路6内の流量を調整することで、加湿器5を通る反応ガスの流量を調整することができる。従って、バイパスバルブ7の開度を調整することで、燃料電池スタック2に供給される反応ガスの加湿量を調整することができる。これについては、詳細を後述する。
また、前記反応ガス流路3における加湿器5の出口側には温度センサ9が設けられている。温度センサ9はバイパス流路6の下流側に設けられ、加湿器5を通過した反応ガスと、加湿器5をバイパスした反応ガスとが合流したところで、反応ガスの温度を測定できるようになっている。換言すれば、燃料電池スタック2に供給される反応ガスの温度を測定できるようになっている。
燃料電池スタック2には、冷却媒体を流通させる冷却媒体流路8aが設けられている。冷却媒体流路8aの上流側端部には、冷却媒体を供給する冷却媒体供給流路8bが接続されるとともに、冷却媒体流路8aの下流側端部には、冷却媒体を排出する冷却媒体排出流路8cが接続される。
また、冷却媒体流路8aには、温度センサ10が設けられている。本実施の形態においては、温度センサ10により検出される温度を燃料電池スタック2の温度として用いている。
また、燃料電池システム1は制御部12を備えている。制御部12は、温度センサ9、10から入力される温度に基づいてバイパスバルブ7の開度を制御して、燃料電池スタック2に供給される反応ガスの湿度を制御するものである。この処理について図3を用いて説明する。
図3は本実施の形態における燃料電池システムの湿度制御処理の内容を示すフローチャートである。同図に示すように、ステップS10で、スタック温度測定手段(温度センサ10)により燃料電池スタック2の温度を出力(検出)する。
ステップS12で、マップ1(図4参照)により、目標燃料ガス入口温度を決定する。目標燃料ガス入口温度は、燃料電池スタック2の温度と発電出力とから求められ、発電に好適な湿度となる燃料電池スタック2に供給される燃料ガスの温度である。図4は燃料電池スタック2の温度と目標燃料ガス入口温度との関係を示すグラフ図である。同図に示すように、入口温度と目標燃料ガス入口温度とは比例関係になっている。
このマップ1の関係について説明する。燃料オフガス中の水蒸気と燃料ガス中の水蒸気の濃度勾配により、燃料オフガス中の水蒸気が燃料ガス中に流入すると、燃料オフガスは水蒸気を放出し、さらに水分を取り込める状態になっているため、凝縮水を蒸発させる。そして、凝縮水が蒸発するときにはオフガスから熱を奪うために、オフガスの温度が低下する。
また、バイパス流路6の流量が増大すると、水蒸気の移動量が少なくなるため、燃料オフガスが取り込める水分の量が少なくなるため、水蒸気の気化熱が小さくなる。よって、燃料オフガスの温度が高くなる。
マップ1に示すように、燃料電池スタック2の温度が高いときには、反応ガスの露点が低くなるため、より加湿が必要となる。従って、反応ガスは反応オフガスと熱交換されるため、目標燃料ガス入口温度が高くなる。
また、出力が高くなると、発電に必要な反応ガスの流量が増大するため、熱交換がより活発に行われる。従って、目標燃料ガス入口温度は高く設定される。
なお、目標燃料ガス入口温度が最も高く設定されるのは、燃料電池スタック温度、出力が共に高い場合で、たとえば本実施例を車両に適用した場合、高速クルーズ中でさらにアクセルを踏み込んだときである。この状態で加湿量を増やすことにより、燃料電池スタック2の電解膜における水分が不足を解消できる。
次に目標燃料ガス入口温度が高く設定されるのは、燃料電池スタック温度が高く、出力が低い場合で、たとえば本実施例を車両に適用した場合は、定速運転または減速運転をするときである。あるいは、燃料電池スタック温度が低く、出力が高い場合で、たとえば本実施例を車両に適用した場合は、始動後まもなくアクセルを踏み込んだときである。
最も目標ガス入口温度が低く設定されるのは、燃料電池スタック温度、出力が共に低い場合で、たとえば本実施例を車両に適用した場合、始動後まもなくで定速運転または減速運転をするときである。この状態で加湿量を抑制することにより、燃料電池スタック2内の水分が過剰になることを抑制する。
次に、ステップS14では、マップ2(図5参照)により、バイパスバルブ7の開度を算出する。図5は目標燃料ガス入口温度とバイパス開度との関係を示すグラフ図である。同図に示すように、目標燃料ガス入口温度とバイパス開度とは略反比例関係にある。これは、バイパス開度を大きくするとバイパス流路6を流通する燃料ガスが増大するため、その分加湿器5を流通する燃料ガスが減少してしまい、燃料オフガスとの熱交換による温度上昇も抑制されるためである。ステップS16では、バイパスバルブ7の開度を、ステップS12で求めたバイパスバルブ7の開度に調整する。
ステップS18では、燃料電池スタック2に供給される反応ガスの温度(燃料ガス入口温度)を温度センサ9により測定する。そして、ステップS20で、目標燃料ガス入口温度と、温度センサ9で実際に測定された燃料ガス入口温度に差があるかを判定し、判定結果がYESの場合にはステップS22に進み、判定結果がNOであればステップS10に戻る。ステップS22では、マップ3(図6参照)により、開度の調整を行う。
図6は燃料ガス入口温度と目標燃料ガス入口温度との温度差とバイパス開度の調整量との関係を示すグラフ図である。同図に示すように、温度差と調整開度とは比例関係にあり、実際の燃料ガス入口温度が大きい場合には、開度をさらに大きくして、バイパス流路6に流れる流量を増大させる。このようにすることで、バイパス流路6を通る燃料ガスの流量を増大させて、加湿器5を通って加温される燃料ガスの流量を減少させることができる。
このように、前記燃料ガスの入口温度が目標燃料ガス入口温度になるように前記燃料ガスの流量を制御することで、前記燃料ガスを発電状態に応じた好適な湿度となるように制御することができる。また、燃料電池スタック2は発電により水を生成するが、耐水性の高い温度計を用いて制御することができるので、耐水性や信頼性を向上することができる。
また、前記実際の燃料ガス入口温度と前記目標の燃料ガス入口温度との差分に基づいて、前記燃料ガス入口温度が前記目標値になるように前記バイパス流量を制御することにより、加湿量を迅速に適正化することができる。
なお、本フローチャートでは、燃料ガスの湿度を制御する場合について示しているが、酸化剤ガスの湿度を制御する場合にも同様にして適用することができる。
図7は本発明の第2の実施の形態における燃料電池システムの概略構成図である。同図において、第1の実施の形態と略同一の部材については、同一の番号を付して適宜その説明を省略する。本実施の形態においては、加湿器5をバイパスするバイパス流路21が反応オフガス流路4に設けられている。バイパス流路21にはバイパスバルブ22が設けられ、バイパスバルブ22の開度を調整することで、バイパス流路21内の流量、ひいては反応ガスの加湿量を調整することができる。
また、前記反応オフガス流路4における加湿器5の出口側には温度センサ24が設けられている。温度センサ24はバイパス流路21の下流側に設けられ、加湿器5を通過した反応オフガスと、加湿器5をバイパスした反応オフガスとが合流したところで、反応オフガスの温度を測定できるようになっている。また、本実施の形態においては、反応オフガス流路4における燃料電池スタック2近傍の位置に温度センサ23が設けられ、温度センサ23により検出される温度を燃料電池スタック2の温度として用いている。
図8は本実施の形態における燃料電池システムの湿度制御処理の内容を示すフローチャートである。同図に示すように、ステップS30で、スタック温度測定手段(温度センサ23)により燃料電池スタック2の温度を出力(検出)する。
ステップS32で、マップ4(図9参照)により、目標燃料オフガス出口温度を決定する。目標燃料オフガス出口温度は、燃料電池スタック2の温度と発電出力とから求められ、燃料電池スタック2が発電に好適な湿度となるときの燃料オフガスの温度である。図9は燃料電池スタック温度と目標燃料オフガス出口温度との関係を示すグラフ図である。同図に示すように、燃料電池スタック温度と目標燃料オフガス出口温度とは比例関係になっている。
次に、ステップS34では、マップ5(図10参照)により、バイパスバルブ22の開度を算出する。図10は目標燃料オフガス出口温度とバイパス開度との関係を示すグラフ図である。同図に示すように、目標燃料オフガス出口温度とバイパス開度とは反比例関係にある。これは、バイパス開度を大きくするとバイパス流路22を流通する燃料オフガスが増大するため、その分加湿器5を流通する燃料オフガスが減少してしまい、凝縮水の蒸発に伴う温度下降も抑制されるためである。ステップS36では、マップ5を用いて、ステップS32で求めた目標燃料オフガス出口温度に応じてバイパスバルブ22の開度を調整する。
ステップS38では、反応オフガス出口温度を温度センサ24により測定する。そして、ステップS40で、温度センサ24で実際に測定された燃料オフガス出口温度と、目標燃料オフガス出口温度に差があるかを判定し、判定結果がYESの場合にはステップS42に進み、判定結果がNOであればステップS30に戻る。ステップS42では、マップ6(図11参照)により、開度の調整を行う。
図11は燃料オフガス出口温度と目標燃料オフガス出口温度との温度差とバイパス開度の調整量との関係を示すグラフ図である。同図に示すように、温度差と調整開度とは反比例関係にあり、実際の燃料オフガス出口温度が大きい場合には、開度をさらに小さくして、バイパス流路6に流れる流量を減少させる。このようにすることで、バイパス流路21を通る燃料オフガスの流量を減少させて、加湿器5を通る燃料オフガスを増大させることで、加湿に供される燃料オフガスの流量を増加させることができる。
なお、本フローチャートでは、燃料オフガスの湿度を制御する場合について示しているが、酸化剤オフガスの湿度を制御する場合にも同様にして適用することができる。
なお、本発明の内容は上述の実施の形態のみに限られるものでないことはもちろんである。例えば、温度センサ9、24の取付位置は、反応ガス流路3または反応オフガス流路4とバイパス流路6、21との合流部よりも下流側に限らず、上流側であってもよい。また、本発明の実施例においては、温度センサ9、10または温度センサ24、23の組み合わせを用いたが、温度センサ9、23または温度センサ24、10の組み合わせを用いてもよい。加湿器はいずれか一方の反応ガスのみに設けてもよい。例えば、酸化剤ガスのみに設けてもよい。
本発明の第1の実施の形態における燃料電池システムの概略構成図である。 加湿器の要部を示す概略構成図である。 燃料電池システムの湿度制御処理の内容を示すフローチャートである。 燃料電池スタック温度と目標燃料ガス入口温度との関係を示すグラフ図(マップ1)である。 目標オフガス入口温度とバイパス開度との関係を示すグラフ図(マップ2)である。 燃料ガス入口温度と目標燃料ガス入口温度との温度差とバイパス開度の調整量との関係を示すグラフ図(マップ3)である。 本発明の第2の実施の形態における燃料電池システムの概略構成図である。 燃料電池システムの湿度制御処理の内容を示すフローチャートである。 燃料電池スタック温度と目標燃料オフガス出口温度との関係を示すグラフ図(マップ4)である。 目標燃料オフガス出口温度とバイパス開度との関係を示すグラフ図(マップ5)である。 燃料オフガス出口温度と目標燃料オフガス出口温度との温度差とバイパス開度の調整量との関係を示すグラフ図(マップ6)である。
符号の説明
1、20…燃料電池システム
2…燃料電池スタック
3…反応ガス流路(加湿流路)
4…反応オフガス流路
5…加湿器
6、21…バイパス流路
7、22…バイパスバルブ(バイパス流量調整手段)
9、24…温度センサ(加湿器出口温度測定手段)
10、23…温度センサ(スタック温度測定手段)
12…制御部(バイパス流量設定手段)

Claims (4)

  1. 電解質膜と、これを挟持するカソード極およびアノード極とを備える燃料電池スタックと、
    前記燃料電池スタックの反応に使用される反応ガスを、反応後に排出される反応オフガス内の水分により加湿する加湿器と、
    前記反応ガスまたは反応オフガスを流通させる流路であって前記加湿器をバイパスするバイパス流路と、
    前記バイパス流路に設けられるバイパス流量調整手段と、
    前記燃料電池スタックの温度を検出するスタック温度測定手段と、
    前記加湿器を通る反応ガス流路または反応オフガス流路における前記加湿器出口側に設けられる加湿器出口温度測定手段と、
    前記スタック温度測定手段で測定されたスタック温度に基づいて、前記加湿器出口温度測定手段で測定する出口温度が所定の温度となるように前記バイパス流量調整手段によるバイパス流量を設定するバイパス流量設定手段と、を備えることを特徴とする燃料電池システム。
  2. 前記スタック温度測定手段で測定される前記燃料電池スタックの温度に基づいて算出される前記加湿器出口温度の目標値と、前記加湿器出口温度測定手段で測定される実際の加湿器出口温度との差分に基づいて、前記バイパス流量調整手段によりバイパス流量を制御することを特徴とする請求項1に記載の燃料電池システム。
  3. 燃料電池スタックの反応に使用される反応ガスを、反応後に排出される反応オフガス内の水分により加湿する加湿流路に流通させるとともに、前記反応ガスまたは前記反応オフガスを加湿させずに流通させるバイパス流路の流量を調整し、
    前記燃料電池スタックの温度と、前記加湿流路下流側の温度とを測定して、
    前記測定された前記燃料電池スタック温度に基づいて、前記加湿流路下流側の温度が所定の温度になるように前記バイパス流路の流量を設定することを特徴とする燃料電池システムの制御方法。
  4. 前記測定された燃料電池スタックの温度に基づいて前記加湿流路下流側の温度の目標値を算出し、前記目標値と測定された加湿流路下流側の温度との差分に基づいて、前記バイパス流路の流量流量を制御することを特徴とする請求項3に記載の燃料電池システムの制御方法。
JP2004157696A 2004-05-27 2004-05-27 燃料電池システムおよび燃料電池システムの制御方法 Withdrawn JP2005340006A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157696A JP2005340006A (ja) 2004-05-27 2004-05-27 燃料電池システムおよび燃料電池システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157696A JP2005340006A (ja) 2004-05-27 2004-05-27 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
JP2005340006A true JP2005340006A (ja) 2005-12-08

Family

ID=35493327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157696A Withdrawn JP2005340006A (ja) 2004-05-27 2004-05-27 燃料電池システムおよび燃料電池システムの制御方法

Country Status (1)

Country Link
JP (1) JP2005340006A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289580A (ja) * 2008-05-29 2009-12-10 Nissan Motor Co Ltd 燃料電池の加湿装置
JP2010518562A (ja) * 2007-02-09 2010-05-27 ダイムラー・アクチェンゲゼルシャフト 燃料電池スタック用供給システム及び警報装置、並びに供給システムの制御方法
JP2011049131A (ja) * 2009-08-26 2011-03-10 Hyundai Motor Co Ltd 燃料電池システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518562A (ja) * 2007-02-09 2010-05-27 ダイムラー・アクチェンゲゼルシャフト 燃料電池スタック用供給システム及び警報装置、並びに供給システムの制御方法
US8551665B2 (en) 2007-02-09 2013-10-08 Daimler Ag Supply system and warning device for a fuel cell stack and method for controlling the supply system
JP2009289580A (ja) * 2008-05-29 2009-12-10 Nissan Motor Co Ltd 燃料電池の加湿装置
JP2011049131A (ja) * 2009-08-26 2011-03-10 Hyundai Motor Co Ltd 燃料電池システム
US8920987B2 (en) 2009-08-26 2014-12-30 Hyundai Motor Company Fuel cell system with improved humidification performance

Similar Documents

Publication Publication Date Title
JP4456188B2 (ja) 燃料電池スタック
EP2720306B1 (en) Wet state control device for fuel cell
CA2786761C (en) Fuel cell system and control method for fuel cell system
JP4886170B2 (ja) 燃料電池システム
JP2001256988A (ja) 燃料電池システムおよび燃料電池の運転方法
JP2006210004A (ja) 燃料電池システム
JP5419255B2 (ja) 可逆セルの運転切り替え方法
JP2004199988A (ja) 燃料電池システム
JP2013258111A (ja) 燃料電池システム
US7858248B2 (en) Fuel cell and fuel cell system
JP2003223909A (ja) 燃料電池システム
JP5411901B2 (ja) 燃料電池システム
JP5268017B2 (ja) 燃料電池システム
JP4672120B2 (ja) 燃料電池装置及び燃料電池装置の運転方法。
JP2005340006A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007294359A (ja) 燃料電池システム
JP2006339103A (ja) 燃料電池システム
JP6138081B2 (ja) 燃料電池システム
JP2012038608A (ja) 燃料電池システム及び燃料電池システムにおける改質用水供給量の制御方法
JP2002231283A (ja) 固体高分子電解質型燃料電池発電装置とその運転方法
JP3991047B2 (ja) 燃料電池用加湿装置
JP5512387B2 (ja) 燃料電池の運転方法
JPH0955218A (ja) 燃料電池のガス加湿システム及びガス加湿方法
JP4332185B2 (ja) 燃料電池用加湿装置
JP4675605B2 (ja) 燃料電池の酸化剤供給装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807