JPH0955218A - 燃料電池のガス加湿システム及びガス加湿方法 - Google Patents

燃料電池のガス加湿システム及びガス加湿方法

Info

Publication number
JPH0955218A
JPH0955218A JP7204111A JP20411195A JPH0955218A JP H0955218 A JPH0955218 A JP H0955218A JP 7204111 A JP7204111 A JP 7204111A JP 20411195 A JP20411195 A JP 20411195A JP H0955218 A JPH0955218 A JP H0955218A
Authority
JP
Japan
Prior art keywords
gas
humidifier
fuel cell
amount
humidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7204111A
Other languages
English (en)
Inventor
Masayasu Furuya
正保 降矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7204111A priority Critical patent/JPH0955218A/ja
Publication of JPH0955218A publication Critical patent/JPH0955218A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

(57)【要約】 【目的】エネルギ効率の良好なガス加湿システムと加湿
量の制御性に優れるガス加湿方法を得る。 【構成】燃料電池22を冷却したあとの温水を加湿器に
導入して反応ガスに加湿する。または加湿器21に供給
する温水の熱エネルギを蒸発潜熱に見合うように操作す
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、固体高分子電解質膜
を利用した燃料電池のガス加湿システムおよびガス加湿
方法に係り、特にエネルギ効率に優れるガス加湿システ
ムと、反応カス量の変動に対して信頼性の高いガス加湿
方法に関する。
【0002】
【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれ電極であるアノード
とカソードを配して形成される。アノードまたはカソー
ドの各電極は電極基材上に電極触媒層を配している。固
体高分子電解質膜(固体高分子膜と略称する)はスルホ
ン酸基を持つポリスチレン系の陽イオン交換膜をカチオ
ン導電性膜として使用したもの、フロロカーボンスルホ
ン酸とポリビニリデンフロライドの混合膜、あるいはフ
ロロカーボンマトリックスにトリフロロエチレンをグラ
フト化したものなどが知られているが最近ではパーフロ
ロカーボンスルホン酸膜を用いて燃料電池の長寿命化を
図ったものが知られるに至った。
【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノード(燃料極)またはカソード(空
気極)の電極においては三相界面が形成され電気化学反
応が起こる。
【0004】アノードでは(1)式の反応が起こる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。
【0005】図3は固体高分子電解質型燃料電池を示す
断面図である。アノードおよびカソードである電極1が
イオン導電性の固体高分子電解質膜2を挟み込み、該電
極の外側にはそれぞれ発電電力を取り出す集電体である
電極基材3を具備する。また電極1と電極基材3の間に
は、燃料ガスと酸化ガスを流すための燃料ガス流路4と
酸化ガス流路5が設けてある。これらが燃料電池の単位
となるセルで通常は多層積層してスタックとして運転さ
れる。
【0006】なお図示しないが電池運転時の発熱による
温度上昇を防ぐために集電体3には冷却水路が設けてあ
る。この固体高分子電解質型燃料電池は、電解質に用い
られるイオン導電性の高分子膜のイオン導電率が高いの
で、従来のリン酸型燃料電池や溶融炭酸塩型燃料電池な
どに比し高出力密度になる特徴を有する。またこの燃料
電池の定常運転温度は一般的に60〜100 ℃ 程度である
が室温付近のイオン導電率が他の燃料電池ほど低くなく
室温から負荷運転できる特徴を有する。
【0007】しかしながら、この固体高分子電解質膜の
イオン導電率は膜の湿潤度に大きく影響されるため、燃
料ガスや酸化剤ガスが乾燥状態で供給されると固体高分
子電解質膜中の水分が蒸発し膜が乾燥して導電率が低下
する。その結果、内部抵抗の増加によって燃料電池特性
が低下する。したがって、固体高分子電解質型燃料電池
では反応ガスを加湿して供給するシステムを採用してい
る。
【0008】図4は従来の固体高分子電解質型燃料電池
のガス加湿システムを示す配置図である。容器6内に溜
めた温水7の中を反応ガス8,9を気泡状にして通過さ
せて加湿し、燃料電池10に供給している。温水はヒー
タ11で定温制御され、また燃料電池は冷却水12で冷
却される。
【0009】図5は従来の固体高分子電解質型燃料電池
の異なるガス加湿システムを示す配置図である。水分透
過膜13を介して流路形成板14で流路を形成し、それ
ぞれに反応ガス15と温水16を流してガス加湿する方
法である。その他に反応ガス流路に温水を噴霧する方法
も知られている。
【0010】
【発明が解決しようとする課題】しかしながら上述のよ
うなガス加湿システムあるいはガス加湿方法において
は、水の気化潜熱に相当するエネルギを外部より例えば
電気エネルギとして供給する必要があり、そのために燃
料電池の総合的なエネルギ効率が低下するという問題が
あった。
【0011】さらに上述のようなガス加湿システムある
いはガス加湿方法においては、反応ガスのガス流量が変
化した場合にガス流量と供給される蒸発潜熱の間に不一
致が起こり、そのためにガス加湿量が過多あるいは過少
になり、ガス流量が変動した際のガス加湿量を常に最適
値に維持することは困難であった。この発明は上述の点
に鑑みてなされその目的は、加湿器に対する物質供給方
法を改良してエネルギ効率に優れるガス加湿システムを
提供することにある。他の目的は加湿器に対するエネル
ギ供給方法を改良してガス加湿制御性に優れるガス加湿
方法を提供することにある。
【0012】
【課題を解決するための手段】上述の目的は第一の発明
によれば反応カスを加湿して固体高分子電解質膜を用い
た燃料電池に供給する燃料電池のガス加湿システムにお
いて、燃料電池を冷却して得られた温水を用いて反応ガ
スの加湿を行う加湿器を備えるとすることにより達成さ
れる。
【0013】上述の第一の発明において、ガス加湿シス
テムは加湿器に導入される温水の量を調節する流量調整
器を備えるとすること、またはガス加湿システムは加湿
器に導入される温水の温度を調節する温度調整器を備え
るとすることが有効である。また第二の発明によれば反
応カスを加湿して固体高分子電解質膜を用いた燃料電池
に供給する燃料電池のガス加湿方法おいて、供給熱エネ
ルギ量を操作しながら温水を加湿器に導入し、反応カス
量が変化した際の反応カスに対する加湿量を最適値に制
御するとすることにより達成される。
【0014】上述の第二の発明において、加湿器に導入
する温水につき加湿器入口と出口の温度差または反応ガ
スの加湿器出口温度を定値制御して加湿量の制御を行う
とすること、または加湿器に導入する温水につき加湿器
入口と出口の温度差を追値制御し、加湿量の制御を行う
とすることが有効である。
【0015】
【作用】燃料電池を冷却して得られた温水を用いて反応
ガスの加湿を行うと電池排熱を利用することになり燃料
電池の総合的なエネルギ効率が高まる。加湿器に導入さ
れる温水の量を調節する流量調整器や加湿器に導入され
る温水の温度を調節する温度調整器は加湿器に供給され
る熱エネルギを可変にする。
【0016】温水を加湿器に導入する際に供給熱エネル
ギ量を操作量として変化させ必要な蒸発潜熱を加湿器に
供給する。加湿器に導入する温水につき加湿器入口と出
口の温度差または反応ガスの加湿器出口温度は加湿量に
替わる制御量でガス加湿システムの信頼性を高める。加
湿量が本来の制御量であるがガス加湿システムに適用可
能な湿度センサがない。
【0017】
【実施例】図1は本発明の実施例に係るガス加湿システ
ムを示すブロック図である。簡略のために反応ガスの一
方のガス加湿システムのみを記載している。反応ガス2
0は、加湿器21を通過して加湿された後に燃料電池2
2に導入される。冷却水23は、熱交換器24で所定の
温度に加熱または冷却した後に燃料電池22に供給され
る。燃料電池22を冷却したあとは副熱交換器25、流
量調整バルブ26、加湿器21を通り、ポンプ27、流
量計28を経て熱交換器24に戻る。ポンプ27と流量
計28の位置は任意である。流量調整バルブ26の上流
側は、バイパスバルブ29を介して加湿器の下流に入
る。なお図示しないがマザータンクや水補給系統が配置
される。
【0018】図2はこの発明の実施例に係るガス加湿シ
ステムの冷却水温度分布を示す線図である。特性線
(イ)は流量調整バルブの操作により正常な制御が行わ
れているガス加湿システムの冷却水温度分布、特性線
(ロ)はガス加湿量が過剰のガス加湿システムの冷却水
温度分布、特性線(ハ)は副熱交換器の操作により正常
な制御が行われているガス加湿システムの冷却水温度分
布を示している。
【0019】θ1 〜θ2 は燃料電池の冷却作用による温
度変化、θ3 〜θ4 は副熱交換器の作用による温度変
化、θ5 〜θ6 は加湿器内の加湿のための気化潜熱作用
による温度変化、θ7 〜θ1 は熱交換器の作用による温
度変化、その他は配管系の放熱作用にによる温度変化を
示す。加湿器の入口温水温度をθ5、出口温水温度をθ
6、加湿器に供給される温水量をQ(l/min.)と
すると、単位時間に加湿器に供給される熱エネルギEは
式1で示される。
【0020】
【数1】 E=(θ5−θ6)×Q (1) この供給熱エネルギ量Eは、ほぼ反応ガスの加湿に必要
な蒸発潜熱Lに等しい。反応ガス量の増減があった場合
には加湿器で消費される蒸発潜熱Lはそれに伴って増減
する。温度差(θ5−θ6)を制御量として用い定値制
御を行う場合には流量調整バルブ26により温水量Qを
操作し供給熱エネルギ量Eを増減させることができる。
温水量Qのみを操作するときは温水の入口温度θ5は一
定であるからこの定値制御は出口温度θ6の制御に帰す
る。
【0021】例えば反応ガス量が減った場合に何らの制
御も行わないときはガス加湿システムの冷却水温度分布
は特性線(ロ)に示す特性となるが、上述の制御を行え
ば特性線(イ)の状態が維持される。流量調整バルブ2
6に替えてバイパスバルブ29の開度を調節してもよ
い。温度差(θ5−θ6)を反応ガス量と温水量Qによ
り追値制御することもできる。この場合には反応ガス量
と温水量Qにより決まる所定の温度差(θ5−θ6)が
得られるように副熱交換器25を用いて加湿器に導入さ
れる温水温度が操作される。追値制御を行った場合のガ
ス加湿システムの冷却水温度分布が特性線(ハ)に示さ
れる。
【0022】制御量として反応ガスの加湿器出口温度を
用い定値制御することができる。反応ガスの加湿器出口
温度が一定の場合は反応ガス中の加湿量は一定である。
操作量としては温水量と温水温度が用いられる。
【0023】
【発明の効果】第一の発明によれば、燃料電池を冷却し
たあとの温水を加湿器に導いてガス加湿を行うガス加湿
システムを用いるので、ガス加湿のための加熱エネルギ
を節約することができ、燃料電池の総合エネルギ効率が
高まる。またこのガス加湿システムでは流量調整器や温
度調整器を備えるので、加湿器に対する供給熱エネルギ
を可変にすることができ反応ガスの加湿量の制御が可能
になる。
【0024】第二の発明によれば反応ガス量の変化に対
応して供給熱エネルギ量を操作して温水を加湿器に導入
するので蒸発潜熱が過不足なく加湿器に供給され反応ガ
スに対する加湿量を最適値に制御することができる。加
湿量に替えて温水につき加湿器入口と出口の温度差もし
くは反応ガスの加湿器出口温度を定値制御し、または加
湿器入口と出口の温度差を追値制御するので信頼性の高
い加湿量制御を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るガス加湿システムを示す
ブロック図
【図2】この発明の実施例に係るガス加湿システムの冷
却水温度分布を示す線図
【図3】固体高分子電解質型燃料電池を示す断面図
【図4】従来の固体高分子電解質型燃料電池のガス加湿
システムを示す配置図
【図5】従来の固体高分子電解質型燃料電池の異なるガ
ス加湿システムを示す配置図
【符号の説明】
1 電極 2 固体高分子電解質膜 3 電極基材 4 燃料ガス流路 5 酸化剤ガス流路 6 容器 7 温水 8 反応ガス 9 反応ガス 10 燃料電池 11 ヒータ 12 冷却水 13 水分透過膜 14 流路形成板 15 反応ガス 16 温水 20 反応ガス 21 加湿器 22 燃料電池 23 冷却水 24 熱交換器 25 副熱交換器 26 流量調整バルブ 27 ポンプ 28 流量計

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】反応カスを加湿して固体高分子電解質膜を
    用いた燃料電池に供給する燃料電池のガス加湿システム
    において、燃料電池を冷却して得られた温水を用いて反
    応ガスの加湿を行う加湿器を備えることを特徴とする燃
    料電池のガス加湿システム。
  2. 【請求項2】請求項1に記載のガス加湿システムにおい
    て、ガス加湿システムは加湿器に導入される温水の量を
    調節する流量調整器を備えることを特徴とする燃料電池
    のガス加湿システム。
  3. 【請求項3】請求項1に記載のガス加湿システムにおい
    て、ガス加湿システムは加湿器に導入される温水の温度
    を調節する温度調整器を備えることを特徴とする燃料電
    池のガス加湿システム。
  4. 【請求項4】反応カスを加湿して固体高分子電解質膜を
    用いた燃料電池に供給する燃料電池のガス加湿方法おい
    て、反応ガス量の変化に対応して供給熱エネルギ量を操
    作しながら温水を加湿器に導入し、反応カス量が変化し
    た際の反応ガスに対する加湿量を最適値に制御すること
    を特徴とする燃料電池のガス加湿方法。
  5. 【請求項5】請求項4に記載の加湿方法において、加湿
    器に導入する温水につき加湿器入口と出口の温度差また
    は反応ガスの加湿器出口温度を定値制御して加湿量の制
    御を行うことを特徴とする燃料電池のガス加湿方法。
  6. 【請求項6】請求項4に記載の加湿方法において、加湿
    器に導入する温水につき加湿器入口と出口の温度差を追
    値制御し、加湿量の制御を行うことを特徴とする燃料電
    池のガス加湿方法。
JP7204111A 1995-08-10 1995-08-10 燃料電池のガス加湿システム及びガス加湿方法 Pending JPH0955218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7204111A JPH0955218A (ja) 1995-08-10 1995-08-10 燃料電池のガス加湿システム及びガス加湿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7204111A JPH0955218A (ja) 1995-08-10 1995-08-10 燃料電池のガス加湿システム及びガス加湿方法

Publications (1)

Publication Number Publication Date
JPH0955218A true JPH0955218A (ja) 1997-02-25

Family

ID=16484993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7204111A Pending JPH0955218A (ja) 1995-08-10 1995-08-10 燃料電池のガス加湿システム及びガス加湿方法

Country Status (1)

Country Link
JP (1) JPH0955218A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063610A1 (fr) * 1998-06-02 1999-12-09 Matsushita Electric Industrial Co., Ltd. Cellule electrochimique a electrolyte en polymere et procede de fabrication
US6416895B1 (en) 2000-03-09 2002-07-09 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP2004178900A (ja) * 2002-11-26 2004-06-24 Honda Motor Co Ltd 燃料電池システム
JP2005019221A (ja) * 2003-06-26 2005-01-20 Honda Motor Co Ltd 燃料電池システム
JP2008243540A (ja) * 2007-03-27 2008-10-09 Fuji Electric Holdings Co Ltd 固体高分子電解質形燃料電池発電装置
US8841038B2 (en) * 2006-05-05 2014-09-23 Asia Pacific Fuel Cell Technologies, Ltd. Fuel cell system having unreacted gas discharge pipeline

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783878B2 (en) 1997-06-30 2004-08-31 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
WO1999063610A1 (fr) * 1998-06-02 1999-12-09 Matsushita Electric Industrial Co., Ltd. Cellule electrochimique a electrolyte en polymere et procede de fabrication
US6531236B1 (en) 1998-06-02 2003-03-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
US6869719B2 (en) 1998-06-02 2005-03-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
US6416895B1 (en) 2000-03-09 2002-07-09 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP2004178900A (ja) * 2002-11-26 2004-06-24 Honda Motor Co Ltd 燃料電池システム
JP4698923B2 (ja) * 2002-11-26 2011-06-08 本田技研工業株式会社 燃料電池システム
JP2005019221A (ja) * 2003-06-26 2005-01-20 Honda Motor Co Ltd 燃料電池システム
US8841038B2 (en) * 2006-05-05 2014-09-23 Asia Pacific Fuel Cell Technologies, Ltd. Fuel cell system having unreacted gas discharge pipeline
JP2008243540A (ja) * 2007-03-27 2008-10-09 Fuji Electric Holdings Co Ltd 固体高分子電解質形燃料電池発電装置

Similar Documents

Publication Publication Date Title
US20030003336A1 (en) Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
JPH0547394A (ja) 固体高分子電解質型燃料電池およびその運転方法
KR101481244B1 (ko) 연료전지 시스템의 가습장치
JP2001519081A (ja) ポリマー電解質燃料電池の膜水分の調節法およびポリマー電解質燃料電池
JPH09180743A (ja) 固体高分子形燃料電池
CN108400351A (zh) 运行燃料电池系统和设定阴极运行气体的相对湿度的方法
JP2002015759A (ja) リン酸型燃料電池の運転方法
JP2008041505A (ja) 燃料電池システム、燃料電池の水分量推定装置及び方法
JP2001006698A (ja) 固体高分子電解質型燃料電池と同燃料電池用拡散層の製造方法
JP3147518B2 (ja) 固体高分子電解質型燃料電池のセル構造
JPH11242962A (ja) 燃料電池装置
JPH0696789A (ja) 固体高分子電解質型燃料電池システム
JPH0955218A (ja) 燃料電池のガス加湿システム及びガス加湿方法
US20110003236A1 (en) Reducing Loss of Liquid Electrolyte From a High Temperature Polymer-Electrolyte Membrane Fuel Cell
KR20120026809A (ko) 연료 전지 시스템
JPH06124722A (ja) 加温・加湿システム装置及び燃料電池
JPH0864218A (ja) 固体高分子電解質型燃料電池の運転方法
JP2001236977A (ja) 固体高分子型燃料電池発電装置及び固体高分子型燃料電池の運転方法
JPH08306375A (ja) 固体高分子型燃料電池
JP6138081B2 (ja) 燃料電池システム
JP3743339B2 (ja) 固体高分子形燃料電池およびその運転方法
JPH07288134A (ja) 固体高分子電解質型燃料電池の運転方法
JP2001283887A (ja) 燃料電池装置、及び、燃料電池装置の運転方法
JP4419353B2 (ja) 固体高分子形燃料電池の運転方法
JP2002056873A (ja) 燃料電池装置及び燃料電池装置の運転方法。