JP4789393B2 - 重ね合わせアライメントマークの設計 - Google Patents

重ね合わせアライメントマークの設計 Download PDF

Info

Publication number
JP4789393B2
JP4789393B2 JP2002504473A JP2002504473A JP4789393B2 JP 4789393 B2 JP4789393 B2 JP 4789393B2 JP 2002504473 A JP2002504473 A JP 2002504473A JP 2002504473 A JP2002504473 A JP 2002504473A JP 4789393 B2 JP4789393 B2 JP 4789393B2
Authority
JP
Japan
Prior art keywords
periodic structure
test
layer
section
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002504473A
Other languages
English (en)
Other versions
JP2004501516A (ja
Inventor
ノア・ベアケット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Publication of JP2004501516A publication Critical patent/JP2004501516A/ja
Application granted granted Critical
Publication of JP4789393B2 publication Critical patent/JP4789393B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の技術分野】
本発明は、ウエハを製造する際の半導体ウエハのテストに関する。より具体的には、本発明は、半導体ウエハ上の2つのパターン層間のレジストレーション精度を判定するための新しいアライメントパターンの使用に関する。
【0002】
【発明の背景】
集積回路の製造において使用される最も重要なプロセス制御技術の1つは、ウエハ上の連続する複数のパターン層間でのオーバレイ精度の測定(すなわち、パターン層が、上または下の層に対して、どのくらい正確に位置調整されているかの判定)である。
【0003】
現在、こうした測定は、層内にエッチングされるテストパターンによって行われる。相対的な変位量は、種々の既知の画像分析アルゴリズムのいずれかを使用して、パターンを電子カメラ上に高倍率で撮像することによって測定される。最も広く使用されるパターンは、各辺の寸法が約20マイクロメータである同心の正方形であり、一般に「ボックス内ボックス」ターゲットと呼ばれる。図1は、代表的な「ボックス」型ターゲット5を示す。内側ボックス1は、通常、製造中の半導体ウエハの最上層にプリントされ、中央が開放された外側ブロック2は、その下の第2の層にプリントされる。したがって、測定プロセスは、顕微鏡システムを用いて、電子カメラ上にターゲット5を高倍率(通常1000倍)で、かつ、x,y両方向において高解像度で、撮像することを含む。
【0004】
x,y軸のそれぞれのレジストレーション誤差は、まず、外側ボックス2の線c1,c2のエッジの位置と、内側ボックス1の線c3,c4のエッジの位置と、を計算することによって測定される。レジストレーション誤差は、テストされる2層間のミスアライメントの量を表す。これらの位置に基づいて、2つのボックス間のレジストレーション誤差は、線c1,c3間の平均離間距離と線c4,c2間の平均離間距離とを比較することによって決定される(すなわち、ボックス1,2間のレジストレーション誤差は、これら2つの離間距離の差である)。各軸におけるボックス1,2間のレジストレーション誤差は、次の式を用いて計算される。
【0005】
x =(cx3−cx1)−(cx2−cx4) (1a)
y =(cy3−cy1)−(cy2−cy4) (1b)
【0006】
したがって、線c1,c3間の平均間隔が、線c2,c4間の平均間隔と同じである場合、その軸における対応するR値はゼロである。
【0007】
この従来技術については、ニール・T・サリバンが、Handbook of Critical Dimensions Metrology and Process Control, pp.160-188, vol. CR52, SPIE Press (1993)の中の「Semiconductor Pattern Overlay」において、さらに説明および分析している。従来技術の精度は、エッチングされた線のプロファイルの非対称性と、照明および撮像光学系の収差と、カメラにおける画像のサンプリングと、によって制限される。従来技術の制限を解消するシステムが望まれている。
【0008】
【発明の概要】
本発明は、デバイスの2つの層間の相対的な位置を測定する装置および方法に向けられている。本発明の一実施形態では、2つの層は、半導体ウエハ上で積層された層である。この装置は、少なくとも1つのキャリブレーション周期構造セットと、少なくとも2つのテスト周期構造セットとを含み、双方が1つの軸に沿って配置されたマークを使用する。各テスト周期構造セットは、第1および第2のセクションに形成された周期構造を有する。第1および第2のセクションの周期構造は、それぞれ、デバイスの2つの層の一方に形成される。各テストセットの第1および第2のセクションは、それぞれ、次のテストセットの第2および第1のセクションに近接して配置されている。このマークは、マークを走査する2つのビームがデバイスの2つの層のうちの一方に形成されたテストセクションと、他方に形成されたテストセクションと、の上方を移動することを許容する。多数のテストセットを走査することによって、多数のレジストレーション誤差値が提供され、その後、これらを平均化することによって、レジストレーション誤差値が得られる。平均化によって得られたレジストレーション誤差値は、測定プロセスに使用される2つのビーム間の非対称性、および/または、異なる層の特性の非対称性(例えば、測定される2つの層のテストセット間の高さの差、および/または、材料組成の差)による影響が最少となる。このレジストレーション誤差は、テスト対象の2つの層間のミスアライメントの量を表す。
【0009】
本発明の別の態様は、デバイスの2つの層間の相対的な位置(例えば、アライメント)を測定する方法に向けられている。この方法は、第1のキャリブレーション周期構造セットを提供する工程と、上述のマークと同様の構造を有する少なくとも2つのテスト周期構造セットを提供する工程と、によって開始される。次に、ビームが、キャリブレーション周期構造および複数のテスト周期構造セットの一部を通る第1の経路を走査する。また、ビームは、キャリブレーション周期構造および複数のテスト周期構造セットの一部を通る第2の経路を走査する。デバイスの表面で反射するビームの一部に関して信号が生成され、特定の方向における2つの層間のレジストレーション誤差が計算される。その後、このプロセスは、別個の方向における2つの層間のレジストレーション誤差を計算するために、繰り返されてもよい。2つの層間の平均レジストレーション誤差が、各方向に関して計算されることが好ましい。
【0010】
本発明の上記およびその他の特徴および利点は、以下の本発明の明細書および本発明の原理を例示する添付図において、さらに詳細に提示される。
【0011】
以下、添付図面に例示されるいくつかの好適な実施形態を参照して、本発明を詳細に説明する。以下の説明では、本発明の完全な理解を提供するために、多数の特定の詳細について述べる。しかしながら、本発明がこうした特定の詳細の一部または全部がなくとも実施可能であることは当業者には明らかである。また、周知のプロセスステップについては、本発明を不必要に曖昧にしないために、詳細に説明していない。
【0012】
本発明は、種々の実施形態のそれぞれにおいて、半導体デバイスの2つの層のそれぞれに存在する周期構造で構成されるマークを使用して、半導体デバイスの2つの層間の相対的な位置情報を提供する。こうした構造は、適切なリソグラフィ技術によって形成され、最も単純な場合には、線間の距離と等しい幅の線をエッチングまたは蒸着によって形成し、図2に示すような、さらに詳細に説明される周期的な格子を形成する。周期構造の一実施形態(図2参照)は、基本的には矩形のプロファイルを有する等間隔の線で構成され、これらの線は2つの層のそれぞれの周期構造の一部で重ならないように配置されている。半導体デバイスの各層の複数の線は、周期構造内で並んでいる。図2では矩形のプロファイルが示されているが、これは作用において必須ではなく、これに代えて、台形または円形などの他の線プロファイルを使用可能である。また、x,y両方向に関するパターンが、互いに近接して示されているが、半導体ウエハの異なる位置に設けられていてもよい。本発明のマークの構成は、後述するように、重ね合わされた半導体層のための広範囲なアライメント測定機器の種々の実施形態に貢献する。
【0013】
図2は、アライメントパターン10の周期構造を示す。アライメントパターン10は、ウエハ100の複数のテスト層が互いに適切なアライメントであるときの構成を示している。アライメントパターン10は、2つの実質的に同じ格子パターン20,30を含み、これらは互いに90度回転している。図2の軸方向を示す印を前提とすると、格子20は、x軸のレジストレーション測定用であり、格子30は、y軸のレジストレーション測定用である。これは、各格子の線は、通常、測定の軸と平行でない必要があるためである。ユーザは、ウエハ上のダイの配置に関するマークの向きについて、都合の良い任意の向きを選択可能である。この向きは、層毎の複数のマスクに関しても同じである。また、異なる方向におけるアライメントを測定するために、任意の数のマークが互いに種々の向きで、ウエハ上に存在してもよい。あるいは、ウエハは、1つの方向におけるミスアライメントを測定するために、1つのマークを含んでいてもよい。
【0014】
格子20,30のそれぞれは、図2に示すように、6つの周期構造セットで構成されている。具体的には、周期構造は、切れ目のない平行な線分であり、各線の幅は線分間の間隔と等しい。実際の使用では、間隔に対する線幅の形態は、必要な精度に応じて変化する。しかしながら、線幅と間隔との間の関係は、通常、半導体ウエハにおける最小の線幅である。テストパターンの特定の実施では、約1μmの線間隔が使用可能であり、3〜5nmの精度が得られる。
【0015】
図示する格子20に注目すると、実線分40a,40b,40cは、半導体ウエハの1つの層にエッチングされており、一方、「xx」パターンの線分50a,50b,50cは、半導体ウエハの次の層にエッチングされている。線分40a,50aは、完全な長さの線分であり、各半導体ウエハ層の格子の外側線分である。一方、ほぼ半分の長さの線分40b,40c,50b,50cは、半導体ウエハの各層の周期格子の内側領域を形成する。格子30の線分60a,60b,60cは、格子20の線分40a,40b,40cに対応しており、同じ半導体ウエハ層に存在している。同様に、格子30の線分70a,70b,70cは、格子20の線分50a,50b,50cに対応しており、同じ半導体ウエハ層に存在している。これは例示であり、実際の使用と整合する必要はない(すなわち、線分40a,40b,40cと70a,70b,70cとが同じ層に存在し、線分50a,50b,50cと60a,60b,60cとが同じ層に存在してもよい)。また、40a,50a,60a,70aの完全な長さの各線は、半分の線分とほぼ等しく形成されていてもよい。
【0016】
図2において、各線分グループ内の線の数は、必要な解像度と、望まれる信号対ノイズ比と、に依存する。オペレーションに必要な各長さの線の最小数の観点から言えば、この数は、各格子20,30のための半導体ウエハの2つの連続する層によって与えられる2つの「a」線と2つの「b」線と2つの「c」線とである(すなわち、2つの70aの線、2つの70bの線、2つの70cの線、2つの60aの線、など)。線分グループ内で使用される線の最大数を決める1つの要素は、半導体製造技術の状況である。現在のところ、線分グループあたり約12本までが好適である。しかしながら、近い将来には、各線分グループ内でさらに多くの線が形成可能になると予測される。
【0017】
「xx」パターンの線が半導体ウエハの第1の層に形成され、第2の層に実線が形成される場合には、第1および第2の層の線セット間のアライメントを測定することができる。第1および第2の層に関するアライメント測定の後、第3の層において、別の線セット(ここでは「xx」パターンで示される)が、第1の層の線50a,50b,50cの領域の上に、これらを覆うように形成される。そして、第2の層の線40a,40b,40cと第3の層の線50a,50b,50cとの間のアライメントが測定される。この手順は、その後、追加される層(例えば、第2の層の複数の線の上方に形成される第4の層)に関して繰り返される。したがって、半導体ウエハ層上の各線セットは(最初の層および最後の層にある線を除き)、半導体ウエハの2つの層(一方の層は、下の層であり、他方の層は、上の層である)の線と併せて使用される。あるいは、半導体ウエハ表面に十分なスペースが存在する場合には、ウエハ上の隣接層ペアのための格子ペアは、ウエハの異なる位置に配置される。これにより、現在測定中でない埋もれた層に起因する測定層への「ブリードスルー」干渉を最少化することができる。
【0018】
したがって、このマーク構成では、半導体ウエハの2つの層間のx方向におけるレジストレーション誤差は、マーク20の50b,50c,40b,40cの線間の並置(juxtaposition )の量を測定することによって決定される。同様に、マーク30では、y方向における任意のレジストレーション誤差は、60b,60c,70b,70cの並置された線間に存在する。具体的には、マーク30では、第1のレジストレーション誤差は、第2の層の線セット60cと第1の層の線セット70bとの間で測定される。第2のレジストレーション誤差は、第1の層の線セット70cと第2の層の線セット60bとの間で測定される。
【0019】
図3は、図2で説明したアライメントパターン10のようなアライメントパターンを利用するアライメントスキャナの実施形態を示す図である。この実施形態において、測定対象のパターンを有するウエハ100は、ステージ200上に配置される。ステージ200は、通常、システムコンピュータ190の制御下でモータ駆動される。また、コンピュータ190と共に実際に測定を実行するための走査ヘッド230が設けられる。コンピュータ190は、走査ヘッド230から受け取ったデータを元に実際の計算も実行する。ウエハ100と走査ヘッド230との間の走査動作の提供に関しては、2つの選択肢が存在する。一方は、コンピュータ190によって、ステージ200を走査ヘッド230に対して動かすことであり、他方は、コンピュータ190によって走査アクチュエータ240(圧電アクチュエータ等)を介して、走査ヘッド230をステージ200に対して動かすことである。どちらの手法も使用可能だが、走査ヘッドはウエハ配置ステージに比べ、サイズおよび重量を大幅に小さくできるため、走査ヘッド230を動かし、ステージ200を静止状態で保持するのが好適である。あるいは、走査は、ヘッド全体を動かすことによって、または,一部の光学部品のみを動かすことによって、実施可能である。
【0020】
図3のアライメントスキャナの構造および動作について説明を始める前に、いくつかの定義について検討する必要がある。図3には、測定系を定める2種類の座標系が存在する。一方は、x,y,zで表されるウエハ100の座標軸である(図2参照)。他方は、図3に示すように、x’,y’,z’で表されるウエハ100に対する走査ヘッド230の座標軸である。
【0021】
図3に示すように、x’軸は、水平で図面内に存在し、z’軸線は、垂直で図面内に存在する。そして、y’軸(測定軸)は、図面に直交する。そして、この例において、測定は、格子30(図2参照)に対して行われる。最初に、ウエハ100はステージ200上に置かれる。次に、ステージ200は、格子20,30のx,y方向が走査ヘッド230のx’,y’軸線とほぼ平行になるように、ステージ200を回転させることによって、位置調整される。2つの軸系が正確に調整されていない場合には、2つの照射スポットの測定経路間に描かれた想像線は、ウエハ100上で測定されていない軸と平行にならない。スポットは、アライメント走査ビームがアライメント格子に入射するポイントである。この想像線が測定されていない軸と平行でない場合には、アライメントを測定するために使用されている格子パターンにおいて、一方のスポットは、他方に対して、測定の軸に沿って僅かに先行する。2つの軸系が正確に調整されてない場合のミスアライメントは、システム−ウエハ間オフセットと呼ばれる。
【0022】
走査ヘッド230に組み込まれる図3のシステムの光学部分は、光ビーム300を回折格子135へ送る光源140を含む。回折格子135において、光は、2つの光ビーム210a,210bに分割される。適切な光源の1つは、ダイオードレーザである。電子顕微鏡のいくつかの実施形態は、参照によって本願明細書に組み込まれる米国特許第6,023,338号で説明されている。
【0023】
回折格子135は、ガラス基板上の不透明なコーティングの等間隔の線で構成され、Ronchi Ruling として知られる一般的な光学素子を形成する。こうした格子の特性に関する説明は、ワレン・J・スミスのModern Optical Engineering, McGraw-Hill, 1990, page 154で確認することができる。一次回折は、式sinα=2λ/Sによって与えられる角度αで分離される。ここで、λは照射波長であり、Sは格子の周期である。2つの一次回折は、2つの照射ビーム210a,210bを提供するために使用される。
【0024】
そして、光ビーム210a,210bは、第1のビームスプリッタ120に向かう。第1のビームスプリッタ120は、光をほぼ等しく透過および反射するように設計されている。透過した2つの光ビームは、レンズ110(単一素子または多数素子レンズ)に向かう。そして、レンズ110によって、透過した2つの光ビームは、図4に示すように、ウエハ100の格子30上において、スポット250a,250bに焦点を結ぶ。
【0025】
次に、ウエハ100上の各スポット250a,250bからの反射光は、レンズ110によって集光され、第1のビームスプリッタ120に衝突する。第1のビームスプリッタ120において、光は、ほぼ90度方向を変えて、検出器175に向かう。2つのビームを分離するために、2つのビームは、図3に示す2つの検出素子175a,175bを備える検出器175のレンズ165によって撮像される。回折しないゼロ次光は、検出器素子間で焦点を結ぶため、測定を妨害しない。各素子の信号は、対応するA/Dコンバータ(180a,180b)によりデジタル化され、コンピュータ190が取得する。2つの信号の位相差は、図4,図5で後述するように、コンピュータ190が判定する。積層膜の2つの層間のレジストレーション誤差は、測定が行われた方向におけるウエハ100の連続層の格子パターンの部分間のミスアライメントに正比例する。
【0026】
測定精度は、さらに、信号がA/Dコンバータによってサンプリングされる間隔に依存する。サンプリング間隔S(すなわち、連続するサンプル間でスポットが移動する距離を、長さの単位で示したもの)は、次のように計算される。
【0027】
S=走査速度/周波数 (2)
【0028】
通常、10mm/秒の走査速度、1,000,000サンプル/秒のデジタル化周波数であれば、サンプリング間隔は10nmであり、サンプリング間隔が減少するにつれ、測定精度は高くなる。
【0029】
光ビームの焦点をスポット250a,250bで最初に結ばせるために、コンピュータ190の制御下で焦点アクチュエータ260は、走査ヘッド230をz方向に移動させ、必要に応じて走査ヘッド230を物理的に上昇または下降させることができる。また、ウエハ100のx軸を測定するために、第2の光学システムを利用することができる。光ビーム250a,250bに対して、ウエハ100は、90度回転可能であり、あるいは、走査ヘッド230は、90度回転可能である。そして、x’軸に沿った第2の測定は、y’軸に関して上述した方法で、格子20を用いて行われる。通常、ウエハ100に対してステージ200を移動させるのではなく、走査ヘッド230を移動させる。これは、光学走査ヘッドは、ステージ200よりも大幅に小さく軽くすることが可能なためである。光学スキャナのいくつかの実施形態については、代替のアライメントスキャナと共に、既に参照した米国特許第6,023,338号で説明されている。
【0030】
上述の測定プロセスによって生成される波形は、図5に示されている。波形310aは、デジタイザ180a(図3)の出力に対応し、波形310bは、デジタイザ180b(図3)の出力に対応する。図5の垂直軸は、検出された光の大きさを表し、水平軸は、経過時間を表す。走査速度は基本的に一定であるため、経過時間は、走査距離に比例し、水平軸は、さらに、走査方向における位置を表す。
【0031】
ウエハ100上の2つの層間のミスアライメントを判定する方法を例示するために、図5の波形310a,310bは、こうしたミスアライメントと共に、ウエハ100の軸(x,y,z)と走査ヘッド230の軸(x’,y’,z’)との間のオフセットに関して、描かれている。以下の説明では、図4,図5を同時に参照する必要がある。図5において、波形310a,310bは、走査ヘッド230がウエハ100全体を前進(ここではy軸に沿って移動)する際の互いの関係を表している。これらの波形は、4つの区間330,340,350,360に分割されて示されている。区間330は、線70a(図4参照)を走査して得られた信号を表している。区間340は、線70b,60cを走査して得られた信号を表している。区間350は、線60b,70cを走査して得られた信号を表している。区間360は、線60aを走査して得られた信号を表している。
【0032】
信号310a,310bの第1の区間330は、第1のキャリブレーション区間である。これは、走査ヘッドが正のy方向に並進するのに伴って照射ポイント250a,250bの両方がマーク30の線70aに衝突する時間に、双方の信号が対応しているためである。区間330では、複数の線70aの間にアライメント誤差が無いため、測定軸に関するスポット250a,250bの関係が判定される(例えば、半導体ウエハ100の第1の層および走査ヘッド230の軸間のオフセットは、半導体ウエハの第1の層の格子の一部によって判定される)。
【0033】
第2の区間340は、測定区間である。これは、各信号310a,310bは、半導体ウエハ100の2つの層の2つの格子の一部を走査して得られるためである(例えば、スポット250aは、第2の層の線60cに衝突し、スポット250bは、第1の層の線70bに衝突する)。
【0034】
第3の区間350は、第2の測定区間である。これは、各信号310a,310bは、同様に、半導体ウエハ100の2つの層の2つの格子の一部を走査して得られるためである(すなわち、スポット250aは、第1の層の線70cに衝突し、スポット250bは、第2の層の線60bに衝突する)。
【0035】
信号310a,310bの第4の区間360は、第2のキャリブレーション区間であり。これは、双方の信号は、ウエハ100の第2の層の線60aに基づいて得られるためである(すなわち、走査ヘッド230が正のy方向に並進するのに伴って照射ポイント250a,250bの両方が線60aに衝突する時間に、双方の信号が対応している)。区間360では、複数の線60aの間にアライメント誤差が無いため、測定軸に関するスポット250a,250bの関係が判定される(すなわち、半導体ウエハ100の第2の層および走査ヘッド230の軸間のオフセットは、半導体ウエハの第2の層の格子の一部によって判定される)。
【0036】
コンピュータ190が実行する計算は、4つの区間330,340,350,360における位相差を判定することで構成される。区間330,360における位相差は、上述したウエハ100のパターンと走査ヘッド230の軸との不完全な回転アライメントによるものである可能性があり、これにより、走査方向におけるウエハ100の実際の軸に関して、照射ポイント250a,250bで異なる座標が発生する。照射ポイント間で一定の位相差を発生させる可能性がある測定誤差のその他の原因は、電気的遅延および光学収差である。
【0037】
ウエハ100の2つの層間のy軸レジストレーション誤差を判定する第1の工程は、区間340,350における波形310a,310b間の平均位相誤差を取得することである。第2の工程は、キャリブレーション区間330,360を走査して得られた同波形のオフセット誤差を、差し引くことである。この調整済みおよび平均化済みのレジストレーション誤差は、ウエハ100の2つの層間の実際のレジストレーション誤差となる。
【0038】
レジストレーション誤差は、D=P*φによって計算される。ここで、Pは格子周期であり、φは2つの信号間でキャリブレートされた位相差である。φは、次式から得られる。
【0039】
φ=0.5(φc−φb)−0.5(φa+φd
【0040】
この式のパラメータは、次のように定義される。
【0041】
φa=区間330における信号310a,310b間の位相差
φb=区間340における同信号間の位相差
φc=区間350における同信号間の位相差
φd=区間360における同信号間の位相差
【0042】
これらの式において、位相は、周期の一部分として表現されるため、1つの位相は一周期に等しい。
【0043】
本発明では、2つのテスト区間が設けられており、各照射ポイント250a,250bは、任意のレジストレーション誤差が測定される各層に形成された格子パターンを走査する。例えば、図4では、照射ポイント250aは、1つの層に形成された複数の線60c上と、異なる層に形成された複数の線70c上と、を通る。同様に、照射ポイント250bは、ウエハ100の2つの層のそれぞれに形成された複数の線70b,60b上を通る。2つのテスト区間で照射スポットを導くことによって、2つの層間のレジストレーション誤差は2回度測定される。レジストレーション誤差は、第1のテスト区間において1回目が測定される。ここでは、照射スポット250aは、第2の層に形成された線(60c)上を移動し、スポット250bは、第1の層に形成された(70b)上を移動する。レジストレーション誤差が第2のテスト区間において2回目に測定されるとき、スポット250aは、第1の層に形成された線(70c)上を移動し、スポット250bは、第2の層に形成された線(60b)上を移動する。平均レジストレーション誤差は、これらの2つのレジストレーション誤差値を平均化することによって得られる。
【0044】
2つの測定済みレジストレーション誤差値を平均化することによって、ウエハの異なる層に形成された線間の非対称性と2つの測定ビーム間の非対称性とによって導入される測定誤差は大幅に減少する。この結果、平均レジストレーション誤差値は、個別に測定されたレジストレーション誤差値のいずれかよりも正確な値となる。測定の非対称性は、各層の異なる線セットの高さの違いによって発生する場合がある。上層の材料は、下層の線を覆うと共に整合するため、下層の線は、ウエハの上層を介してのみ見ることが可能な場合がある。一方、上層の線は、一般に、下層の最上部に適用されたフォトレジストマスクにより形成される。2つの層の線間の高さの違いは、フォトレジストの最上部と下層の材料の最上部との間の違いである。この高さの違いは、ビームの断面領域(ビームが進む方向と垂直な断面エリア)内の光強度が光源からのビームの進行に伴って変化するという事実に起因して、測定における非対称性を発生させる場合がある。各線分が異なる高さで各ビームに衝突するため、2つの層の線によって発生する光変調は、変化する場合があり、この結果、異なる形の回折が発生する。こうした非対称性の影響により、収集データ(すなわち、波形310a,310b)は、不正確になる場合がある。なお、各ビームは、異なる固有の収差を有する場合があり、これにより、ビーム内では、強度分布に僅かな変化が発生する。非対称性の別の原因は、金属層に衝突するときとフォトレジスト層に衝突するとで、ビームが異なる屈折特性を有する可能性があることである。
【0045】
上述の非対称性の原因は、2つのレジストレーション誤差値を平均化する際に考慮されるべきものの主な例である。当業者には理解されるように、平均化に利用できるテストデータの量を増大させるために3以上のテスト区間が含まれていてもよい。また、複数のテスト区間は、互いに隣接して配置される必要はない。こうした平均レジストレーション誤差値を取得する方法は、x方向におけるレジストレーション誤差を得るために、格子20に関して繰り返されてもよい。
【0046】
2つの波形間の位相差またはタイムシフトを計算する方法は、確立されており、フーリエ変換アルゴリズムや、ゼロ交差検出、相関アルゴリズムなどが含まれる。場合によっては、同じx座標または異なるx座標のいずれかで、数回の走査を行うことが望ましい。数回の測定を平均化することによって統計的なランダムノイズは減少する傾向があるため、数回の走査は、測定ノイズを減少させるために望ましい。y軸での走査(以前に説明・図示したもの)を想定すると、格子構造の局部的な不完全(統計的にランダム)を平均化できるように、走査ラインをx軸線に沿って移動させることが望ましい。各走査に関して、レジストレーション誤差を各区間330,360で計算し、その後、これらの値を平均する。レジストレーション誤差を計算し、その後、レジストレーション誤差を平均化するには、各サンプルポイントの強度値を平均化するのが好ましい。これは、支配的な振動周波数の単一のサイクルの小さな部分でサンプルが取り出される場合には、振動に起因する誤差がキャンセルされるためである。経験から言って、こうした振動周波数が存在する場合には、通常、500ヘルツをかなり下回る。
【0047】
図6は、本発明の代替実施形態におけるアライメントパターンを示す。アライメントパターン25では、第3のキャリブレーション区間80が、ウエハ100の第2の層に形成されており、2つのテスト区間の間に配置されている。キャリブレーション区間80は、ウエハの第1の層に形成されていてもよい。第3のキャリブレーション区間は、平均化に利用可能なテストデータの量を増大させるために利用することができる。これは、さらに、ウエハの層とアライメントスキャナとの間のオフセット誤差の影響を最小化することができる。
【0048】
本発明について、いくつかの好適な実施形態の観点から説明してきたが、本発明の範囲に含まれる変形例、置換例、および等価物が存在する。なお、本発明の方法および装置を実施する数多くの代替例が存在する。例えば、例示したマーク構造は、キャリブレーション線セットを含むが、当然ながら、キャリブレーション線をマークから除外し、キャリブレーションプロセスを排除してもよい。したがって、前記特許請求の範囲は、本発明の趣旨および範囲に入るこうしたすべての変形例、置換例、および等価物を含むと解釈されるべきである。
【図面の簡単な説明】
本発明およびその更なる利点は、添付図面と併せて以下の説明を参照することによって最も良く理解される。
【図1】 代表的な従来技術の「ボックス内ボックス」ターゲットを示す図である。
【図2】 半導体ウエハの2つの層のアライメントを判定するために使用される本発明のマークの実施形態を示す図である。
【図3】 本発明のアライメント測定システムの実施形態を示す図である。
【図4】 y軸線に対して垂直な本発明のマークを使用する本発明のアライメント測定システムの実施形態を、y方向におけるアライメントの測定に使用される2つの光ビームの瞬間的な位置と共に示す図である。
【図5】 図4の各走査光ビームによって発生する信号の関係を時間と位置とに関して示す図である。
【図6】 第3のキャリブレーション区間を含むマークの代替の実施形態を示す図である。

Claims (31)

  1. デバイスの第1の層と前記第1の層上に形成された第2の層との間の相対的な位置の測定に使用されるマークであって、
    1つの軸に沿って配置され、前記デバイスの第1の層上に形成された第1のキャリブレーション周期構造セットと、
    前記軸に沿って配置された少なくとも2つのテスト周期構造セットであって、各テスト周期構造セットは、前記第1の層上に形成されたテスト周期構造を含む第1のセクションと、前記第2の層上に形成されたテスト周期構造を含む第2のセクションと、を含み、各セットの前記第1のセクションと前記第2のセクションとは、それぞれ、次のテスト周期構造セットの前記第2のセクションと前記第1のセクションとに近接して配置されている、前記少なくとも2つのテスト周期構造セットと、
    を備える、マーク。
  2. 請求項1記載のマークであって、
    前記第1の層の前記テスト周期構造は、前記第2の層を介して、見ることができる、マーク。
  3. 請求項1記載のマークであって、さらに、
    記デバイスの前記第2の層に形成されている第2のキャリブレーション周期構造セットを備え、
    前記少なくとも2つのテスト周期構造セットは、前記第1と第2のキャリブレーション周期構造セットの間に配置されている、マーク。
  4. 請求項3記載のマークであって、
    前記少なくとも2つのテスト周期構造セットの数は2である、マーク。
  5. 請求項1記載のマークであって、
    前記キャリブレーション周期構造および前記テスト周期構造のそれぞれは、実質的に均一な幅mを有する複数の線分であり、前記キャリブレーション周期構造セットおよび前記テスト周期構造セット内の各線分は、互いに実質的に近接すると共に実質的に平行であり、各セット内の複数の線分は、実質的に均一な距離nだけ離間している、マーク。
  6. 請求項記載のマークであって、
    前記幅mおよび前記距離nは、互いに一定の比の関係を有する、マーク。
  7. 請求項記載のマークであって、
    前記幅mおよび前記距離nは、互いに実質的に等しい、マーク。
  8. 請求項記載のマークであって、
    前記第1のキャリブレーション周期構造セットと、前記複数のテスト周期構造セットのうちの1つの前記第1のセクションとは、距離nだけ離間している、マーク。
  9. 請求項1記載のマークであって、さらに、
    前記軸に沿って、2つのテスト周期構造セットの間に配置された第3のキャリブレーション周期構造セットを備える、マーク。
  10. 半導体デバイスの第1の層と第2の層との間のアライメントの測定に使用されるマークであって、
    第1の走査経路に沿って配置された第1の周期テスト構造セットであって、前記第1の層に形成される第1のセクションと、前記第2の層に形成される第2のセクションと、を有する前記第1の周期テスト構造セットと、
    第2の走査経路に沿って配置された第2の周期テスト構造セットであって、前記第1の層に形成される第1のセクションと、前記第2の層に形成される第2のセクションと、を有する前記第2の周期テスト構造セットと、
    を備え、
    前記第1の周期テスト構造セットの前記第1のセクションと前記第2のセクションとは、それぞれ、前記第2の周期テスト構造セットの前記第2のセクションと前記第1のセクションとに近接している、マーク。
  11. 請求項10記載のマークであって、
    前記第1の周期テスト構造セットと前記第2の周期テスト構造のセットとは、それらの上での測定を容易にするために、露出している、マーク。
  12. デバイスの第1の層と前記第1の層上に形成される第2の層との間の相対的な位置を測定する方法であって、
    前記デバイスの前記第1および第2の層のそれぞれに、第1の軸に沿って、前記第1の方向における前記2つの層間の相対的な位置の測定を容易にする向きで、第1のキャリブレーション周期構造セットを設ける工程と、
    前記第1の方向における前記2つの層間の相対的な位置の測定を容易にするために、前記第1の軸に沿って、前記第1のキャリブレーション周期構造セットに近接し、かつ、前記第1のキャリブレーション周期構造セットと同じ向きで、少なくとも2つの第1のテスト周期構造セットを設ける工程であって、各第1のテスト周期構造セットは、前記第1の層上に形成されたテスト周期構造を含む第1のセクションと、前記第2の層上に形成されたテスト周期構造を含む第2のセクションと、を含み、各セットの前記第1のセクションと前記第2のセクションとは、それぞれ、前記第1の軸に沿って、次のテスト周期構造セットの前記第2のセクションと前記第1のセクションとに近接して配置されている、前記工程と、
    前記複数の第1のキャリブレーション周期構造セットの一部と前記複数の第1のテスト周期構造セットの一部とを通る第1の経路でビームを走査する工程であって、ビームの少なくとも一部は、ビームが前記デバイスに衝突した後に前記デバイスの表面で反射される、前記工程と、
    前記複数の第1のキャリブレーション周期構造セットの一部と前記複数の第1のテスト周期構造セットの一部とを通る第2の経路でビームを走査する工程であって、前記第1および第2の経路は互いに物理的に離間しており、ビームの少なくとも一部は、ビームが前記デバイスに衝突した後に前記デバイスの表面で反射される、前記工程と、
    前記第1の経路からのビームの反射部分の強度に比例する第1の信号を生成する工程と、
    前記第2の経路からのビームの反射部分の強度に比例する第2の信号を生成する工程と、
    前記第1および第2の層の特性差に起因する前記第1および第2の信号間の差を最小化するために、前記第1の信号と前記第2の信号とに基づいて、前記第1の方向における2つの層間の任意の第1のレジストレーション誤差を計算する工程と、
    を備える方法。
  13. 請求項12記載の方法であって、
    前記第1の方向における前記第1の層と前記第2の層との間の相対的な位置を計算する前記工程は、システム−ウエハ間のオフセット値を用いて前記第1のレジストレーション誤差を調整することによって実行される、方法。
  14. 請求項12記載の方法であって、
    前記第1の層の前記テスト周期構造は、前記第2の層を介して、見ることができる、方法。
  15. 請求項12記載の方法であって、
    前記キャリブレーション周期構造および前記テスト周期構造のそれぞれは、実質的に均一な幅mを有する複数の線分であり、前記キャリブレーション周期構造セットおよび前記テスト周期構造セット内の各線分は、互いに実質的に近接すると共に実質的に平行であり、各セット内の複数の線分は、実質的に均一な距離nだけ離間している、方法。
  16. 請求項15記載の方法であって、
    前記幅mおよび前記距離nは、互いに一定の比の関係を有する、方法。
  17. 請求項15記載の方法であって、
    前記幅mおよび前記距離nは、互いに実質的に等しい、方法。
  18. 請求項15記載の方法であって、
    2つの第1のテスト周期構造セットが存在し、前記2つのテスト周期構造セットは、前記第1の層上の前記キャリブレーション周期構造セットと前記第2の層上の前期キャリブレーション周期構造セットとの間に配置されている、方法。
  19. 請求項18記載の方法であって、
    前記複数のキャリブレーション周期構造セットと前記複数のテスト周期構造セットとは、距離nだけ離間している、方法。
  20. 請求項12記載の方法であって、
    前記第1の経路および前記第2の経路の走査は、互いに実質的に平行である、方法。
  21. 請求項12記載の方法であって、
    前記第1の経路および前記第2の経路の走査は、連続して実行される、方法。
  22. 請求項12記載の方法であって、
    前記第1の経路および前記第2の経路の走査は、同時に実行される、方法。
  23. 請求項12記載の方法であって、さらに、
    前記デバイスの前記第1および第2の層のそれぞれに、第2の軸に沿って、前記第2の方向における前記2つの層間の相対的な位置の測定を容易にする向きで、第2のキャリブレーション周期構造セットを設ける工程と、
    前記第2の方向における前記2つの層間の相対的な位置の測定を容易にするために、前記第2の軸に沿って、前記第2のキャリブレーション周期構造セットに近接し、かつ、前記第2のキャリブレーション周期構造セットと同じ向きで、少なくとも2つの第2のテスト周期構造セットを設ける工程であって、各第2のテスト周期構造セットは、前記第1の層上に形成されたテスト周期構造を含む第1のセクションと、前記第2の層上に形成されたテスト周期構造を含む第2のセクションと、を含み、各セットの前記第1のセクションと前記第2のセクションとは、それぞれ、前記第2の軸に沿って、次のテスト周期構造セットの前記第2のセクションと前記第1のセクションとに近接して配置されている、前記工程と、
    前記複数の第2のキャリブレーション周期構造セットの一部と前記複数の第2のテスト周期構造セットの一部とを通る第3の経路でビームを走査する工程であって、ビームの少なくとも一部は、ビームが前記デバイスに衝突した後に前記デバイスの表面で反射される、前記工程と、
    前記複数の第2のキャリブレーション周期構造セットの一部と前記複数の第2のテスト周期構造セットの一部とを通る第4の経路でビームを走査する工程であって、前記第3および第4の経路は互いに物理的に離間しており、ビームの少なくとも一部は、ビームが前記デバイスに衝突した後に前記デバイスの表面で反射される、前記工程と、
    前記第3の経路からのビームの反射部分の強度に比例する第3の信号を生成する工程と、
    前記第4の経路からのビームの反射部分の強度に比例する第4の信号を生成する工程と、
    前記第1および第2の層の特性差に起因する前記第3および第4の信号間の差を最小化するために、前記第3の信号と前記第4の信号とに基づいて、前記第2の方向における2つの層間の任意の第2のレジストレーション誤差を計算する工程と、
    を備える、方法。
  24. 請求項23記載の方法であって、
    前記第2の方向における前記第1の層と前記第2の層との間の相対的な位置を計算する前記工程は、システム−ウエハ間のオフセット値を用いて前記第2のレジストレーション誤差を調整することによって実行される、方法。
  25. 請求項23記載の方法であって、
    前記第1の層の前記テスト周期構造は、前記第2の層を介して、見ることができる、方法。
  26. 請求項23記載の方法であって、
    前記第1および第2の方向は、互いに実質的に垂直である、方法。
  27. 請求項12記載の方法であって、
    前記走査動作は、光学的に実行される、方法。
  28. 請求項12記載の方法であって、
    前記走査動作は、電子ビームによって実行される、方法。
  29. 請求項12記載の方法であって、
    前記走査および検出動作は、半導体ウエハを製造するプロセス中に実行される、方法。
  30. 半導体デバイスの第2の層に対する第1の層のアライメントを測定する方法であって、
    第1の経路において、第1の層に形成された第1のセクションと、第2の層に形成された第2のセクションと、を有する第1の周期テスト構造セットを横切って、第1の測定ビームを走査する工程と、
    第2の経路において、前記第1の層に形成された第1のセクションと、前記第2の層に形成された第2のセクションと、を有する第2の周期テスト構造セットを横切って、第2の測定ビームを走査する工程であって、前記第1の周期テスト構造セットの前記第1のセクションと前記第2のセクションとは、それぞれ、前記第2の周期テスト構造セットの前記第2のセクションと前記第1のセクションとに近接している、前記工程と、
    前記第1および第2の層の特性差に起因する前記第1の信号と前記第2の信号との差を最小化するために、前記第1の測定ビームに応じて受け取った第1の信号と前記第2の測定ビームに応じて受け取った第2の信号とに基づいて、前記第1および第2の層間のアライメント値を決定する工程と、
    を備える方法。
  31. 請求項30記載の方法であって、
    前記アライメント値は、前記第1および第2の信号間の平均位相差を計算することによって決定され、これにより、前記第1および第2の層の特性差は、互いにキャンセルされる、方法。
JP2002504473A 2000-06-22 2001-06-22 重ね合わせアライメントマークの設計 Expired - Fee Related JP4789393B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/603,120 2000-06-22
US09/603,120 US6462818B1 (en) 2000-06-22 2000-06-22 Overlay alignment mark design
PCT/US2001/019897 WO2001098761A1 (en) 2000-06-22 2001-06-22 Overlay alignment mark design

Publications (2)

Publication Number Publication Date
JP2004501516A JP2004501516A (ja) 2004-01-15
JP4789393B2 true JP4789393B2 (ja) 2011-10-12

Family

ID=24414173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002504473A Expired - Fee Related JP4789393B2 (ja) 2000-06-22 2001-06-22 重ね合わせアライメントマークの設計

Country Status (3)

Country Link
US (4) US6462818B1 (ja)
JP (1) JP4789393B2 (ja)
WO (1) WO2001098761A1 (ja)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024252A1 (en) * 1999-09-28 2001-04-05 Matsushita Electric Industrial Co., Ltd. Electronic device and method of manufacture thereof
US6732890B2 (en) * 2000-01-15 2004-05-11 Hazelett Strip-Casting Corporation Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines
US6689519B2 (en) * 2000-05-04 2004-02-10 Kla-Tencor Technologies Corp. Methods and systems for lithography process control
US6462818B1 (en) * 2000-06-22 2002-10-08 Kla-Tencor Corporation Overlay alignment mark design
US7068833B1 (en) * 2000-08-30 2006-06-27 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
US7317531B2 (en) * 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US7541201B2 (en) * 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
IL138552A (en) * 2000-09-19 2006-08-01 Nova Measuring Instr Ltd Measurement of transverse displacement by optical method
US6806951B2 (en) 2000-09-20 2004-10-19 Kla-Tencor Technologies Corp. Methods and systems for determining at least one characteristic of defects on at least two sides of a specimen
US6694284B1 (en) 2000-09-20 2004-02-17 Kla-Tencor Technologies Corp. Methods and systems for determining at least four properties of a specimen
US6782337B2 (en) 2000-09-20 2004-08-24 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension an a presence of defects on a specimen
US7130029B2 (en) * 2000-09-20 2006-10-31 Kla-Tencor Technologies Corp. Methods and systems for determining an adhesion characteristic and a thickness of a specimen
US6812045B1 (en) 2000-09-20 2004-11-02 Kla-Tencor, Inc. Methods and systems for determining a characteristic of a specimen prior to, during, or subsequent to ion implantation
US6919957B2 (en) * 2000-09-20 2005-07-19 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
US6673637B2 (en) 2000-09-20 2004-01-06 Kla-Tencor Technologies Methods and systems for determining a presence of macro defects and overlay of a specimen
US6891627B1 (en) 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
US6766211B1 (en) * 2000-10-03 2004-07-20 International Business Machines Corporation Structure and method for amplifying target overlay errors using the synthesized beat signal between interleaved arrays of differing periodicity
US6833221B2 (en) * 2001-01-05 2004-12-21 Litel Instruments Method and apparatus for proper ordering of registration data
US20030002043A1 (en) * 2001-04-10 2003-01-02 Kla-Tencor Corporation Periodic patterns and technique to control misalignment
US20050064344A1 (en) * 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
US6724479B2 (en) * 2001-09-28 2004-04-20 Infineon Technologies Ag Method for overlay metrology of low contrast features
US6884552B2 (en) * 2001-11-09 2005-04-26 Kla-Tencor Technologies Corporation Focus masking structures, focus patterns and measurements thereof
US7804994B2 (en) * 2002-02-15 2010-09-28 Kla-Tencor Technologies Corporation Overlay metrology and control method
US20040066517A1 (en) * 2002-09-05 2004-04-08 Hsu-Ting Huang Interferometry-based method and apparatus for overlay metrology
US7046363B2 (en) * 2002-09-06 2006-05-16 Infineon Technologies Ag Optical measurement system and method
TWI227814B (en) * 2002-09-20 2005-02-11 Asml Netherlands Bv Alignment system and methods for lithographic systems using at least two wavelengths
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US7193715B2 (en) * 2002-11-14 2007-03-20 Tokyo Electron Limited Measurement of overlay using diffraction gratings when overlay exceeds the grating period
US7440105B2 (en) * 2002-12-05 2008-10-21 Kla-Tencor Technologies Corporation Continuously varying offset mark and methods of determining overlay
KR20050118685A (ko) * 2003-03-26 2005-12-19 아셈블레온 엔. 브이. 디바이스를 조정하기 위한 방법, 및 나란히 놓인 다수의디바이스들을 조정하기 위한 방법 및 그 방법을 구현하기적절한 물체
US7075639B2 (en) * 2003-04-25 2006-07-11 Kla-Tencor Technologies Corporation Method and mark for metrology of phase errors on phase shift masks
US7230704B2 (en) * 2003-06-06 2007-06-12 Tokyo Electron Limited Diffracting, aperiodic targets for overlay metrology and method to detect gross overlay
US7608468B1 (en) * 2003-07-02 2009-10-27 Kla-Tencor Technologies, Corp. Apparatus and methods for determining overlay and uses of same
US7346878B1 (en) 2003-07-02 2008-03-18 Kla-Tencor Technologies Corporation Apparatus and methods for providing in-chip microtargets for metrology or inspection
US7230703B2 (en) * 2003-07-17 2007-06-12 Tokyo Electron Limited Apparatus and method for measuring overlay by diffraction gratings
US7425396B2 (en) * 2003-09-30 2008-09-16 Infineon Technologies Ag Method for reducing an overlay error and measurement mark for carrying out the same
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
CN101379435A (zh) * 2004-06-03 2009-03-04 得克萨斯州大学系统董事会 用于改进显微蚀刻的对齐和覆盖的系统和方法
US7768624B2 (en) * 2004-06-03 2010-08-03 Board Of Regents, The University Of Texas System Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques
US7359577B2 (en) * 2004-07-13 2008-04-15 Yan Wang Differential method for layer-to-layer registration
US7785526B2 (en) * 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
US7379184B2 (en) * 2004-10-18 2008-05-27 Nanometrics Incorporated Overlay measurement target
US7650029B2 (en) * 2004-11-23 2010-01-19 Hewlett-Packard Development Company, L.P. Multiple layer alignment sensing
US20070231421A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Enhanced Multi Channel Alignment
US7630067B2 (en) * 2004-11-30 2009-12-08 Molecular Imprints, Inc. Interferometric analysis method for the manufacture of nano-scale devices
US7292326B2 (en) * 2004-11-30 2007-11-06 Molecular Imprints, Inc. Interferometric analysis for the manufacture of nano-scale devices
US7557921B1 (en) 2005-01-14 2009-07-07 Kla-Tencor Technologies Corporation Apparatus and methods for optically monitoring the fidelity of patterns produced by photolitographic tools
US7808643B2 (en) * 2005-02-25 2010-10-05 Nanometrics Incorporated Determining overlay error using an in-chip overlay target
WO2006093722A2 (en) * 2005-02-25 2006-09-08 Accent Optical Technologies, Inc. Methods and systems for determining overlay error based on target image symmetry
US20070228608A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Preserving Filled Features when Vacuum Wiping
WO2007040855A1 (en) * 2005-09-30 2007-04-12 Advanced Micro Devices, Inc. Structure and method for simultaneously determining an overlay accuracy and pattern placement error
DE102005046973B4 (de) 2005-09-30 2014-01-30 Globalfoundries Inc. Struktur und Verfahren zum gleichzeitigen Bestimmen einer Überlagerungsgenauigkeit und eines Musteranordnungsfehlers
US20070115452A1 (en) * 2005-11-23 2007-05-24 Asml Netherlands B.V. Method of measuring the magnification of a projection system, device manufacturing method and computer program product
US7408642B1 (en) 2006-02-17 2008-08-05 Kla-Tencor Technologies Corporation Registration target design for managing both reticle grid error and wafer overlay
JP5306989B2 (ja) 2006-04-03 2013-10-02 モレキュラー・インプリンツ・インコーポレーテッド 複数のフィールド及びアライメント・マークを有する基板を同時にパターニングする方法
JP5027468B2 (ja) * 2006-09-15 2012-09-19 日本ミクロコーティング株式会社 プローブクリーニング用又はプローブ加工用シート、及びプローブ加工方法
KR100890288B1 (ko) * 2007-03-08 2009-03-26 삼성전기주식회사 회절형 광변조기에 있어서 반사부의 변위 변화량 보정 장치
US7837907B2 (en) * 2007-07-20 2010-11-23 Molecular Imprints, Inc. Alignment system and method for a substrate in a nano-imprint process
US8237133B2 (en) * 2008-10-10 2012-08-07 Molecular Imprints, Inc. Energy sources for curing in an imprint lithography system
US8345242B2 (en) * 2008-10-28 2013-01-01 Molecular Imprints, Inc. Optical system for use in stage control
US8502324B2 (en) * 2009-10-19 2013-08-06 Freescale Semiconductor, Inc. Semiconductor wafer having scribe lane alignment marks for reducing crack propagation
US8409882B2 (en) * 2009-11-13 2013-04-02 International Business Machines Corporation Differential FET structures for electrical monitoring of overlay
US9927718B2 (en) 2010-08-03 2018-03-27 Kla-Tencor Corporation Multi-layer overlay metrology target and complimentary overlay metrology measurement systems
US9239522B2 (en) * 2010-10-08 2016-01-19 Kla-Tencor Corporation Method of determining an asymmetric property of a structure
TWI577523B (zh) * 2011-06-17 2017-04-11 三菱麗陽股份有限公司 表面具有凹凸結構的模具、光學物品、其製造方法、面發光體用透明基材及面發光體
US8681413B2 (en) 2011-06-27 2014-03-25 Kla-Tencor Corporation Illumination control
US10890436B2 (en) 2011-07-19 2021-01-12 Kla Corporation Overlay targets with orthogonal underlayer dummyfill
US8592287B2 (en) 2011-08-02 2013-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. Overlay alignment mark and method of detecting overlay alignment error using the mark
US8448100B1 (en) 2012-04-11 2013-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Tool and method for eliminating multi-patterning conflicts
US9093458B2 (en) * 2012-09-06 2015-07-28 Kla-Tencor Corporation Device correlated metrology (DCM) for OVL with embedded SEM structure overlay targets
CN105023911B (zh) * 2014-04-15 2018-05-25 联华电子股份有限公司 标记分段方法及应用其的半导体结构制造方法
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
WO2020190318A1 (en) * 2019-03-21 2020-09-24 Kla Corporation Parameter-stable misregistration measurement amelioration in semiconductor devices
DE102021119008A1 (de) 2021-07-30 2023-02-02 Carl Zeiss Multisem Gmbh Verfahren zur Defekterkennung in einer Halbleiterprobe bei Probenbildern mit Verzeichnung
CN114623787B (zh) * 2022-03-10 2024-05-03 长鑫存储技术有限公司 用于校准套刻量测准确性的校准标记及测量方法、校准方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248020A (ja) * 1985-08-26 1987-03-02 シ−メンス、アクチエンゲゼルシヤフト 半導体ウエ−ハに対するマスク位置合せ装置
JPS63196035A (ja) * 1987-02-10 1988-08-15 Canon Inc 位置合せ用マ−クおよび位置検出装置
JPH0669092A (ja) * 1990-01-12 1994-03-11 Karl Suess Kg Praezisionsgeraete Fuer Wissenschaft & Ind Gmbh & Co 2個の物体を互いに心合せするための心合せマーク
JPH07159124A (ja) * 1993-12-03 1995-06-23 Canon Inc 位置ずれ計測方法及びそれを用いた計測装置
JPH08190202A (ja) * 1994-08-17 1996-07-23 Svg Lithography Syst Inc 走査形写真平版のためのオフ軸整列装置及び写真平版ツール
WO1999040613A1 (fr) * 1998-02-09 1999-08-12 Nikon Corporation Procede de reglage d'un detecteur de position
US6022338A (en) * 1997-11-19 2000-02-08 Kimberly-Clark Worldwide, Inc. Absorbent article having a multilayered containment barrier

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538105A (en) 1981-12-07 1985-08-27 The Perkin-Elmer Corporation Overlay test wafer
US4475811A (en) 1983-04-28 1984-10-09 The Perkin-Elmer Corporation Overlay test measurement systems
US4703434A (en) 1984-04-24 1987-10-27 The Perkin-Elmer Corporation Apparatus for measuring overlay error
US4714874A (en) 1985-11-12 1987-12-22 Miles Inc. Test strip identification and instrument calibration
IT1186523B (it) 1985-12-31 1987-11-26 Sgs Microelettronica Spa Procedimento per la valutazione dei parametri di processo nella fabbricazione di dispositivi a semiconduttore
NL8600639A (nl) 1986-03-12 1987-10-01 Asm Lithography Bv Werkwijze voor het ten opzichte van elkaar uitrichten van een masker en een substraat en inrichting voor het uitvoeren van de werkwijze.
US5148214A (en) 1986-05-09 1992-09-15 Canon Kabushiki Kaisha Alignment and exposure apparatus
US4929083A (en) 1986-06-19 1990-05-29 Xerox Corporation Focus and overlay characterization and optimization for photolithographic exposure
US4757207A (en) 1987-03-03 1988-07-12 International Business Machines Corporation Measurement of registration of overlaid test patterns by the use of reflected light
US4855253A (en) 1988-01-29 1989-08-08 Hewlett-Packard Test method for random defects in electronic microstructures
JP2666859B2 (ja) 1988-11-25 1997-10-22 日本電気株式会社 目合せ用バーニヤパターンを備えた半導体装置
DE69123610T2 (de) 1990-02-02 1997-04-24 Canon K.K., Tokio/Tokyo Belichtungsverfahren
US5112129A (en) 1990-03-02 1992-05-12 Kla Instruments Corporation Method of image enhancement for the coherence probe microscope with applications to integrated circuit metrology
JPH0444307A (ja) 1990-06-12 1992-02-14 Nec Corp 半導体装置の製造方法
US5216257A (en) 1990-07-09 1993-06-01 Brueck Steven R J Method and apparatus for alignment and overlay of submicron lithographic features
US5663654A (en) 1990-08-29 1997-09-02 Micron Technology, Inc. Universal wafer carrier for wafer level die burn-in
JPH04234930A (ja) 1991-01-10 1992-08-24 Shimano Inc 釣り用リール
EP0502679B1 (en) 1991-03-04 2001-03-07 AT&T Corp. Semiconductor integrated circuit fabrication utilizing latent imagery
US5296917A (en) 1992-01-21 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Method of monitoring accuracy with which patterns are written
US5617340A (en) 1994-04-28 1997-04-01 The United States Of America As Represented By The Secretary Of Commerce Method and reference standards for measuring overlay in multilayer structures, and for calibrating imaging equipment as used in semiconductor manufacturing
US5857258A (en) 1992-03-13 1999-01-12 The United States Of America As Represented By The Secretary Of Commerce Electrical test structure and method for measuring the relative locations of conductive features on an insulating substrate
US5383136A (en) 1992-03-13 1995-01-17 The United States Of America As Represented By The Secretary Of Commerce Electrical test structure and method for measuring the relative locations of conducting features on an insulating substrate
JP2530080B2 (ja) 1992-03-14 1996-09-04 株式会社東芝 半導体製造装置の評価装置およびその評価方法
US5479270A (en) 1992-05-19 1995-12-26 Eastman Kodak Company Method and apparatus for aligning depth images
US5403754A (en) 1992-09-30 1995-04-04 Texas Instruments Incorporated Lithography method for direct alignment of integrated circuits multiple layers
US5438413A (en) 1993-03-03 1995-08-01 Kla Instruments Corporation Process for measuring overlay misregistration during semiconductor wafer fabrication
JPH06260390A (ja) 1993-03-05 1994-09-16 Toshiba Corp アライメント方法
US5414514A (en) 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
JP3039210B2 (ja) 1993-08-03 2000-05-08 日本電気株式会社 半導体装置の製造方法
GB9319434D0 (en) * 1993-09-21 1993-11-03 Ccl Systems Ltd Swaging apparatus and method
KR0168772B1 (ko) 1994-03-10 1999-02-01 김주용 포토마스크 및 그를 이용한 반도체 장치 제조 방법
US5699282A (en) 1994-04-28 1997-12-16 The United States Of America As Represented By The Secretary Of Commerce Methods and test structures for measuring overlay in multilayer devices
JPH08233555A (ja) 1994-12-28 1996-09-13 Matsushita Electric Ind Co Ltd レジストパターンの測定方法及びレジストパターンの測定装置
US5923041A (en) 1995-02-03 1999-07-13 Us Commerce Overlay target and measurement procedure to enable self-correction for wafer-induced tool-induced shift by imaging sensor means
US5702567A (en) 1995-06-01 1997-12-30 Kabushiki Kaisha Toshiba Plurality of photolithographic alignment marks with shape, size and spacing based on circuit pattern features
US5596413A (en) 1995-08-17 1997-01-21 Lucent Technologies Inc. Sub-micron through-the-lens positioning utilizing out of phase segmented gratings
KR0170909B1 (ko) 1995-09-27 1999-03-30 김주용 반도체 소자의 오버레이 검사방법
US5757507A (en) 1995-11-20 1998-05-26 International Business Machines Corporation Method of measuring bias and edge overlay error for sub-0.5 micron ground rules
US5712707A (en) 1995-11-20 1998-01-27 International Business Machines Corporation Edge overlay measurement target for sub-0.5 micron ground rules
JP2842360B2 (ja) 1996-02-28 1999-01-06 日本電気株式会社 半導体装置およびその製造方法
JP2842362B2 (ja) 1996-02-29 1999-01-06 日本電気株式会社 重ね合わせ測定方法
JPH09244222A (ja) 1996-03-08 1997-09-19 Mitsubishi Electric Corp 重ね合わせ誤差測定用レチクル、そのレチクルを用いた重ね合わせ誤差測定方法および重ね合わせ誤差測定マーク
US5805290A (en) 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
US5701013A (en) 1996-06-07 1997-12-23 Mosel Viltelic, Inc. Wafer metrology pattern integrating both overlay and critical dimension features for SEM or AFM measurements
US6023338A (en) 1996-07-12 2000-02-08 Bareket; Noah Overlay alignment measurement of wafers
US5872042A (en) 1996-08-22 1999-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method for alignment mark regeneration
US5912983A (en) 1997-01-24 1999-06-15 Oki Electric Industry Co., Ltd Overlay accuracy measuring method
US5902703A (en) 1997-03-27 1999-05-11 Vlsi Technology, Inc. Method for measuring dimensional anomalies in photolithographed integrated circuits using overlay metrology, and masks therefor
US6172409B1 (en) * 1997-06-27 2001-01-09 Cypress Semiconductor Corp. Buffer grated structure for metrology mark and method for making the same
US5877861A (en) 1997-11-14 1999-03-02 International Business Machines Corporation Method for overlay control system
US6160622A (en) 1997-12-29 2000-12-12 Asm Lithography, B.V. Alignment device and lithographic apparatus comprising such a device
US6275621B1 (en) * 1998-03-02 2001-08-14 Texas Instruments Incorporated Moire overlay target
US6077756A (en) 1998-04-24 2000-06-20 Vanguard International Semiconductor Overlay target pattern and algorithm for layer-to-layer overlay metrology for semiconductor processing
US5919714A (en) 1998-05-06 1999-07-06 Taiwan Semiconductor Manufacturing Company, Ltd. Segmented box-in-box for improving back end overlay measurement
US6140217A (en) 1998-07-16 2000-10-31 International Business Machines Corporation Technique for extending the limits of photolithography
US6128089A (en) 1998-07-28 2000-10-03 International Business Machines Corporation Combined segmented and nonsegmented bar-in-bar targets
US6137578A (en) 1998-07-28 2000-10-24 International Business Machines Corporation Segmented bar-in-bar target
US6020966A (en) 1998-09-23 2000-02-01 International Business Machines Corporation Enhanced optical detection of minimum features using depolarization
US6146910A (en) 1999-02-02 2000-11-14 The United States Of America, As Represented By The Secretary Of Commerce Target configuration and method for extraction of overlay vectors from targets having concealed features
JP3389875B2 (ja) * 1999-03-12 2003-03-24 株式会社トッパンエヌイーシー・サーキットソリューションズ 自動部品配置システム並びに自動部品配置プログラムを記録した記録媒体
US6462818B1 (en) * 2000-06-22 2002-10-08 Kla-Tencor Corporation Overlay alignment mark design

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248020A (ja) * 1985-08-26 1987-03-02 シ−メンス、アクチエンゲゼルシヤフト 半導体ウエ−ハに対するマスク位置合せ装置
JPS63196035A (ja) * 1987-02-10 1988-08-15 Canon Inc 位置合せ用マ−クおよび位置検出装置
JPH0669092A (ja) * 1990-01-12 1994-03-11 Karl Suess Kg Praezisionsgeraete Fuer Wissenschaft & Ind Gmbh & Co 2個の物体を互いに心合せするための心合せマーク
JPH07159124A (ja) * 1993-12-03 1995-06-23 Canon Inc 位置ずれ計測方法及びそれを用いた計測装置
JPH08190202A (ja) * 1994-08-17 1996-07-23 Svg Lithography Syst Inc 走査形写真平版のためのオフ軸整列装置及び写真平版ツール
US6022338A (en) * 1997-11-19 2000-02-08 Kimberly-Clark Worldwide, Inc. Absorbent article having a multilayered containment barrier
WO1999040613A1 (fr) * 1998-02-09 1999-08-12 Nikon Corporation Procede de reglage d'un detecteur de position

Also Published As

Publication number Publication date
US6462818B1 (en) 2002-10-08
JP2004501516A (ja) 2004-01-15
US6894783B2 (en) 2005-05-17
US20030206303A1 (en) 2003-11-06
WO2001098761A1 (en) 2001-12-27
US6580505B1 (en) 2003-06-17
US7102749B2 (en) 2006-09-05
US20050174574A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4789393B2 (ja) 重ね合わせアライメントマークの設計
US6486954B1 (en) Overlay alignment measurement mark
KR102160840B1 (ko) 임베디드 sem 구조물 오버레이 타겟을 갖는 ovl을 위한 디바이스 상관 계측(dcm)
US6023338A (en) Overlay alignment measurement of wafers
US5438413A (en) Process for measuring overlay misregistration during semiconductor wafer fabrication
US5805866A (en) Alignment method
US20030133088A1 (en) Scanning exposure apparatus
JPH0419545B2 (ja)
JPS62502217A (ja) レ−ザによるウェハ測定システム
KR20060014063A (ko) 위치 정보 계측 방법 및 장치, 그리고 노광 방법 및 장치
US7099010B2 (en) Two-dimensional structure for determining an overlay accuracy by means of scatterometry
JPH08288193A (ja) 位置合わせ方法
US6667806B2 (en) Process and apparatus for manufacturing semiconductor device
JP2022539425A (ja) メトロロジ方法及び関連のコンピュータプロダクト
JP2822229B2 (ja) 位置合わせ方法及び装置
JP3336357B2 (ja) 位置合わせ装置及び位置合わせ方法
JP2002202107A (ja) パターン検査装置、パターン検査方法および露光装置ならびに電子装置の製造方法
JP3733171B2 (ja) 位置検出系性能評価方法
JP2000146528A (ja) 位置ずれ検査装置の光学的収差測定方法並びに位置ずれ検査方法
JPH07134013A (ja) 表面形状計測方法および投影露光装置
JPH02283011A (ja) 投影露光装置及び投影露光方法
JP3427836B2 (ja) 位置合わせ装置及び位置合わせ方法
JPH0992591A (ja) 位置合わせ方法
JPH08330214A (ja) アライメント精度評価方法
JPH09203615A (ja) 深さ測定方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees