JP4764142B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP4764142B2
JP4764142B2 JP2005327602A JP2005327602A JP4764142B2 JP 4764142 B2 JP4764142 B2 JP 4764142B2 JP 2005327602 A JP2005327602 A JP 2005327602A JP 2005327602 A JP2005327602 A JP 2005327602A JP 4764142 B2 JP4764142 B2 JP 4764142B2
Authority
JP
Japan
Prior art keywords
voltage
line
source line
memory cell
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005327602A
Other languages
English (en)
Other versions
JP2007133998A (ja
Inventor
明 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005327602A priority Critical patent/JP4764142B2/ja
Priority to US11/557,255 priority patent/US7480180B2/en
Priority to KR1020060110921A priority patent/KR100847608B1/ko
Publication of JP2007133998A publication Critical patent/JP2007133998A/ja
Application granted granted Critical
Publication of JP4764142B2 publication Critical patent/JP4764142B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0416Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/025Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12005Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising voltage or current generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/1204Bit line control

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

この発明は、半導体記憶装置に関する。例えば、フローティングゲートとコントロールゲートとを有するMOSトランジスタを含む半導体メモリに関する。
従来から、不揮発性半導体メモリとして、NOR型フラッシュメモリやNAND型フラッシュメモリが知られており、広く使用されている。また近年では、NOR型フラッシュメモリとNAND型フラッシュメモリの両者の長所を兼ね備えたフラッシュメモリが提案されている(例えば非特許文献1参照、以下2Trフラッシュメモリと呼ぶ)。
近年のフラッシュメモリはそのスケーリングが進行しており、例えばビット線間距離なども縮小されている。そのため、製造工程中において配線間に発生するダスト等の微小な欠陥が、メモリセルに対して悪影響を及ぼしやすくなって来ている。
従って、製品として出荷する前にメモリセルのストレステストを行う必要がある。ストレステストとは、例えば隣接するビット線間や、ビット線とそれに隣接するソース線との間に電圧を印加し、正常に動作するか否かを確認するテストである。配線間にダストが存在し、配線間がショートしている等の欠陥があると、それに対応するメモリセルは不良メモリセルとして管理され、冗長メモリセルに置き換える等の対策が施される。
しかし従来のストレステストであると、偶数ビット線毎及び奇数ビット線毎、または偶数ソース線毎及び奇数ソース線毎にテストを行わなければならず、テスト時間が長くなり、テストコストが上昇するという問題があった。
Wei-Hua Liu 著、"A 2-Transistor Source-select(2TS) Flash EEPROM for 1.8V-Only Application"、Non-Volatile Semiconductor Memory Workshop 4.1、1997年
この発明は上記事情に鑑みてなされたもので、その目的は、テストコストを低減可能な半導体記憶装置を提供することにある。
この発明の第1の態様に係る半導体記憶装置は、フローティングゲートと、前記フローティングゲート上に形成された制御ゲートとを備えたMOSトランジスタを含む複数のメモリセルと、マトリクス状に配置された前記メモリセルを備えたメモリセルアレイと、各々が、同一行にある前記メモリセルの備える前記MOSトランジスタの前記制御ゲートを共通接続する複数のワード線と、各々が、同一列にある前記メモリセルの備える前記MOSトランジスタのドレインを共通接続する複数のビット線と、各々が、複数の前記メモリセルの備える前記MOSトランジスタのソースを電気的に共通接続する複数のソース線と、前記ビット線に電圧を与える第1電圧供給回路と、前記ソース線に電圧を与える第2電圧供給回路とを具備し、前記第1電圧供給回路は、隣接する前記ビット線間に第1電位差が生じ、且つ前記ソース線を挟んで隣接する前記ビット線間に前記第1電位差より小さい第2電位差が生じるように前記ビット線に対して電圧を印加し、前記第2電圧供給回路は、隣接する前記ソース線と前記ビット線との間に、前記第2電位差より大きい第3電位差が生じるように前記ソース線に対して電圧を印加する。
また、この発明の第2の態様に係る半導体記憶装置は、フローティングゲートと、前記フローティングゲート上に形成された制御ゲートとを備えたMOSトランジスタを含む複数のメモリセルと、マトリクス状に配置された前記メモリセルを含むメモリセルブロックと、複数の前記メモリセルブロックを備えたメモリセルアレイと、各々が、同一行にある前記メモリセルの備える前記MOSトランジスタの前記制御ゲートを、複数の前記メモリセルブロック間で共通接続するワード線と、各々が同一列にある前記メモリセルの備える前記MOSトランジスタのドレインを共通接続する複数のビット線と、前記メモリセルブロック毎に設けられ、対応する前記メモリセルブロック内に含まれる前記メモリセルの備える前記MOSトランジスタのソースを電気的に共通接続するソース線と、前記ビット線に電圧を与える第1電圧供給回路と、前記ソース線に電圧を与える第2電圧供給回路とを具備し、前記第1電圧供給回路は、前記メモリセルブロックのそれぞれにおいて、隣接するビット線間に第1電位差が生じ、且つ隣接する前記メモリセルブロック間において隣接する前記ビット線間の第2電位差が前記第1電位差より小さくなるように前記ビット線に対して電圧を印加し、前記第2電圧供給回路は、隣接する前記ソース線と前記ビット線との間に前記第2電位差よりも大きい第3電位差が生じるように前記ソース線に対して電圧を印加する。
本発明によれば、テストコストを低減可能な半導体記憶装置を提供出来る。
以下、この発明の実施形態を図面を参照して説明する。この説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
この発明の第1の実施形態に係る半導体記憶装置について図1を用いて説明する。図1は、本実施形態に係るNOR型フラッシュメモリのブロック図である。図示するようにフラッシュメモリ10は、メモリセルアレイ11、ロウデコーダ12、カラムデコーダ13、ビット線セレクタ14、ソース線セレクタ15、ビット線電圧供給回路16、ソース線電圧供給回路17、消去電圧供給回路18、及び制御回路19を備えている。
メモリセルアレイ11は、マトリクス状に配置された複数のNOR型フラッシュメモリセルを備えている。各メモリセルは、ビット線、ワード線、及びソース線に接続されている。ロウデコーダ12は、メモリセルアレイ11のロウ方向を選択する。すなわち、ワード線を選択する。カラムデコーダ13は、メモリセルアレイ11のカラム方向を選択する。ビット線セレクタ15は、カラムデコーダ13の選択動作に基づいてビット線を選択する。ソース線セレクタ15はソース線を選択する。ビット線電圧供給回路16は、ビット線に対して電圧を供給する。ソース線電圧供給回路17は、ソース線に対して電圧を供給する。消去電圧供給回路18は、データの消去時に使用する消去電圧をソース線に対して供給する。制御回路19は、上記回路ブロックの動作を制御する。
次に図2を用いてメモリセルアレイ11の構成について説明する。図2はメモリセルアレイ11の回路図である。図示するように、メモリセルアレイ11は(8×16)個のメモリセルMCを備えている。なおメモリセルの数は一例に過ぎず、この数に限定されるものではない。メモリセルMCは、フローティングゲートと制御ゲートとを含む積層ゲートを備えたMOSトランジスタである。そして、同一行にあるメモリセルMCの制御ゲートは、同一のワード線WL0〜WL7のいずれかに共通接続される。また同一列にあるメモリセルMCのドレインは、同一のビット線BL0〜BL15のいずれかに共通接続される。更にメモリセルMCのソースは、(8×4)個のメモリセル毎に同一のソース線SL0〜SL3のいずれかに共通接続される。
従って、メモリセルアレイ11の構成は次のようにも説明できる。すなわち、メモリセルアレイ11は4つのメモリセルブロック11−0〜11−3を備えている。各メモリセルブロック11−0〜11−3は、それぞれ(8×4)個のメモリセルMCを含んでいる。同一行にあるメモリセルMCの制御ゲートは、全てのメモリセルブロック11−0〜11−3間で共通に、ワード線WL0〜WL7のいずれかに接続されている。また同一列にあるメモリセルMCのドレインは、ビット線BL0〜BL15のいずれかに接続されている。そして、同一のメモリセルブロック11−0〜11−3に含まれるメモリセルのソースは、それぞれ同一のソース線SL0〜SL3に共通接続されている。
なお以下では、ワード線WLi(i=0、1、…7)とビット線BLj(j=0、1、2、…15)に接続されたメモリセルMCをメモリセルMC(i、j)と記載することがある。
次に図3を用いてビット線セレクタ14の構成について説明する。図3はビット線セレクタ14の回路図である。図示するように、ビット線セレクタ14はメモリセルブロック11−0〜11−3毎に設けられた選択回路14−0〜14−3を備えている。各選択回路14−0〜14−3は、それぞれ対応するメモリセルブロック11−0〜11−3に含まれるビット線の本数と同数の数のMOSトランジスタを備えている。図3の例であると、選択回路14−0〜14−3は4つのMOSトランジスタ20〜23を備えている。選択回路14−k(但しkは0〜3の自然数)におけるMOSトランジスタ20はその電流経路の一端がビット線BL4kに接続され、MOSトランジスタ21はその電流経路の一端がビット線BL(4k+1)に接続され、MOSトランジスタ22はその電流経路の一端がビット線BL(4k+2)に接続され、MOSトランジスタ23はその電流経路の一端がビット線BL(4k+3)に接続される。
また、選択回路14−l(但しlは偶数の自然数、図3の例であるとl=0、2)に含まれるMOSトランジスタ20、22の電流経路の他端、及び選択回路14−(l+1)に含まれるMOSトランジスタ21、23の電流経路の他端は共通接続される。この共通接続ノードをノードN10と呼ぶことにする。また、選択回路14−lに含まれるMOSトランジスタ21、23の電流経路の他端、及び選択回路14−(l+1)に含まれるMOSトランジスタ20、22の電流経路の他端は共通接続される。この共通接続ノードをノードN11と呼ぶことにする。
更に、選択回路14−lに含まれるMOSトランジスタ20及び選択回路14−(l+1)に含まれるMOSトランジスタ21のゲートはビット線選択線BSL0に共通接続される。選択回路14−lに含まれるMOSトランジスタ21及び選択回路14−(l+1)に含まれるMOSトランジスタ22のゲートはビット線選択線BSL1に共通接続される。選択回路14−lに含まれるMOSトランジスタ22及び選択回路14−(l+1)に含まれるMOSトランジスタ23のゲートはビット線選択線BSL2に共通接続される。選択回路14−lに含まれるMOSトランジスタ23及び選択回路14−(l+1)に含まれるMOSトランジスタ20のゲートはビット線選択線BSL3に共通接続されている。
ビット線選択線BSL0〜BSL3は制御回路19またはカラムデコーダ13によって選択され、制御回路19またはカラムデコーダ13から電圧が与えられる。またノードN10、N11には、ビット線電圧供給回路16から電圧が与えられる。
次に図4を用いてソース線セレクタ15、ソース線電圧供給回路17、及び消去電圧供給回路18の構成について説明する。図4は、ソース線セレクタ15、ソース線電圧供給回路17、及び消去電圧供給回路18の回路図である。まずソース線セレクタ15について説明する。図示するように、ソース線セレクタ15はMOSトランジスタ25、26を備えている。MOSトランジスタ25はソース線SLm(但しmは偶数の自然数、図4の例であるとm=0、2)毎に設けられ、MOSトランジスタ26はソース線SL(m+1)毎に設けられる。MOSトランジスタ25の電流経路の一端は、対応するソース線SLmに接続され、電流経路の他端は共通接続され(この共通接続ノードをノードN20と呼ぶ)、ゲートはソース線選択線SSL0に接続されている。MOSトランジスタ26の電流経路の一端は、対応するソース線SL(m+1)に接続され、電流経路の他端は共通接続され(この共通接続ノードをノードN21と呼ぶ)、ゲートはソース線選択線SSL1に接続されている。ソース線選択線SSL0、SSL1は、例えば制御回路19によって選択され、制御回路19から電圧が与えられる。
次にソース線電圧供給回路17について説明する。図示するようにソース線電圧供給回路17は、ソース電圧発生回路28及びスイッチ素子29を備えている。ソース電圧発生回路28は、ストレステスト時にソース線に与えるべき電圧(例えば5V)を発生する。スイッチ素子29は、ソース線セレクタ15におけるノードN21を、例えば制御回路19によって与えられるテスト信号TESTに基づいて、ソース電圧発生回路28または接地電位のいずれかに接続する。テスト信号TESTはストレステスト時にアサート(assert)される信号である。更にソース線電圧供給回路17は、ノードN20に0Vを印加する。
次に消去電圧供給回路18について説明する。図示するように消去電圧発生回路18は、消去電圧発生回路30及びスイッチ素子31を備えている。消去電圧発生回路30は、データ消去時にソース線に与えるべき電圧(例えば10V)を発生する。スイッチ素子31は、例えば制御回路19によって与えられる消去信号ERASEに基づいて、ソース線SL0〜SL3を消去電圧発生回路30に接続する。
次にメモリセルアレイ10の平面構造及び断面構造について、図5乃至図9を用いて説明する。図5はメモリセルアレイ10の一部領域の平面図であり、図6乃至図9は図5におけるそれぞれX1−X1’線、X2−X2’線、Y1−Y1’線、及びY2−Y2’線に沿った断面図である。消去信号ERASEは消去動作時にアサートされる信号である。
まず図5を用いて平面構造について説明する。図5は、ビット線BL0〜BL7、ワード線WL0〜WL3、及びソース線SL0〜SL1を含む領域について示している。図示するように、p型半導体基板40中に、第1方向に沿ったストライプ形状の素子領域AAが、第1方向に直交する第2方向に沿って複数形成されている。素子領域AA間には素子分離領域STIが形成されており、素子領域AAは互いに電気的に分離されている。そして、複数の素子領域AAを跨ぐようにして、第2方向に沿ったストライプ形状のワード線WL0〜WL3が形成されている。そして、ワード線WL0〜WL3と素子領域AAとが交差する領域には、メモリセルMCが形成されている。メモリセルMCの各々は、フローティングゲートと制御ゲートとを含む制御ゲートを備えたMOSトランジスタを有している。フローティングゲート(図示せず)は、メモリセル毎に分離されている。制御ゲートは第2方向で隣接するメモリセル同士で共通接続されており、ワード線として機能する。第1方向で隣接するメモリセルMCは、そのソースまたはドレインのいずれかを共有している。
メモリセルMCのソース上にはコンタクトプラグCP1が設けられ、ドレイン上にはコンタクトプラグCP2が設けられている。そして、第1方向に沿って同一列に並ぶコンタクトプラグCP2を共通に接続するように、第1方向に沿ったストライプ形状のビット線BL0〜BL7が設けられている。また、第2方向に沿って同一行に並ぶコンタクトプラグCP1を、4つ毎に共通に接続する第2方向に沿ったストライプ形状のローカルソース配線LIが設けられている。そして、同一列にある複数のローカルソース配線LIを共通接続するように、第1方向に沿ったストライプ形状のソース線SL0、SL1がビット線と平行に設けられている。
上記構成において、セルアレイ内において4本のビット線BLのひとかたまりが形成された領域を素子領域群AAGと呼ぶことにする。各素子領域群AAG内には、メモリセルブロック11−0〜11−3のいずれかが形成されている。すなわち、メモリセルアレイ10は4つの素子領域群AAGを有し、各素子領域群AAG内にビット線BL0〜BL3、BL4〜BL7、BL8〜BL11、BL12〜BL17が設けられている。従って、1つの素子領域群AAG内には4本の素子領域AAが存在し、これらは等間隔に配置されている。
また素子領域群AAGに隣接する領域にはシャント領域SAが設けられている。シャント領域SA上にもワード線は形成されているが、シャント領域SA内に存在するワード線はメモリセルを構成するものではない。ローカルソース配線LIは素子領域群AAGからシャント領域SAまで引き出されており、また隣接する素子領域群AAG間で分離されている。すなわち、ローカルソース配線LIは特定の素子領域群AAG内にのみ存在するメモリセルのソースを共通接続する。そしてローカルソース配線LIは、シャント領域SA内において、ソース線SL0〜SL3とコンタクトプラグCP3によって接続されている。従って、同一のメモリセルブロック内にあるメモリセルMCのソースは全て共通接続されているが、異なるメモリセルブロック間においては、メモリセルのソースは電気的に分離されている。
次に上記メモリセルアレイ10の断面構造について説明する。まず図6乃至図8を用いて素子領域群AAGの構成について説明する。図示するように、p型半導体基板40の表面領域内には素子分離領域STIが形成され、素子分離領域STIによって周囲を取り囲まれた領域が、素子領域AAとなっている。半導体基板40の素子領域AA上にはゲート絶縁膜41が形成され、ゲート絶縁膜41上に、メモリセルMCのゲート電極が形成されている。メモリセルMCのゲート電極は、ゲート絶縁膜41上に形成された多結晶シリコン層42、多結晶シリコン層42上に形成されたゲート間絶縁膜43、及びゲート間絶縁膜43上に形成された多結晶シリコン層44を有している。ゲート間絶縁膜43は、例えばシリコン酸化膜、またはシリコン酸化膜とシリコン窒化膜との積層構造であるON膜、NO膜、またはONO膜で形成される。
多結晶シリコン層42はフローティングゲート(FG)として機能し、図6に示すように、第2方向で隣接するもの同士で互いに分離されている。他方、多結晶シリコン層44は第2方向で隣接するもの同士で共通接続されており、コントロールゲート(ワード線WL)として機能する。第1方向で隣接するゲート電極間に位置する半導体基板40表面内には、n型不純物拡散層45が形成されている(図7、図8参照)。不純物拡散層45は隣接するトランジスタ同士で共用されており、ソース(S)またはドレイン(D)として機能する。
そして半導体基板40上には、上記メモリセルMCを被覆するようにして、層間絶縁膜46が形成されている。層間絶縁膜46中には、2つのメモリセルMCが共有する不純物拡散層(ソース領域)45に達するコンタクトプラグCP1が形成されている(図7、図8参照)。そして層間絶縁膜46上には、コンタクトプラグCP1に接続される金属配線層47が形成されている。金属配線層47はローカルソース配線LIとして機能する。また層間絶縁膜46中には、2つのメモリセルMCが共有する不純物拡散層(ドレイン領域)45に達するコンタクトプラグCP4が形成されている(図8参照)。また層間絶縁膜46上には、コンタクトプラグCP4に接続される金属配線層48が形成されている。
層間絶縁膜46上には、金属配線層47、48を被覆するようにして層間絶縁膜49が形成されている。そして層間絶縁膜49中には、金属配線層48に達するコンタクトプラグCP5が形成されている(図8参照)。コンタクトプラグCP4、CP5及び金属配線層48は、図5におけるコンタクトプラグCP2に相当する。そして、層間絶縁膜49上には、複数のコンタクトプラグCP5に共通に接続された金属配線層50が形成されている。金属配線層50はビット線BLとして機能する。そして層間絶縁膜49上には、金属配線層50を被覆するようにして層間絶縁膜51が形成されている。
次にシャント領域SAの断面構造について、図6、図7、及び図9を用いて説明する。図示するように、p型半導体基板40中には素子分離領域STIが形成されている。素子分離領域STI上に、多結晶シリコン層42、44及びゲート間絶縁膜43が形成されている。そして素子分離領域STI上に、上記多結晶シリコン層42、44及びゲート間絶縁膜43を被覆するようにして層間絶縁膜46が形成されている。層間絶縁膜46上には、ローカルソース配線LIとして機能する金属配線層47が形成される。前述の通りローカルソース配線層LIはメモリセルブロック内においてのみ、メモリセルMCのソースを共通接続するものである。従って、シャント領域SAを挟んでローカルソース配線LIが分割されていると言うことが出来る。
層間絶縁膜49上には金属配線層47を被覆するようにして層間絶縁膜49が形成され、層間絶縁膜49内には金属配線層47に達するコンタクトプラグCP3が形成されている。層間絶縁膜49上、すなわちビット線と同一のレベルには、複数のコンタクトプラグCP3を共通接続するようにして、ソース線として機能する金属配線層52が形成される。そして層間絶縁膜49上に、金属配線層52を被覆するようにして層間絶縁膜51が形成されている。
上記構成において、隣接するビット線間距離と、隣接するビット線とソース線との距離は等しくされている。
次に、上記構成のNOR型フラッシュメモリの動作について説明する。
<ストレステスト動作>
まずストレステスト動作について説明する。ストレステストとは、隣接するビット線間、及び隣接するビット線とソース線との間に電圧を印加し、例えばダスト等の存在により両者がショートしないか否かを確認するためのテストである。ショートが発生した場合には不良として以後管理される。
ストレステスト動作について図10を用いて説明する。図10は本実施形態に係るNOR型フラッシュメモリの回路図である。まず、図示せぬ制御回路19がテスト信号TESTをアサートし、消去信号ERASEをネゲート(negate)する。このテスト信号TESTに応じて、ビット線電圧供給回路16は電圧を発生し、例えば5VをノードN10へ供給し、0VをノードN11へ供給する。またソース線電圧発生回路28は例えば5Vを発生する。テスト信号TESTがアサートされているので、スイッチ素子29はノードN21をソース線電圧発生回路28に接続する。従って、ソース線セレクタ15におけるノードN21の電位は5Vである。他方、ノードN20には0Vが与えられる。更に消去信号REASEがネゲートされているので、消去電圧供給回路19におけるスイッチ素子31は、ソース線SL0〜SL3と消去電圧発生回路30とを分離する。
そして、制御回路19はビット線選択線BSL0〜BSL3及びソース線選択線SSL0〜SSL1を選択し、両者に“H”レベルの信号を与える。その結果、ビット線セレクタ15内の選択回路14−0〜14−3におけるMOSトランジスタ20〜23がオン状態となる。またソース線セレクタ15におけるMOSトランジスタ25、26がオン状態となる。よって、ソース線SL0、SL2にはノードN20を介してソース線電圧供給回路17から0Vが与えられる。またソース線SL1、SL3にはノードN21を介してソース線電圧供給回路17から5Vが与えられる。選択回路14−l(lは偶数の自然数、図10の例であるとl=0、2)に対応するビット線のうちビット線BL4l、BL(4l+2)、並びに選択回路14−(l+1)に対応するビット線のうちビット線BL(4(l+1)+1)、BL(4(l+1)+3)には、ノードN10を介して例えば5Vが与えられる。すなわち、ビット線BL0、BL2、BL5、BL7、BL8、BL10、BL13、BL15の電位は5Vとされる。選択回路14−l(lは偶数の自然数、図10の例であるとl=0、2)に対応するビット線のうちビット線BL(4l+1)、BL(4l+3)、並びに選択回路14−(l+1)に対応するビット線のうちビット線BL(4(l+1))、BL(4(l+1)+2)には、ノードN11を介して例えば0Vが与えられる。すなわち、ビット線BL1、BL3、BL4、BL6、BL9、BL11、BL12、BL14の電位は0Vとされる。
以上により、隣接するビット線間、及び隣接するビット線とソース線との間に5Vの電位差が与えられる。この状態で両者がショートを起こすか否かを確認し、ショートした場合、不良として管理する。
<書き込み動作>
次に書き込み動作について図11を用いて説明する。図11は本実施形態に係るNOR型フラッシュメモリの回路図である。まず、図示せぬ制御回路19がテスト信号TEST及び消去信号ERASEをネゲートする。従って、ソース線セレクタ15におけるノードN21は、スイッチ素子29によって接地電位に接続される。また、消去電圧供給回路19におけるスイッチ素子31は、ソース線SL0〜SL3と消去電圧発生回路30とを分離する。またビット線電圧供給回路16は、5V、0Vを書き込みデータとしてそれぞれノードN10、N11に与える。
そして、制御回路19はビット線選択線BSL0〜BSL3及びソース線選択線SSL0〜SSL1を選択し、両者に“H”レベルの信号を与える。その結果、ビット線セレクタ15内の選択回路14−0〜14−3におけるMOSトランジスタ20〜23がオン状態となる。またソース線セレクタ15におけるMOSトランジスタ25、26がオン状態となる。よって、ソース線SL0〜SL4にはソース線電圧供給回路17から0Vが与えられる。またビット線BL0、BL2、BL5、BL7、BL8、BL10、BL13、BL15にはノードN10から5Vが与えられる。その他のビット線の電位は0Vである。またロウデコーダ12はいずれかのワード線(図11ではワード線WL0)を選択し、例えば10Vを選択ワード線に印加する。
すると、ワード線WL0及びビット線BL0、BL2、BL5、BL7、BL8、BL10、BL13、BL15に接続されたメモリセルMC00、MC02、MC05、…では、電子がソースからドレインに移動する。この電子のうちの高エネルギーを持つもの(ホットエレクトロン)が、ゲート方向の電界によってフローティングゲートに到達する。このようにして、フローティングゲート中の電子の数が相対的に少ない“1”状態のメモリセルは、電子の数が相対的に多い“0”状態のメモリセルに代わる。その他のメモリセルではドレイン電流が流れず、メモリセルのデータは変わらない。
<読み出し動作>
次に読み出し動作について図12を用いて説明する。図12は本実施形態に係るNOR型フラッシュメモリの回路図である。書き込み動作時と同様に、テスト信号TEST及び消去信号ERASEはネゲートされる。従って、ノードN21はソース電圧発生回路28と分離され、ソース線SL0〜SL3は消去電圧発生回路30と分離される。またビット線電圧供給回路16は、ノードN10に読み出し電圧として例えば1Vを印加する。
制御回路19はビット線選択線BSL0〜BSL3及びソース線選択線SSL0〜SSL1を選択し、両者に“H”レベルの信号を与える。その結果、ソース線SL0〜SL4にはソース線電圧供給回路17から0Vが与えられる。またビット線BL0、BL2、BL5、BL7、BL8、BL10、BL13、BL15にはノードN10から1Vが与えられる。その他のビット線の電位は0Vである。またロウデコーダ12はいずれかのワード線(図12ではワード線WL0)を選択し、例えば5Vを選択ワード線に印加する。
すると、“1”状態のメモリセルでは電流が流れ、“0”状態のメモリセルは電流が流れない。この電流をセンスすることにより、データ“0”または“1”を読み出すことが出来る。
<消去動作>
次に消去動作について図13を用いて説明する。図13は本実施形態に係るNOR型フラッシュメモリの回路図である。データの消去はメモリセルアレイ単位に一括して行われる。まず、図示せぬ制御回路19がテスト信号TESTをネゲートし、消去信号ERASEをアサートする。従って、ノードN21はスイッチ素子29によって接地電位に接続される。また、消去電圧供給回路19におけるスイッチ素子31は、ソース線SL0〜SL3と消去電圧発生回路30とを接続する。また、消去電圧発生回路30は消去電圧として例えば10Vを発生する。
そして、制御回路19はビット線選択線BSL0〜BSL3及びソース線選択線SSL0〜SSL1を全て非選択とし、両者に“L”レベルの信号を与える。その結果、ビット線セレクタ15内の選択回路14−0〜14−3におけるMOSトランジスタ20〜23、並びにソース線セレクタ15におけるMOSトランジスタ25、26がオフ状態となる。ロウデコーダ12は、全ワード線WL0〜WL7に対して例えば負電圧(−8V)を印加する。全ソース線SL0〜SL3には消去電圧発生回路30から正電圧(10V)が印加される。
以上の結果、メモリセルのゲート絶縁膜に高電界が印加され、フローティングゲート内の電子はFNトンネリングによってソースへ移動する。その結果、メモリセルのデータが“1”となる。
上記のように、この発明の第1の実施形態に係るNOR型フラッシュメモリであると、次の効果を得ることが出来る。
(1)フラッシュメモリのテストコストを低減出来る。
本実施形態に係るNOR型フラッシュメモリであると、隣接するビット線間、及び隣接するビット線とソース線との間のストレステストを全て同時に行うことが出来る。従ってテストコストを削減出来る。この点につき、以下詳細に説明する。
図14は、従来のフラッシュメモリの構成を、ビット線とソース線の配置に着目して示した回路図であり、ストレステスト時の様子を示している。図示するように、従来の構成であると全てのメモリセルのソースは共通接続されている。このような構成においてストレステスト行う場合、まずビット線BL0〜BL15に対して交互に0Vと5Vとが印加される。例えば図14の例であると、偶数番目のビット線(BL0、BL2、BL4、…)に対して5Vが印加され、奇数番目のビット線(BL1、BL3、BL5、…)に対して0Vが印加される。このように電圧を印加することにより、隣接するビット線間に5Vの電位差が与えられ、ストレステストが実施出来る。
更に、ソース線とビット線との間のストレステストを行うべく、ソース線SL0〜SL3に対して電圧(0V)が印加される。すると、図14に示すように、ソース線SL0とビット線BL0との間、ソース線SL1とビット線BL4との間、ソース線SL2とビット線BL8との間、ソース線SL3とビット線BL12との間には5Vの電位差が与えられ、ストレステストが実施出来る。しかし、ソース線SL1とビット線BL3との間、ソース線SL2とビット線BL7との間、及びソース線SL3とビット線BL11との間の電位差は0Vであり、両者の間にストレスを与えることが出来ない。従って、図14に示すようにソース線SL0〜SL3に0Vを印加して最初のストレステストを実施した後、次に2回目のストレステストを実施する必要がある。2回目のストレステストは、ビット線BL0〜BL15の電圧をそのままにソース線SL0〜SL3に5Vを印加する、またはソース線SL0〜SL3の電圧をそのままにビット線BL0〜BL15の電圧を入れ替える(偶数ビット線に0V、奇数ビット線に5Vを印加)ことによって行う。
別の方法としては、例えば最初のストレステストにおいて、全ビット線BL0〜BL15に5Vを印加し、全ソース線SL0〜SL3に0Vを印加することにより、隣接するソース線とビット線との間にストレスを与える。次にビット線BL0〜BL15に対して交互に0Vと5Vとを印加することにより、隣接するビット線間にストレスを与える。
しかしいずれの方法を用いるにせよ、隣接するビット線間、及び隣接するソース線とビット線間に電圧ストレスを与えるには、2度のテストを行う必要があった。
この点、本実施形態に係るフラッシュメモリであると、図10を用いて説明したように1度のテストにより、全ての隣接するビット線間、及び隣接するソース線とビット線間に対して電圧ストレスを与えることが出来る。従って、ストレステストを行う回数は1回きりで良く、テストに要する時間及びテストコストを削減出来る。そのために、本実施形態に係るフラッシュメモリでは次のような構成を採用している。
すなわち、まずソース線に対して独立に電圧が与えられる構成としている。図2及び図5で説明したように、ローカルソース配線LIは、メモリセルブロック11−0〜11−3毎に分割されている。そして図4を用いて説明したように、ソース線セレクタ15は偶数ソース線SL0、SL2に対してはMOSトランジスタ25により0Vを印加し、奇数ソース線SL1、SL3に対してはMOSトランジスタ25により0Vまたは5Vを印加する。従って、偶数ソース線SL0、SL2と、奇数ソース線SL1、SL3とで、異なる電圧を印加出来る。
次に、ソース線を挟んで隣接する2本のビット線に対して同一の電圧を印加出来る構成としている。図3及び図10で説明したように、ビット線電圧供給回路16はノードN10、N11に対して0V及び5Vを印加する。そしてビット線セレクタ14は、ビット線BL0〜BL15に対して5V及び0Vを交互に印加し、且つ、ソース線を挟んで隣接する2本のビット線を同一の電圧とする。すなわち、あるメモリセルブロックにおいて偶数ビット線に5V、奇数ビット線に0Vが与えられる場合、それに隣接する別のメモリセルブロックにおいては奇数ビット線に5V、偶数ビット線に0Vが与えられる。図3及び図10では1つのメモリセルブロックに含まれるビット線本数が偶数本である場合を示したが、奇数本である場合でも同様であるし、メモリセルブロック毎に含まれるビット線本数が異なる場合であっても同様である。
更に、ソース線SL0〜SL3は書き込み時及び読み出し時にも使用するため、ストレステスト時に5Vを伝達するMOSトランジスタ26が0Vをソース線に伝達出来るように、ソース線電圧供給回路17にスイッチ素子29を設けている。またスイッチ素子31により消去時にはソースに高電圧を印加出来るような構成としている。
次にこの発明の第2の実施形態に係る半導体記憶装置について説明する。本実施形態は、上記第1の実施形態で説明した構成において、ノードN10、N11としてデータ線を用い、且つストレステスト時に使用する電圧をデータ線から与えるものである。図15は本実施形態に係るNOR型フラッシュメモリの回路図である。以下、上記第1の実施形態と異なる点についてのみ説明する。
図示するように、第1の実施形態におけるノードN10、N11は、それぞれデータ線DL0、DL1に置き換えられている。すなわち、ビット線BL0、BL8はMOSトランジスタ20を介してデータ線DL0に接続される。ビット線BL1、BL9はMOSトランジスタ21を介してデータ線DL1に接続される。ビット線BL2、BL10はMOSトランジスタ22を介してデータ線DL0に接続される。ビット線BL3、BL11はMOSトランジスタ23を介してデータ線DL1に接続される。ビット線BL4、BL12はMOSトランジスタ20を介してデータ線DL1に接続される。ビット線BL5、BL13はMOSトランジスタ21を介してデータ線DL0に接続される。ビット線BL6、BL14はMOSトランジスタ22を介してデータ線DL1に接続される。ビット線BL7、BL15はMOSトランジスタ23を介してデータ線DL0に接続される。
ソース線セレクタ15は、第1の実施形態で説明した構成において、更にMOSトランジスタ27を備えている。MOSトランジスタ25の電流経路の他端は、ノードN20の代わりに電源線(GND線)に接続される。MOSトランジスタ26の電流経路の他端は、ノードN21の代わりにデータ線DL0に接続される。MOSトランジスタ27はソース線SL(m+1)毎、すなわち奇数番目のソース線毎に設けられる。そしてMOSトランジスタ27の電流経路の一端はソース線SL(m+1)に接続され、電流経路の他端は電源線に接続され、ゲートはソース線選択線SSL2に接続されている。ソース線選択線SSL2は制御回路19によって選択される。
ビット線電圧供給回路16は、データ線DL0、DL1にそれぞれ5V、0Vを印加する。またソース線電圧供給回路16が廃されている。その他の構成は第1の実施形態と同様である。
次に本実施形態に係るNOR型フラッシュメモリの動作について説明する。以下では第1の実施形態と異なる点についてのみ説明する。
<ストレステスト動作>
ストレステスト動作時、ビット線電圧供給回路16はデータ線DL0、DL1にそれぞれ5V、0Vを印加する。その結果、ビット線BL0〜BL15には0Vと5Vが交互に、且つソース線を挟んで隣接する2本のビット線の電圧が同一となるように印加される。また制御回路19は、ソース線選択線SSL0、SSL1を“H”レベル、ソース線選択線SSL2を“L”レベルとする。従って、MOSトランジスタ25、26がオン状態、MOSトランジスタ27がオフ状態となる。従って、偶数ソース線SL0、SL2には電源線から0Vが与えられ、奇数ソース線SL1、SL3にはデータ線DL0から5Vが与えられる。
<書き込み動作・読み出し動作>
書き込み時及び読み出し時には、制御回路19はソース線選択線SSL0、SSL2を“H”レベルとし、ソース線選択線SSL1を“L”レベルとする。従って、MOSトランジスタ25、27がオン状態、MOSトランジスタ26がオフ状態となる。その結果、全ソース線SL0〜SL3には電源線から0Vが与えられる。
<消去動作>
消去時には、制御回路19は全ソース線選択線SSL0〜SSL2を“L”レベルとする。その結果、MOSトランジスタ25〜27は全てオフ状態となる。そして消去電圧発生回路30から例えば10Vが全ソース線SL0〜SL3に与えられる。
上記のように、本実施形態のように、ストレステスト時、書き込み時、及び読み出し時におけるソース電圧を電源線及びデータ線から与える場合であっても、上記第1の実施形態で説明した(1)の効果が得られる。また(2)ソース線電圧供給回路17が不要となり、回路構成を簡略化出来る、という効果をあわせて得られる。
上記のように、この発明の第1、第2の実施形態に係るフラッシュメモリであると、隣接するビット線間に電位差(電圧ストレス)を印加すると同時に、隣接するビット線とソース線間にも電位差を与えることが出来る。従って、ビット線間のストレステストと、ソース線とビット線との間のストレステストを同時に行うことが出来る。従ってテストコストを削減出来る。
なお上記実施形態ではローカルソース配線LIが金属配線層47で形成される場合について説明したが、不純物拡散層45で形成しても良い。図16は、上記第1、第2の実施形態の第1変形例に係るフラッシュメモリのメモリセルアレイの平面図であり、図5に示した領域に対応している。図17及び図18は、図16におけるX3−X3’線及びY3−Y3’線に沿った断面図である。図示するように、個々の素子領域群AAG内において、第2方向で隣接するソース間にも素子領域AAが形成され、隣接するソースを接続するようにしてn型不純物拡散層45が形成されている。すなわち、第2方向で隣接するメモリセルのソースは拡散層45によって共通に接続されており、この拡散層45がローカルソース配線LIとして機能する。そして、シャント領域SA内の拡散層45上にコンタクトプラグCP3が形成され、ソース線SLとなる金属配線層52が層間絶縁膜46上に形成されている。勿論、ビット線も層間絶縁膜46上に形成されても良い。
また、図19に示すようにシャント領域SAの第2方向に沿った幅を大きく形成しても良い。図19は上記第1、第2の実施形態の第2変形例に係るフラッシュメモリのメモリセルアレイの平面図であり、図5に対応する領域の拡大図である。シャント領域SAの第2方向に沿った幅は、ソース線SLを形成するために必要な分だけあれば十分である。従って、シャント領域SAを挟んで隣接する2本のビット線BL3、BL4直下の素子領域AA間の幅W1は、素子領域群AAGにおいて1本の素子領域AAの幅と、2本の素子分離領域STIの幅とを合わせた大きさW2であれば良い。しかし、シャント領域SAにおいては、ローカルソース配線が分離される。従って、フォトリソグラフィ工程の加工マージンを考慮すると、W1>W2にすることが望ましい。
更に上記実施形態ではNOR型フラッシュメモリを例に挙げて説明したが、例えばFNトンネリングによってデータの書き込みを行うフラッシュメモリにも適用出来る。例えば図20に示すように2Trフラッシュメモリにも適用出来る。図20は2Trフラッシュメモリのメモリセルの回路図である。図示するようにメモリセルは、ドレインがビット線BLに接続され、ゲートがワード線WLに接続されたメモリセルトランジスタMTと、ドレインがメモリセルトランジスタMTのソースに接続され、ソースがソース線SLに接続され、ゲートがセレクトゲート線SGに接続された選択トランジスタSTとを備える。
また図21に示すように3Tr−NAND型フラッシュメモリにも適用出来る。図21は3Tr−NAND型フラッシュメモリのメモリセルの回路図である。図示するように、2Trフラッシュメモリのメモリセルにおいて、メモリセルトランジスタMTのドレインに接続されたソースと、ビット線BLに接続されたドレインと、セレクトゲート線に接続されたゲートとを有する選択トランジスタST1を更に備えている。
更に図22に示すようにNAND型フラッシュメモリにも適用出来る。図22はNAND型フラッシュメモリのメモリセルの回路図である。図示するようにメモリセルは、上記3Tr−NAND型フラッシュメモリのメモリセルにおいて、メモリセルトランジスタMTの数を複数にして、これらを直列接続したものである。
また上記実施形態では、ビット線とソース線とが同一レベルの金属配線層で形成される場合について説明したが、勿論、互いに異なる金属配線層で形成されても良い。更にビット線間隔、及び隣接するソース線とビット線との間隔が均等で無くても良い。またデータの消去は、フローティングゲートからソースに電子を抜くのではなく、フローティングゲートから半導体基板に抜く場合であっても良い。この場合、消去電圧供給回路18は消去電圧を半導体基板に対して印加する。
なお、本願発明は上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。
この発明の第1の実施形態に係るNOR型フラッシュメモリのブロック図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの備えるメモリセルアレイの回路図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの備えるビット線セレクタの回路図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの備えるソース線セレクタ、消去電圧供給回路、及びソース線電圧供給回路の回路図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの備えるメモリセルアレイの平面図。 図5におけるX1−X1’線方向に沿った断面図。 図5におけるX2−X2’線方向に沿った断面図。 図5におけるY1−Y1’線方向に沿った断面図。 図5におけるY2−Y2’線方向に沿った断面図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの回路図であり、ストレステスト時の様子を示す図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの回路図であり、書き込み時の様子を示す図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの回路図であり、読み出し時の様子を示す図。 この発明の第1の実施形態に係るNOR型フラッシュメモリの回路図であり、消去時の様子を示す図。 NOR型フラッシュメモリの回路図であり、ストレステスト時の様子を示す図。 この発明の第2の実施形態に係るNOR型フラッシュメモリの回路図。 この発明の第1、第2の実施形態の第1変形例に係るNOR型フラッシュメモリの備えるメモリセルアレイの平面図。 図16におけるX3−X3’線方向に沿った断面図。 図16におけるY3−Y3’線方向に沿った断面図。 この発明の第1、第2の実施形態の第2変形例に係るNOR型フラッシュメモリの備えるメモリセルアレイの平面図。 2Trフラッシュメモリのメモリセルの回路図。 3Tr−NAND型フラッシュメモリのメモリセルの回路図。 NAND型フラッシュメモリのメモリセルの回路図。
符号の説明
10…フラッシュメモリ、11…メモリセルアレイ、11−0〜11−3…メモリセルブロック、12…ロウデコーダ、13…カラムデコーダ、14…ビット線セレクタ、14−0〜14−3…選択回路、15…ソース線セレクタ、16…ビット線電圧供給回路、17…ソース線電圧供給回路、18、30…消去電圧発生回路、19…制御回路、20〜23、25〜27…MOSトランジスタ、28…ソース電圧発生回路、29、31…スイッチ素子、40…半導体基板、41…ゲート絶縁膜、42、44…多結晶シリコン層、43…ゲート間絶縁膜、45…不純物拡散層、46、49、51…層間絶縁膜、47、48、50、52…金属配線層

Claims (5)

  1. フローティングゲートと、前記フローティングゲート上に形成された制御ゲートとを備えたMOSトランジスタを含む複数のメモリセルと、
    マトリクス状に配置された前記メモリセルを備えたメモリセルアレイと、
    各々が、同一行にある前記メモリセルの備える前記MOSトランジスタの前記制御ゲートを共通接続する複数のワード線と、
    各々が、同一列にある前記メモリセルの備える前記MOSトランジスタのドレインを共通接続する複数のビット線と、
    各々が、複数の前記メモリセルの備える前記MOSトランジスタのソースを電気的に共通接続する複数のソース線と、
    前記ビット線に電圧を与える第1電圧供給回路と、
    前記ソース線に電圧を与える第2電圧供給回路と
    を具備し、前記第1電圧供給回路は、隣接する前記ビット線間に第1電位差が生じ、且つ前記ソース線を挟んで隣接する前記ビット線間に前記第1電位差より小さい第2電位差が生じるように前記ビット線に対して電圧を印加し、
    前記第2電圧供給回路は、隣接する前記ソース線と前記ビット線との間に、前記第2電位差より大きい第3電位差が生じるように前記ソース線に対して電圧を印加する
    ことを特徴とする半導体記憶装置。
  2. フローティングゲートと、前記フローティングゲート上に形成された制御ゲートとを備えたMOSトランジスタを含む複数のメモリセルと、
    マトリクス状に配置された前記メモリセルを含むメモリセルブロックと、
    複数の前記メモリセルブロックを備えたメモリセルアレイと、
    各々が、同一行にある前記メモリセルの備える前記MOSトランジスタの前記制御ゲートを、複数の前記メモリセルブロック間で共通接続するワード線と、
    各々が同一列にある前記メモリセルの備える前記MOSトランジスタのドレインを共通接続する複数のビット線と、
    前記メモリセルブロック毎に設けられ、対応する前記メモリセルブロック内に含まれる前記メモリセルの備える前記MOSトランジスタのソースを電気的に共通接続するソース線と、
    前記ビット線に電圧を与える第1電圧供給回路と、
    前記ソース線に電圧を与える第2電圧供給回路と
    を具備し、前記第1電圧供給回路は、前記メモリセルブロックのそれぞれにおいて、隣接するビット線間に第1電位差が生じ、且つ隣接する前記メモリセルブロック間において隣接する前記ビット線間の第2電位差が前記第1電位差より小さくなるように前記ビット線に対して電圧を印加し、
    前記第2電圧供給回路は、隣接する前記ソース線と前記ビット線との間に前記第2電位差よりも大きい第3電位差が生じるように前記ソース線に対して電圧を印加する
    ことを特徴とする半導体記憶装置。
  3. 前記メモリセルブロック内において、同一行にある前記メモリセルの備える前記MOSトランジスタのソースを共通接続するローカル配線を更に備え、
    前記ソース線は、対応する前記メモリセルブロックの前記ローカル配線を共通接続し、且つ対応する前記メモリセルブロックの端部において前記ビット線と平行に形成される
    ことを特徴とする請求項2記載の半導体記憶装置。
  4. 前記ソース線はn本(nは2以上の整数)与えられ、
    前記第2電圧供給回路は2i番目(iは整数)の前記ソース線に対して第1電圧を印加し、(2i+1)番目の前記ソース線に対して前記第1電圧と異なる第2電圧を印加し、
    前記第1電圧供給回路は、2i番目の前記ソース線に隣接する前記ビット線に対して前記第2電圧を印加し、(2i+1)番目の前記ソース線に隣接する前記ビット線に対して前記第1電圧を印加する
    ことを特徴とする請求項1乃至3いずれか1項記載の半導体記憶装置。
  5. 前記ビット線と前記ソース線は、同一の配線レベルに位置する金属配線層によって形成される
    ことを特徴とする請求項1乃至4いずれか1項記載の半導体記憶装置。
JP2005327602A 2005-11-11 2005-11-11 半導体記憶装置 Expired - Fee Related JP4764142B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005327602A JP4764142B2 (ja) 2005-11-11 2005-11-11 半導体記憶装置
US11/557,255 US7480180B2 (en) 2005-11-11 2006-11-07 Semiconductor memory device comprising plural source lines
KR1020060110921A KR100847608B1 (ko) 2005-11-11 2006-11-10 반도체 기억 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327602A JP4764142B2 (ja) 2005-11-11 2005-11-11 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2007133998A JP2007133998A (ja) 2007-05-31
JP4764142B2 true JP4764142B2 (ja) 2011-08-31

Family

ID=38118544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327602A Expired - Fee Related JP4764142B2 (ja) 2005-11-11 2005-11-11 半導体記憶装置

Country Status (3)

Country Link
US (1) US7480180B2 (ja)
JP (1) JP4764142B2 (ja)
KR (1) KR100847608B1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974114B2 (en) * 2009-04-28 2011-07-05 Infineon Technologies Ag Memory cell arrangements
US8416624B2 (en) * 2010-05-21 2013-04-09 SanDisk Technologies, Inc. Erase and programming techniques to reduce the widening of state distributions in non-volatile memories
KR20120065805A (ko) * 2010-12-13 2012-06-21 삼성전자주식회사 비휘발성 메모리 장치
JP5983236B2 (ja) * 2012-09-25 2016-08-31 株式会社ソシオネクスト 半導体記憶装置
KR101952272B1 (ko) * 2012-11-06 2019-02-26 삼성전자주식회사 반도체 기억 소자
KR102635683B1 (ko) * 2016-05-10 2024-02-14 에스케이하이닉스 주식회사 비휘발성 메모리 장치
US9837160B1 (en) * 2016-05-10 2017-12-05 SK Hynix Inc. Nonvolatile memory device including sub common sources
US10062440B1 (en) * 2017-06-20 2018-08-28 Winbond Electronics Corp. Non-volatile semiconductor memory device and reading method thereof
CN112992208A (zh) * 2019-12-18 2021-06-18 上海复旦微电子集团股份有限公司 一种非挥发存储器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210993A (ja) * 1992-01-30 1993-08-20 Mitsubishi Electric Corp 不揮発性半導体記憶装置
EP0616333B1 (en) * 1993-03-18 1999-06-23 STMicroelectronics S.r.l. Method of biasing a nonvolatile flash-EEPROM memory array
US5945717A (en) * 1997-03-11 1999-08-31 Micron Technology, Inc. Segmented non-volatile memory array having multiple sources
JP3433055B2 (ja) 1997-07-22 2003-08-04 三洋電機株式会社 不揮発性半導体メモリ装置
JPH1186574A (ja) 1997-09-12 1999-03-30 Sony Corp 不揮発性半導体記憶装置
US6097636A (en) * 1999-09-03 2000-08-01 Silicon Storage Technology, Inc. Word line and source line driver circuitries
JP4005761B2 (ja) * 2000-06-09 2007-11-14 株式会社東芝 半導体記憶装置
JP4819258B2 (ja) * 2001-08-13 2011-11-24 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP2004087040A (ja) * 2002-08-28 2004-03-18 Renesas Technology Corp 半導体装置とそのテスト方法
JP4113493B2 (ja) 2003-06-12 2008-07-09 シャープ株式会社 不揮発性半導体記憶装置及びその制御方法
JP2005310303A (ja) * 2004-04-23 2005-11-04 Toshiba Corp 半導体記憶装置及びそのテスト方法

Also Published As

Publication number Publication date
JP2007133998A (ja) 2007-05-31
US20070127294A1 (en) 2007-06-07
KR100847608B1 (ko) 2008-07-21
KR20070050842A (ko) 2007-05-16
US7480180B2 (en) 2009-01-20

Similar Documents

Publication Publication Date Title
JP4764142B2 (ja) 半導体記憶装置
JP5317742B2 (ja) 半導体装置
KR100659211B1 (ko) 반도체 집적 회로 장치
KR100648553B1 (ko) 각각이 부유 게이트와 제어 게이트를 갖는 mos트랜지스터들을 구비한 반도체 메모리 장치와, 이것을포함하는 메모리 카드
JP4381278B2 (ja) 不揮発性半導体記憶装置の制御方法
JP5626812B2 (ja) 半導体記憶装置
JP3947135B2 (ja) 不揮発性半導体記憶装置
KR100661423B1 (ko) 플로팅 게이트와 제어 게이트를 각각 갖는 mos트랜지스터를 포함하는 비휘발성 반도체 기억 장치 및이것을 포함하는 메모리 카드
JP2016162475A (ja) 半導体記憶装置
JP2007133996A (ja) 半導体記憶装置及びその制御方法
JP4939971B2 (ja) 不揮発性半導体メモリ
KR100699370B1 (ko) 부유 게이트 및 제어 게이트를 각각 구비하는 복수의mos 트랜지스터를 갖는 반도체 기억 장치, 및 그 반도체기억 장치를 포함하는 메모리 카드
JP2011198437A (ja) 不揮発性半導体記憶装置
JP4223859B2 (ja) 不揮発性半導体記憶装置
JP2004103161A (ja) 不揮発性半導体メモリ
TWI621247B (zh) Semiconductor memory device
JP4805733B2 (ja) 半導体記憶装置及びそのテスト方法
US10861865B2 (en) Semiconductor storage device
JP2009272000A (ja) 不揮発性半導体記憶装置およびそのテスト方法
JP4398845B2 (ja) 不揮発性半導体記憶装置
JP2009141278A (ja) 不揮発性半導体記憶装置
JP5792878B2 (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees